
Lumière: An Infrastructure for Producing 3D
Applications in Smalltalk

Fernando Olivero, Michele Lanza, Romain Robbes
REVEAL @ Faculty of Informatics, University of Lugano
{fernando.olivero,michele.lanza,romain.robbes}@usi.ch

Abstract—With the goal of developing 3D applications using
Smalltalk, we decided to build a lightweight 3D framework
named Lumière from scratch, because after conducting a brief
survey of the available frameworks, we found many of them to be
either outdated, abandoned, undocumented or too heavyweight.

In this paper we present the design and implementation
of Lumière , an object-oriented framework based on a stage
metaphor to display interactive 3D micro-worlds.

I. INTRODUCTION

The Smalltalk language and its many dialects include sev-
eral frameworks for developing 3D applications. Some of them
are simple wrappers of low level rendering libraries (such as
OpenGL or DirectX), while others are complete frameworks
for producing 3D graphics. However, many of them are
outdated, unmaintained, undocumented or heavyweight [2].

Therefore we built Lumière , the missing 3D framework
in Smalltalk. We implemented it using Pharo and OpenGL,
with the objective of producing 3D graphics with a simple,
modern, lightweight and efficient framework. Lumière is an
object-oriented framework that provides a layer of abstraction
over graphical primitives and low-level rendering. The low-
level rendering of the framework is done by OpenGL, an
industry standard library for doing high performance graphics.
We chose to use OpenGL for efficiency, maintainability, and
portability reasons [2]. Lumière provides the infrastructure
for building 3D applications using intuitive metaphors and
high-level concepts such as shapes, lights, cameras and stages.
Using Lumière a programmer can create complex 3D scenes
that we call micro-worlds, using performant 3D graphics fully
integrated with the underlying environment (Figure 1).

Fig. 1. Lumiere micro-worlds

In the following sections we describe the design and imple-
mentation of Lumière .

II. THE DESIGN OF Lumière
When designing Lumière we chose to build the framework

around an intuitive metaphor, promoting ease of usage and
understanding, because of the immediate mental model that
metaphors provide. We settled on a stage metaphor, where
rendering takes place by cameras taking pictures of micro-
worlds lit by the lights of the stage. Similar concepts were
already present in other Smalltalk frameworks such as Bal-
lon3D and Croquet [3], and also in foreign languages such as
Open Scene Graph1. In the following we detail each aspect of
the design and provide UML diagrams of the exposed APIs.

A. Rendering a Scene
A stage provides a context for taking pictures of a micro-

world, therefore a stage contains a micro-world, cameras and
lights, and other environmental properties such as ambient
lights and fog (see Figure 2).

addLight:
takePictureOn:
viewingVolumeWithAngle: angle aspect:
aspect zNear: near zFar:
openAsMorph

microworld
cameras
lights
lightingModel
selectionPolicy
selectedShapes
highlightedShapes

LStage

loadInto:
moveForward
strafeRight
beGroundMovement
takePictureOf:on
angle:aspect:zNear:zFar:

location
orientation
viewingVolume

LCamera

loadInto:
turnOn

ambient
diffuse
specular
location

LLight

LDirectional

intensity:
angle:

spotDirection
exponent

LSpotlight

attenuationFactor
LPositional

Fig. 2. UML class diagram of Lumiere stages, lights, and cameras

The lights are responsible for illuminating the scenes. There
are several types of lights in Lumière , similar to the OpenGL
lighting model. Each light can be positioned anywhere on stage
and contributes to the final appearance of the shapes in a scene.

Cameras take pictures of the microworlds, rendering them
on a canvas. They dictate several properties of the final
drawing such as the distance, orientation and angle of sight
from which the picture is taken. As such, they determine which
shapes of the micro-world are visible in the rendered image.

1http://www.openscenegraph.org/projects/osg

http://www.openscenegraph.org/projects/osg

B. Modeling a micro-world

A Lumière micro-world is a 3D world, programmatically
modeled and populated by a diverse variety of visual objects
called shapes. Shapes are the building blocks of Lumière
scenes, they have visual properties such as scale, color, mate-
rials and textures. A shape can be a primitive or a composite
shape that groups several lower-level shapes. Lumière provides
special-purpose composite shapes with a predefined layout
to simplify the positioning of the shapes composing it (see
Figure 3).

addChild:at:
openAsMorph

sceneGraph
boundingVolume

LMicroworld
boundingVolume
LumiereShape

run
gap

LLayout

model
scale
fillStyle
material
textures

LShapeshapes
LCompositeShape

Fig. 3. Lumiere micro-world and shapes

The visual properties, orientation, and location of Lumière
shapes are described programatically when designing a
Lumière micro-world. The spatial relationships between
shapes are modeled in a micro-world using a scene graph
implementation, which is a hierarchical representation of the
position of the shapes that populate a given micro-world. A
scene graph is a directed graph composed by different types
of nodes. There are nodes for loading translations, rotations,
scales into a canvas. Other nodes when loaded into a canvas
generate a particular figure to be drawn (see Figure 4).

