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Abstract

Since software systems must evolve to cope with changing demands, the investment
of time and effort won’t cease after first delivery. Developers that join a project later in
the development cycle may have a hard time to understand the structure of complex
systems. Moreover they may not know about concepts that emerged from earlier im-
plementations. We therefore want to find out what exactly happens during evolution of
software systems. We developed a method based on simple metric heuristics to detect
changes between different versions of a software system. With our query-based ap-
proach we can measure overall changes in terms of removals and additions in the code.
We are also able to detect different kinds of refactorings like restructuring in the class
hierarchy and moved features between entities. Historical information about code size
and changes in the code structure helps us to find interesting patterns and to discover
unknown relationships and dependencies among source code entities.
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Chapter 1

Introduction

1.1 Motivation

”Changes made by people who do not understand the original design con-
cept almost always cause the structure of the program to degrade. Under
those circumstances, changes will be inconsistent with the original concept;
in fact, they will invalidate the original concept. Sometimes the damage is
small, but often it is quite severe. After those changes, one must know both
the original design rules, and the newly introduced exceptions to the rules,
to understand the product. After many such changes, the original designers
no longer understand the product. Those who made the changes, never did.
In other words, nobody understands the modified product.” [PARN 94]

Scenarios like the one described above occur more often than we’d like. There is plenty
of code running that has been written years ago. Nobody really understands anymore
in detail the behavior of such code, thus developers may well run into problems once
they have to change it. The rationale behind design decisions exists only in the minds of
developers who programmed in earlier phases. These people however probably found
another job or got a more advanced task assigned meanwhile. Software industry is well
known for fast changes and rapid employee turnover. Programmers that join a project
after the product has been launched often have difficulties to maintain the software. The
products are usually complex and their documentation is bad and rarely synchronized.
The direct analysis of the source code is frequently the only way to gain knowledge
about a system. Reverse engineering tools help us to extract certain design artifacts
and detect relationships between source code entities.

Several useful reverse engineering tools have been developed to facilitate the analy-
sis of source code. A comparison of different versions of the same software system
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provides additional information about the structure of the code. We believe that infor-
mation about previous releases helps us to discover more possible shortcomings in the
current implementation. We also believe that historical information helps us to under-
stand source code patterns more in detail. We hope to understand more clearly design
decisions that emerged from assumptions made in earlier stages of development.

We present in this document an approach that combines evolution analysis and metric
data. We compute metrics for the source code of several versions of the same software.
We then analyze the change of the metric values between releases. To focus only on
changes allows us to narrow the amount of data we need to analyze. Changed parts
tell us a great deal about how a software system got in its current state. We make use
of simple metrics that summarize certain properties of source code entities in a single
numeric value. Numeric values can be easily compared and thus source code entities
matching certain criteria are quickly found. We explicitly use only simple metrics which
are more directly related with the code. We avoid using complex metrics which describe
source code entities in a more abstract way, hence they are more difficult to interpret.

Once we have defined an adequate method to extract different kinds of change, we es-
tablish a catalogue of queries mainly based on change metrics. Each query detects a
relevant aspect of change in the source code. Some queries just detect simple changes,
others detect different refactorings performed on the source code or dependencies be-
tween subsystems of a software product. On top of these queries we define a method-
ology that helps us to combine the found changes to derive general statements about
the analyzed code. Our results also let us make hypotheses about the behavior and
skills of the developers.

Based on our ideas we implemented a tool named MOOSEFINDER that helps us to val-
idate our ideas on different case studies. We’re able to compare different releases of
the source code and to detect added, removed and renamed entities. We investigate
our proposed methodology based on a number of composite queries. We present the
results of the code analysis for two case studies, a large system developed at Nokia
Networks, and our reverse engineering platform MOOSE [DUCA 00]. We detected that
the analyzed case studies written in Smalltalk change more during evolution than an-
alyzed systems written in C++ or Java. This finding proposes that refactoring is bet-
ter supported for Smalltalk and therefore more applied than in other languages. Our
methodology worked generally well for all analyzed case studies. For large systems we
need to refine some of the queries to narrow the resulting entities.

1.2 Our Goals

We intend to provide a method that helps a developer to explore changes during the
evolution of a software system. With historical change information we want to gain an
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overview of the system’s evolution and to understand more of the current code structure.
Changes help us to assess the state and quality of a software system. Additionally we
want to provide a way for a retrospective documentation of changes. On the way to
achieve such more advanced goals, we set ourselves three concrete goals during the
course of this work:

• We intend to detect different kinds of changes in the source code between sub-
sequent versions. Examples of changes are additions, removals, renaming or
refactorings.

