
Università
della
Svizzera
italiana

Software
Institute

Jeeves
An interaction–centric approach to data visualization using voice
control

Andrea Vicari

Supervised by
Prof. Michele Lanza & Dr. Marco D’Ambros

SOFTWARE & DATA ENGINEERING MASTER THESIS

iii

Abstract

In a world that generates more than 2’500 petabytes of data every day, data analysis and visual-
ization is becoming essential in every type of organization. Data analysts and programmers are
the main figures who, with the support of tools, can access to this large amount of information.

A de facto standard for data scientists is to use notebook–based tools (like Jupyter or Apache
Spark): these tools provide the possibility to interact with cells in which they can perform anal-
ysis and create visualizations by writing code. Non–technical users however cannot benefit
from these solutions because they require a technical background and a certain level of pro-
gramming skills.

In this thesis we present our solution to this problem: “Jeeves”. What we propose with our
work is a tool that makes the process of data analysis and visualization available also to people
that do not posses programming skills but are subject matter experts in different domains that
require data analysis.

Jeeves provides an interaction–centric approach to data visualization using vocal queries. By
studying the state–of–the–art tools and from the experience gained with a similar experiment
we ran called BoardBile, we created a web application following three requirements that we
extracted: accessibility, simplicity and ownership of the data.

The paradigm we propose is to simplify the interaction with data visualization. To this aim,
we provide users with the possibility to use natural language speech to perform queries in a
seamless and familiar way.

The setup for Jeeves consist in deploying the web application on a big screen, next to a
vocal assistant (in our work the Amazon Alexa device). The vocal assistant records and sends
queries performed by the user to Jeeves which is responsible for processing them and suggesting
optimal visualizations based on the shape of the data.

To provide a meaningful visual recommendation, we encoded the body of knowledge about
the best principles in data visualization as provided by the work of Tufte and Bertin.

To validate our work we ran some experiments by allowing users to try Jeeves. From these
sessions we gathered some anecdotal evidence and received feedback and suggestions that
helped us to shape and to tune the features provided by our tool.

This first experiment demonstrated how vocal interaction can be a promising approach to
bring users closer to the world of data analysis and visualization by simplifying the interaction
with it.

v

Dedicated to my beloved

vii

Acknowledgements

First of all I would like to thank my advisor and mentor Prof. Dr. Michele Lanza for his
supervision on this work, for being the professor that in the past 5 years has always inspired
me to push towards my limits and for having convinced me to enroll in the master in Software
& Data Engineering, choice that I would never regret.

I want to thank the Code Lounge Team and, in particular, my co–advisor Dr. Marco D’Ambros
who gave me the opportunity to work on such an interesting topic and for transmitting me the
passion for data analysis and visualization. For helping me in shaping my ideas, for provid-
ing me with the tools to work on this thesis (the Amazon Echo Device), for supporting me in
organizational issues and reviewing the drafts of this document even during holidays.

A particular acknowledgement to the Faculty of Informatics of USI and to the professors at
the Software Institute for having given me the possibility to study the subject I love the most
in the best way I could have ever imagined.

I would never thank my family enough: my mother, my father and my brother Paolo for
believing in me, for both the emotional and economical support they always gave me during
this last 5 years that I was so far from my hometown.

Thanks to my friends and all the people who stayed close to me during this experience. To
the “Fundrisi” company from Enna for being my second family and to the “Mascalzini” fellows
for being my best mates during these amazing 5 years of university.

To Redona, for her great love and support; for this last year together and for our projects
about the future.

ix

Contents

Acknowledgements vii

1 Introduction 1
1.1 The importance of data visualization . 1
1.2 Our approach . 2
1.3 Structure of this document . 3

2 Related Work 5
2.1 Data Analytics . 5

2.1.1 Jupyter Notebook . 5
2.1.2 Apache Zeppelin . 6
2.1.3 Conclusion on Data Analytics Tools . 7

2.2 Data Visualization . 7
2.2.1 Tableau . 8
2.2.2 Apache Superset . 8
2.2.3 Conclusion on Data Visualization Tools . 9

2.3 Pure Visualization Chart Generator . 9
2.4 Summary . 10
2.5 Working Experiment: BoardBile . 11
2.6 The interaction–based visualization of Jeeves . 12

3 Jeeves 15
3.1 Our Approach to Voice User Interface . 15
3.2 Requirements . 15

3.2.1 Accessibility . 16
3.2.2 Simplicity . 16
3.2.3 Maintained Ownership of Data . 16
3.2.4 Voice User Interfaces (VUIs) Requirements 17

3.3 Use Cases . 17
3.3.1 Questions about the “Diamonds” Datasets 18

3.4 Usage of the Tool . 22
3.4.1 Dashboard and Cell View . 22
3.4.2 Home Page . 25
3.4.3 Dataset Upload and Selection . 26

3.5 Development Challenges . 29
3.5.1 Relatability . 29
3.5.2 Adaptability . 29

3.6 Solution to the challenges . 29
3.6.1 Asynchronous Queries . 30
3.6.2 Natural Language Ambiguities . 31

x

3.7 Summary . 32

4 Implementation Details 33
4.1 Architecture . 33

4.1.1 Client . 33
4.1.2 External Resources . 34
4.1.3 Server . 34
4.1.4 Data Storage . 34

4.2 Technologies . 34
4.3 Basic Concepts . 35

4.3.1 Cell . 35
4.3.2 Room . 35
4.3.3 Session . 36
4.3.4 Dataset . 36

4.4 Vocal Assistant: Amazon Alexa . 36
4.4.1 Alexa Developer Console . 37
4.4.2 Alexa Skill Kit: APIs for Java . 38

4.5 Server . 40
4.5.1 Session Manager (Jeeves) . 41
4.5.2 Models . 42

Bar Chart . 42
Histogram . 42
Box Plot . 43
Scatter Plot . 44

4.5.3 Controllers . 44
4.6 Wrapping Up . 44

5 Conclusions 45
5.1 Summary . 45
5.2 Validation . 45
5.3 Contribution . 46
5.4 Future Work . 46

A The Datasets 47
A.1 Diamonds . 47

A.1.1 Dataset Description . 47
A.1.2 Dataset Structure . 47
A.1.3 Dataset Head . 48

A.2 New York Citi Bike Trip Histories . 48
A.2.1 Dataset Description . 48
A.2.2 Dataset Structure . 48
A.2.3 Dataset Head . 49

B Chart Models Structure 51
B.1 Barchart . 51
B.2 Histogram . 51
B.3 Boxplot . 52
B.4 Scatterplot . 53

xi

C APIs 55
C.1 Endpoints with Swagger . 55
C.2 The Controllers . 55

C.2.1 CSVController . 56
C.2.2 DatasetController . 56
C.2.3 RoomController . 56

D Code Maintenance 59
D.1 Tests . 59
D.2 SonarQube . 59

D.2.1 Bugs . 59
D.2.2 Vulnerabilities . 60
D.2.3 Code Smells . 60
D.2.4 Coverage . 61

D.3 Duplications . 61

xiii

List of Figures

2.1 Examples of notebooks and data visualization in Jupyter 6
2.2 Apache Zeppelin provides the user with built–in simple data visualization tool . 7
2.3 Tableau User Interface . 8
2.4 An example of Dashboard in Apache Superset . 9
2.5 BoardBile presented to the public during the event “Lugano Cittá del Gusto 2018” 12

3.1 Result of the Summarization Command . 18
3.2 Cell showing the values of “color” in the dataset 19
3.3 Cell showing the “price” column in the dataset . 20
3.4 Cell showing the distribution of price by cut . 20
3.5 Cell showing the “price” column in the dataset . 21
3.6 Cell showing the distribution of price by cut . 22
3.7 The dashboard in a room before the grid is initialized 23
3.8 The dashboard in a room after the grid of dimensions 3x3 is initialized 24
3.9 The dashboard in a room containing charts . 24
3.10 Visualization of a focused cell not initialized . 25
3.11 Visualization of a chart in a cell . 25
3.12 Home page of Jeeves . 26
3.13 Manage Datasets page of Jeeves . 27
3.14 Add datasets in the modal of Jeeves . 27
3.15 Modal that lets the user confirm or modify name and type of the columns of the

uploaded dataset . 28
3.16 Linking datasets to rooms in Jeeves . 28

4.1 Architecture of Jeevesand interaction of its components 33
4.2 Invocation commands that starts the Jeeves’s skill. 37
4.3 The two slots used in Figure 4.5 have specified type of AMAZON.Number. It

means that, when recognized by the vocal assistant, they will be cast as number
values . 37

4.4 Creation of custom slot types. Here we defined the type of visualization for the
histograms: either distribution or top values (with relative synonyms shown in
the grey boxes) . 38

4.5 The creation of utterances allows to match sentences to the creation of specific
intents. In the example above it is also visible the use of slots. The sentence will
be matched and the slots will be passed as parameters of the intent 38

4.6 Process View of the interaction between Amazon Alexa Cloud Service and Jeeves’s
Spring Boot Server . 40

4.7 Logical View[22] of the Jeeves’s Server . 41
4.8 Example of a box plot . 43

xiv

C.1 Swagger UI showing the endpoints exposed by Jeeves 55

D.1 Unit tests implemented in Jeeves . 59
D.2 Bugs found by SonarQube in Jeeves . 60
D.3 Vulnerabilities found by SonarQube in Jeeves . 60
D.4 Code Smells found by SonarQube in Jeeves . 60
D.5 Code Smells found by SonarQube in Jeevesare either Info or Minor 61
D.6 Coverage found by SonarQube in Jeeves . 61
D.7 Duplications found by SonarQube in Jeeves . 61

xv

List of Tables

2.1 Comparison of data visualization and analysis tools 11

3.1 Levenshtein distance computed between the word “cat” and the names of the
columns of the reference dataset . 31

3.2 Levenshtein distance computed between the combinations composed by the sen-
tence “start station name” and the names of the columns of the reference dataset 32

A.1 Head of the “Diamonds” dataset . 48
A.2 Head of the “New York Citi Bike Trip Histories” dataset 49

C.1 Endpoints provided by the CSV Controller . 56
C.2 Endpoints provided by the Dataset Controller . 56
C.3 Endpoints provided by the Room Controller . 57

xvii

Listings

3.1 Conversation between user and Vocal Assistant using progressive responses . . . 30
3.2 Code that uses Amazon Alexa’s progressive responses for asynchronously cre-

ating the summary of the dataset . 30
4.1 Example of usage of the Jeeves’s Session Manager to get all the available rooms . 41
4.2 Example of usage of the Jeeves’s Session Manager to add a Websocket connection 42
B.1 Structure of the Barchart object . 51
B.2 Structure of the Histogram object . 51
B.3 Structure of the Boxplot object . 52
B.4 Structure of the Scatterplot object . 53

1

Chapter 1

Introduction

“What is good visualization? It is a representation of data that helps you see what you other-
wise would have been blind to if you looked only at the naked source. It enables you to see
trends, patterns and outliers that tell you about yourself and what surrounds you”[36] this is
the definition of good visualization that Nathan Yau provides in his book “Data Points: Visu-
alization That Means Something”.

Data visualization has proved to be an effective approach for summarizing information,
breaking down complexity, understanding trends and spotting patterns and outliers. The us-
age of graphics for presentations or study of data has received a lot of attention in the past 50
years especially thanks to the work of people like Bertin[30] or Tufte[32]. In their works they
did not provide formal theories[14] but they formulated principles that we followed in our
work.

Nowadays, with the huge availability of data in each kind of field, a lot of decisions that
used to be made relying on intuitions and experiences, can now be based on real data and tools
that, together with the previous knowledge in this field, helps to go towards a data driven
decision–making. Companies invest significant resources in the data science field to support
the decision–making process based on data. Data scientists benefit from the use of tools to
perform operations over data and, at the same time, let them visualize in various ways the
information contained in it. Most of those tools require expertise in both programming and
data analysis so not all users can benefit from the results generated by those programs.

The state–of–the–art tools can perform data analysis and visualization, but they may require
knowledge of programming language or some training before being used. Moreover, there are
some limitations in the consumption of data: for example, the growing privacy–concerned
problems in cases in which it is encouraged to share data between websites or to put data
in cloud services. We developed a tool that lowers the barriers of data fruition by providing
a flawless experience that implements different interaction means with the data (using vocal
commands) and that suggests to the user the optimal solution based on the shape of data.
Moreover, we propose a deployment on premise on the user’s machine such that they can
maintain the ownership of data.

Before demonstrating the approach we built for this master thesis work, it is important to
stress and demonstrate why data visualization is useful.

1.1 The importance of data visualization

According to Stasko et al. software visualization is “the use of the crafts o typography, graphic de-
sign, animation, and cinematography with modern human-computer interaction and computer graphics
technology to facilitate both the human understanding and effective use of computer software”[31].

2 Chapter 1. Introduction

For Kirk, Data Visualization has a simpler definition: “The Representation and presentation of
data to facilitate understanding” [21].

The pictorial or graphical format was used as a mechanism for communication since before
the formalization of written language. Human brain can process an image much more quickly
than a page of words because the interpretation of images is performed in parallel within the
human perceptual system while the speed of text analysis is limited by the sequential process
of reading [25]. Moreover, pictures can be language-independent, as an image, a graph or a
chart may be understood by a group of people with no common language. According to Ward,
Grinstein and Keim [25], visualization of data helps to:

1. “Better discover and identify areas that need attention or some kind of improvement

2. Clarify which factors can influence a change in the behavior of the data

3. Understand and/or predict trends in the data”[25].

The purpose of data visualization is to show the information in a good display and aid readers
or viewers in seeing the structure in the data [14]. Also, it facilitates the process of understand-
ing as, when consuming a visualization, the viewer will go through the three stages process
of perceiving, interpreting and understanding [21]. A good data visualization allows the user to
break down the complexity, understand trends, spot patterns and outliers, summarize vast
amount of data in a single view and contribute to take better decisions. A visualization can
be interactive meaning that one can take this concept to go a step further by using technologies
that allow to go more in depth with the visualization of graphs and charts to refine the level of
detail by interactively changing the data to be shown and its processing.

In many applications, raw data has limited value in itself: extracting the information con-
tained in it [19] and showing them as a data visualization can allow one to get knowledge
and understand better trends and pattern that would remain hidden otherwise. Back in 1994
[29], this topic was already considered to be an important and accepted discipline, on the other
hand, resources at disposal of scientists were limited. With the progress and evolution of com-
putational power in computer machines, it has been possible to create visualization tools that
greatly helped to reduce the effort [29]. Nowadays, the very same problem has moved from
experts to non–experts: our goal with this thesis is to bring data closer to the users providing
them with various and intuitive ways of interacting with these informations.

As data spreads among many business areas, it is important to have the ability of organizing
it in a meaningful manner such that it can support quick understanding. There exist many
solutions and tools that empowers specialists to visualize data in order to understand it better.

We now present thew approach that we want to propose with this master thesis work.

1.2 Our approach

In this work, we created a tool called Jeeves in which we propose an approach to simplify the
interaction with data. We want to allow any person to create data visualizations and interaction
without the need of programming skills and also to move the paradigm of having data and
visualization on the same desktop device. We use a voice assistant and let people perform
queries on data by using vocal commands. The queries are analyzed and system chooses the
best way to present a result by inferring the optimal type of visualization. The results of the
queries are visible on a separate bigger screen.

1.3. Structure of this document 3

With this approach, people can visualize and interact with data, answer to their own ques-
tions or easily present insights to others. Data resides in our system only and it is the user who
decide which aspect of it to focus on.

We fulfill three main requirements that we extracted by studying the state–of–the–art solu-
tions. Our web application provides:

• Accessibility: access to the data will always be available since we provide a web applica-
tion that can be queried using vocal commands.

• Simplicity: users are provided with an interactive dashboard that can be personalized
depending on the type of visualization in mind. They ingests data in the system from
different sources and, with the use of a vocal assistant, they can perform commands to
create a new view, rearrange the dashboard or change a filter types. All of that, using the
most natural tool they have at their disposal: voice. Moreover, Jeeves provides an auto-
matic inference based on the shape of data: when the user asks to create a visualization,
our tool shows the optimal type of chart visualization depending on the type of columns
in the dataset.

• Maintained Ownership of the data: the information provided by our approach is stored in a
centralized server and users can choose whether to share or not the datasets. For exam-
ple, a company could choose to let the user interact with its data that resides in its data
centers rather than give those informations to third-party data visualization companies.
Users of the company, will just use their voice to navigate through the available data and
understand it in a more exhaustive way.

With this work we do not only provide a web application but also a vocal experience through
the use of a voice user interface (VUI). For this reason, we decided to follow some others key
concepts as suggested by the Amazon Alexa Documentation. Our vocal application then pro-
vides:

• Adaptability to users speak naturally and still be understood by the vocal assistant

• Personability by always considering the context in which the application is used

• Availability by providing users with menus to interact with the application

• Relatability to have a natural conversation–like feeling between the user and the vocal
assistant

To validate our work, we gathered some anecdotal evidence by deploying the application and
running some experiments among users; we received some important feedback on the usability
of our tool and suggestions on how to have a better user experience.

1.3 Structure of this document

• Chapter 2 presents the state of the art. It introduces existing tools which allow data visu-
alization in a virtual environment. In particular, it focuses on tools that use the same idea
of making data visualization interactive and accessible to user (even the ones without
training) by comparing and contrasting the existing features with the ones proposed in
this work.

4 Chapter 1. Introduction

• Chapter 3 explains which features Jeeves provides and which ones are the requirements
we fulfill in the application. We present how Jeeves works and how it can answer to
questions about a dataset only by using the vocal commands feature. We continue by
describing the challenges we encountered during the experiments we runned and we
conclude by explain how our tool overcomes them.

• Chapter 4 focuses on the implementation of Jeeves. We discuss the architecture that we
chose, the technologies that we adopted and explain the key components of our tool. We
then present technical information about how we model the data in our system and how
its components interact with each other.

• Chapter 5 presents the conclusions of this master thesis work: we summarize the process
we followed to develop Jeeves, how we validate our tool and what are its contributions.
We conclude this work by presenting a list of nice–to–have features to further improve
Jeeves in the future.

5

Chapter 2

Related Work

In this chapter we present some tools for data visualization, analysis and interaction. We divide
them into two categories: Data Analytics Tools and Data Visualization Tools: the former deals with
data at a deep level while the latter makes explicit the trends and patterns inherent in the data
(usually generated by a data analysis tool). We compare and contrast the characteristics of those
tools with respect to the functionalities we provide in our application, and we present some
state–of–the–art libraries used by developers for information visualization and data interaction.

Later in this chapter, we present the tool called BoardBile: it is our first experiment towards
an interactive approach to data visualization. Starting from the feedback we acquired during
the public demonstration of this tool, we decided to continue in this direction by providing
different means of interactions with the data.

Before building our tool, we analyzed the current state–of–the–art to understand the most
common approaches and technologies used in the field of data analysis and visualization, and
we used this study for the development of Jeeves.

2.1 Data Analytics

Data Analytics tools can help bring data to life: they allow users to extract and transform data
into a usable format by providing tools to clean and filter the data. They also provide users
with insights into their datasets. The following sections present two examples of data analytics
tools: Jupyter Notebook and Apache Zeppelin.

2.1.1 Jupyter Notebook

Jupyter Notebook1 is an open source, client–server application that allows the creation of the
so called notebook documents (as shown in Figure 2.1) which are then ran through the web
browser. Notebook documents are both human-readable documents containing the analysis
description and the results (figures, tables, etc..) as well as executable documents which can
be run to perform data analysis. This application can be both used offline or in the cloud and
it is mainly used for applying data cleaning and data transformation, numerical simulation,
statistical modeling, data visualization and machine learning processes.

1Jupyter Notebook Official Website: http://jupyter.org/

http://jupyter.org/

6 Chapter 2. Related Work

FIGURE 2.1: Examples of notebooks and data visualization in Jupyter

Jupyter is easy to be installed, it can be deployed on a server and used through web browser.
Notebooks can become a presentation since Jupyter Notebooks allows adding paragraphs show-
ing both computer code (e.g. Python) and rich text elements (paragraph, equations, figures,
links, etc. . .).

2.1.2 Apache Zeppelin

Zeppelin2 is an open–source project that enables interactive data analytics. It is web–based and
it was mainly born to bring, analysis and visualization on a larger scale of data using Apache
Spark3.

2Apache Zeppelin Official Website: https://zeppelin.apache.org/
3Apache Spark Website: https://spark.apache.org/

https://zeppelin.apache.org/
https://spark.apache.org/

2.2. Data Visualization 7

FIGURE 2.2: Apache Zeppelin provides the user with built–in simple data visu-
alization tool

In addition, Zeppelin provides a built–in simple data visualization tool (as shown in the red
boxes in Figure 2.2): it is possible, for example, to visualize the same data in various ways (as a
bar chart, scatter plot, line chart or tabular) by clicking on different icons. Zeppelin functional-
ities can be extended by installing plugins.

2.1.3 Conclusion on Data Analytics Tools

Compared with Jeeves: both Jupyter and Zeppelin are notebook-based, it is complex to create
and analyze data, as a matter of fact one needs programming knowledge. Also, interaction
with the data is very limited and users need to perform them using a programming language.

2.2 Data Visualization

Data Visualization tools let the user visualize and interact with data. Unlike the data analytic
tools, most of these tools do not require to write source code to create meaningful visualiza-
tions. We now describe and compare two data visualization tools: Tableau and Apache Super-
set.

8 Chapter 2. Related Work

2.2.1 Tableau

Tableau4 is an analytics platform for data: it allows people to visualize and interact with the
data even without a technical background in programming or data science. This tool is known
mainly due to its simplicity of use and ability to produce interactive visualizations. Differently
from the tools presented so fare, Tableau is not web based: it is a desktop application, therefore
it is necessary to go through an installation process before using it.

FIGURE 2.3: Tableau User Interface

As shown in Figure 2.3, Tableau provides workbooks that can be saved and accessed at any
time. Workbooks are linked to datasets and, in those, one can perform queries and visualiza-
tions through an intuitive and easy to use user interface with a system of drag and drop that
let users put data into the system and watch it updates in real-time.

2.2.2 Apache Superset

Superset5 provides data exploration and visualization through the use of an intuitive interface
to explore and visualize datasets, and create interactive dashboards. Also, it comes with out–
of–the–box visualizations to show the data selected by the user.

4Tableau Official Website: https://www.tableau.com/
5Tableau Official Website: https://superset.incubator.apache.org/

https://www.tableau.com/
https://superset.incubator.apache.org/

2.3. Pure Visualization Chart Generator 9

FIGURE 2.4: An example of Dashboard in Apache Superset

Similarly to Tableau, also Superset provides various visualizations and the knowledge in
programming or SQL is not required but it is harder to deploy since it requires to setup and
configure the back–end.

2.2.3 Conclusion on Data Visualization Tools

For the development of our tool, we started by analyzing and trying these dashboarding tools.
We took into account the most interesting ideas and we suggested an even more high–level
approach in which it is possible to create visualizations through vocal commands.

Tableau offers some of the ideas behind Jeeves like the fact that it does not require the user to
write code and that it suggest the optimal visualization based on the type of data to visualize.
While Tableau pushes to interact with the data by using a computer, we aim to provide the
user with an even more novel approach to the visualization of data: adding the possibility to
interact directly from vocal commands. Furthermore, we want to push towards the possibility
to create highly customizable visualizations by the user.

In Superset can be difficult sometimes to apply customized visualization without diving into
the source code. Our goal with Jeeves is exactly the one to provide the user with a comprehen-
sive and still easy–to–use system for building custom visualization of the data.

2.3 Pure Visualization Chart Generator

In this section, we present tools that are targeted to software developers and data engineers.
The ones we present are mostly written in JavaScript and are often used in designing front-end

10 Chapter 2. Related Work

web pages. For the development of Jeeves we used ECharts6: an open–source data visualization
library which provides many types of charts and dynamic visualization effects. An alternative
to ECharts is Highcharts7: a visualization library offered as a paid service that comes with more
means of support.

Another chart generator tool is Plotly.js8: a library built on top of d3.js9 that provides an
high-level set of APIs to build data visualization on a web platform; among the features pro-
vided by this library there are 20 different chart types, 3D charts, statistical graphs, and SVG
maps.

2.4 Summary

We chose a set of characteristics that we consider to be meaningful for data analysis and visu-
alization tools. We show if each tool:

• Has Data Analysis capabilities: it is important to pre-process data before showing it;

• Provides Data Visualization tools: as explained in Chapter 1, it is essential to understand
trends and patterns in data;

• Is Open–source: it is important since the community can contribute to the development
of the tool;

• Requires coding skills: important to understand if the tool is accessible by non–expert
users;

• Is Easy to setup: if using the tool does not require an installation or, if present, is easy to
perform. Useful to lower the barrier of accessibility;

• Provides basic charts (i.e., bar charts, histograms, box plots, scatter plots, etc. . .): a stan-
dard data visualization tool must provide the key components for representation of data;

• Provides Map Charts: it is an interesting type of visualization if the dataset contains
coordinates;

• Provides simple interactions like drag & drop to make data visualization process easier.

In table 2.1 we summarize the main features of all the tools we analyzed.

6ECharts Official Website: https://ecomfe.github.io/echarts-doc/public/en/index.html
7Highcharts Official Website: https://www.highcharts.com/
8Plotly.js Official Website: https://plot.ly/javascript/
9D3.js Official Website: https://d3js.org/

https://ecomfe.github.io/echarts-doc/public/en/index.html
https://www.highcharts.com/
https://plot.ly/javascript/
https://d3js.org/

2.5. Working Experiment: BoardBile 11

Present
Not Present
Partially Present

Jupyter Zeppelin Tableau Superset ECharts Highcharts Plotly.js
Data Analysis
Visualization
Open–source

Web–Based
Coding Skills Required

Easy Setup
Basic Charts
Map Charts

Drag & Drop Interaction

TABLE 2.1: Comparison of data visualization and analysis tools

2.5 Working Experiment: BoardBile

During the summer of 2018, we developed a tool called BoardBile together with my colleague
Leonardo Iandiorio and in collaboration with CodeLounge (a center for software research &
development). The aim of this platform was to present data about food for a special event
occurred in Lugano called “Lugano Cittá del Gusto” 10. We created a tool divided into two
main components: a big screen that was showing a dashboard containing data visualizations
and a smartphone that was acting as a remote control.

The main problem we had to face for this event was how to present to people of different
backgrounds technical data and make them easily understand without any previous training.
In order to make this process intuitive and seamless, we came up with the idea of letting users
query the data by using a tool that everyone would be familiar with: their own smartphone.

Users would connect their personal smartphone to our system and they were able to navi-
gate and get insight about the data we decided to present. To this aim, the user were performing
actions like moving the device left and right to change visualization or tapping on the screen
to change the settings of the chart and visualizing the results of their query on a bigger screen
All of this in real time.

10Lugano Cittá del Gusto Webpage: http://www.luganocittadelgusto.ch/

http://www.luganocittadelgusto.ch/

12 Chapter 2. Related Work

FIGURE 2.5: BoardBile presented to the public during the event “Lugano Cittá del
Gusto 2018”

In the context of the project called “Show Me the (food) data”11, BoardBile helped the visi-
tors of the event to receive some useful information about the consumption and the composi-
tion of food all over the world.

Part of the inspiration for Jeeves comes from the feedback and ideas we gathered during
this experience. This event showed us that this kind of interaction with data may work, so
we decided to go a step further by experimenting another approach to data visualization: we
transformed the paradigm of interaction between screen and smartphone into an interaction
between screen and vocal assistant and, instead of providing some datasets of our choice, we
let the user ingest any kind of dataset in our system.

2.6 The interaction–based visualization of Jeeves

Data analysis and visualization has a very active community and it offers many tools. Our aim
in the development of Jeeves is to build a tool that not only provides an intuitive visualization
but, above all, gives users the possibility to interact with the data itself through a system of
familiar queries like vocal commands.

In this work, we take in consideration some components provided by the state–of–the–art
tools (like Tableau and Apache Superset): we work towards the direction of lowering the access
barriers to data visualization, and we propose an intuitive and seamless approach to it.

11Find more at: http://www.luganocittadelgusto.ch/it/event/101/show-me-the-food-data/

http://www.luganocittadelgusto.ch/it/event/101/show-me-the-food-data/

2.6. The interaction–based visualization of Jeeves 13

On top of that, we added the feature of inferring the optimal visualization based on the
shape of data. This way, the user is not required to know concepts of data visualization as
Jeeves suggests the most effective data representation depending on the type of data that needs
to be visualized.

15

Chapter 3

Jeeves

This section presents our approach: Jeeves. We present the features of our tool and also discuss
requirements we decided to follow for the implementation of the tool. The first part discusses
the results we obtained using some examples datasets. We present the user interface that we
built and we explain how to use it and how we allow the user to perform queries on the data
using natural language recognized by a vocal assistant.

In the next section we present a discussion about how the experiments we ran were useful
to identify some problems in our approach and we explain how we overcome these challenges.

3.1 Our Approach to Voice User Interface

Jeeves provides users with the possibility to visualize and analyze datasets using vocal queries.
Our idea is to provide both a traditional User Interface (or UI) and to experiment a Voice User
Interface (or VUI). This latter represents the innovative aspect that we propose in this master
thesis work.

Our goal is to lower the barrier to data visualization by providing the possibility to query
data simply by using vocal commands. Also, our tool answers to the queries by providing the
best way to visualize different types of data (e.g., categorical or numerical). To this aim Jeeves
analyzes the dataset and, based on the shape of data, suggests the optimal visualization.

We decided to implement the guidelines on the subject of data visualization that has been
introduced by Edward R. Tufte in his seminar work called “Envisioning Information”[32] and
by Stephen Few in his book “Show Me the Numbers: Designing Tables and Graphs to Enlighten”[17].

Therefore, the tool is able to: 1) answer to vocal queries, 2) analyze their columns and,
using guidelines taken from the literature, 3) choose the best visualizations based on the type
of columns that the user chooses to visualize.

3.2 Requirements

We extracted some requirements from our previous experiment with the tool BoardBile (see
Section 2.5) and decided to respect these guidelines for the implementation of Jeeves.

As already mentioned in Section 1, our tool must be easily accessible by every type of user,
the UI must be simple to use and data must maintain its ownership. Our tool does not only
provide a standard User Interface but also a Voice User Interface, for this reason we decided
to set some requirements for the correct implementation of this part. We decided to follow the
guidelines provided in the documentation of the Amazon Alexa Developer Console that we
consider being one of the most exhaustive and detailed about the topic of VUI.

This sections explains the importance of these requirements and how Jeeves respects them.

16 Chapter 3. Jeeves

3.2.1 Accessibility

We implemented Jeeves as a web application to which one can interact through the use of voice
thus we respect the requirement of accessibility. In particular:

• By creating an application accessible through the web browser we ensure easy interaction
with the tool: users do not need to install services to access the application;

• By allowing the user to perform queries using their voice: we allow them to use one of
the tools they are more familiar with.

The ideal scenario for Jeeves consist in having the web application deployed on a screen next
to a vocal assistant device. The user needs to get closer to this setup (i.e., in the range of the
microphone of the vocal assistant) and start performing vocal queries to both interact with the
UI and to create visual representations of the dataset directly on the provided dashboard.

3.2.2 Simplicity

Simple sites remove all unnecessary elements and unnecessary complexity from their design
[27]. This helps users to easily use the platform without getting lost into useless or too complex
designs.

To allow users of all backgrounds (i.e., experts and not–experts) to use Jeeves, we kept the
user interface to the essential elements. We provide the essential views and menus that allow
the user to:

• Add their dataset into the tool;

• Create sessions in which they can generate and personalize their dashboard;

• Link the datasets to a room;

• Create different data visualizations in each graph of the dashboard.

In Section 3.4, we show views of the application and we explain how to interact with the tool
to create visualizations.

3.2.3 Maintained Ownership of Data

Data ownership is a crucial topic since it describes who owns the data or who might be a
custodian of the data [18].

One big question with cloud implementations is, who owns the data? In Jeeves data resides
on the same platform where the server is running. Therefore, the idea that we propose with
this tool, sees each user running a version of the server on their personal machine and not on
a centralized cloud service. This way, even if datasets loaded into Jeeves may contain sensitive
data, the ownership is not shifted to a cloud server but remains unvaried.

Moreover, it is important to clarify that not even the vocal assistant service has access to
the data. One may think that the voice service we use needs to have knowledge about the data
to query, instead the only information that are received from the Alexa Amazon Cloud are the
commands to query the data, not the content of the data itself.

3.3. Use Cases 17

3.2.4 Voice User Interfaces (VUIs) Requirements

As previously introduced in Chapter 2, one of our main aims was to experiment in this new
field of interaction: the user can visualize data and interact with the web application through
the use of vocal queries. To achieve this, we implemented a voice user interface (VUI). The
rise of voice UIs denotes a new trend in the interaction between a human and a computing
machine.

As opposed to interactions that relies on the standard use of mouse, keyboard or touch con-
trols, VUIs change the entire design approach shifting into a voice-first type of interaction. To
achieve a meaningful and seamless experience, one should plan VUIs to adjust to the numerous
ways users may express intents through natural language.

To assure the creation of a meaningful VUI, one should follow some design concepts that
allows the creation of a more natural and user–centric dialog. These concepts are mainly four:

• Be adaptable[1]: let users speak in their own words. An adaptable–designed VUI un-
derstands and process a customer’s request appropriately, in whatever situation your
interface has outlined;

• Be personal[3]: individualize the entire interaction. Collect information about the context
in which the VUI is operating and create a personalized experience depending on the
user;

• Be available[2]: collapse the menus; make all options top-level. Build a horizontal VUI
with a voice-first design that keeps all options open for users;

• Be relatable[4]: Talk with the user, not at the user. The vocal assistant needs to speak con-
cisely to help the user understand what information your VUI needs and to feel confident
about what is happening.

These four requirements are essential to design a VUI that provides an engaging interaction
between a human and a computer1.

The topic of VUI is becoming more and more relevant as even big and international com-
panies like Apple, recently decided to invested on this field and decided to provide their own
vocal–based system called “Voice Control”2. This new feature, that Apple provides on both
MACOS and iOS, has been presented during their annual World Wide Developer Conference3

(WWDC) in June 2019 in California.

3.3 Use Cases

We validated the tool by allowing people to use it. To explain how Jeeves works, we think that
the best way is to go through a number of questions and show how our application can help
us answer to them.

To this aim, we use a dataset that we show and explain more in detail in Appendix A. Before
showing the capabilities of our tool, we formulate some questions about the datasets and we
show how we are able to answer them only by using vocal commands in Jeeves.

1New Alexa Design Guide: https://developer.amazon.com/it/docs/alexa-design/get-started.html
2Voice Control by Apple: https://apple.co/2ZazIOF
3WWDC: https://developer.apple.com/wwdc19/

https://developer.amazon.com/it/docs/alexa-design/get-started.html
https://apple.co/2ZazIOF
https://developer.apple.com/wwdc19/

18 Chapter 3. Jeeves

3.3.1 Questions about the “Diamonds” Datasets

We use the “Diamonds” dataset (find more in Appendix A.1) to test the capabilities of Jeeves.
We are able to ingest it in the system and create visual representations of the data contained in
it.

To analyze the data, the user needs to setup the environment by adding the dataset to the
platform, creating a session (or room) and linking the dataset to the session (we show these
steps in Section 3.4). Furthermore, it is possible to personalize the dashboard by choosing
the size of the grid, for example by saying “Create a 3 by 4 grid” Jeeves creates a dashboard
containing a grid with 12 cells in a 3x4 disposition. Now we are ready to answer the following
questions:

1. Once uploaded in the system, can I create an overview of the dataset?
In Jeeves it is possible to create a summarization of the dataset by using the command
“summarize” (or “summarize the dataset”). This vocal command allows the user to visu-
alize an overview of the dataset, inspecting, column by column, the distribution and the
most frequent value.

Jeeves goes through every column and choses between two different types of visualiza-
tion: if the column contains numbers (or numerical values) it chooses to use histograms, if
the column contains strings (or categorical values) it creates a bar chart. Figure 3.1 shows
the result of the summarization command.

FIGURE 3.1: Result of the Summarization Command

From the result, we can observe that the dataset is composed of 10 columns (from cell 0 to
cell 9) and we are left with two free cells that can be filled at any time. Each cell shows as
a title the name of the column that is being visualized and the distribution of the elements
in each column in the shape of bar charts (in blue) and histograms (in red).

3.3. Use Cases 19

2. How many different color can a diamond have in our dataset?
To answer this question, we need to focus on the correct cell. We can do it by inspecting
the title of the cell and by selecting the one we are interested in by using the command
“open cell 2”. The zoomed cell view shows more information (i.e., labels, axes and de-
scription), as shown in Figure 3.2.

FIGURE 3.2: Cell showing the values of “color” in the dataset

This cell provides both a visual representation of the occurrences in the “color” column
(in the form of barchart) and the number of distinct values in the description field. There-
fore, to answer the question, a diamond can have 7 different possible colors. We can see
that the distribution is smooth: columns go from “J” (worst) to “D” (best) where the most
frequent is “G” with more than 10′000 occurrences, “E” and “F” have almost the same
number of occurrences each and the least frequent is “J” with around 3′000 occurrences.

3. How does the distribution of prices in this datasets look like?
Since we want to answer to a different question, we need a new cell to interact with. To
this aim, we perform two commands: 1)“show grid” (i.e., go back to the grid view) and
2)“open cell 10”. Once we are in the cell view, Jeeves provides information about the first
five rows of the dataset (as in Appendix A.1.3). Since we are interested in the “price”
column, we ask to the vocal assistant to “show price” (or “plot price”). By default, Jeeves
provides a histogram showing the top 10 occurrences in the column as shown in Figure
3.3a. The tool analyzes the data in the column, counts the occurrences and sort them in
descending order: we can see that more than 120 diamonds in the dataset cost 605 dollars
and, in general, in the top 10 visualization the price varies from around 800 dollars to 552
dollars.

20 Chapter 3. Jeeves

(A) Top 10 values sorted by frequency (B) Distribution of values

FIGURE 3.3: Cell showing the “price” column in the dataset

Since we are interested in the distribution of values, we can ask to “show distribution”.
This way, the visualization is updated in real time (see Figure 3.3b) and can finally see
how the distribution of price varies in our dataset. As seen in the top 10 visualization the
distribution is skewed towards left and most of the diamonds in the datasets ranges in a
price between 326 dollars and 1274 dollars. The more the price goes up, the fewer are the
diamonds with that price.

4. How does the cut of a diamond influence its the price?
We now need to focus on the first available cell. Therefore, we perform the two queries
“show grid” and “open cell 11”.

To answer the given question we need to ask to our vocal assistant to “show price by cut”.
As shown in Figure 3.4, the visualization that Jeeves suggests us is a box plot: this way
we can inspect the distribution of the price of diamonds grouped by the different types
of cut.

FIGURE 3.4: Cell showing the distribution of price by cut

3.3. Use Cases 21

This result shows us that the diamonds with a “Premium” cut span a bigger range of
prices, followed by the ones with a “Very Good” cut. Diamonds with a cut “Fair”, “Ideal”
and “Good” span , more or less, the same range of prices with significant differences only
on the position of the median.

5. What is the correlation between the carat of a diamond and its price?
To answer this question, we need a new free cell. We can perform the command “zoom
out” to show the dashboard but, in its actual status, it does not seem to provide free
cells. We can solve this by asking the vocal assistant to rearrange the dashboard: by
saying “create a grid 4x4” we have now 4 new cells ready to be focused (or zoomed) and
filled with new visualizations. As visible in Figure 3.5a and Figure 3.5b, the dashboard
maintains the status of the previously added cells and fits other 4 cells in the same amount
of space.

(A) Dashboard with a grid of size 4x3 (B) Dashboard with a grid of size 4x4

FIGURE 3.5: Cell showing the “price” column in the dataset

Now, we can focus on the first free cell by saying “open cell 13” and create the visual-
ization we need by saying “show carat vs price”. The visualization that gets created is
visible in Figure 3.6.

22 Chapter 3. Jeeves

FIGURE 3.6: Cell showing the distribution of price by cut

It is clear from the result that these two columns are highly positively correlated: this
means that (as one may expect), the highest value of carats the diamond posses, the high-
est will be its price. To support this interpretation, Jeeves also computes a numerical value
called Pearson Correlation Coefficient [13] and puts it in the description of the chart. We
can then conclude that the correlation between the the carat of a diamond and its price is
equal to “0.92”.

In this section we showed how users are able to answer to question about a dataset by using
Jeeves and its vocal queries. In the next section we describe more in detail how we build each
view provided on the web application.

3.4 Usage of the Tool

Being a visual analysis and dashboarding tool, the frontend represents the entry point of our
entire work. The most important part of Jeeves is, in fact, the visualization of data: the client side
needs to be deployed on a big screen (since the visualization on a smartphone screen would not
be efficient, we left it outside of the scope of this work) and it represents the “canvas” in which
is possible to create data visualization through the use of few clicks and vocal commands.

We created a hybrid approach to data visualization in which it is possible to use both tradi-
tional means like keyboard and mouse for complex operations like the uploading of files and
innovative ones like the voice for performing queries on the dataset.

3.4.1 Dashboard and Cell View

The core section of the entire graphical user interface is the room page. The user can access it
by clicking on the card of one room listed in the Home page shown in Section 3.4.2.

3.4. Usage of the Tool 23

Once the user enters the room page for the first time, it is requested to link the room to one
of the available datasets as shown in Section 3.4.3.

A new room that has been linked to a dataset looks like the one in Figure 3.7. To create the
dashboard, the user defines vocally the dimension of the grid (up to a maximum of 4 by 4 to
ensure a big enough dimension of the cells).

FIGURE 3.7: The dashboard in a room before the grid is initialized

Once the grid dimension has been set, the dashboard will show a list of empty cells that can
be filled with charts (as shown in Figure 3.8) using vocal queries.

24 Chapter 3. Jeeves

FIGURE 3.8: The dashboard in a room after the grid of dimensions 3x3 is initial-
ized

If, instead, a room that already contains charts is opened, the grid will look like the one in
Figure 3.9.

FIGURE 3.9: The dashboard in a room containing charts

Whenever a cell is focused (either using a click of the mouse or using vocal commands),
Jeeves will show two different views: if the cell has not been initialized, it shows the header of
the currently active dataset in the room (see Figure 3.10).

3.4. Usage of the Tool 25

FIGURE 3.10: Visualization of a focused cell not initialized

If the cell has been initialized, Jeeves shows a more detailed version of the cell in the dash-
board (as shown in Figure 3.11): title and description are shown together with a chart that
shows labels on the axes and possibility to interact with the chart using mouse controls.

FIGURE 3.11: Visualization of a chart in a cell

3.4.2 Home Page

The landing page of Jeeves consist in a view called Home. As shown in Figure 3.12 we provide:

26 Chapter 3. Jeeves

• The list of available rooms with name and connection statuses to understand which de-
vices are connected to which room. These statuses are important since we allow one user
only and one vocal assistant to be connected to one room at the same time.

• A “+” button to add a new room when clicked

• A settings button that allows the user to go in the panel to add new datasets in the system

FIGURE 3.12: Home page of Jeeves

3.4.3 Dataset Upload and Selection

Figure 3.13 shows the “Manage Datasets” page. Here we show the list of loaded datasets with
the possibility to:

• Visualize the information about the dataset by clicking on the “eye” icon

• Delete the dataset by clicking on the “x” icon

• Upload a dataset from the local machine of the user by clicking on the “+” button

3.4. Usage of the Tool 27

FIGURE 3.13: Manage Datasets page of Jeeves

To upload the file (in .csv format) the user clicks on the add button and selects the file that
will be sent and analyzed by the Jeeves server as shown in Figure 3.14.

FIGURE 3.14: Add datasets in the modal of Jeeves

Once the file is analyzed by the server, the loading page in the interface is substituted with
a window showing a summary of the dataset. In this interface (shown in Figure 3.15) it is
possible to confirm or modify the name and the types of each column as inferred by the Jeeves
server.

28 Chapter 3. Jeeves

FIGURE 3.15: Modal that lets the user confirm or modify name and type of the
columns of the uploaded dataset

Similarly, inside the room section, it is possible to select one of the available datasets to link
them to the current room (as shown in Figure 3.16). This means that, from that moment on, all
the queries will refer to the selected dataset.

FIGURE 3.16: Linking datasets to rooms in Jeeves

3.5. Development Challenges 29

3.5 Development Challenges

During the development of Jeeves we performed some demos with users in order to perform
some anecdotal evidence. During these demos, we encountered unexpected behaviors in the
conversation between user and vocal assistant and in the recognition of some column names.
Therefore, we implemented some fixes to respect the criteria described in Section 3.2.4 about
building a meaningful and working voice user interface. We wanted to:

• Ensure relatability by giving the user the feeling of having a seamless conversation with
the vocal assistant

• Ensure adaptability by making sure that the Alexa skill is able to respond to a variety of
user requests trying to overcome possible errors in the pronunciation or in the ambiguity
of the language

3.5.1 Relatability

We needed to handle asynchronous queries in a Visual User Interface approach. One of the re-
quirements that a good vocal user interface has to provide is a constant feedback: we did not
want user to perform vocal queries and wait for seconds without any kind of answer from the
vocal assistant.

When performing queries over big datasets, our server needs some seconds before provid-
ing a response. At first, the user was waiting without receiving any feedback until the response
was ready.

To solve this issue, we used a functionality provided by the Alexa Skills Kit SDK for Java
called “Progressive Response”. This feature allows us to provide a constant feedback to the user
while the server is working (e.g., the vocal assistant tells the user that the server is working for
creating the chart) before showing the final result of the query. We present more details about
the implementation of this solution in Section 3.6.1.

3.5.2 Adaptability

During the development of Jeeves, we faced some difficulties during the process of natural
language recognition. It is, in fact, a known problem that not always the vocal assistant under-
stands exactly the words that the user says [7]. This happens because spoken language can be
ambiguous, spoken voice inputs are made more complex by accents, background noise, talking
at the same time [7].

In Section 3.6.2 we explain how we overcame this issue introducing in our system an ap-
proach based on the Levenshtein distance that is used for measuring the difference between
two sequences of words.

3.6 Solution to the challenges

In Section 3.5 we introduced the challenges we faced during the development of Jeeves. We
explain how we decided to handle these challenges by explaining the solutions we implement
on the server–side.

30 Chapter 3. Jeeves

3.6.1 Asynchronous Queries

Every Alexa skill needs to receive a response from the server in no more than five seconds oth-
erwise it would communicate that an error has occurred. In our application, when a user was
vocally analyzing or querying big datasets, the response time was taking more than five sec-
onds and, therefore, we were providing a bad user experience in which the vocal assistant was
communicating that an error had occurred but the result of the query was still being visualized
in the dashboard after a couple of seconds.

In order to solve this problem, we used a feature provided by the Amazon Alexa APIs called
“Progressive Response”4. This type of response allows to send an intermediate vocal feedback
to the user, while our server is still creating the visualization.

With this implementation we provide a more relatable approach (see concepts in Section
3.2.4). In Figure 3.1, we present a transcript example of a conversation between the user and
the vocal assistant.

User : " Alexa , summarize the d a t a s e t "
// 1 second of delay
Alexa/Jeeves : " Process ing summarization , p lease wait . . . "
// some seconds of delays
Alexa/Jeeves : " Showing summary of the d a t a s e t "
* Dashboard shows the c o r r e c t v i s u a l i z a t i o n *

LISTING 3.1: Conversation between user and Vocal Assistant using progressive
responses

On the server side we implemented an asynchronous answer that gets executed if the final
answer of the skill is not returned under 1 second.

In the code shown in Listing 3.2, we show how we use the feature of progressive response:

1 publ ic SpeechletResponse handleIntent (. . .) {
2 // Some code f o r i n i t i a l i z a t i o n
3 . . .
4 Runnable task = () −> AlexaUt i l s . dispatchProgressiveResponse (request .

getRequestId () , AlexaUt i l s . addVoiceSSML (" Process ing Summarization , p lease
wait ") , AlexaUt i l s . getSystemState (contex t) , d i r e c t i v e S e r v i c e) ;

5 ScheduledExecutorService executor Executors . newSingleThreadScheduledExecutor () ;
6 executor . schedule (task , 1 , TimeUnit .SECONDS) ;
7 Jeeves . appear () . f indSess ionById (roomId) . i f P r e s e n t (s es s i on 1 −> {
8 // Some Code f o r c r e a t i o n of summarization
9 . . .

10 roomRepository . save (room . get ()) ;
11 executor . shutdown () ;
12 . . .
13 }) ;
14 // Some code
15 }

LISTING 3.2: Code that uses Amazon Alexa’s progressive responses for
asynchronously creating the summary of the dataset

As visible from the above code, in lines 4 to 6, we start an asynchronous task with a timeout of 1
second that, if expired, will execute the progressive response. If, otherwise, the final answer of
the skill gets computed before this period of time, in line 11 we shutdown the task and return
the actual response.

4Progressive Response Documentation: https://developer.amazon.com/it/docs/custom-skills/
send-the-user-a-progressive-response.html

https://developer.amazon.com/it/docs/custom-skills/send-the-user-a-progressive-response.html
https://developer.amazon.com/it/docs/custom-skills/send-the-user-a-progressive-response.html

3.6. Solution to the challenges 31

3.6.2 Natural Language Ambiguities

We faced this problem when, during the development of Jeeves, we were testing our platform
using the dataset about diamonds (find more in A.1). We wanted to show the distribution of
“cut”. The vocal assistant kept understanding “cat” and therefore no visualization was created.
For this reason we decided to introduce a factor of tolerance that would allow to show the
desired results even if the Vocal Assistant was not 100% accurate in recognizing the sentence
said by the user.

In order to introduce this tolerance, we needed a way to compute a score of similarity be-
tween the available columns names and the sentence recognized by the vocal assistant. We
chose to compute the “Levenshtein distance”: a string metric for measuring the difference
between two sequences of characters. The Levenshtein distance between two words is the
minimum number of single-character edits (insertions, deletions or substitutions) required to
change one word into the other.

To choose the optimal value to accept when comparing two words using the Levenshtein
distance, we did some experiments based on all the columns of the dataset and, we notice that
the value 2 was not giving us any false positive result. Therefore, we decided that a Levenshtein
distance up to 2 was to be taken as a good value.

Therefore, after having introduced this computation, the workflow for creating a visualiza-
tion was working as follows:

1. User says “Plot cut”;

2. Vocal assistant understands “Plot cat”;

3. The server computes the Levenshtein distance between the understood word (i.e., “cat”)
and the names of the columns in the dataset;

4. Among all the columns we just take into account only the ones with a value ≤ 2 and,
among them, we pick the column with the name that has the smaller Levenshtein distance
with respect to the word understood by the vocal assistant.

In this case we were able to tolerate inaccuracies in the pronunciation of the user or ambi-
guities of the languages.

Selected
Candidates

Column Name L.D. w.r.t. “cat”
carat 2

clarity 4
color 4

cut 1
price 5

depth 4
table 4

x 3
y 3
z 3

TABLE 3.1: Levenshtein distance computed between the word “cat” and the
names of the columns of the reference dataset

32 Chapter 3. Jeeves

We also implemented the recognition of columns with name composed by multiple words.
To this aim, we needed to compute the Levenshtein Distance of every combination of contigu-
ous words. Table 3.2 shows how we managed to select the correct columns when the user says
“Plot start station name” in the Dataset “New York Citi Bike Trip”A.2:

Selected

Column Name start start station start station name station station name name
bikeid 6 12 17 6 11 5

birth year 8 10 15 9 10 9
end station id 11 8 9 7 8 12

end station latitude 16 14 11 13 10 17
end station longitude 17 15 12 14 11 18

end station name 13 10 5 9 4 12
gender 6 13 17 7 11 5

start station id 11 3 14 9 10 15
start station latitude 17 9 6 15 12 19

start station longitude 18 10 7 16 13 21
start station name 13 5 0 11 6 14

starttime 4 6 9 4 7 6
stoptime 5 9 12 4 7 6

tripduration 10 7 12 7 11 11
usertype 6 11 15 6 10 7

TABLE 3.2: Levenshtein distance computed between the combinations composed
by the sentence “start station name” and the names of the columns of the refer-

ence dataset

3.7 Summary

This chapter describes Jeeves: our web application to visualize and query data through the use
of vocal queries. We first illustrated the requirements we extracted and how we applied them
in our tool.

Then we presented some use cases in which we show how our tool allows answering to
questions regarding a dataset and how Jeeves suggests the optimal visualization based on the
shape of data to visualize.

We further describe the main challenges that we faced during the development and the
demonstration of the tool and explain how we overcame them with efficient solutions.

In the next chapter, we focus on some technical details about the implementation of Jeeves:
we present the architecture, the technologies used and the way each component in our tool
interact with each other.

33

Chapter 4

Implementation Details

4.1 Architecture

Jeeves is a web-based application. Figure 4.1 shows the diagram of the architecture of our tool.

FIGURE 4.1: Architecture of Jeevesand interaction of its components

We have a client component that communicates with our server through a set of RESTful
APIs. The web application shows the menus and renders the charts while the vocal assistant
listens to voice commands and sends them to the external resources.

In the server we perform 1) actions based on the commands sent by the vocal assistant, 2)
choose the optimal visualization based on the shape of data and 3) compute the values of the
charts so that it can be visualized in the client side.

Finally, the data storage component that stores the information about the datasets and the
data visualizations created by the user.

4.1.1 Client

Our client–side component represents the entry point of the Jeeves application. It is composed
by two devices: one screen running our front–end application and a vocal assistant device (in
our case Amazon Alexa).

34 Chapter 4. Implementation Details

The application provides the possibility to add datasets through the use of simple menus.
Furthermore, the user can create rooms that are environments in which the user can create a
personalized dashboard composed of cells containing different type of charts.

Through the use of a vocal assistant, the user is able to perform vocal queries and see the
result of the vocal actions directly on the user interface in real time.

4.1.2 External Resources

The server component is connected to the Alexa Developer Console. Whenever the user per-
forms a vocal command using an Alexa device, this assistant sends the request to the Alexa De-
veloper Console that is responsible for generating a response called “intent” that is forwarded
to our server. Once the Jeeves system receives the intent it will be transformed into an action or
visualization that is immediately shown on the user interface.

4.1.3 Server

Our server provides various capabilities. It ingests dataset in csv format, analyzes them under-
standing the schema and infers the type of each column.

Our server is connected to a vocal assistant service (i.e., Amazon Alexa) and perform actions
based on the vocal commands received by the vocal assistant. They can consist in commands
to create data visualizations or commands to navigate the web application.

When the user asks to create a visualization, the server analyzes the columns of the dataset
and infers the best visualization to show based on the shape of data. Once the type of visual-
ization has been set, the server performs computations and models the data (as explained in
Section 4.5.2) such that it can be sent and visualized by the client side.

4.1.4 Data Storage

The data storage component is divided into two main parts: the file system and the database.
The file system is used to store the datasets uploaded by users. This allows Jeeves to accept

and parse every kind of dataset, no matter how complex the schema can be and we can store
the raw data exactly as we receive it from the uploaded file.

The database is used to keep track of the schema and the paths of the datasets stored in
the file system (i.e., how to parse them during the analysis) and to store all the visualizations
created by the user.

4.2 Technologies

Figure 4.1 shows the technologies that we used for the implementation of our tool. In Jeeves:

• The data storage component is build using MongoDB for storing information about ac-
tive sessions and datasets and using the file system for storing the actual content of the
datasets

4.3. Basic Concepts 35

• The server component is built using the Java1 programming language alongside with
the Spring2 framework, in particular using Spring Boot3 that helped to reduce Spring
configuration related complexity [10];

• The client is built using the Vue.js4 framework (together with HTML, CSS and JavaScript)
together with the library Echarts.js5 for the data visualization;

• The Amazon Alexa Developer Platform6 was used as external resource for recognizing
the vocal commands. It sends commands called “intents” that are processed by our
server.

4.3 Basic Concepts

It is important to clarify the basic concepts and key components behind Jeeves that we mention
in this chapter.

In particular, this section describes the purposes of cells, rooms, sessions and datasets inside
our tool: which information they contain and how they interact with each other.

4.3.1 Cell

A cell is the template of each visualization in Jeeves. It contains the following information:

• Title

• Description

• A field “request” containing the information about the request that generated the current
cell (in case recomputing the cell is necessary)

• A field “response” containing all the information about the response generated based on
the request (it contains the actual data that will be shown in the form of chart)

A cell can be of different types (as shown in Section 4.5.2) each one having different logic and
different responses based on the type of visualization we want to show on the dashboard.

4.3.2 Room

A room contains information regarding the visualization that are stored in the database. A room
is composed by a grid of cells that forms a dashboard-like visualization. The information stored
in a room are:

• Name of the room

• Date of creation

• Dimension of the grid (i.e., columns x rows)

• List of cells
1Java: https://www.java.com/it/download/
2Spring: https://spring.io
3Spring Boot: https://spring.io/projects/spring-boot
4Vue.js: https://vuejs.org/
5Echarts.js: https://echarts.baidu.com/
6Amazon Alexa Developer Platform: https://developer.amazon.com/it/alexa

https://www.java.com/it/download/
https://spring.io
https://spring.io/projects/spring-boot
https://vuejs.org/
https://echarts.baidu.com/
https://developer.amazon.com/it/alexa

36 Chapter 4. Implementation Details

4.3.3 Session

The session model contains all the information regarding the current status of a room, they are:

• Name of the reference room

• Status of connection with the screen (i.e., connected or disconnected)

• ID of the connected screen

• Status of connection with the vocal assistant (i.e., connected or disconnected)

• ID of the connected assistant (if connection variable is set as true)

• A status value that declares if the user is currently viewing the zoomed version of a cell
with relative ID

4.3.4 Dataset

A dataset contains useful information about the structure of the file uploaded by the user. It
contains:

• Name of the file

• Reference of the ingested file stored in the File System

• Date of creation

• Counter of rows in the dataset

• Schema of the dataset (each column is composed by a name and a type)

We decided not to store the dataset in the database to have more flexibility in the modeling
process: since we want to ingest every kind of schema, we decided to save the actual data into
the file system and to store in the database:

1. The path of the file

2. The schema that makes the system understand how to read each column of the file stored.

4.4 Vocal Assistant: Amazon Alexa

Among the numerous vocal assistants in the market, we decided to use the one provided by
Amazon, called Alexa. We chose this assistant among the many others because the features
provided by this service are easier to integrate with the tools we use. In particular, the Alexa
service provides programmatic access to the Alexa features for Java called “Alexa Skills Kit
SDK v2 for Java”.

Moreover, Amazon provides a platform called “Alexa Developer Console”, in which it is
possible to create skills that can be directly added to every product that supports the Alexa
vocal assistant.

In this section we discuss how we used the Alexa Developer Console for the recognition of
vocal queries performed by users and how we introduced the Alexa Skill Kit SDK in our Java
server.

4.4. Vocal Assistant: Amazon Alexa 37

4.4.1 Alexa Developer Console

A Skill is a plugin that one user can add to the vocal assistant using the skill store provided by
Amazon. Each skill requires:

• An invocation: it is the vocal command that the user has to say in order to start the skill

FIGURE 4.2: Invocation commands that starts the Jeeves’s skill.

In order to start the Jeeves skill, one needs to say "Alexa, open Jeeves”.

• A set of slots: are typed variables that are inserted in the sentences said by the user, rec-
ognized by the vocal assistant and sent to our server as parameters of the request.

FIGURE 4.3: The two slots used in Figure 4.5 have specified type of AMA-
ZON.Number. It means that, when recognized by the vocal assistant, they will

be cast as number values

• Possibility to create Slot types: the standard types provided in the Developer Console
may limit the capabilities of speech recognition of the vocal assistant. That is why, it is
also possible to create custom types with the possibility to link every type with a set of
synonyms (adaptability).

38 Chapter 4. Implementation Details

FIGURE 4.4: Creation of custom slot types. Here we defined the type of visualiza-
tion for the histograms: either distribution or top values (with relative synonyms

shown in the grey boxes)

• A set of intents: those are the actual command that are supported when the skill is exe-
cuting. These commands, or sentences, are called utterances.

FIGURE 4.5: The creation of utterances allows to match sentences to the creation
of specific intents. In the example above it is also visible the use of slots. The
sentence will be matched and the slots will be passed as parameters of the intent

If, for example, the user says “Create a grid four by two”, then Figure 4.5 shows that a
roomGridCreationIntent is created in which “four” is interpreted as the slot rowValue and
“two” as the slot columnValue both of type AMAZON.Number (as shown in Figure 4.3).

4.4.2 Alexa Skill Kit: APIs for Java

Amazon Alexa Services allow developers to implement their own skill either as a serverless
function called AWS Lambda 7 from Amazon Web Services8 or using a custom external service
that runs over HTTPS.

7AWS Lambda: https://aws.amazon.com/lambda/?nc1=h_ls
8Amazon Web Services: https://aws.amazon.com/

https://aws.amazon.com/lambda/?nc1=h_ls
https://aws.amazon.com/

4.4. Vocal Assistant: Amazon Alexa 39

In Jeeves we do not use AWS Lambda functions since we required a more complex structure
for our server. Therefore, we built a custom skill for Alexa by implementing a web service that
accepts requests from and sends responses to the Alexa service in the cloud [6]. Quoting the
Alexa Developer documentation:

“You can build your web service using any programming language, as long as the service
meets the following requirements:

• The service must be accessible over the internet;

• The service must accept HTTP requests on port 443;

• The service must support HTTP over SSL/TLS, using an Amazon-trusted certificate. Your
web service’s domain name must be in the Subject Alternative Names (SANs) section of
the certificate. For testing, you can provide a self-signed certificate;

• The service must verify that incoming requests come from Alexa;

• The service must adhere to the Alexa Skills Kit interface”[6].

We met all these requirements by importing in our Spring Boot server the official Alexa
Skills Kit SDK for Java provided by Amazon Alexa as a GitHub Repository9 and by running
a local server that runs over HTTPS. To do so, we used the tool ngrok10: a reverse proxy that
creates a secure tunnel from a public endpoint to a locally running web service.

To support incoming Alexa Speechlet in Spring Boot using the Alexa Skills Kit SDK for
Java, one needs to implement the “SpeechletV2” class and implement the four methods that
corresponds to the key element of the lifecycle of any Alexa skill:

1. onSessionStarted: This is invoked when a new Alexa session is started. Any initialization
logic would go here. In Jeeves we use this method to discover and save the current session
ID.

2. onLaunch: This is called when the skill is started. When this happens, Alexa provides a
welcome message and prompt the user to ask a question. In Jeeves we use this method
to gather the available rooms (the ones not yet connected to a vocal assistant device) and
prompt the user to choose which room to connect or to resume the previous session (if
exists).

3. onIntent: This is invoked whenever an intent is created for the application. Here, the
difficulty resides in figuring out which intent is being called, then respond. In Jeeves we
use this method to dispatch the intent to the correct handler finding in the system the
class with the same name of the received intent.

4. onSessionEnded: This is invoked whenever the current session ends and it is used to
clean up if needed. In Jeeves we use this method to disconnect the voice assistant device
from the room it is currently connected to.

In Figure 4.6 we present a process view model showing the lifecycle of an Amazon Alexa’s
skill that interacts with our Spring Boot Server.

9Alexa Skills Kit SDK for Java : https://github.com/alexa/alexa-skills-kit-sdk-for-java
10ngrok: https://ngrok.com/

https://github.com/alexa/alexa-skills-kit-sdk-for-java
https://ngrok.com/

40 Chapter 4. Implementation Details

FIGURE 4.6: Process View of the interaction between Amazon Alexa Cloud Ser-
vice and Jeeves’s Spring Boot Server

For example, the first iteration shown in the model starts with a vocal command said by the
user containing the wake word for our skill that is “Open Jeeves”. This command is sent from
the vocal assistant to the Amazon Cloud Service that creates a response called intent and sends
it to our server. Once received the intent, Jeeves executes the onSessionStarted method and saves
the ID of the current session and then executes the onLaunch to create a welcome message and
prompt the user to connect to a room. Similarly, the other two iterations in 4.6 show how the
user can trigger an intent to connect to a room and how the current session can be ended.

4.5 Server

In this section we discuss the general structure of the server, how we modeled the data, how we
managed the sessions and how we used the Alexa Skill Kit: APIs for Java for making possible
the interaction between the Amazon cloud and our server.

In Figure 4.7 we show the logical view of the server in which we highlight the main com-
ponents and how they interact with each other

4.5. Server 41

FIGURE 4.7: Logical View[22] of the Jeeves’s Server

4.5.1 Session Manager (Jeeves)

To maintain an easy and quickly–accessible state inside our application, we create a singleton
class called “Jeeves” that, being always available in the entire system, allows to have always at
our disposal, information about the current status of the system. Therefore, this singleton acts
like a cache and saves us the time of accessing information from the disk as these informations
are kept in memory.

For example, whenever the Alexa vocal assistant connects to the server, it needs to know
which are the rooms available for connection. In such a case, we just need to write the line of
code shown in Listing 4.1.

1 Lis t <Str ing > avai lab leConnect ions = Jeeves . appear () . getAvailableRoomsForAlexa () ;

LISTING 4.1: Example of usage of the Jeeves’s Session Manager to get all the
available rooms

Another case in which we use Jeeves’s Session Manager occurs whenever a room opens a
Socket connection with the server: we do it because on the client side we want an up-to-date
status of the connection of each room. In order to open the socket and save the ID of the
connection in the Session object described in section 4.3, we do the following.

42 Chapter 4. Implementation Details

1 Jeeves . appear () . addWebsocketMapping (t h i s . ge tSess ionId () , r e c i p i e n t , sess ionID) ;

LISTING 4.2: Example of usage of the Jeeves’s Session Manager to add a
Websocket connection

Similarly to the use of Web Socket, we also use Server Sent Events (SSE), that can be inter-
preted as mono–directional Web Socket in which the conversation occurs only from the server
to the client. In this case, since the client never sends information to the server, it only in-
stantiates a SSE communication and shows the status of the connection of each room in real
time.

4.5.2 Models

In this section, we describe the types of cells that we created and how Jeeves chooses the optimal
visualization based on the shape of data.

To choose the best type of chart, we perform some analysis of the type of data that we
are considering. Quantitative information always consists of two types of data: quantitative
values (a.k.a. measures) and categorical labels (a.k.a. dimensions)][17]:

• Categorical variables take on values that are names or labels[11].

• Quantitative variables are numerical. They represent a measurable quantity[11].

With this distinction in mind, we now present the different types of data visualization that
Jeeves offers.

Bar Chart

A bar chart is a chart that represents categorical data using rectangular bars. In a bar chart
the height of the bars represents the frequency of the observations in each category [16]. If the
barchart is shown vertically, the horizontal (x) axis represents the categories; The vertical (y)
axis represents a value for those categories [5].

A bar chart type gets created by Jeeves whenever the user asks to visualize columns contain-
ing categorical values: we collect all the entries in the selected column, count the occurrences
of each entry, sort by number of occurrences in descending order. After this process, we cre-
ate a title and we insert the number of distinct values in the column as a description of the
cell, finally we return the object to the client. The bar chart object, has the structure shown in
Appendix B.1.

Histogram

A histogram is a representation of the distribution of numerical data. It is an estimate of the
probability distribution of a continuous variable [28]. It consists of contiguous bars that can be
represented as both horizontal axis and vertical axis.

The histogram can help to show the shape of the distribution in the data, the center, and the
spread of the data [15]. Histograms are used to show the distribution of data.

We used the histogram for visualizing numerical columns. In particular, in this case Jeeves
offers two different types of visualization:

1. Top Values: if the goal is to show the first 10 values sorted by occurrences

4.5. Server 43

2. Distribution: if we want to show an overall distribution of the data present in that col-
umn.

To limit the number data points to show at once and provide an optimal visualization
for our front-end dashboard, we used a standard approach called binning (or bucketing) that
helped us reduce the magnitude of data. In order to find the optimal number of bins, we ap-
plied the following data-based histogram bin width determination rule, which is known as the
Freedman–Diaconis rule[33]:

h = 2
IQR(x)

n
1
3

where h is the number of optimal bins, n is the number of observations in the sample x and IQR
is the interquartile range which is the difference between the upper and lower quartiles [33].

After this process and after having computed statistics about distinct values, min, median
and max in the distribution, the response from the server for the creation of an histogram looks
like the one shown in Appendix B.2.

Box Plot

Box plots are a simple but powerful graphing tool that can be used in place of histograms [23].
As shown in Figure 4.8, box plots characterize a sample using the 25th, 50th and 75th percentiles
also known as the lower quartile (Q1), median (m or Q2) and upper quartile (Q3) and the
interquartile range (IQR = Q3− Q1), which covers the central 50% of the data. Quartiles are
insensitive to outliers and preserve information about the center and spread [23].

FIGURE 4.8: Example of a box plot

The box plot in Jeeves gets created when the user asks to show a numerical variable “by” a
categorical one. In such a case, we put each element of the categorical column in the x axis and
a collection of collections containing the numerical columns grouped by the category. We set
the title of the cell, and finally we return an object that looks like the one shown in Appendix
B.3.

44 Chapter 4. Implementation Details

Scatter Plot

A scatter plot is used to display the relationship between two quantitative variables. A scatter
plot consists of an X axis (the horizontal axis), a Y axis (the vertical axis), and a series of dots.
Each dot on the scatter plot represents one observation from a data set. The position of the dot
on the scatter plot represents its X and Y values [12].

A scatter plot type gets created by Jeeves whenever the user asks to visualize two columns
containing numerical values. A well-known problem is that scatter plots can have a high de-
gree of overlap, which may occlude a significant portion of the data values shown[20]. In
order to solve this issue we implemented a system to minimize the amount of data transferred
through the wire. For the summarization, we again create bins using the Freedman-Diaconis rule
as explained in Section 4.5.2 in the creation of the Histogram. The scatter plot object, has the
structure shown in Listing B.4. Moreover, we compute the Pearson Correlation Coefficient be-
tween the two columns; this measures strength and direction of the linear relationship between
two variables[26]. We report this value in the description of the cell

4.5.3 Controllers

Controllers are responsible for processing user requests and expose endpoints to the client to
provide services[9]. In particular, the main responsibilities of a controller are:

• Intercept incoming requests;

• Convert the payload of the request to the internal structure of the data;

• Send the data to the model for further processing;

• Get processed data from the model and send that data to the View for rendering[8].

In Jeeves we created three main controllers: they contain the endpoints that our server ex-
poses to the web application for the visualization of the dashboard and the graph (as also report
in Appendix C). They are:

• CSVController: that handles the upload and the deletion of datasets in Jeeves.

• DatasetController: that manages the existing datasets and how to link and unlink them
to the rooms

• RoomController: this controller is responsible for managing the connections and discon-
nection to the rooms from both the dashboard and the vocal assistant

4.6 Wrapping Up

In this section we discussed the technical implementation of Jeeves: which are the key compo-
nents, how they are implemented and how they interact with each other.

We presented the Alexa Developer Console and explained how we integrated it in our
Spring Boot server by benefitting of the “Alexa Skill Kit SKD for Java”.

In conclusion, we discussed the different types of charts provided by our tool and how
Jeeves infers the best one to choose after the user performs a query.

In the next chapter we wrap up this master thesis work by summarizing the key concepts
provided by Jeeves, how we validated them and we present the future work we have in mind
for a future improvement of this tool.

45

Chapter 5

Conclusions

5.1 Summary

We start this document by presenting the importance of data analysis and visualization, in
particular, how it helps users have insight about data.

We analyze the state–of–the–art tools to compare and focus on the ideas that are present in
Jeeves and we discuss about BoardBile: the experiment we performed before the implementa-
tion of our tool that helped us to gather feedback about the best way to propose data analysis
and visualization to people from different backgrounds.

Then, we present the idea that we propose with Jeeves: we provide users with a dashboard
that can be personalized with data visualizations and built through the usage of vocal com-
mands. In our tool, it is possible to interact and customize charts in the dashboard by talking
to a vocal assistant service: in our case we choose Amazon Alexa. Dashboards in Jeeves can
be used to both visualize data in general by showing a grid view and to focus on a specific
detail of a dataset by focusing on a specific cell. With our tool we provide a simple approach
to the interaction with data: once the user performs a vocal query to the vocal assistant, Jeeves
answers by automatically providing an optimal visualization based on the shape of data.

We extracted some important requirements from the literature and from our previous ex-
perience with BoardBile: for the user interface part we decided to provide 1) accessibility, 2)
simplicity and 3) maintained ownership of the data. For the part of Visual User Interface, we
followed the guidelines given by the Amazon Alexa service: 1) adaptability, 2) personability, 3)
availability and 4) relatability.

We built a web–based application easily accessible that allows users to create visualizations
and insights about the data by using vocal commands. Having such a customizable envi-
ronment enables people to understand better the data, ask more questions and quickly find
answers in the data itself.

People who use Jeeves can share their dashboards with others during presentations, lessons
or demonstrations with the goal of empowering collaboration and decision–making.

In the end we discuss the challenges we faced during the implementation, how we solved
them and we present the technical details of Jeeves like: interaction between our system and the
Alexa Developer Console, the models we created, the inferrer provided to choose the best type
of visualization and the interaction between the server side and our web application.

5.2 Validation

Due to time constraints, performing a controlled experiment was beyond the scope of this
work. Still, we validated our application by anecdotal evidence deploying Jeeves on a big

46 Chapter 5. Conclusions

screen, next to an Alexa Device. During these occasions, we performed some demo with users
and received useful feedback about possible functionalities to provide to Jeeves and fixes to ap-
ply like the implementation of progressive responses and the introduction of the Levenstein
Dinstance.

5.3 Contribution

With Jeeves we provide an interaction–centric approach to data visualization using voice con-
trol. We deploy our web application on a big screen, next to an Amazon Alexa device. Users
can upload dataset to the application and create rooms for interacting with their data. By talk-
ing to the vocal assistant, they can create a customized dashboard by selecting the dimension
of the grid.

Moreover, they can request to visualize an overview of the dataset or open a single cell in
the dashboard and create custom visualization only by using vocal commands. Jeeves’s system,
contributes by analyzing the dataset and providing answers to the vocal queries by providing
the optimal visualization depending on the shape of data.

For example, if the user asks to visualize two numerical values in one chart, then our system
will understand that the best visualization to show such information is a scatter plot and will
create a visualization that is immediately shown in the web browser.

5.4 Future Work

We conclude this document discussing the possible future improvement for Jeeves. The component–
based structure of this tool makes it prone to extensibility and introduction of new features. As
possible future improvements, we want to investigate the following directions:

• Add some standard approaches to filter the data so that would be possible to insight
about the data in a finer lever of detail;

• Join datasets and perform queries on them in the context of the same room;

• Customize graphs, axes and labels using vocal commands;

• Deploy all the components of Jeeves in a unique computer (e.g., a Raspberry Pi) so to make
the usability of our application even more accessible and easy to use;

• Perform an extensive validation during a controlled experiment [35] (like the one pro-
posed by Richard Wettel et al. in the paper “Software systems as cities: a controlled ex-
periment” [34]) so that we can formulate a more formal set of feedbacks and more ideas
about how efficient our approach is and how to extend it;

• Add different types of cell not only related to data visualization. Like Jupyter or Zeppelin,
we plan to introduce cells used for creating descriptions and comments about the dataset
analysis.

We believe that the concepts shown above may contribute to a big improvement in the
usability and potentiality of Jeeves.

47

Appendix A

The Datasets

To validate our approach we used some dataset to test:

• The ingestion of the csv in our system with the subsequent type inferrer system

• The visualization of distribution of each column un the dataset

• The analysis and filtering–applying to multiple columns

The datasets we used are called “Diamonds” and “New York Citi Bike Trip Histories”

A.1 Diamonds

A.1.1 Dataset Description

The dataset “Diamonds” gives information about almost 54,000 diamonds by their cut, color,
clarity, price, and other attributes. It is a widely used dataset and according to it is considered
a great dataset for beginners learning to work with data analysis and visualization1.

A.1.2 Dataset Structure

The dataset is composed by 10 columns, they are:

1. carat (numerical): weight of the diamond (0.2–5.01)

2. clarity (categorical): a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2,
VS1, VVS2, VVS1, IF (best))

3. color (categorical): diamond colour, from J (worst) to D (best)

4. cut (categorical): quality of the cut (Fair, Good, Very Good, Premium, Ideal)

5. price (numerical): price in US dollars ($326–$18,823)

6. depth (numerical): total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43–79)

7. table (numerical): width of top of diamond relative to widest point (43–95)

8. x (numerical): length in mm (0–10.74)

9. y (numerical): width in mm (0–58.9)

10. z (numerical): depth in mm (0–31.8)
1Diamonds Dataset: https://www.kaggle.com/shivam2503/diamonds

48 Appendix A. The Datasets

A.1.3 Dataset Head

Here we provide the first 5 rows of the Diamonds dataset following the structure showed in
Section A.1.2:

carat clarity color cut price depth table x y z
0.23 SI2 E Ideal 326 61.5 55 3.95 3.98 2.43
0.21 SI1 E Premium 326 59.8 61 3.89 3.84 2.31
0.23 VS1 E Good 327 56.9 65 4.05 4.07 2.31
0.29 VS2 I Premium 334 62.4 58 4.2 4.23 2.63
0.31 SI2 J Good 335 63.3 58 4.34 4.35 2.75

...
...

...
...

...
...

...
...

...
...

TABLE A.1: Head of the “Diamonds” dataset

A.2 New York Citi Bike Trip Histories

A.2.1 Dataset Description

This dataset is provided by a company called citibike2. The city of New York, participating
to an Open Data initiative since 2013, has decided to provide for free information regarding
where do customers of the Citi Bike service ride, when they ride, how far do they go, which
stations are most popular, what days of the week are most rides taken on, etc. . .

The dataset is composed by almost 33,000 trips and they span a period from April 2019 to
May 2019.

A.2.2 Dataset Structure

The dataset is composed by 15 columns, they are:

1. Trip Duration: in seconds

2. Start Time and Date: in the format yyyy-MM-dd HH:mm:ss.SSSS

3. Stop Time and Date: in the format yyyy-MM-dd HH:mm:ss.SSSS

4. Start Station Name

5. End Station Name

6. Station ID

7. Start Station Latitude

8. Start Station Longitude

9. End Station Latitude

10. End Station Longitude

11. Bike ID
2CitiBike Dataset: https://www.citibikenyc.com/system-data

A.2. New York Citi Bike Trip Histories 49

12. User Type: divided into two types

• Customer: who has a 24-hour pass or a 3-day pass.

• Subscriber: who is an annual member

13. Gender: divided into three types:

• Zero means unknown gender

• 1 means male

• 2 means female

14. Year of Birth

A.2.3 Dataset Head

Here we provide the first 5 rows of the Diamonds dataset following the structure showed in
Section A.2.2

bikeid birth year end station id end station latitude end station longitude end station name gender
29536 1966 3184 40.7141454 -74.0335519 Paulus Hook 1
26191 1990 3187 40.7211236 -74.03805095 Warren St 1
29302 1987 3202 40.7272235 -74.0337589 Newport PATH 2
26220 1989 3214 40.7127742 -74.0364857 Essex Light Rail 1
26228 1995 3273 40.721650724879986 -74.04288411140442 Manila & 1st 1

...
...

...
...

...
...

...

start station id start station latitude start station longitude start station name starttime stoptime tripduration usertype
3183 40.7162469 -74.0334588 Exchange Place 2019-04-01 07:48:04.7540 2019-04-01 07:49:52.3590 107 Subscriber
3183 40.7162469 -74.0334588 Exchange Place 2019-04-01 12:41:09.6540 2019-04-01 12:49:23.0290 493 Customer
3183 40.7162469 -74.0334588 Exchange Place 2019-04-01 14:27:07.9400 2019-04-01 14:35:40.9370 512 Subscriber
3183 40.7162469 -74.0334588 Exchange Place 2019-04-01 15:07:38.1510 2019-04-01 15:10:54.6260 196 Subscriber
3183 40.7162469 -74.0334588 Exchange Place 2019-04-01 16:19:24.6940 2019-04-01 16:27:08.6450 463 Subscriber

...
...

...
...

...
...

...
...

TABLE A.2: Head of the “New York Citi Bike Trip Histories” dataset

51

Appendix B

Chart Models Structure

In this Appendix, we report the structure of the chart models as they are computed by our
server and returned to the graphical user interface of Jeeves.

B.1 Barchart

This object contains information about the x and y axes of a bar chart. It also provides a title
and a description that get automatically generate by Jeeves.

1 {
2 " t i t l e " : " (t) cut " ,
3 " d e s c r i p t i o n " : " D i s t i n c t Values : 5 " ,
4 " response " : {
5 " axes " : {
6 " x " : [
7 " I d e a l " ,
8 "Premium" ,
9 " Very Good" ,

10 "Good" ,
11 " F a i r "
12] ,
13 " y " : [
14 NumberLong (21551) ,
15 NumberLong (13791) ,
16 NumberLong (12082) ,
17 NumberLong (4906) ,
18 NumberLong (1610)
19]
20 } ,
21 } ,
22 " request " : {
23 " x " : " columnID "
24 }
25 }

LISTING B.1: Structure of the Barchart object

B.2 Histogram

Very similar to the structure of the Barchart, the Histogram provides also information about
the distribution of the column and the top values sorted by occurrency in descending order.

1 {

52 Appendix B. Chart Models Structure

2 " t i t l e " : " (#) c a r a t " ,
3 " d e s c r i p t i o n " : " D i s t i n c t Values : 273 . 0
Min : 0 . 2 − Median : 0 . 7 − Max : 5 . 01 " ,
4 " response " : {
5 " axes " : {
6 " x " : [
7 " 0 . 3 " ,
8 " 0 . 31 " ,
9 " 1 . 01 " ,

10 . . .
11] ,
12 " y " : {
13 " top values " : [
14 NumberLong (2604) ,
15 NumberLong (2249) ,
16 NumberLong (2242) ,
17 . . .
18] ,
19 " a c t i v e " : 0 ,
20 " d i s t r i b u t i o n " : [
21 {
22 " occurrences " : 319 . 0 ,
23 "min " : 0 . 2 ,
24 "max" : 0 . 24
25 } ,
26 {
27 " occurrences " : 719 . 0 ,
28 "min " : 0 . 24 ,
29 "max" : 0 . 27
30 } ,
31 . . .
32]
33 }
34 } ,
35 } ,
36 " request " : {
37 " x " : " columnID " ,
38 } ,
39 }

LISTING B.2: Structure of the Histogram object

B.3 Boxplot

The boxplot object contains information about the grouping categories (in the x axis) and the
distribution of each category (in the y axes).

1 {
2 " t i t l e " : " cut by p r i c e " ,
3 " response " : {
4 " axes " : {
5 " x " : [
6 " F a i r " ,
7 " I d e a l " ,
8 "Premium" ,
9 "Good" ,

10 " Very Good"

B.4. Scatterplot 53

11] ,
12 " y " : [
13 [2757 . 0 , 2759 . 0 , 2753 . 0] ,
14 [2757 . 0 , 2759 . 0 , 2753 . 0] ,
15 [2757 . 0 , 2759 . 0 , 2753 . 0] ,
16 [2757 . 0 , 2759 . 0 , 2753 . 0] ,
17 [2757 . 0 , 2759 . 0 , 2753 . 0]
18]
19 } ,
20 } ,
21 " request " : {
22 " x " : " columnID " ,
23 " y " : [" columnID "] ,
24 }
25 }

LISTING B.3: Structure of the Boxplot object

B.4 Scatterplot

The scattrplot object contains information about the two numerical distribution that the user
want to visualize. They are respectively reported inside the x and the y axes.

1 {
2 " t i t l e " : " c a r a t vs p r i c e " ,
3 " d e s c r i p t i o n " : "C o r r e l a t i o n : 0 . 92 "
4 " response " : {
5 " axes " : {
6 " x " : [
7 " 0 . 23 " ,
8 " 0 . 25 " ,
9 " 0 . 26 " ,

10 . . .
11] ,
12 " y " : [
13 [
14 475 . 94 ,
15 535 . 89 ,
16 565 . 32 ,
17 . . .
18]
19]
20 } ,
21 } ,
22 " request " : {
23 " x " : " columnID " ,
24 " y " : [
25 " columnID "
26] ,
27 } ,
28 }

LISTING B.4: Structure of the Scatterplot object

55

Appendix C

APIs

In this Appendix, we report the endpoints that Jeeves exposes to the front end.

C.1 Endpoints with Swagger

We decided to introduce the Swagger UI service to provide a navigable view of the endpoints
exposed by Jeeves.

FIGURE C.1: Swagger UI showing the endpoints exposed by Jeeves

They are easily visible by accessing the route http://localhost:8080/jeeves/swagger-ui.
html#/ (if Jeeves runs on localhost:8080) as shown in Figure C.1.

C.2 The Controllers

Here we list and explain the purpose and how we used the various endpoints that we created.

http://localhost:8080/jeeves/swagger-ui.html#/
http://localhost:8080/jeeves/swagger-ui.html#/

56 Appendix C. APIs

C.2.1 CSVController

This controller exposes three endpoints:

Method Endpoint Purpose

1 POST /csv/ Upload the dataset in the server

2 GET /csv/summarize/{roomId} Returns the first 5 rows of the dataset linked to the
room with the given roomId

3 DELETE /csv/{csvName} Deletes the dataset with the given csvname

TABLE C.1: Endpoints provided by the CSV Controller

C.2.2 DatasetController

This controller exposes five endpoints:

Method Endpoint Purpose

1 GET /dataset/ List the available datasets

2 GET /dataset/room/{roomId} List the available datasets in the given room

3 PUT /dataset/room/{roomId}/{fileName} Add the given dataset to the given room

4 PATCH /dataset/room/{roomId}/{fileName} Remove the given dataset to the given room

5 PATCH /dataset/{id} Modify information regarding the header of the
given dataset

TABLE C.2: Endpoints provided by the Dataset Controller

C.2.3 RoomController

This controller exposes thirteen endpoints:

C.2. The Controllers 57

Method Endpoint Purpose

1 GET /rooms/ List the available rooms

2 GET /rooms/{roomId} Get information about the given room

3 GET /rooms/{roomId}/cells/{cellNumber}/renderChart Get the chart data in the given room and cell number
in base64

4 GET /rooms/create Create a new room

5 GET /rooms/screenConnect/{roomId} Connect to a room

6 GET /rooms/sse-subscribe Subscribe to the Server Sent Event that sends updates
about the connected devices to the rooms

7 GET /rooms/sse-subscribe/{roomId} Subscribe to the Server Sent Event that sends updates
about the connected devices to the given room

8 GET /rooms/{roomId}/zoomInCell/{cellNumber} Select the cell that has been zoomed in

9 GET /rooms/{roomId}/zoomOutCell/{cellNumber} Select the cell,that has been zoomed out

10 POST /rooms/{roomId}/cell/{cellNumber} Setup a cell externally

11 POST /rooms/{roomId}/cell/{cellId}/render Make a request so that a chart response can be re-
turned and rendered in the dashboard at the given
room and cell number

12 GET /rooms/{roomId}/cell/{cellId}/histCellmode/{mode} Used in the histogram cells to switch from “Top Val-
ues” mode to “Distribution” mode and vice versa

13 GET /rooms/sessionExchange/{roomId} Used to establish a web socket connection between
the server and the client. Once the client is connected
and subscribed to the topic of one room, it will auto-
matically receives updated whenever they come.

TABLE C.3: Endpoints provided by the Room Controller

59

Appendix D

Code Maintenance

In this Appendix, we report information and metrics about the implementation of tests, cover-
age and bug fixes.

To keep track of these information, we use SonarQube. This tool provides the capability to
show the code quality of our application and highlight introduced issues. It helped us to fix
the possible vulnerabilities in the code and improve our code quality.

D.1 Tests

In Jeeves’s code base, we provided test cases, we use them to be sure that the systems works as
expected also after the introduction of new features.

In the current of version of our system, we provide 105 unit tests, implemented using Junit
(Figure D.1).

FIGURE D.1: Unit tests implemented in Jeeves

D.2 SonarQube

D.2.1 Bugs

SonarQube helped us during the development of Jeeves by detecting wrong code, or code that
was not having the intended behavior.

60 Appendix D. Code Maintenance

At the moment we started using SonarQube we had 33 bugs reported. In the current of
version of our system, SonarQube finds 0 bugs (Figure D.2).

FIGURE D.2: Bugs found by SonarQube in Jeeves

D.2.2 Vulnerabilities

By tracking vulnerabilities, SonarQube helped us find and track the insecurities in our code.
At the moment we started using SonarQube we had 6 vulnerabilities reported. In the cur-

rent of version of our system, SonarQube finds 0 vulnerabilities (Figure D.3).

FIGURE D.3: Vulnerabilities found by SonarQube in Jeeves

D.2.3 Code Smells

Code can be defined as “smelly” if it does what it should, but it will be difficult to maintain.
Code smells represent factors that indicate bad practices or indicate that the design is starting
to get rusty [24].

At the moment we started using SonarQube we had 248 code smells reported. In the current
of version of our system, SonarQube finds 9 code smells (Figure D.4).

FIGURE D.4: Code Smells found by SonarQube in Jeeves

The only code smells still present in our project are some TODO notes and some false posi-
tives. As visible in Figure D.5, they are labeled as to the Minor and Info Severity.

D.3. Duplications 61

FIGURE D.5: Code Smells found by SonarQube in Jeevesare either Info or Minor

D.2.4 Coverage

SonarQube’s code analyzers explore all possible execution paths to spot possible bugs. The
coverage helped us understand if we were covering all the paths of our tool during the execu-
tion of test cases.

In the current of version of our system, SonarQube detects a code coverage of 66.4% (Figure
D.6).

FIGURE D.6: Coverage found by SonarQube in Jeeves

Some parts of the tool are uncovered because we found some difficulties in mocking the
conversation between our server and the Amazon Service: we are using a testing suite provided
with the Amazon Alexa SKD for Java and we aim to bring the coverage at least at the level of
80%.

D.3 Duplications

SonarQube also check the code for duplications of code. Code duplication can, in fact, lead to
inconsistency in the code and difficulties in the maintenance of the tool.

At the moment we started using SonarQube we had 0.4% of code duplication reported. In
the current of version of our system, SonarQube detects a percentage of duplication equal to
the 0.0% (Figure D.7).

FIGURE D.7: Duplications found by SonarQube in Jeeves

63

Bibliography

[1] Amazon alexa - be adaptable. https://developer.amazon.com/it/docs/alexa-design/
adaptable.html. Visited: 2019-06-08.

[2] Amazon alexa - be available. https://developer.amazon.com/it/docs/alexa-design/
available.html. Visited: 2019-06-08.

[3] Amazon alexa - be personal. https://developer.amazon.com/it/docs/alexa-design/
personal.html. Visited: 2019-06-08.

[4] Amazon alexa - be relatable. https://developer.amazon.com/it/docs/alexa-design/
relatable.html. Visited: 2019-06-08.

[5] Bar chart/bar graph: Examples, excel steps & stacked graphs. https:
//www.statisticshowto.datasciencecentral.com/probability-and-statistics/
descriptive-statistics/bar-chart-bar-graph-examples/. Visited: 2019-05-31.

[6] Host a custom skill as a web service. https://developer.amazon.com/it/docs/
custom-skills/host-a-custom-skill-as-a-web-service.html. Visited: 2019-06-01.

[7] Overcoming challenges in voice-based natural language processing (nlp) in busi-
ness - challenges in voice (as opposed to text)-based nlp. https://emerj.com/
ai-podcast-interviews/spoken-voice-based-nlp-for-business/. Visited: 2019-06-08.

[8] Quick guide to spring controllers. https://www.baeldung.com/spring-controllers. Vis-
ited: 2019-06-01.

[9] Spring - mvc framework. https://www.tutorialspoint.com/spring/spring_web_mvc_
framework.htm. Visited: 2019-06-01.

[10] Spring vs spring boot. https://www.educba.com/spring-vs-spring-boot/. Visited:
2019-05-29.

[11] Statistics dictionary - categorical and quantitative variables. https://stattrek.com/
statistics/dictionary.aspx?definition=categorical%20variable. Visited: 2019-05-
31.

[12] Statistics dictionary: Scatterplot. https://stattrek.com/statistics/dictionary.aspx?
definition=scatterplot. Visited: 2019-05-31.

[13] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson Correlation Coefficient, pages 1–4.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[14] Chen, Chun-houh, Hrdle, Wolfgang, Unwin, Antony, Chen, Chun-houh, Hrdle, Wolfgang,
Unwin, and Antony. Handbook of Data Visualization (Springer Handbooks of Computational
Statistics). Springer-Verlag TELOS, Santa Clara, CA, USA, 1 edition, 2008.

https://developer.amazon.com/it/docs/alexa-design/adaptable.html
https://developer.amazon.com/it/docs/alexa-design/adaptable.html
https://developer.amazon.com/it/docs/alexa-design/available.html
https://developer.amazon.com/it/docs/alexa-design/available.html
https://developer.amazon.com/it/docs/alexa-design/personal.html
https://developer.amazon.com/it/docs/alexa-design/personal.html
https://developer.amazon.com/it/docs/alexa-design/relatable.html
https://developer.amazon.com/it/docs/alexa-design/relatable.html
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/descriptive-statistics/bar-chart-bar-graph-examples/
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/descriptive-statistics/bar-chart-bar-graph-examples/
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/descriptive-statistics/bar-chart-bar-graph-examples/
https://developer.amazon.com/it/docs/custom-skills/host-a-custom-skill-as-a-web-service.html
https://developer.amazon.com/it/docs/custom-skills/host-a-custom-skill-as-a-web-service.html
https://emerj.com/ai-podcast-interviews/spoken-voice-based-nlp-for-business/
https://emerj.com/ai-podcast-interviews/spoken-voice-based-nlp-for-business/
https://www.baeldung.com/spring-controllers
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://www.educba.com/spring-vs-spring-boot/
https://stattrek.com/statistics/dictionary.aspx?definition=categorical%20variable
https://stattrek.com/statistics/dictionary.aspx?definition=categorical%20variable
https://stattrek.com/statistics/dictionary.aspx?definition=scatterplot
https://stattrek.com/statistics/dictionary.aspx?definition=scatterplot

64 BIBLIOGRAPHY

[15] S. Dean and P. Barbara Illowsky. Descriptive statistics: Histogram.

[16] G. Der and B. Everitt. A Handbook of Statistical Graphics Using SAS ODS. A Chapman &
Hall Book. Taylor & Francis, 2014.

[17] S. Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Analytics Press,
USA, 2nd edition, 2012.

[18] M. Gregg. CISSP Practice Questions Exam Cram (4th Edition). Pearson IT Certification, USA,
4th edition, 2016.

[19] Keim, D. Andrienko, G. Fekete, J.-D. G
"org, C. Kohlhammer, J. Melançon, and Guy. Visual Analytics: Definition, Process, and Chal-
lenges, chapter 1, pages 154–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[20] D. A. Keim, M. C. Hao, U. Dayal, H. Janetzko, and P. Bak. Generalized scatter plots.
Information Visualization, 9(4):301–311, 2010.

[21] Kirk and Andy. Data Visualisation: A Handbook for Data Driven Design. Sage Publications
Ltd., 2016.

[22] P. Kruchten. Architecture blueprints - the "4+1" view model of software architecture. In
TRI-Ada Tutorials, pages 540–555, 1995.

[23] M. Krzywinski and N. Altman. Visualizing samples with box plots. Nature Methods, 11:119
EP –, 01 2014.

[24] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice: Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer Publish-
ing Company, Incorporated, 1st edition, 2010.

[25] W. M., G. G., and K. D. Interactive Data Visualization. A K Peters/CRC Press, New York,
2015.

[26] D. Moore. The Basic Practice of Statistics. Freeman, 2010.

[27] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Publishing,
Thousand Oaks, CA, USA, 1999.

[28] K. Pearson. Contributions to the Mathematical Theory of Evolution. II. Skew Variation
in Homogeneous Material. Philosophical Transactions of the Royal Society of London Series A,
186:343–414, 1895.

[29] Ribarsky, William, Foley, and James. Next-generation data visualization tools. Croatian
Journal of Fisheries, 1994.

[30] S. Rimbert. Jacques bertin, sémiologie graphique : les diagrammes, les réseaux, les cartes.
Annales de géographie, 84(462):241–242, 1975.

[31] J. Stasko, J. Domingue, M. Brown, and B. P. (Eds.). Software Visualization - Programming as
a Multimedia Experience. The MIT Press, 1998.

[32] E. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, USA, 1990.

BIBLIOGRAPHY 65

[33] G. Upton and I. Cook. Understanding Statistics. OUP Oxford, 1997.

[34] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a controlled experiment. In
2011 33rd International Conference on Software Engineering (ICSE), pages 551–560, May 2011.

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

[36] N. Yau. Data Points: Visualization That Means Something. Wiley Publishing, 1st edition,
2013.

	Acknowledgements
	Introduction
	The importance of data visualization
	Our approach
	Structure of this document

	Related Work
	Data Analytics
	Jupyter Notebook
	Apache Zeppelin
	Conclusion on Data Analytics Tools

	Data Visualization
	Tableau
	Apache Superset
	Conclusion on Data Visualization Tools

	Pure Visualization Chart Generator
	Summary
	Working Experiment: BoardBile
	The interaction–based visualization of Jeeves

	Jeeves
	Our Approach to Voice User Interface
	Requirements
	Accessibility
	Simplicity
	Maintained Ownership of Data
	Voice User Interfaces (VUIs) Requirements

	Use Cases
	Questions about the ``Diamonds'' Datasets

	Usage of the Tool
	Dashboard and Cell View
	Home Page
	Dataset Upload and Selection

	Development Challenges
	Relatability
	Adaptability

	Solution to the challenges
	Asynchronous Queries
	Natural Language Ambiguities

	Summary

	Implementation Details
	Architecture
	Client
	External Resources
	Server
	Data Storage

	Technologies
	Basic Concepts
	Cell
	Room
	Session
	Dataset

	Vocal Assistant: Amazon Alexa
	Alexa Developer Console
	Alexa Skill Kit: APIs for Java

	Server
	Session Manager (Jeeves)
	Models
	Bar Chart
	Histogram
	Box Plot
	Scatter Plot

	Controllers

	Wrapping Up

	Conclusions
	Summary
	Validation
	Contribution
	Future Work

	The Datasets
	Diamonds
	Dataset Description
	Dataset Structure
	Dataset Head

	New York Citi Bike Trip Histories
	Dataset Description
	Dataset Structure
	Dataset Head

	Chart Models Structure
	Barchart
	Histogram
	Boxplot
	Scatterplot

	APIs
	Endpoints with Swagger
	The Controllers
	CSVController
	DatasetController
	RoomController

	Code Maintenance
	Tests
	SonarQube
	Bugs
	Vulnerabilities
	Code Smells
	Coverage

	Duplications