#model
#accept:
#loadInto:

parent
LNode

LDrawableNode

shape
renderingState

LShapeNode

#addChild:at:
child
LMiddleNode

x, y, z

LAffine
TransformationNode

angle
LRotationNodeLTranslationNode LScaleNode

#addChild:at:
children
LGroupNode

Fig. 4. Lumiere scene graph nodes

When a Lumière node is loaded into a canvas, it modifies
the state of the latter according to the its type. For example
when a scale node is loaded into a canvas it produces a
modification in the size of every shape rendered afterwards.

III. THE IMPLEMENTATION OF Lumière

Lumière uses several underlying frameworks, from the
base graphics renderer, OpenGL to the Pharo UI framework,
Morphic. The architecture of Lumière is depicted in Figure 5.

StageMorph
Stage

Microworld
SceneGraph

OpenGLCanvas
OpenGLContext
AlienOpenGLAlienFFI

Morphic

OpenGL

Ph
ar
o

Lu
m
iè
re

Fig. 5. The architecture of Lumière

Lumière uses OpenGL through AlienFFI, a foreign library
wrapper framework. It uses a canvas framework to facilitate its
interactions with the OpenGL renderer, and is integrated with
the Pharo environment trough the Morphic, Omnibrowser and
Glamour frameworks.

A. AlienOpenGL

OpenGL is written in C to maximize performance and
hence Lumière needs to interface with it. We implemented
AlienOpenGL2, a framework that uses AlienFFI to access the
underlying functionality offered by OpenGL. AlienOpenGL
allows one to invoke library functions by sending messages to
a singleton instance of ALienOpenGLLibrary.

address
free
floatAt:
signedByteAt:

Alien

GLConstant

GLEnum GLBoolean

GLFloat GLInt GIntVector

pickedNames
firstNamePicked
secondNamePicked

GLSelectionBuffer

alienMethodNamed:
libraryName

alienHandle
AlienLibrary

glColor3fRed:green:blue:
glEnable:
glLoadName:
glMatrixMode:
glGetInteger:

AlienOpenGLLibrary

gluPerspectiveAngle:aspect:zNear:zFar:
gluLookAtEye:center:up:
gluPickMatrixX:y:width:height:viewport:

AlienGluLibrary

Fig. 6. AlienOpenGL API

See Figure 6 for a UML class diagram of the API of
AlienOpenGL.

This framework also provides OpenGL data types reifi-
cation, access to the Glu library (an extension to the base
OpenGL library), and facilities for creating and manipulating
an OpenGL drawable surface, managed both by the operating
system and AlienOpenGL, where the rendering takes place.

2AlienOpenGL is available at http://www.squeaksource.com/AlienOpenGL

http://www.squeaksource.com/AlienOpenGL

B. Canvas and context
When taking pictures of a micro-world with a camera,

Lumière traverses the scene and loads the primitive shapes
onto a canvas, which is an abstraction of a 3D surface,
where primitive figures can be rendered. A canvas has a
context, an object that reifies an OpenGL context (a particular
state of the base rendering system), and acts as an adapter
between Lumière code and the basic OpenGL protocol of
the AlienOpenGL framework. The canvas context allows us
to provide some optimizations by maintaining a cache of the
state changes, and forwarding only real state changes to the
low level AlienOpenGL library.

A canvas forwards the load primitives requests to the
appropriate class of geometry object of Lumière , for example
the message #loadSphereScaled: is forwarded to an
instance of LSphere. This enables to implement different
vertex loading mechanisms without modifying any of the can-
vas load methods, decoupling the request of loading a primitive
from the actual low-level implementation. In Figure 7 we
display the canvas, context and geometry class diagram.

backgroundColor:
loadColor:
loadMaterial:
loadAxisScaled:
loadCubeScaled:
loadCylinderScaled:
loadDiskScaled:
loadLineScaled:
loadSphereScaled:
useLightingModel:

context
LOpenGLCanvas

disableAllLights
enableTexture:
doBackfaceCulling
clearTransformation
loadModelviewMode
loadColor:
loadScale:
makeCurrent

ogl
color
matrixMode
fillMode
loadedMaterial

LOpenGLContext

LCylinder LCube LSphere LPyramid

loadWithNormalsInto:scale:
loadWithoutNormalsInto:scale:
loadForPickingInto:scale:

LGeometry

Fig. 7. Canvas, context and geometry

C. Scene graph
The scene graph dictates the final appearance, orientation,

and location of the shapes that populate a micro-world. Each
node in the path from the root node to a drawable node,
contributes to modify the mentioned properties. For example,
inserting a scale node after the root node of a micro-world that
contains only one drawable node that renders a cube, affects
the final size of the cube being rendered.