• We want to be able to qualify the parts of a system in terms of stability over several
versions.

• We plan to put up a repository of evolution queries. Each query is supposed to
extract a specific kind of change in the source code.

1.3 The Structure of this Document

This document is divided in the following chapters:

• In Chapter 2 we introduce the reader to problems in software development. These
problems denote the initial motivation for our analysis of evolving software.

• In Chapter 3 we describe our motivation for an evolution analysis based on source
code. We also provide an overview on the state of the art in software evolution.

• In Chapter 4 we present the concepts of our approach based on queries and
change metrics for the analysis of evolving software systems.

• Chapter 5 contains a collection of queries that allow us to detect several changes
in the source code. We discuss their use and evaluate the results for each query
separately.

• Chapter 6 explains an initial methodology towards the analysis of a software sys-
tem using and combining the queries presented in Chapter 5.

• In Chapter 7 we show some results we obtained during the validation of our tools in
industry. We describe lessons learned in a pure reverse engineering experience.

• Chapter 8 describes our conclusions. We summarize and evaluate our approach
and the obtained results. We discuss achievements as well as drawbacks. We
discuss our planned future work in software evolution and how the presented ap-
proach can help us to achieve further goals.
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• In Appendix A we introduce the reader to the basic concepts of MOOSE and FAMIX.
FAMIX is our standard for source code information exchange. MOOSE is our re-
verse engineering platform where MOOSEFINDER builds on.

• In Appendix B we present an overview of MOOSEFINDER, the tool developed to
validate our approach. We quickly describe the different parts of our current user
interface. We also explain the basic concepts regarding the implementation.



Chapter 2

The Implications of Aging Software

“An E-type program1 that is used must be continually adapted else it be-
comes progressively less satisfactory.” [LEHM 96]

2.1 The Software Crisis

Software has become the key element in electronic data processing. Since decades
it has taken over repetitive parts of information processing. The progress in hardware
technology gave computers the potential to take over more and more complex tasks.
Nowadays software penetrates nearly any other industry and business process. More-
over software has evolved to an important industry itself. Despite the progress in tech-
nology, software engineers face a specific problem up to now: the complexity of evolving
software systems. The ad hoc and chaotic programming culture established decades
ago is still popular today. Rapid prototyping using trial and error techniques is usually the
fastest and only way to check whether an implementation works. Continuous change of
requirements and code, poor documentation and drifting away from initial proper design
have led to substantial problems in later stages of development. A large number of soft-
ware projects fail. Even most projects which do not fail have major problems. Projects
are usually late in schedule and over cost. In general software costs increase constantly
over time while hardware costs continually decrease, especially in relation with perfor-
mance. Initial development does not consume most of the costs, yet maintenance costs
increase rapidly due to continuous changes and low quality of the code. The need for
a systematic engineering approach to the development of software is evident. History
shows that finding such an approach is difficult. Project managers rarely risk testing

1E-type program: software systems that solve a problem or implement a computer application in the
real world [LEHM 96]
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new methods, they like more to rely on established procedures. Experienced develop-
ers have developed their own techniques to deal with complexity through practice over
long time, but their techniques are not handy enough to be quickly learned by rookies.

The persisting character of the problems in software development led Pressman to use
the term chronic affliction rather than software crisis [PRES 94]. Several inherent facts to
software development complicate solving the above described problems: the complexity
of systems handling complex tasks, the need for continuous adaptation of software sys-
tems, the problems in project management for software development, and the difficulty
to find out what a customer really expects.

Complexity: The structure of a software system, the environment it runs in, the compo-
nents it works together with, this whole ensemble quickly exceeds the capabilities
of one single developer to survey. This is not tragical as long as there are other
responsible people taking care that nothing disastrous happens. A human being
would not accomplish absurd orders, however a computer will. Intuition would tell
a person that there must be a misunderstanding, yet a computer always executes
exactly the commands it gets fed. It will never automatically correct logically infea-
sible commands.

Continuous Adaptation: A software system in use will never stop evolving. The adap-
tation to new requirements and the elimination of conflicts arising through change
propagation force a continuous adaptation of the code. Architects building houses
create first a detailed design before the house is constructed. This is not possible
in the same way for software systems. The knowledge about constructing material
and statics is much more advanced than the knowledge about a new domain in
software development. Moreover the environment, in which software is developed,
changes more dynamically than the ground a house is built on. It is more difficult to
foresee how requirements will have changed once the software is built. Changes
that are impossible to predict cannot be taken into account in the initial design.

Project Management: Managers that get behind schedule and therefore add program-
mers will be astonished that adding people does not necessarily speed up de-
velopment [BROO 75]. The bigger a team, the more coordination between the
members is required. Increased communication between the members consumes
additional time and may well compensate the added productivity through added
programmers. State-of-the-art hardware and software development tools do not
necessarily promise good software. Developers first need to know how to handle
new tools in a reasonable way and then really utilize them. The level of program-
ming skills varies a lot between different developers. Each programmer needs to
be assigned an appropriate task in order to deploy his potential. An additional
problem in project management is the current rapid turnover of programmers in
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projects. A rapid employee turnover leads to permanent loss of knowledge about
the system and the domain.

Requirements: Not only possible future requirements, but also actual needs and ex-
pectations of a customer are hard to seize. The customer won’t formulate all his
requirements precisely. He won’t point out those facts that seem obvious to him.
He thinks they are evident for everybody. Yet a developer who isn’t familiar with
the domain may not know about such implicit requirements. The indications of the
customer combined with compulsory domain inherent conditions need to be trans-
lated into technical specifications. Whoever implemented software for customers
knows about the perfidies of such a transformation.

2.2 The Reverse Engineering Approach

”Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their interrelationships and create representa-
tions of the system in another form or at a higher level of abstraction. Reverse
engineering generally involves extracting design artifacts and building or syn-
thesizing abstractions that are less implementation-dependent.” [CHIK 90]

2.2.1 Motivation for Reverse Engineering

Why should we analyze the code of existing software? Is there any immediate need to
analyze interrelationships in running code which has been built according to a proper
design? Indeed there are plenty of reasons to analyze such code.

”E-type programs will be perceived as of declining quality unless rigorously
maintained and adapted to a changing operational environment.” [LEHM 96]

For many reasons the disorder of well structured code will increase over time. Invariants
of the development process like lack of time and continuous changes are the main power
for a transformation of quality code into a Big Ball of Mud [FOOT 97]. Quick hacks that
fix a problem and still keep the system running are usually the fastest solution in a near
term view. They are often preferred to an investment of time in a flexible architecture and
implementation. Quick hacks however let the code drift away from proper design and
may cause more severe problems in later stages of development. The more quick hacks
are performed on a system, the more the structure of that system decays. Counteracting
such a decay of an implementation requires an investment of time and energy. Time and
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free human resources are usually not available since approaching deadlines absorb
both.

Programmers do not document their code automatically. The logic of the code seems
self-evident right after a programmer implemented it, but it may not look plausible to him
some months later. Furthermore new programmers in a team would certainly appreciate
to read documented code. Constant lack of time leads developers to neglect documen-
tation and therefore also leads to poorly documented systems. Rapid employee turnover
is widespread in software business, though many fresh developers join a project. They
all first need time to explore the structure of the software system they’re going to work
on. The ideas of certain implementations are not documented, thus the meaning of
such code gets lost. A new developer may misinterpret the behavior of these parts and
change it in a fateful way.

With increased size and complexity of the system, it may well get in a state where it is
very hard to maintain. Once such a situation is reached the project has already gone
through a substantial part of the development cycle. A lot of human power and money
has already been invested in the project and would mainly get lost. Rewriting the soft-
ware at this point would be very costly. Therefore a tool that helps programmers to
browse and understand existing code can be very valuable in such a situation. Un-
fortunately the above described scenarios happen more often than we would like to.
They provide the motivation to develop reverse engineering tools. These tools are sup-
posed to assist developers finding out how different components of their code interact
with each. They may finally help programmers to continue their project, to extend and
improve existing code.

”Sadly, architecture has been undervalued for so long that many engineers
regard life with a BIG BALL OF MUD as normal. Indeed some engineers are
particularly skilled at learning to navigate these quagmires, and guide others
through them.” [FOOT 97]

Code analysis tools developed for reverse engineering also help in almost the same
way to look into recently written code. Through the power of the accuracy inherent to
electronic data processing, we may find unexpected facts even in healthy code. If we
use code analysis tools periodically, we will avoid future navigation through quagmires.
A combination of such tools with visualization algorithms allows a developer to generate
different views on his own code [DEME 99a]. This helps him to see known structures
from different perspectives. Reverse engineering tools show us whether written entities
behave in the way we’d like them to. They assist us to enhance the implementation
of certain parts, they help us to detect similar parts and possible reuse. We may find
deprecated code that only increases the complexity of the system without contributing
to the functionality.



Chapter 3

The Analysis of Evolving Software
Systems

3.1 Introduction

In this chapter we present some background information about software evolution. First
we discuss how the term Software Evolution is used and how we define it for our work.
Second we give an overview of related work that has been carried out on the same
topic. At the end of the chapter we formulate goals of an evolution analysis and for what
scenarios it can help us during development.

3.2 About the Term Software Evolution

Software Evolution is a general term. Several different interpretations are in use. The
most general interpretation takes software itself as the subject. It describes the history
of software in general, how it changed over time. In the early fifties already there were
machine code programs running on batch oriented systems. Nowadays sophisticated
layered component architectures run in distributed client-server environments.

Software Evolution is frequently used as another expression for Software Maintenance.
A common interpretation of software maintenance used to span the phase after first
delivery of a product. The split into a development phase and a maintenance phase is
problematic. It derives from the waterfall model (described in [SOMM 92]) where the
software lifecycle was divided into several phases: requirements collection, design,
implementation, testing, operation and maintenance. In contrary to development pro-
cesses in other disciplines of engineering, in software development it is unrealistic to
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pass through these phases sequentially one after the other. The need to validate re-
quirements and design forces a development team to pass through these phases over
and over incrementally.

It has become evident that the development phase and the maintenance phase can-
not be clearly separated. Development always incorporates also maintenance since a
software system will never be mature after first delivery. A running system on the other
hand, will always have to be developed further to cope with changing requirements. To-
day the software developers use the term evolutionary development to incorporate both
the development and maintenance process in one expression. We should try to roll out
an initial version of a software as early as possible. Only then it can be validated in
reality by the customer and only then the developers get useful feedback from the real
world.

In this document we span the term Software Evolution over the whole lifecycle of a
software system. We want to find out how a system evolves from early prototypes to
a mature system that needs to be maintained. The base for our evolution analysis is
frozen source code of several stages in the development process. We want to find out
how one single system evolves during its development period and try to gain a more
detailed understanding of how and where change processes take place [BURD 00].

The most intuitive and probably only way to understand how real software systems
evolve is to study changes in existing systems themselves. Software that has undergone
several development phases including restructuring after first delivery is most valuable
for our analysis. The approach allows us to directly retrieve changes in the code and
evaluate their impact on the system. We can assess whether applied reengineering
patterns really brought the estimated improvements for further development.

3.3 State of the Art in Software Evolution

In this section we present a selection of related work realized in the subject of software
evolution. First we present two general issues about evolution observations of software
systems like the pioneering work carried out by Lehman and Belady. Second we sum-
marize a couple of practical approaches realized to compare different releases of the
same software system.

3.3.1 Lehman’s Laws of Software Evolution

Lehman and Belady are pioneers in software evolution. Back in the seventies they have
been investigating the evolution of the IBM OS/360 operating system. They mainly an-
alyzed the growth rate of different modules over time. Based on their experience about
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changes, they formulated general statements about evolution of software systems in
several laws of software evolution. Readers argued that the observations were coupled
to project organization of one specific corporation (IBM) and the results were not statis-
tically significant enough in order to formulate laws. In reality however the generality of
the laws has been validated over time [LEHM 96].

The first of Lehman’s laws is quoted at the beginning of Chapter 2, the seventh law
in Section 2.2.1. We briefly summarize here the content of the remaining six laws:
Evolving software inevitably increases in complexity unless restructuring is performed to
reduce this complexity. Furthermore functional content of programs must be continually
increased over lifetime to maintain user satisfaction. The most controversial law is the
fourth one. It predicates that the average global activity rate on an evolving system is
invariant over the product life time. The activity is measured rather in achievements
concerning the software itself (work output) than in investment of person time (work
input). Work output reflects better than work input the impact of many more feedback
loops on the total productivity [LEHM 98]. The law relates to the possible counterintuitive
effects about adding manpower to a project [BROO 75]. Finally the eight law states that
software development stringently bases on an incremental process with user feedback
at different stages of development.

3.3.2 Software Aging

David Lorge Parnas has been investigating in the causes and implications of aging
software [PARN 94]. He realized that software aging occurs in all successful products. In
contrast the only programs that don’t get changed are really bad ones that nobody wants
to use. Parnas distinguishes two distinct types of software aging: lack of movement and
ignorant surgery. The first one results from the failure of users to update or change their
software to meet changing needs. The second one is the result of changing software
without understanding enough of the system’s design concepts. Parnas believes that
programmers are too much concerned to get their first version running or to meet a
looming deadline. However they should be looking far beyond the first release to the
time where the developed product is old. He knows that predicting changes is about as
difficult as predicting future. Still he thinks we could classify different kinds of change
and then assign a certain probability for each of these change types. We would then
have to consider in advance at least the more probable changes.

For Parnas it is not sufficient to take into account possible changes only. He sees the
investment of time for good documentation as one of the key factors to avoid major
problems in late stages of development. He states that documentation is normally in-
adequate. