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Abstract

Software Reengineering is a main issue in software industry. One of its main ac-
tivities – reverse engineering – is concerned with trying to understand a software
system and how it ticks. For the investigation and graphical representation of large
and complex systems there are various tools for automated support. However, the
information extraction with these tools is difficult, visualising certain aspects of a
software system may overwhelm the observer with its complexity.

We discuss in this work an object-oriented reverse engineering approach using group-
ing. The intention of grouping is to create groups with components of a software
system. The use of grouping has many benefits for a reverse engineer: it supports
the program understanding and the design recovery, it adds higher abstraction levels
to the system, and it permits to create different representations as well as alternate
views of a system. Furthermore, the use of groups and the scalability of grouping
are effective in reducing the complexity of large systems.

All the information we need to create groups is found in the software system. User-
defined queries on the system perform the selection of components for the creation
of new groups. We introduce the visualisation of groups and show their usefulness
with a Smalltalk case study.
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Chapter 1

Introduction

In the context software development, a legacy system is a piece of soft-
ware that: (1) you have inherited and (2) is valuable for you. Moreover,
legacy systems refer to systems that present the problems of aging soft-
ware [Par94] [Cas98]: original developers no longer available, outdated
development methods, monolithic systems . . . . [Duc01]

The existence of legacy systems is typically attributed to the software aging process.
Parnas [Par94] states that there are two types of aging: the consequence of failed
modifications to a software system and the result of these changes.

Reengineering is defined as the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent implementa-
tion of the new form. [CC90]

The goal of reengineering is to reduce the complexity of a legacy system sufficiently
that it can continue to be used and adapted at an acceptable cost [SDN02]. The soft-
ware re-engineering of legacy systems represents today a major concern in software
industry [Tah00].

As we can see in Figure 1.1 reengineering can be separated into different stages,
among these reverse engineering. Chikofsky and Cross [CC90] define reverse engi-
neering as the process of analyzing a subject system to: (1) identify the system’s
components and their interrelationships and (2) create representations of the sys-
tem in another form or at a higher level of abstraction. They also state that “the
problems that re-engineers have to deal with are among other things the managing
of the big amount of data and the complexity of the systems. A key to controlling

1



2 CHAPTER 1. INTRODUCTION

these attributes is automated support”. Todays engineers can make use of tools
that help extracting the relevant information and that visualize the data.

Figure 1.1: Forward, reverse, and reengineering.

There are many tools that make use of static information to visualize software.
However, most publications and tools that address the problem of large-scale static
software visualisation treat classes as the smallest unit in their visualisation [LD01].
Moreover, often they only focus on the logical components of a software system
for graphical representation. In object-oriented programming these are typically
classes, methods, attributes, or files1.

There are mechanisms – for example, modules or inheritance with accessibility con-
straints – that can support layering or subsystem encapsulation, but they cannot
enforce these abstractions [KC98]. Since abstractions are not logical components
of a software system they are difficult to identify. Kazman and Carriere [KC98]
state that tools alone cannot understand abstractions through which humans struc-
ture and communicate their systems. As an example they mention that subsystems
are often determined by naming and calling conventions. Typically, automated aid
does not provide a criteria-based grouping to identify such arbitrary conventions or
abstractions.

1For many programming languages like C++ and Java the physical program structure is file-
based.
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1.1 Solution

In this master’s thesis we discuss an object-oriented reverse engineering approach
that uses a grouping method. It combines two aspects:

• logical grouping and

• graphical grouping.

The logical grouping is based on a software model2, i.e., we group the model’s
components. The model is an instance of the FAMIX meta-model.

With the graphical grouping we discuss the different possibilities for visualizing
logical groups. On this occasion we introduce CodeCrawler [DDL99, Lan03], a
research tool developed at the University of Berne. CodeCrawler provides us the
necessary program visualisation support based on a software model.

1.2 Contribution

We reason about the systematic grouping in the reverse engineering process. The
grouping involves adding higher abstraction levels to software systems. We show that
with the creation of groups and their visualisation we can support the investigation
and create alternate views of legacy systems.

We introduce a logical grouping based on a query-based selection of the compo-
nents to be grouped. As grouping criteria we determine common properties of the
components from a software model. We show that the model provides us all the
information we need. Grouping is scalable and can be applied on all kind of com-
ponents in the system. We show that grouping can reduce the complexity of the
subject system.

We introduce a general description for group definitions. We select a collection
of groups based on their impact on our problem solution and validate them for
the understanding of software structures and the reverse engineering of software
systems.

For the realisation of our approach we make use of CodeCrawler. We add more
functionality and implement our features as an extension called Classifier. With
the introduction of interactivity we want to provide a real user interaction with the
model.

We detect the benefits of our approach and open the discussion for future work.
2The software model conforms to the FAMIX meta-model that we describe in section 2.3.1.
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1.3 Document Structure

This document is structured in the following way. In Chapter 2 we present in detail
the context of object-oriented reverse engineering. Chapter 3 outlines the solution
to our reverse engineering approach. In Chapter 4 we provide a number of groups
for the application on a meta-model. In particular we describe their definition and
present the results acquired from the application on our case study. Finally, in the
last chapter we discuss future work and improvements.

The appendix contains details about the implementation of our approach.



Chapter 2

Object-Oriented Reverse
Engineering

The maintenance of legacy systems is difficult for many reasons. The reengineering
process aims at the alteration of a software system in order to provide a more flexible
system for maintenance and new changes. Reengineering generally includes some
form of reverse engineering [CC90], the process that involves the examination and
the abstraction of a system.

This chapter is organized as follows: in Section 2.1 we discuss the issues of legacy sys-
tems and software maintenance. In Section 2.2 we present the context of reengineer-
ing and reverse engineering. And we detect the key objectives of our reverse engi-
neering approach. Section 2.3 introduces the FAMIX model, a language-independent
meta-model that represents source code. This work is based on this model that was
developed in relation with the FAMOOS project, described at the end of the chapter.

2.1 Introduction

2.1.1 Legacy Systems

In the context of software development, a legacy system is a piece of soft-
ware that: (1) you have inherited and (2) is valuable for you. Moreover,
legacy systems refer to systems that present the problems of aging soft-
ware [Par94] [Cas98]: original developers no longer available, outdated
development methods, monolithic systems . . . [Duc01]

Legacy systems are typically mentioned in relation to software aging. Parnas [Par94]

5



6 CHAPTER 2. OBJECT-ORIENTED REVERSE ENGINEERING

explains this phenomenon like this:

Software products do exhibit a phenomenon that closely resembles human
aging. . . .There are two, quite distinct, types of software aging. The
first is caused by the failure of the product’s owners to modify it to meet
changing needs; the second is the result of the changes that are made.

Typically, systems that are inherited and referred to the aging process are attributed
to . . .

• Growth: a) as software ages, it grows bigger due to the addition of new code
[Par94]. b) at implementation time the developer team then gets split in many
subteams.

• Unqualified authors that are faced with complex requirements.

• Error affected design that is reflected in the implementation.

• Error intrusion. As the software is maintained, errors are introduced [Par94].

• Missing program documentation ([SRT92]) or erroneous documentation be-
cause of iterative changes.

• Outdated development methods and tools.

• Unavailability of the original authors. Changes are made by people who do
not understand the original design [Par94, SRT92].

• Modifications of the original design due to iterative changes to new require-
ments. After many changes the original designers no longer understand the
product. The software becomes expensive to update [Par94].

• Unstructured programming methods [SRT92].

Now, because the software is valuable means that owners want to keep it and cannot
just throw it away. In computer science we use for this the term software mainte-
nance.

A legacy system can only be replaced or upgraded at a high cost. Replacing would
mean implementing a new system from scratch and this would be too time con-
suming. The upgrading would be typically penalized by the problems mentioned
above. In fact, the goal of software reengineering is to reduce the complexity of such
systems to make them adaptable at an acceptable cost.
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2.1.2 Software Maintenance

Maintenance of software becomes both more complex and more expensive [SRT92].
The ANSI definition of software maintenance is the “modification of a software
product after delivery to correct faults, to improve performance or other attributes
or to adapt the product to a changed environment”.

Usually, the system’s maintainers were not its designers [CC90]. This means that
they first have to understand the system and recover its design. Design recovery is
a subset of reverse engineering :

Design recovery is a subset of reverse engineering in which domain know-
ledge, external information, and deduction or fuzzy reasoning are added
to the observations of the subject system to identify meaningful higher
level abstractions beyond those obtained directly by examining the system
itself. [CC90]

To learn about legacy system and for the program understanding maintenance per-
sonnel must spend an inordinate amount of time attempting to create an abstract
representation of the system’s high-level functionality. They do that by expand-
ing many resources and by exploring its low-level source code [SRT92]. Reverse-
engineering tools can facilitate this practice [CC90]. In this context, reverse engi-
neering is the part of the maintenance process that helps you understand the system
so you can make appropriate changes [CC90].

2.2 Reengineering, Reverse Engineering

2.2.1 Terms and Definitions

Reengineering and reverse engineering are often mentioned in the same context. To
understand the following terms and definitions we introduce a life-cycle model that
is constituted of three simple stages (see Figure 2.1): requirements, design, and
implementation. With this model the software reengineering and related terms can
be described.

Now, here is the definition of forward engineering :

Forward engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the phy-
sical implementation of a system. [CC90]
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Figure 2.1: Life-cycle model. Reverse engineering and related processes in relation
with the life-cycle phases of a system.

That is to say, forward engineering describes the common known process of devel-
oping a software system. According to the Figures 1.1 and 2.1 we can think of
reverse engineering as the inverse procedure of forward engineering, namely extract-
ing system abstractions and design information out of existing software systems for
maintenance, re-engineering and reuse [SRT92]. Chikofsky and Cross [CC90] define
it like this:

Software reverse engineering refers to the process of analyzing a subject
system to

• identify the systems components and their interrelationships and

• create representations of the system in another form or at a higher
level of abstraction.

This definition states that the reverse engineering process does not modify a system.
It is only focused on the examination of a subject system. It involves finding the
original design and deciphering the requirements implemented by the system. Fi-
nally, we come to the definition of reengineering that includes some form of reverse
engineering process [CC90]:

Reengineering...is the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation in a
new form. [CC90]

As stated by the definition, reengineering consists of two main activities, namely the
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examination and the alteration of a subject system. More formal terms for these
activities are reverse engineering and forward engineering [Tic01].

2.2.2 Objectives

There are many objectives in reverse engineering. Chikofsky et al. [CC90] concen-
trate them to 6 key objectives:

• Cope with complexity

• Generate alternate views

• Recover lost information

• Detect side effects

• Synthesize higher abstractions

• Facilitate reuse

In the following of this section we want to focus on the complexity, the views, and
the abstractions. We then add the issue of code smells. In the following chapter we
present a reverse engineering approach that pursues these objectives.

Cope with Complexity

For dealing with a huge amount of information one path that is followed these days,
is the use of software metrics. The application of metrics is important and has
been intensively discussed in the past [FP96, CK91, CK94]. Now, metrics have
been developed further and today you can classify them in two groups according to
Lorenz and Kidd [LK94].

• Design Metrics. These metrics are used to assess the size, quality, and the
complexity of software. They measure the quality of the project’s design at
a particular point in the development cycle. Design metrics tend to be more
locally focused and more specific, thereby allowing them to be used effectively
to directly examine and improve the quality of the product components.

• Project Metrics. They deal with the project’s dynamics, with the overhead
to get to a certain point in development cycle and the way how to get there.
They can be used to predict for example staffing requirements. At a higher
abstraction level they are less prescriptive and are more important from an
overall project point of view.
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Generate Alternate Views

A often used approach is the graphical representation of source code, namely the
program visualisation. A graphical representation introduces an abstraction level
which hides the source code behind a graphical entity. Several techniques exist in
this domain, which include complex layout algorithms, filtering and interaction.

The visualisation we use for our reverse engineering approach is based on the Famix
model, a meta-model for source code, that we present in section 2.3.

Synthesize Higher Abstractions

The goal of design recovery is to reconstruct the system design that preceded the
first implementation. For this it is important to detect abstract system components
at a higher level than the source code level. We also call these abstractions modules.
It is useful for the design recovery to detect in a system the contained modules and
their communication.

“Design recovery recreates design abstractions from combination of code,
existing design documentation (if available), personal experience, and
general knowledge about problem and application domains...Design re-
covery must reproduce all of the information required for a person to
fully understand what a program does, how it does it, why it does it, and
so forth. Thus, it deals with a far wider range of information than found
in conventional software-engineering representations or code.” Tedd
Biggerstaff

Among the goals of the design phase in software development we find architecture
design, particularly the modularisation of a system. In this context the term module
represents a part of the system that is meant to be implemented independently.
The modularisation of a system involves the creation of several modules. It is a
characteristic that affects the quality of a program.

The most important information lies in the dependencies between these modules.
These relationships can be detected by identifying the interfaces that provide their
communication. As one possibility of our approach that we introduce in Chapter 3
we can create abstract components to identify modules.

Code Smells

The readability of program code is a characteristic for the software’s quality. Well
readable code is helpful for the examination of a software system. Programs that
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cannot satisfy this characteristic have a “bad smell”. Martin Fowler and Kent Beck
[FBB+99, Bec00] use the term code smells.

A code smell is a hint that something has gone wrong somewhere in
your code. . . .Note that a code smell is a hint that something might
be wrong, not a certainty. . . .Calling something a code smell is not an
attack; it’s simply a sign that a closer look is warranted.
(http://c2.com/cgi/wiki?CodeSmell)

Examples for code smells are:

• Duplicated code.

• Methods too big.

• Classes with too many instance variables.

• Classes with too much code.

• Strikingly similar subclasses.

When reengineering a software we try to eliminate code smells to give the system
a better structure and to raise the readability. With this thesis we want to provide
among other things a mechanism to detect code smells to point out possible spots
for later refactorings.

2.3 FAMOOS

In Chapter 3 we present a reverse engineering approach that is based on a meta-
model called the FAMIX model. It was developed in the context of the FAMOOS
project. It basically represents source code. With MOOSE – the Smalltalk imple-
mentation of the FAMIX model – we are able to generate a model of a given software
system to use it for the purpose to reverse engineer the system. In this section we
give an introduction to FAMOOS and the FAMIX model. We explain MOOSE in
more detail in the appendix of this document.

FAMOOS, the ‘Framework based approach for mastering object oriented systems’
refers to the european ESPRIT 1 Project 21975. The goal of the FAMOOS Es-
prit project was to support the evolution of first generation object-oriented soft-
ware, built with current analysis and design methods and programming languages,

1ESPRIT projects are concerned with research and development activities in the area of infor-
mation technology.
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to frameworks – standard application architectures and component libraries which
support the construction of numerous system variants in specific domains. Methods
and tools developed to analyse and detect design problems with respect to flexibil-
ity in object-oriented legacy systems and to transform these systems efficiently into
frameworks based on flexible architectures.

FAMOOS was a 3-year project that started at September 1996 and ended in Septem-
ber 1999. The project is set up with six partners: The Software Composition Group
(SCG) within the University of Berne (UOB), Forschungszentrum Informatik (FZI),
Daimler-Benz (DAB), Nokia Corporation (NOK), Sema Group (SEM), TakeFive
Software (TAK).

For further information on FAMOOS refer to
http://dis.sema.es/projects/FAMOOS/.

2.3.1 FAMIX Model

The Famoos Information Exchange proposes a meta-model that can be compared
to the UML meta-model [DDT99]. It was developed at the University of Berne2 to
offer a tool interoperability standard within the FAMOOS project. The preceding
argumentation was that UML is not sufficient to serve as tool interoperability stan-
dard for integrating round-trip engineering tools. Under the features of the FAMIX
meta-model the most relevant are:

• Language-independency. At the moment parsing technology exists to generate
models from C++, Java, Smalltalk, and Ada.

• Software metrics support.

• Interoperability with program visualisation tools.

The meta-model comprises the main object-oriented concepts - namely Class, Me-
thod, Attribute and Inheritance Definition - plus the necessary associations between
them - namely Invocation and Access. The core of the FAMIX meta-model is
depicted in Figure 4.1.

A model represents a software system conforming to the FAMIX meta-model. Once
a model has been built, we use it as a database of object-oriented entities. We
can make queries to the model and its entities. Let us suppose we have an entity
representing a class. We can now ask this class to give us all its methods, attributes,
etc.

2See http://www.iam.unibe.ch/∼scg/Archive/famoos/FAMIX/ for additional information.
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Figure 2.2: The core of FAMIX meta-model.

2.4 Summary and Next Steps

We start this chapter with discussing the issues in software industry: legacy sys-
tems and software maintenance. We present the context of reverse engineering and
then expose the key objectives we want to pursue in our work. We finish with the
introduction of the FAMOOS project and the FAMIX model.

In Chapter 3 we proceed with our reverse engineering approach. Our goal is to group
arbitrarily the components of a software model. We investigate the difficulties and
the prerequisites that grouping involves. The grouping has to be performed in
two ways: logically and graphically. The logical creation of groups is focused on
the FAMIX model. The graphical grouping instead is based on CodeCrawler (see
Section 3.3.2), a reverse engineering tool that supports program visualisation.

In Chapter 4 we present a selection of groups for the investigation of legacy systems.
We apply the group definitions on a concrete software system and discuss the results.
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Chapter 3

Grouping

In the previous chapter we treated the context of software reengineering and dis-
cussed different objectives of reverse engineering. Finally, we introduced the FAMIX
model – a meta-model for the practice in reverse engineering based on a software
model. In this chapter we propose grouping as a reverse engineering approach. We
want to group components of a software model that conforms to the FAMIX model.

This chapter has following structure: In Section 3.1 we introduce the context of our
approach.

Grouping in reverse engineering basically consists of collecting components and rela-
tionships to abstract components. We call these abstractions groups. In Section 3.2
we propose an approach to define and use groups in the reverse engineering process.
Afterwards we discuss how to represent groups visually.

MOOSE is the Smalltalk implementation of the FAMIX model. We would like to
focus on two applications that were built on MOOSE: CodeCrawler and Moose-
Queries. CodeCrawler is a reverse engineering tool that supports program visual-
isation. MooseQueries provides an effective query framework for software models.
Since the implementation of our approach makes explicit use of these applications
we introduce them in Section 3.3.

In Section 3.4 we discuss the difficulties that grouping involves.

3.1 Introduction

The programming process involves moving from abstractions and designs to the
physical implementation of a system [CC90]. Therefore a programmer has not only
to write problem solving code but also to take part in the architecture and the

15
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design process of a software. As system requirements tend to change, existing code
has to be modified and often the software’s design has to be thought over. As Glass
[Gla02] reminds us that for every 25% increase of problem complexity there is a
100% increase in complexity of the software solution. He also points out that explicit
requirements explode by a factor of 50 or more into implicit design requirements as
a software solution proceeds.

For a correct modification of a system we need good knowledge about the structure
and the design. If the original developers are not anymore available we have to
spend time examining the system to understand it. Automated support facilitates
this practice and the handling of typically huge amounts of data. Since visualisation
represents a good alternative to explore complex software systems several existing
reverse engineering tools produce graphical representations of systems. The obser-
vation of their views is useful for the extraction and analysis of the components in
the focused software. All the same we often wonder: but where does the information
lie to adopt in a reverse engineering process? How can one decide what the right
spots are in a system’s view? How should one interpret a graphical representation?
Why do reverse engineering tools often lack interactive features?

There are many tools that make use of static information to visualize software like
Rigi [TWSM94], Hy+ [CM93] [CMR92], SeeSoft [ESEE92], Dali [KC99], Shrim-
pViews [SM95], TANGO [Sta90], as well as commercial tools like Imagix1 to name
but a few of the more prominent examples. However, most publications and tools
that address the problem of large-scale static software visualisation treat classes
as the smallest unit in their visualisation [LD01]. Table 3.1 lists the basic com-
ponents of a object-oriented software program. Moreover, automated support only
focusses on the logical components of a software system for graphical representation.
In object-oriented programming these are typically classes, methods, attributes, or
files. The standard views of a system used during design and implementation, such
as the class and method structure as well as the source code, are often not sufficiently
abstract [DD99]. Abstract views of a system are already supported in several design
languages and methods. Examples include packages in UML [RJB99] or subjects in
OOA [CY91]. Unfortunately, they are currently too vaguely defined, making them
insufficient for the tasks occurring in reverse- and reengineering.

A visual representation of a code model usually provides interesting “attractive pat-
terns”. Especially when creating different views the observer recognizes clusters
or groups within the software architecture created by the original designers. We
consider these clusters abstract system components. Typically, we often recognize
relationships between these components. The abstract components and their rela-

1See http://www.imagix.com.
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tionships need to be analyzed. We want to know how they can affect the reverse
engineering of the system.

The consideration of groups is not explicit in the software design approach or de-
velopment.

. . . the abstractions live in the designer’s head, or in usage conventions
or naming conventions. These, however, are typically not automatically
extractable by a tool: they are too idiosyncratic. [KC98]

In this work we define and recognize abstract groups and their relationships in
between. With the uses of extraction we want to understand software systems and
we want to be able to propose refactorings.

3.2 Solution

In this section we propose our solution for grouping in reverse engineering. First,
we list the requirements that our grouping concept should fulfill. After this we
explain the grouping process. We split it in two parts: the logical grouping and the
visualisation. At the end we discuss the behavior of our solution with respect to our
requirements.

3.2.1 Requirements

For introducing groups into the reverse engineering process we propose a list of
several requirements that have to be satisfied. We split them in two parts: grouping
and application requirements. Note, if we use the term “system” we refer to a
software model2.

Grouping

Group Creation and Manipulation. We want to be able to create and manip-
ulate groups for reverse engineering software systems. The group creation
should be possible with the basic program elements, entities and associations3.
Groups represent abstract components of a software system. For a flexible
grouping groups should be applicable to an entire system and to subsystems.

2In particular our approach is based on MOOSE, the implementation of the FAMIX meta-model
that we introduce in the following section. We presented the FAMIX meta-model in Section 2.3.1.

3Details are described in Section 3.2.2.
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Group Concept Expressed as Queries. The selection of components for the
grouping has to be expressed in the form of queries. This allows us to de-
scribe in a declarative way what properties our components must have. For
example, we would like to “group all classes that have 10 methods and more”.

Adding Abstraction Levels. Creating a group implies adding an abstraction le-
vel to the system. With the use of groups we want to describe abstractions
like modules that are not concrete in source code. With the identification of
abstract entities we want to be able to “think” in terms of class categories,
packages, method protocols, etc..

Code Smells. We want to detect code smells (see Section 2.2.2), e.g., possible
errors in the code or the original design.

Software Metrics. Our grouping approach should support software metrics for
two reasons. First, the combination with the query concept enhances our
grouping approach. With the use of metrics we can take more properties into
account for describing the components we want to group. Second, relying on
the selected components we can use their metrics to express metrics for the
resulting group.

Lossless and Reversible Grouping. After the creation of a group, we want its
items to be still contained in the original system. Similarly, a group’s removal
should not affect the system. The grouping of components must be reversible
at any point of time.

Application

Customization. Our application has to provide a user interface for interactive
group creation, storage, and visualisation. We want to provide a flexible han-
dling of groups for the interaction with the system views.

Reusability. We want to have a group repository where we collect created groups.
This allows us to adapt predefined groups to current situations.

Logical vs. Graphical Representation. Groups have always to exist in a logical
form. From the visualisation point of view the observer should be able to
choose between several representation forms since it is an objective of the
reverse engineering process [CC90].

Put together, these requirements already set up a kind of an informal definition
or concept of grouping. In the following section we want to give a more precise
description of the grouping process.
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3.2.2 Logical Grouping

Our approach is based on the FAMIX model that we introduced in Section 2.3.1.
MOOSE is the Smalltalk implementation of the FAMIX model. In our implemen-
tation MOOSE provides us a software model. We treat MOOSE in more detail in
Section 3.3.1.

The following terms are explained in more detail in the next chapter, see Section
4.1. Anyhow, we give here a short description for the understanding of the grouping
process.

We use the term group in the meaning of abstract entity or association in the context
of the FAMIX model. Table 3.1 describes the core structure of the FAMIX model.
A group basically contains a collection of entities respectively associations as well
as nested groups.

Atom Description
Entity Class, method, or attribute
Association Class inheritance, method invocation,

or attribute access

Table 3.1: The FAMIX core distinguishes between two types of components: entities
and associations.

Here, we propose an informal definition for groups respectively grouping:

• A group is an abstract entity that contains a subset of all entities in the focused
system. A group containing one entity is the entity itself.

• The logical grouping consists of creating a group with a set of entities. The
structure of a group is illustrated by Figure 3.1.

The grouping process can be divided into two parts: the entity selection and
the group creation. We perform the entity selection with the execution of a
query on the software model. The result consists of a set of entities. A group
is created with the addition of a set of entities to an empty group.

• A grouping can be defined by a query that basically consists of selecting a set
of entities in a software model.

The grouping in relation with associations is analogous.
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Figure 3.1: A group can contain either entities or associations.

3.2.3 Visualisation

Most of our work is based on CodeCrawler (see Section 3.3.2) – a reverse engineering
tool that supports program visualisation. In the following of this section we show
the outlines CodeCrawler as an example for a common reverse engineering tool.

The visualisation of a group can be performed in different ways. To understand this
section we have to know how CodeCrawler displays software model’s components
graphically. CodeCrawler knows two types of graphical atoms:

• nodes: represent logical entities like classes or class methods.

• edges: represent relationships respectively associations, e.g., inheritance, ac-
cess, ... etc..

Nodes represent entities, edges represent relationships or associations – we explain
these terms in more detail in section 4.1. Figure 3.2 illustrates the basic graphical
atoms of CodeCrawler. CodeCrawler creates the nodes and edges according to
the entities and associations in the software model. After creation it stores the
components in a data structure called graph.

Visualising a Group

For the graphical grouping we propose three different methods:

• Color/Selection. In this visualisation mode we pick all items belonging to a
group and select or color them to be distinguished from all other nodes in the
same view. Selecting a node means marking it with a little black rectangle in
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Figure 3.2: Entities are displayed as nodes. Relationships between entities corre-
spond to edges.

the middle. Coloring a node implies filling a node with a determinate color.
Both coloring and selection are illustrated in Figure 3.3.

Figure 3.3: On the left all selected nodes belong to a group. On the right the group’s
item are colored blue.

• Aggregation. It consists of taking 2 or more nodes and substituting them with
a new node, a composite node. Inside the node the logically contained nodes
are visible. Figure 3.4 shows a typical node aggregation. The original connec-
tions (edges) of the aggregated nodes are preserved. If the composite node is
connected with another node by two or more edges they get substituted by a
composite edge. Similarly, the composite edges contain the original grouped
edges. Note that for edge grouping we do not make use of aggregation but of
collapsing.
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Figure 3.4: A node aggregation: the aggregated nodes are visible within the com-
posite node.

• Collapsing. Here the same thing happens as in the aggregation with the dif-
ference that the contained items are not visible, see Figure 3.5.

Figure 3.5: A node collapsing: the collapsed node hides visually its items.

For the visual grouping based on edges we only focus on the collapsing. This is
because we have decided to put more effort in the analysis of the entity grouping.
Entities are visualised by nodes. As we explained above edges represent relation-
ships.

3.2.4 Synthesis

In this section we note how our solution behaves with the requirements listed above.

Group Creation and Manipulation. This is straightforward.

Group Concept Expressed as Queries. This is done with the use of Moose-
Queries – this is an application we introduce in the following section.
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Adding Abstraction Levels. This is straightforward. The creation of a group
creates an abstract component.

Code Smells. With use of query-based grouping we can define groups based on
specific code smell “patterns”.

Software Metrics. CodeCrawler treats a system’s components as nodes and edges.
These are connected with software metrics in order that they are anytime avail-
able. CodeCrawler typically uses metrics for the visual enhancement of the
components, e.g., it determines the components’ color and size in dependency
of their metric values.

Lossless and Reversible Grouping Grouping involves only one system modifi-
cation: after creation it adds the group to the system. After removal the
original items remain in the system.

The logical reversibility is ensured during the deletion of groups. Since groups
only hold pointers to their components, the model’s entities will never be
affected by a deletion. The reversibility is more interesting on visualisation
side since expansion of groups restores the previous view.

Customization. Our implementation provides a graphical user interfaces called
GroupGenerator for both the creation of groups and their graphical handling.

Reusability. With our application every created group gets stored in the reposi-
tory. The repository allows one to remove groups.

Logical vs. Graphical Representation. This is straightforward. We explain
the two concepts in Section 3.2.2 respectively in Section 3.2.3.

3.3 Constraints

For our implementation we set some constraints. We want to base our work on
CodeCrawler, a reverse engineering tool that provides program visualisation and
graph manipulation. The visualisation is based on a software model. The generation
of the model is done by MOOSE, the implementation of the FAMIX model.

3.3.1 Moose

Moose is the implementation of the FAMIX meta-model that we presented in Section
2.3.1. It has been developed in Smalltalk by S.Demeyer and S.Ducasse, at the
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University of Berne. Starting from a given system, implemented with a object-
oriented programming language like Smalltalk, it produces a model. If the software
has been developed in any other language than Smalltalk we make use of particular
exchange format called CDIF. In this sense the model is language-independent. We
can query its entities and associations, e.g., an entity mapped as a class can return
its methods or answer if it is abstract or not.

The data model contains the main object-oriented concepts, namely class, method,
attribute and the associations as inheritance definition, invocation and access. We
explain this terms in more detail in Section 4.1.

Moose produces the main knowledge base, CodeCrawler is based on the graphical
representation of the FAMIX model.

MooseQueries

This application extends the Moose framework. Its main contribution is a querying
interface to the FAMIX model. The interface allows one to express queries for the
model’s entities and associations. MooseQueries was written by Lukas Steiger at
the University of Berne, in the context of his master thesis. For further information
see [Ste01].

3.3.2 CodeCrawler

This program was built on top of MOOSE and supports the visualisation of a soft-
ware model. In particular it supports:

Generation of Graphical Views with different perspectives on software archi-
tectures, e.g., class level or method level, for the analysis and understanding
of software systems. The application provides a long list of predefined views.
Every view can be represented with several layouts.

Metrics-based Visualisation. CodeCrawler uses a number of operators that com-
pute metric values. This values are combined with the visualisation of the
nodes and edges changing that way there size and color.

CodeCrawler was developed with VisualWorks Smalltalk and built using the frame-
work HotDraw4. The platform independence is given by the programming language
Smalltalk since it is based on a virtual machine.

4HotDraw is a two-dimensional graphics framework for structured drawing editors that was
implemented in Smalltalk by John Michael Brant [Bra95].
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Figure 3.6: CodeCrawler, a reverse engineering tool that supports program visuali-
sation.

3.4 Difficulties And Drawbacks

There are a few points that have to be considered when using grouping in reverse
engineering:

Query Capabilities. The main feature of a query-based grouping is a flexible sys-
tem interface for the access of the static information that lies in the source
code. Moreover, it is important when coping with large systems that the com-
ponent properties can be accessed in short time. Usually, a query addresses
all system components.

Component Properties. The properties represent the most powerful element of
query-based grouping. That definition of groups is totally based on properties.
The underlying model has to provide a large set of properties for every entity
and association. MOOSE provides several operators5 that compute values for
properties like a class type, a metric, etc..

Homogeneous vs. Heterogeneous Groups. A group functions as a container.
From this point of view it is either an entity group or a relationship group.
We decide – for the logical and the graphical aspect – that there will be only
entity and relationship groups.

5An operator is essentially an automated procedure that iterates over every component of a
system to retrieve or calculate certain values.
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Metrics Handling. The calculation of metric values for a group is tricky because it
is based on its items. Ideally, the solution is a function of the group’s elements.
In this work we sum all values if the metrics are numeric. With properties we
consider true if all items return true concerning the correspondent property.

Common Level of Granularity. The usage of groups introduces a powerful han-
dling of a software model. The resulting system views change visibly without
substantially modifying the model itself. There is the risk of creating groups
representing different abstraction levels in the same view. This can distort the
view’s interpretation if the observer is not aware of the situation.

Data Size. For the reverse engineering of large systems we usually rely on auto-
mated tools. Big volumes of data affect considerably the tools’ time perfor-
mance. For example, the creation of a group can last several minutes with a
software model containing a thousand classes and thousands of methods. For
the creation of a graph CodeCrawler can take several hours.

Graphical Edge Representation. Edge visualisation is a tricky and time con-
suming task. One question we have to ask ourselves is whether we want to
show or not the edges between a couple of nodes that we aggregate in a larger
composite node, as we can see in Figure 3.4. The figure also illustrates that
we collect all edges between a collapsed or aggregated node and another node
in a single composite node.



Chapter 4

Groups

In Section 3.2 we introduce in detail the grouping process. We give an informal
definition of the logical grouping and show how groups can be represented graph-
ically. In this chapter we show what impact grouping in reverse engineering can
have. For this purpose we present a list of groups that we have selected during the
work done for this document. The groups are represented in CodeCrawler, a reverse
engineering tool [Lan99].

This chapter is structured as follows: In Section 4.2 we show the general structure
of the groups that are presented later in the chapter. With Section 4.3 we describe
the different kinds of groups we have created and that we want to investigate.

We call the implementation of our approach Classifier. To test Classifier and to show
the results of grouping on a concrete software system we chose a software called Jun.
Jun is a freely available graphic library. We introduce it briefly in Section 4.4.

The main contribution of this chapter lies in Section 4.5. There we list in detail
the most useful groups that were raised during this research. For every group we
explain our intent and show the results for our case study.

4.1 Introduction

Our work in this chapter is based on the following definitions. The basic components
of a software model conform to the FAMIX model are either entities or relationships,
the associations. Figure 4.1 shows how entities and associations are connected with
each other, Figure 4.2 shows how they are modeled and inherited.

We see in Figure 3.1 (page 20) that a group, or computedGroup, basically contains
a set of entities or associations.

27
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For more detailed information on the FAMIX meta-model please consult the PhD
thesis of Sander Tichelaar [Tic01].

Figure 4.1: The core of FAMIX model.

We would like to stress the fact that in the following sections we use the term system
in the meaning of software model.

4.2 Group Template

The following description is closely related to the graphical representation of a group.
It illustrates the format we use in this chapter to discuss the groups we present in
Section 4.5.

A group is defined as follows:

Values

• Components. As components one can chose entities from the metamodel.
As we mentioned in Section 3.2.3, in this work we make use of class nodes
and method nodes because we think that their grouping results are the
most expressive for the discussion in this work.

• Selection criteria. This stands for the values that the group’s components
have to satisfy. For the software metrics deployed we used the abbrevia-
tions defined in Chapter 3 of Combining Metrics and Graphs for Object
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Figure 4.2: Entity and association within the FAMIX hierarchy.

Oriented Reverse Engineering from Michele Lanza [Lan99]. Tables 4.2
and 4.2 list the metrics used in his work.
If we want to use negated criteria we write ¬ before each criterion. Here
is an example: ¬isAbstract means is not abstract.

• Edges. Relationships are displayed as edges. Here we determine how the
node entities have to be connected, see also Figure 3.2.
In the case we write arbitrary we mean that the edge type is not important
for the discussion of the group.

• Display mode. The display mode stands for visualisation mode. It ex-
presses the way the groups’ items should be marked. The value for the
display mode is either color/selection, collapsing, or aggregation. These
values were explained in section 3.2.3.
In the case we write arbitrary we think that all three alternatives are
appropriate.
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Intent. We describe here what one can expect as result. What will the group look
like, how are its components distributed all over the system. Additionally we
give some hints, where appropriate, how to vary the input data to change the
results. We write down, when possible, what problems could be isolated with
the results.

Case Study. Here one can read the results obtained after the group’s application
to the case study that we present later on.

Interpretation. This point clarifies how the results can be interpreted. For in-
stance, we propose some hints for refactorings, or we make emphasis on de-
tected problems. We want to provide some support for reverse engineering
and reengineering.

Name Description

HNL Hierarchy nesting level, also called depth of inheritance tree. The number of classes in
superclass chain of class. In case of multiple inheritance, count the number of classes
in the longest chain.

NA Number of accessors, the number of get/set - methods in a class.
NAM Number of abstract methods.
NC Number of constructors.
NCV Number of class variables.
NIA Number of inherited attributes, the number of attributes defined in all superclasses of

the subject class.
NIV Number of instance variables.
NMA Number of methods added, the number of methods defined in the

subject class but not in its superclass.
NME Number of methods extended, the number of methods redefined in

subject class by invoking the same method on a superclass.
NMI Number of methods inherited, i.e. defined in superclass and inherited unmodified.
NMO Number of methods overridden, i.e. redefined in subject class.
NOC Number of immediate children of a class.
NOM Number of methods, each method counts as 1. NOM = NMA + NME + NMO.
NOMP Number of method protocols. This is Smalltalk - specific: methods

can be grouped into method protocols.
PriA Number of private attributes.
PriM Number of private methods.
ProA Number of protected attributes.
ProM Number of protected methods.
PubA Number of public attributes.
PubM Number of public methods.
WLOC Lines of code, sum of all lines of code in all method bodies of the class.
WMSG Number of message sends, sum of number of message sends in all method bodies of class.
WMCX Sum of method complexities.
WNAA Number of times all attributes defined in the class are accessed.
WNI Number of method invocations, i.e. in all method bodies of all methods.
WNMAA Number of all accesses on attributes.
WNOC Number of all descendants, i.e. sum of all direct and indirect children of a class.
WNOS Number of statements, sum of statements in all method bodies of class.

Table 4.1: Class metrics.



4.3. KINDS OF GROUPS 31

Name Description

LOC Lines of code in method body.
MHNL Hierarchy nesting level of class in which method is implemented.
MSG Number of message sends in method body.
NI Number of invocations of other methods in method body.
NMAA Number of accesses on attributes in method body.
NOP Number of parameters which the method takes.
NOS Number of statements in method body.
NTIG Number of times invoked by methods non-local to its class, i.e. from methods implemented

in other classes.
NTIL Number of times invoked by methods local to its class, i.e. from methods implemented

in the same class.

Table 4.2: Method metrics.

4.3 Kinds of Groups

For grouping in reverse engineering we propose two kinds of groups: simple and
composed groups. Simple groups have only one selection criterion or just a few
criteria. They serve as base for the extension to more complex groups with more
detailed information. In the latter case we speak about composed groups.

Composed groups are basically the result of refining simple groups.

4.4 Case Study

As case study we chose the 3D Graphic Library called Jun. Jun for Smalltalk is a
library that has been developed to bind OpenGL and QuickTime to VisualWorks,
and for implementation of fast 3D graphics and multi-media application. It handles
both topology and geometry, also supports handling multi-media data formats such
as movies or sounds. Currently the package is being implemented in VisualWorks
(Smalltalk), but a parallel project to implement it in Java has been started as well.
SRA (Software Research Associates, Inc.) is distributing Jun with all source code
at no cost under the terms of the GNU General Public License.

We analyzed version 398, which consists of more than 600 classes, 15’000 methods,
and 2’000 attributes.

The interesting aspect of Jun is its variety as it models a wide spectrum of do-
mains: different format readers and writers, different composite structures (HTML,
VRML), various complex rendering algorithms, even a Prolog interpreter and a Lisp
compiler and interpreter. Jun is mature and professionally developed. Currently,
Jun is being used as the development tool for the Static/Dynamic Shape Confor-
mation Evaluation Platform being developed under contract from the aggregate
corporations Research Institute of Human Engineering for Quality Life (HQL) and
National Institute of Bioscience and Human-Technology (NIBH), Agency of Indus-
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trial Science and Technology of the Ministry of International Trade and Industry
(MITI).

For further information about Jun see under
http://www.sra.co.jp/people/aoki/Jun/Main e.htm.

Metric Value
Number Of Classes (NOC) 796a

Number Of Methods (NOM) 15’465
Number of attributes 2’003
Lines Of Code (LOC) 212433.03
Average LOC in a class 131.1315
Average NOM in a class 9.546296
Average LOC in a method 13.73637
Number of inheritance definitions 1’272
Number of accesses 151’522
Number of invocations 146’332

Table 4.3: Overview of the case study: Jun, version 398.
aActually, only 635 classes belong to Jun. MOOSE must consider some auxiliary classes

from The Smalltalk class library when generating a software model for consistency reasons.

4.5 Groups for Reverse Engineering

In this section we present a list of groups that we find valuable for the analysis of a
software system under the perspective of design recovery, program understanding,
and problem detection. The groups are visualised with CodeCrawler. The section
is organized in two parts: class groups and method groups.

Before applying our groups to the underlying model we run a so called operator
on the models entities. In MOOSE an operator iterates over all existing enti-
ties to compute and set values to attributes of the entity. Our operator is called
ClassBluePrintOperator and maps the nodes’ widths and heights to some metrics.

Remark that Moose and, especially in this section, CodeCrawler considers in its
views the class instance side and the metaclass side as two separate classes. The
metaclasses are labeled with the suffix ’ class’.

Querying for example the system for the classes in the category Jun-3dImage-Basic
would result into 2 classes, namely Jun3dImage and Jun3dImage class, instead of
only one: Jun3dImage. Presuppose therefore that if not written explicitly we always



4.5. GROUPS FOR REVERSE ENGINEERING 33

look at the class’s instance side. To avoid problems with mixing up the two class
sides we propose two approaches:

1. Filtering in advance all the classes belonging to the context the observer wants
to look at. This works by defining a simple group. All following definitions
will be based on the simple group.

2. Using class names the observer has to make sure he uses no wildcards at the
name’s end, like Core.Object*, because the group query can consider both
classes in question.

In the following – as far as the class groups are concerned – we base our system
investigation on “instance classes”. We do that because usually the instance side
of a class contains more methods and is therefore more representative for the class’
behavior. For the definition of all class groups but the first we make use of the
complement of the group Metaclasses1. This is the first group we present in this
section.

1By complement we mean a group that contains all complementary classes.
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4.5.1 Class Groups

Metaclasses

This is a simple group. With the complement of this group we provide the base for
all the following class groups.

Values

components: class nodes
selection criteria: isMetaclass
edges: arbitrary
display mode: arbitrary

Intent. This group includes all meta-classes of the system. We want to use it for
reducing the complexity of the subject system: either we remove its comple-
ment from the system to focus on the meta-classes or we drop the group itself
to concentrate on the instance side of the classes.

Case Study

Resulting group size = 796.
We chose color for the display mode.

Figure 4.3 illustrates the hierarchy of the class Core.Object. We make a
comparison of the two class sides.

Interpretation. In the two pictures of Figure 4.3 we colored all classes with the
metric NOM greater than 30. Naturally, we see that the colored “instance
classes” do not always correspond to the colored meta-classes. This is because
a class’ number of methods on one side must not correspond to the other one.
Now, picking the largest classes of the system would mean choosing those
classes that are colored in both pictures.



4.5. GROUPS FOR REVERSE ENGINEERING 35

Figure 4.3: Above the metaclasses and below the instance side of the same classes.
A class comparison with NOM > 30: the correspondent nodes are colored black.
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Is Abstract

This is a composed group, based on the complement of the group Metaclasses.

Values

components: class nodes
selection criteria: isAbstract
edges: inheritance edges
display mode: color/selection

Intent. We would like to know how the abstract classes are distributed in the
system, as represented in Figure 4.4. What are their subclasses? What do
they look like, in terms of metrics?

All classes that respond positively to the query isAbstract are considered in the
evaluation of this group. For representation a good visualisation mode is color
or selection because it points out the position of the abstract classes in the
class hierarchy. From the inheritance point of view it is rather uninteresting
to group the classes in one node because we then lose their distribution.

Abstract classes are basically designed for subclassing. They provide a basic
behavior for their subclasses. This is the reason why we want to keep the basic
hierarchy structure.

Case Study

Resulting group size = 58.

For discussion we pick two classes that do not lie in the hierarchy of the class
Core.Object, namely JunOpenGLDisplayModel and JUNWinDIBSection.

The abstract class JunChartAbstract is a subclass of the concrete class2

named JunOpenGLDisplayModel. This constellation is represented in Figure
4.5.

In Figure 4.6 we see JUNWinDIBSection, an abstract class with 47 methods
and only two subclasses counting just three methods each.

Interpretation. In the two cases presented above we have an implementation
anomaly that should be considered in a later refactoring process.

2To be sure we checked in the source code if the class really is concrete.
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Figure 4.4: The items of the group isAbstract are colored black.

In the case of JunChartAbstract the question to ask is whether the constel-
lation is reasonable. Basically, an abstract class generates no instances but
its subclass – we call it a concrete class – can. In this very case the situation
is opposite: we have a concrete class with an abstract subclass. This seems
confusing. Why was JunChartAbstract chosen to be abstract? The devel-
oper should rethink the design and maybe make the superclass abstract, too,
or aggregate both classes to one and only abstract class. The latter case is
critical because the JunOpenGLDisplayModel has further subclasses that do
not need the to implement the behavior of the class JunChartAbstract.

The situation of Figure 4.6 could lead to an aggregation of class JUNWin-
DIBSection and its two subclasses, adding only six further methods to the
big superclass. A further division of JUNWinDIBSection into more than two
subclasses also represents a possible solution to reduce the complexity in the
hierarchy.
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Figure 4.5: Abstract class JunChartAbstract is colored black.

Figure 4.6: Abstract class JUNWinDIBSection is colored black.
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Skips delegations

This is a composed group, based on the complement of the group Metaclasses.

Values

components: class nodes
selection criteria: hasMethodNamed: m

¬ invokesMethodNamed: m
edges: arbitrary
display mode: color/selection

Intent. We wonder how a certain method is implemented. The group contains a
subset of all classes that implement a method called m: those classes that do
not send the same message (further) to another object. This happens when
a class delegates (double dispatch) a message to another object as shown in
Figure 4.7. Usually, the delegating class has no further implementation details
regarding the method’s function.

Jun3dParametricClosedCurve >> asJunOpenGL3dObject
^baseCurve asJunOpenGL3dObject

Figure 4.7: Jun3dParametricClosedCurve delegates the message to the attribute
called baseCurve.

If a delegation takes place repetitively a sender chain gets created. Typically,
the last link of the chain contains the concrete implementation. We show
an example of a concrete implementor with Figure 4.8. Now, to skip those
delegating classes we can apply our group. It includes only the classes that
contain more code than delegating statements.

Case Study

For the variable m we choose the method name asJunOpenGL3dObject.
Resulting group size = 21.

Interpretation. This group contributes to the system understanding, actually it
contains all classes that implement in a concrete way the method m. It skips
all delegating classes that pass the message further to intermediate classes.
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Jun3dParametricLineSegment >> asJunOpenGL3dObject
^JunOpenGL3dPolyline vertexes:
(Array with: self from with: self to)

Figure 4.8: Jun3dParametricLineSegment is a concrete implementor of the method
asJunOpenGL3dObject.

Interesting is the inspection of the hierarchy level where the classes with con-
crete methods are found. Normally, a subclass specializes some methods in
the superclass. We conclude classes with concrete methods lie in the lower
part of a hierarchy tree. Therefore, their superclasses are one or more levels
above. We see in Figure 4.9 that most of the classes with concrete methods
are on level three and higher3.

Figure 4.9: All classes that implement asJunOpenGL3dObject and do not delegate
the message to another object are colored black.

3In a tree we count the levels beginning from the root node towards the leave nodes. A high
level means a level in the lower part of a tree.
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Implicit namespaces

This is a composed group, based on the complement of the group Metaclasses.

Values

components: class nodes
selection criteria: hasNameMatching: aName
edges: inheritance edges
display mode: aggregation

Intent. Although there are explicit namespaces in VisualWorks since version 7,
programmers often introduce implicit namespaces using a special naming con-
vention. They add to the class names unique prefixes. In most of the cases they
are build by a few letters like Lens, SUnit, or Jun. Here an example of class
names: LensDataModel instead of DataModel, SUnitTest instead of Test, or
JunPoint instead of Point. Often the reason for implicit namespaces is that
the class library of the development environment already contains classes with
similar names. An example is the class Point in Smalltalk.

With this group we want to discover if the original developers have been con-
sistent with naming and how namespaces coexist with other program struc-
tures like class categories. For instance we would like to compare a group A
that represents a category with a group B that contains classes with a sim-
ilar implicit namespace. Imagine for A the classes of the category named
Jun-Voronoi-2d-Diagram and for B all classes with the implicit namespace
JunVoronoi. Do the two groups contain the same classes?

Case Study

As aName we chose the following category prefixes:
Jun-3dImage*
Jun-Breps*
Jun-Collections*
Jun-Csg*
Jun-Delaunay*
Jun-Dxf*
Jun-Geometry*
Jun-Goodies*
Jun-Metaball*
Jun-Octree*
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Jun-OpenGL*
Jun-Parametric*
Jun-Solid*
Jun-System*
Jun-Terrain*
Jun-Topology*
Jun-Voronoi*
Jun-Vrml*
Jun-Win32*.

The application results in 16 groups with the number of classes between 3 and
74.

Figure 4.10: All categories within the hierarchy tree of Core.Object. For Jun-
-Open-GL* the black colored nodes show where no naming convention was applied.

In the resulting view three classes remain isolated: JunMessageTransformer
from the category Jun-Kernel-Method, JunSolid contained in the category
Jun-Solid-Abstract, and JunScavenger in Jun-System-Support. The first
two are interesting because of their categories’ size: both categories contain
only one class, those mentioned above. Class JunScavenger was not consid-
ered for a group because the other classes in the same category depend on a
different hierarchy.

The edges between the class node and the group nodes point out the inheri-
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Figure 4.11: Except of JunScavenger the class nodes are classes that belong to
categories with no more other classes.

tance relationships. The class node JunSolid is connected to the namespace-
groups Jun-Csg* and Jun-Metaball* as we can see in Figure 4.11.

Another particularity that gets its attention is the relationship between the
groups Jun-Geometry* and Jun-OpenGL*. Since we used inheritance edges
in the definition of the groups we know that the Jun-OpenGL* inherits from
Jun-Geometry*. So we have hidden dependencies between the two names-
paces.

Interpretation. The situation of the case study should help the developers to
rethink the “existence” of the categories Jun-Kernel-Method and Jun-So-
lid-Abstract because of their little size. This would reduce the complexity
of the category structure in the system. An alternative refactoring could be
moving, where appropriate, the classes to other categories.

By inspecting the inheritance relationship in Figure 4.10 between the groups
Jun-Geometry* and Jun-OpenGL* we find one inheritance definition. It rep-
resents the connection between the class JunCoordinateAngles from the cat-
egory named Jun-OpenGL-Flux and the class JunGeometry from category
Jun-Geometry-Abstract. By the way Jun-OpenGL-Flux contains classes with
names beginning with JunOpenGLFlux except JunCoordinateAngles. Here we
have an example where the implicit namespace was not applied to the class’
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name. Moving the latter class into another category, e.g., one of those named
Jun-Geometry*, is a possible restructuring.

For Figure 4.10 we colored the classes that have an implicit namespace that
does not correspond to the category. This situation expresses in what relations
implicit namespaces coexist with the categories. We see in the picture a lot of
blue colored nodes. We believe that all nodes should be white because then
we would have a consistent system structure.
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Subclasses

This is a composed group, based on the complement of the group Metaclasses.

Values

components: class nodes
selection criteria: inheritsInHierarchyFromClassNamed: aName

¬ hasNameMatching: aName a

edges: inheritance edges
display mode: aggregation

aIf we use only inheritsInHierarchyFromClassNamed: aName as selection
criterion the result also includes the class called aName.

Intent. This definition is useful to reduce the system’s complexity and for the
definition of composed groups.

The purpose of this group is to inspect common properties of classes organized
in the same hierarchy tree with a given root (aName). We want to focus on
properties that express the groups’ sizes in terms of NOM or LOC.

Case Study

As aName we choose all subclasses of the class Core.Object at the hierarchy
nesting level (HNL) = 1. Core.Object counts 104 direct subclasses.
The resulting group sizes vary between 1 and 65 items.

In Figure 4.12 we see a number of classes that was not affected by the grouping.
This is because they have no subclasses, e.g., in the view the class nodes have
no subtree. The core class Object contains 70 direct subclasses that have no
subclasses. Because of that our group definition above creates only 34 groups.
The remaining 70 classes are not considered for a group creation4.

Interpretation. The group is useful for the program understanding. It helps to
localize subtrees in complex class hierarchies. Moreover, the display mode
aggregate/collapsing reduces considerably the system’s complexity.

The largest classes not affected by the grouping are JunSolidModelingEngine
with NOM = 63 and JunEncyclopedia with NOM = 107. Both classes are
not abstract. Since they do not have any subclasses we should think of the
reason why the classes were implemented with this number of methods. A
look at their names reveals a complex functionality and of course this justifies

4We remember that the grouping of one element is the element itself (see Section 3.2.2).
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a large class structure. Anyway, a reengineer might consider to split one of
these classes for a refactoring if there is an appropriate design behind.

Figure 4.12: All classes in the Object hierarchy grouped to direct subclasses. The
nodes are shifted for a clearer view.
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Intentional layers

This is a composed group, based on the complement of the group Metaclasses. We
want to investigate the instance side of system classes.

Values

components: class nodes
selection criteria: hierarchyNestingLevel = hnl

hasSourceAnchorMatchingName: aName
edges: inheritance edges
display mode: aggregation / collapsing

Intent. The idea is to analyse tree levels of a hierarchy tree from a particular point
of view, the class category. Practically, we project the category structure on
the tree. For each tree level in a class hierarchy we group all classes belonging
to the same category. We then inspect the relationships between the groups.
Above all we want to detect dependencies between the categories. We would
like to inspect the dependencies in order to to find out the reason of their
existence. We also believe that with the result one can recognize modules or
extract information on arbitrary layering in the class architecture.

Case Study

We set for hnl the values from 1 to 5, each corresponding to a tree level of the
Core.Object hierarchy tree.
For every value of hnl we choose as aName the following category names:
Jun-3dImage*
Jun-Breps*
Jun-Collections*
Jun-Csg*
Jun-Delaunay*
Jun-Dxf*
Jun-Geometry*
Jun-Goodies*
Jun-Metaball*
Jun-Octree*
Jun-OpenGL*
Jun-Parametric*
Jun-Solid*
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Jun-System*
Jun-Terrain*
Jun-Topology*
Jun-Voronoi*
Jun-Vrml*
Jun-Win32*.

Resulting groups = 41. Their sizes vary between 1 and 47 items.

Figure 4.13: Object hierarchy structured in class categories.

The result in Figure 4.13 shows us a well ordered tree except for some nodes.
The group node representing the categories Jun-OpenGL* at the tree level
two, for example, is connected with two nodes at level one. Namely the
group Jun-OpenGL* and Jun-Geometry*, both at the level one. By inspect-
ing the edges we find out that the edge representing the relationship with
Jun-Geometry* stands for the inheritanceDefinition between the class Jun-
Geometry and its subclass JunCoordinateAngles. The other edge represents
inheritance definitions within the same category. Therefore we do not investi-
gate them in detail.
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A similar situation exists with the group Jun-Metaball*, at tree level two. It
has connection edges with the class JunSolid and the class named JunMetaball,
both at the first tree level. This is because the class JunMetaballSolid, con-
tained in the categories Jun-Metaball*, is a subclass of JunSolid and all
others have the superclass JunMetaball. We draw attention to the existence
of the category Jun-Metaball-Solid.

The last situation involves the category named Jun-Parametric*, at level
two. Two groups are connected with it, namely Jun-Parametric* and Jun--
Geometry*. Again we neglect the relationship in the same category. We
concentrate on the edge between Jun-Geometry* and Jun-Parametric*. The
edge contains two inheritance edges: JunGeometry is superclass of the classes
named JunParametricGeometry and JunPointOnEntity. Both subclasses are
contained in the group Jun-Parametric*.

Interpretation. We focus our analysis on nodes that are connected with more
than on node on an upper level as demonstrated in Figure 4.14. We call these
connections unary respectively n-ary.

Figure 4.14: Example of node connections.

We found n-ary connections with the groups Jun-Parametric*, Jun-OpenGL*,
and Jun-Metaball*. They all contain classes with superclasses in other cate-
gories. We think that the investigation of such dependencies can reveal some
anomalous dependencies that do not reflect of the original design. The results
can support the decision whether to move the classes in question to other
categories or if a deletion makes sense?.
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Little behavior addition

This is a composed group, based on the complement of the group Metaclasses5.

Values

components: class nodes
selection criteria: inheritsHierarchyFromClassMatchingName: aName,

NMA < nma, NME < nme
hasSubclasses: false

edges: arbitrary
display mode: color / selection

Intent. In order to obtain a more expressive result we choose for aName an abstract
class. Therefore, we expect them to have subclasses since abstract classes
typically provide a basic behavior for their subclasses. Normally, abstract
classes are supposed to be extended with their subclasses. This can be done
by specializing their methods and with the addition of new methods.

We would like to know what the typical number of subclasses is, in first place.
On the other hand, we are interested in measuring the metrics of the group
created with an abstract class and its subclasses. For this purpose it makes
sense to aggregate or collapse the focused items.

Case Study

For aName we chose the names of all abstract classes in the system, 58 classes
in all.
We set nma to 2 and nme to 2.
The values created 12 groups with sizes between 2 and 20.

Interpretation. With this kind of group we detect abnormal design. In particular
we find classes with just few changes comparing to their abstract superclasses.
The observer should ask himself when and if the subclassing makes sense. As
alternative we propose to aggregate the inspected classes, where reasonable.

We picked from the result the class JunAbstractOperator. It has six sub-
classes that only add few changes to the behavior of the superclass. In Figure
4.15 we see that implementation and collocation of these classes is reasonable
because of the further subclassing.

5In this case it is also based on the group called Is Abstract that we introduced previously.
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If we focus on JunEulerianAngles the constellation is different because we
find only two subclasses with no classes at deeper hierarchy level. The groups’
NOM is equal to 5 and this means that an aggregation with the superclass
would create a class with just five methods more than JunEulerianAngles
has. Of course, the new class should then be implemented as a concrete
class because it would not have any subclasses. Considering the large size of
JunEulerianAngles, namely 26 methods, we do not approve a class aggrega-
tion respectively a class enlargement.

Figure 4.15: The class with little behavior changes are grouped and colored.
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4.5.2 Method Groups

Large methods

This is a composed group. To see a relation between large methods and their classes
we group – in a preprocessing step – all methods belonging to the same class. As
result we see group nodes representing classes displaying the contained method
nodes. Figure 4.16 illustrates an overview of all methods grouped as classes. In the
upper left corner we see a number of simple nodes. They were not grouped because
they belong to classes with a single method.

Values

components: method nodes
selection criteria: belongsToClassWithNameMatching: aName

LOC > loc, MSG > msg, NI > ni, NOS > nos
edges: arbitrary
display mode: color /selection

Intent. The resulting view displays large methods based on the values itemized
above. Of course by varying the limiting values the size of the created group
can be dramatically changed. A good approach for obtaining large methods
is to change the limiting value according to a function that uses the average
value of the metric Lines Of Code (LOC) of all the methods in the system.

We want to discover in what classes large methods lie and see a comparison
between the Number Of Methods (NOM) of the same class. By coloring the
group – all the large methods – we also wonder if there are fully colored nodes.
This would be an indication of a large class if the number of methods is high,
too.

Case Study

For aName we took the names of all classes in the system. Further we set:
loc = 20
msg = 20
ni = 20
nos = 20
Resulting group size = 756.

At first sight, the group size seems very large. If we consider the system size
based on the NOM – that is 15’465 – the size of the group is not so surprising.
So we can say that 4,9% of all methods in the system are large.
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Since the system is large, 1620 classes, and the resulting view is difficult to
interpret we propose in Figure 4.17 a zoomed cutout of the entire system.
The original view was a scatterplot6. based on the nodes in Figure 4.16. We
picked the classes named JunBrepsHalfEdge and JunMoviePlayer to discuss
their properties. The first has NOM equal 58 and the latter NOM equal 65.

We see that the classes with large methods have also a large number of methods
(NOM).

Figure 4.16: Overview of all classes displayed with their methods. The system is
too big to see the black colored large methods.

Interpretation. We detect design anomalies. Generally, classes should not contain
large methods. This adds more complexity to the class. Additionally, if the
class has also a high number of methods we should consider a splitting of the

6The plot uses LOC and NOS as position metrics for the class nodes.
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class for refactoring.

As far as classes with one method are concerned programmers should think
of a refactoring, too. At least it is interesting to know why such little classes
have been implemented? Are they direct subclasses of Object or can they be
aggregated with their superclasses?

Figure 4.17: Classes with large methods have also a high number of methods. This
is a cutout of a scatterplot. To reduce the system complexity the nodes in Figure
4.16 were aligned using NOS and LOC as position metrics. Some nodes overlap
because the expansion of the scatterplot depends on the system’s outliers and not
on the number of displayed nodes.
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Category Interface

This is a simple group definition.

Values

components: method nodes
selection criteria: a)

belongsToClassWithSourceAnchorWithNameMatching: a
b)
belongsToClassWithSourceAnchorWithNameMatching: b

edges: invocation edges
display mode: aggregation node

Intent. The obtained view visualizes the invocations between two groups of meth-
ods belonging to different namespaces. As namespaces we imagine any kind of
strings that describe abstract components, packages, class categories, or class
names7. In this case we use names of class categories. The set of invocations
between the resulting groups describe the interface between two categories.
More precisely, the method nodes at the end of the edges form the interface
for the opposite group. Figure 4.18 illustrates an example.

Figure 4.18: The method nodes at the end of the invocation edges form the interface
for the opposite group.

Since the number of methods in the groups is often relatively high and the
number of invocation edges even higher, the connections between the method
nodes are distracting. A solution to handle the complexity of the current view
is to represent the group visually with a node. That reduces the complexity
of the edges since the edges within the node are hidden. Furthermore, the
incoming and the outgoing edges of a group node get collected in composite
edges. In Figure 4.20 we collapsed all the classes belonging to a category.

7Later we present with the next group called Class Interface.
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The resulting node hides the invocations within the category. Therefore the
analysis of the invocation edges between both categories is better facilitated.

Case Study

For a and b we set the names of the following class categories:
Jun-Breps-Abstract
Jun-Breps-EulerOperators
Jun-Breps-GeometricOperators
Jun-Breps-Objects
Jun-Breps-Operators-Abstract
Jun-Breps-Support
Jun-Breps-UtilityOperators.

In the case a = Jun-Delaunay-2d we obtain a group of 206 methods. For b
= Jun-Voronoi-2d-Diagramm the resulting groups has got 220 methods. The
categories are represented in Figure 4.19.

Figure 4.19: Methods are grouped according to the category of their class. The
edges between the groups represent the method invocations.
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Figure 4.20: A colored category interface. The light gray method nodes belong
to the category Jun-Delaunay-2d, the gray nodes correspond to methods in the
category Jun-Voronoi-2d-Diagram.

Figure 4.21: The method nodes of category Jun-Voronoi-2d-Diagram are grouped.
The edges starting from the group node give us information about the interface of
Jun-Delaunay-2d.

Interpretation. With this group definition we can detect abnormal dependencies,
e.g., when connections exist that the design does not prescribe. Furthermore,
the identification of an interface is useful for program understanding.
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Class Interface

This group represents a modification of the previous group called Category interface.
The group nodes can be seen as classes.

Values

components: method nodes
selection criteria: a) belongsToClassNamed: aNameA

b) belongsToClassNamed: aNameB
edges: invocation edges
display mode: aggregation node

Intent. The purpose of this group is to detect the communication between two
classes and the identification of their interface.

Case Study

As starting view we pick the result of the view returned from previous group,
Category Interface. We decided to inspect the same situation at class level.

For discussion we take a closer look at the classes in the categories Jun-Delau-
nay-2d and Jun-Voronoi-2d-Diagramm.

Resulting class groups = 17.

Interpretation. Again we can detect equivocal invocations. For instance, in Figure
4.22 we see the method node isBoundaryVertex that has no invocation edge
that connects it to any other node.

More conspicuous is the same situation with a whole class, namely JunVoro-
noi2dTriangle. None of its methods has either outgoing nor ingoing invoca-
tion edges. Of course, in Smalltalk it can happen that senders of a methods
are not detectable because message sending can also be performed with sym-
bols. But this situation states that any method in the class neither invokes
a method nor is invoked by another one. This is a point that needs more
investigation.

Apparently, there are also classes that act as ”invoker”. For example, the class
Jun2dDelaunayList seems to have only methods that invoke other methods.
We find also the inverse situation: JunVoronoi2dProcessor has only methods
that are invoked.
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Figure 4.22: Invocations between classes from the categories Jun-Voronoi-2d-Dia-
gramm and Jun-Delaunay-2d.
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Category methods

Values

components: method nodes
selection criteria: sourceAnchor = aName
edges: invocation edges
display mode: arbitrary

Intent. This is a composed group. The subdivision of methods into categories8 is
known in Smalltalk. We want to visualize this classification.

Case Study

We set aName to functions.
Resulting group size = 348.

We defined the group on all methods belonging to classes in the category
Jun-Delaunay-2d. Figure 4.23 shows all the methods in the class category
and the blue colored ”function methods”. The pictures illustrates two things
clearly: 1) the proportion of these methods and 2) what other methods they
invoke.

We can also see some standalone nodes without any connections. There are a
few reasons for that: either the correspondent invoked respectively the invok-
ing methods are not in the current view or they are not used.

Interpretation. In Figure 4.24 we picked all methods in the class category Jun--
Delaunay-2d and grouped them to classes. There we can make statements
about two classes: Jun2dDelaunayList and Jun2dDelaunayElement. Neither
of them have a method category called functions.

8Note: Here, we refer to method categories. We do not speak of the same categories meant in
the section 4.5.1.
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Figure 4.23: All methods in the class category Jun-Delaunay-2d. The black colored
method nodes belong to the method category called functions.

Figure 4.24: The method nodes of Figure 4.23 are grouped to classes.
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Chapter 5

Conclusion

5.1 Summary

This master’s thesis proposes an object-oriented reverse engineering approach based
on grouping. The intention of grouping is the creation of groups with components of
a software system. In particular, in this work the system is represented by a software
model that conforms to the FAMIX model. Our approach follows two paths: we
describe the logical grouping and we discuss the graphical representation of groups.
Grouping allows us to create different abstraction levels and alternate views of a
software system.

Our discussion starts with automated support in the reverse engineering since it
alleviates the managing of complex and large software systems. Many reverse en-
gineering tools create graphical representations of software systems to support the
program understanding and the design recovery. Some of them allow one filtering
and editing graphs to identify subsystems. For instance, the filtering of Rigi [Mue86]
is based on node- and arc types – the latter represent relationships – and on user
selection. The selected item can be collapsed and it may again be expanded. The se-
lection of items by indicating some properties works only with attributes, structures
and names.

The basic idea of our approach is to offer a simple working grouping facility that
enables definition, generation, representation, and management of user defined as
well as predefined groups. The groups’ definition is based on the underlying model’s
components. The purpose is to give the user a tool to access the subject system and
cluster its entities arbitrarily.

This work formalizes the logical creation of abstract groups. The grouping is split
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into two parts: the query-based component selection and the creation of the group.
A query-based selection requires detailed information about the components in the
software model. Once a group is created this information has to be propagated to
the group in order that it can be examined as abstract system entity. A group has
to provide the same attributes that its items share. Moreover, the underlying model
has to provide an effective query interface that enables the access to all attribute
values of its components.

We discuss the problems that are bound to our approach. After the discussion of
the prerequisites to implement our approach by using CodeCrawler [DDL99, Lan03]
– a reverse engineering tool that supports program visualisation – we present our
implemented extension called Classifier (for details see A.1).

With Classifier we introduce interactivity to make the groups definition flexible and
adaptable to user related needs. From this preparations we are able to extract some
groups effective in the support of reverse engineering software systems. For the
analysis of the effectiveness of our grouping approach we discuss these groups and
their results after application on a concrete software system.

The main contributions of our work are:

• Simplicity and Scalability. We give an informal definition of logical grouping
and graphical representation of groups without making use of complex algo-
rithms or composed metrics. The query-based logical grouping is effective and
is valuable for using the static information of a software model.

Our approach is scalable and can be applied on all kinds of system components.
This involves an enormous reduction of complexity valuable to reverse engineer
even very large systems.

• A list of groups to support the reverse engineering of software systems. With
there application we are able to obtain several useful results, which address
either program understanding or problem detection.

• Interactivity. We implement an application called Classifier. It provides all
the grouping procedures and combines two graphical user interfaces for the
creation, the management, and the visualisation of groups.

5.2 Improvements

On some occasion different ideas of improvements for future work arised. We tried
to order them to give some advice.
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5.2.1 Classifier

Ability to store steps is needed. ... Useful is the possibility of repeating
the process automatically and interactively analysing the dependencies of
the architectural components. [Riv00]

• Extend the grouping algorithm. In particular add automated group genera-
tion, e.g., "for all packages group all classes that belong to their
package". Right now the user has to note all the package names and then
create the groups manually using the names. By automating such procedures
a lot of time can be saved in the group generation.

• Nesting groups, e.g., the creation of composite groups may be affected by
previously generated groups. Simple groups often become a definition base for
future groups.

• Of course, extending the list of groups that offers a basis for reverse engineering
a software system. Predefined as well as newly defined groups can always be
modified or extended.

5.2.2 Moose

• Introduction of group types like homogeneous - class group, method group,
attribute group - and heterogeneous. For the homogeneous types, groups can
be treated as fictive classes, methods and so forth. The types implement a
more effective query interface using all the information connected to its type
that corresponds to its components type.

• Add more entities, e.g., package, category, file etc.. Of course this enlarges the
model adding more complexity.

• Add more software metrics to give the entities more information. This measure
enlarges the scope for the group definition since it is based on the attributes of
the model’s components. Furthermore, a larger scope reduces the complexity
of the results.

• Add types to the model1. Introduce type inferring algorithms that determine
an object’s type that can be mapped to the object’s attributes. There are some
type determining programs in Smalltalk like Vassily Bykov’s type collector but

1This a special case for Smalltalk or more generally when treating untyped programming lan-
guages. In all other cases like C++ and Java this point can be neglected.
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this can only determine types when the objects are actually present in memory.
We are working on a type inferring system that works on the static FAMIX
model. It will be soon published in the master’s thesis of Tobias Aebi.

5.3 Upshot

The software re-engineering of legacy systems represents today a major concern in
software industry. This work is about grouping in reverse engineering. Companies
have to schedule time and money to provide personnel that attempts to create an
abstract representation of the systems’ high-level functionality. We think that our
approach of grouping and the discussion of the groups presented in chapter 4 can
be useful applied in the reengineering process, an issue in software industry.
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Realisation

In this chapter we present the implementation of Classifier and the interface with
the underlying architecture. It is based on CodeCrawler, i.e., a reverse engineering
tool that provides a number of functionalities like program visualisation and graph
manipulation. Like CodeCrawler Classifier runs on VisualWorks Smalltalk version
7.

A.1 Classifier

Classifier is implemented as an extension of CodeCrawler. Figure A.1 illustrates the
component structure of the system. The most important classes of Classifier are
listed in section A.5.

Figure A.1: Moose, CodeCrawler, and Classifier.

For the user two graphical user interfaces are important, namely the GroupGener-
ator and the GroupManager. The group generator is illustrated by Figure A.4; it
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provides basically the functionality for defining groups. In Figure A.5 we see the
GroupManager that is created to visualize the groups within the views displayed in
the CodeCrawler windows.

In the following sections we show the connections points of Classifier with the re-
maining architecture.

A.2 Connection to Moose

FAMIX does not support grouping explicitly, i.e., there is no concept in
FAMIX to capture and exchange user-defined groups of model elements.
The reference schema underlying FAMIX, however, supports grouping by
providing unique identification for any element in a model. [Tic01]

MOOSE is the Smalltalk implementation of the FAMIX meta-model. We see the
core hierarchy in Figure A.2.

Figure A.2: MOOSE. Entities and associations of the FAMIX model are imple-
mented with the classes MSEAbstractEntity and MSEAbstractAssociation.

The model serves primarily as knowledge base for Classifier. It returns the compo-
nents Classifier wants to represent, enables the calculation of metrics, and responds
to queries. The connection between Classifier and Moose is given via CCNode and
CCEdge, two CodeCrawler classes. They represent entities respectively associations
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of the meta-model with a direct reference. We see the structure of entities and
associations in Figure 4.2.

MOOSE implements the entities with the class MSEAbstractEntity and associations
with MSEAbstractAssociation. Via the CCNode and CCEdge one can access the
represented entity respectively the association and query it.

The most important class that connects Classifier with MOOSE is MSEComputed-
Group respectively its subclass ClassifierGroup. The entire group hierarchy is
shown in Figure A.3.

Figure A.3: Group hierarchy in MOOSE.

A.3 Connection to CodeCrawler

Classifier extends above all the CodeCrawler implementation. The main interface
points are given through following classes:

CCItem. This class has one direct subclass called CCCompositeItem. Latter is used
to describe the basic behavior of CCCompositeNode and CCCompositeEdge
that represent the basic classes used for the logical as well as the graphical
grouping.

CCItemPlugin. The classes CCCompositeNodePlugin and CCCompositeEdgePlu-
gin subclass CCCompositeItemPlugin. The plugin class is responsible for
the updating of class names in relation with the mouse movements on the
CodeCrawler window.
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CCLineFigure. For the displaying of composite edges we make use of the class
CCLineFigure. This class is responsible for the visualisation of the line figures
that represent edges. It implements the displaying methods of the edge figures.
We do not subclass CCLineFigure because we do additional behavior.

CodeCrawler. This is the main class of CodeCrawler. It subclasses the class
DrawingEditor from the HotDraw framework. Similarly, Classifier extends
CodeCrawler. Classifier assumes the graphical grouping of nodes and edges.

For further information about CodeCrawler refer to [Lan99].

A.4 HotDraw

HotDraw is a two-dimensional graphics framework for structured drawing editors
that was implemented in Smalltalk by John Michael Brant [Bra95].

A HotDraw application edits drawings that are made up of figures. Figures are
graphics elements such as lines, boxes or text and they can represent other objects.
A drawing editor built from HotDraw – e.g., CodeCrawler – contains a set of tools
that are used to manipulate the drawing. When a figure is selected by the selection
tool, it presents a set of handles. Manipulating a handle changes some property of
its figure or performs some action.

A.4.1 Connection to HotDraw

HotDraw uses the model-view-controller paradigm. The connection to HotDraw is
given by:

CompositeFigure

GroupedFigure is implemented as direct subclass of CompositeFigure. This class is
responsible for the visualisation of the rectangle figures that represent a group node.
It implements displaying methods of the node figures.

A.5 Most Important Classes

In this section we present the important classes in Classifier. We basically imple-
ment two graphical user interfaces that manage the group creation and the group
visualisation.
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Classifier. This is the main application class. It is a subclass of CodeCrawler, the
main application class of the program CodeCrawler (see section A.3). Clas-
sifier basically adds the functionality of grouping, in particular aggregating,
collapsing, and expanding.

ClassifierDrawing. The correspondant CodeCrawler class is named CCDrawing.
ClassifierDrawing returns some supplemental information on displayed nodes
and edges.

AbstractGroupUI. This is the class that describes the user interface GroupGen-
erator that enables generating groups. This is done by creating first a filter
whose application results in a collection of entities. With the filter the user
can generate a group, e.g., an abstract MOOSE entity, that will contain the
resulting entities. Here, the group only exists logically. The groups can be
renamed or removed from the group list.

Figure A.4: AbstractGroupUI, a group generator interface. It allows to define groups
by choosing the selection criteria.

GroupUI. The graphical group handling can be done with the interface called
GroupManager. It is implemented by the class GroupUI. The GroupManager
represents the interface for handling the groups in the CodeCrawler window.
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All functions that can be applied from here are concerned with the graphical
representation of the underlying metamodel. The functions are restricted to
selection, color, group creation – collapsing or aggregation.

Figure A.5: GroupUI, a group manager. This window enables the interaction with
graph view in the CodeCrawler window.

Operation. The class Operation implements filters. It contains an attribute called
suboperations that contains other filters, each expressing an entity attribute.
When a group is created the filters produce a query using the MooseQueries
application described in 3.3.1. The complete Operation structure is repre-
sented in Figure A.6.
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Figure A.6: The Operation hierarchy. Filters are implemented as Operation. The
implementation corresponds to the composite pattern.
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[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid re-
verse engineering platform combining metrics and program visualiza-
tion. In Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors,
Proceedings WCRE’99 (6th Working Conference on Reverse Engineer-
ing). IEEE, October 1999.
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