A scene graph is a convenient structure for accessing all
the shapes in a micro-world when performing several tasks.
Lumière uses the Visitor design pattern [1] to streamline
this process. Lumière includes three different visitors (see
Figure 8) for traversing scene graphs:

1) LRenderingVisitor: A rendering visitor traverses
the scene and loads the visible nodes into a canvas to
display images on the screen.

2) LScenePickingVisitor: Picking is the process
trough which OpenGL determines which 3D object is
under the mouse cursor. OpenGL renders the scene in
a hidden buffer for this, so the picking visitor renders
a lower detail version of the drawables for optimization
purposes.

3) LBVHCullingVisitor: Culling is the process of
determining which parts of the scene are visible of
not. The culling visitor traverses the scene performing
intersection tests, pruning the nodes of the shapes that
are outside a particular viewing volume.

traverse:andRenderOn:

visited
selectedNodes
highlightedNodes

LRenderingVisitor

visitDrawableNode:
visitGroupNode:
visitMiddleNode:
visitRotationNode:
visitTranslationNode:
visitScaleNode:

sceneGraph
canvas
prunedNodes

LSceneGraphVisitor

traverse:andRenderOn:
loadNodeNamed:

namedNodes
LScenePickingVisitor

traverse:andRenderOn:
loadNodeNamed:

camera
LBVHCullingVisitor

Fig. 8. Lumiere scene visitors

D. Underlying environment integration

Lumière is fully integrated in the Pharo smalltalk envi-
ronment. A stage can be opened in a window, integrated in
browsers and respond to mouse and keyboard events.

Integration with Morphic. Lumière stages are integrated
into Morphic, the standard UI framework of Pharo. Lu-
miere shapes, micro-worlds and stages answer the message
#openAsMorph, opening an instance of a StageMorph. A
Stage Morph holds an AlienOpenGL draw-able for performing
the low level rendering, displaying pictures of the micro-
worlds taken by the cameras of the stages.

Integration with Omnibrowser. Stage morphs can be
inserted into Omnibrowser, the standard window environment
of Pharo. A stage morph answers the messages #addWindow
and #removeWindow, for adding or removing the window
decorating it.

Integration with Glamour. Lumière stages can also be in-
tegrated into Glamour, a new scriptable browser framework for
Pharo. Any stage can be rendered as a Lumière presentation
inserted into a glamour browser (see Figure 9).

Responding to user events. The shapes of micro-worlds
displayed by stage morphs can react to user input, from the
keyboard and mouse. Lumière provides modifiable stage inter-
action policies to control the highlighting, selection, clicking
and keyboard event handling. For example some stage interac-
tion policies specify single or multiple selection, floating over
shapes awareness and different camera keyboards movements.

Fig. 9. Glamour integration

In Figure 10 we present to the right a stage morph with a
selected shape, and to the lef a stage morph with a highlighted
shape integrated into Omnibrowser.

Fig. 10. Pharo integration

IV. CONCLUSION

In this paper we presented the design and implementation of
Lumière , our novel 3D framework implemented in Smalltalk.

Lumière uses a stage metaphor to render micro-worlds –
graphs of 3D shapes generated programmatically– in OpenGL.
Lumière is implemented using Pharo and is fully integrated
with the underlying environment. The 3D scenes generated by
Lumière can be integrated in Pharo’s windows and browsers,
and Lumière provides support for customizable keyboard and
mouse interactions.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, Reading,
Mass., 1995.

[2] F. Olivero, M. Lanza, and R. Robbes. Lumiére: A novel framework for
rendering 3d graphics in smalltalk. pages xxx – xxx. ACM Press, 2009.

[3] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet - a collaboration
system architecture, Jan. 2003.

	Introduction
	The Design of Lumière
	Rendering a Scene
	Modeling a micro-world

	The Implementation of Lumière
	AlienOpenGL
	Canvas and context
	Scene graph
	Underlying environment integration

	Conclusion
	References

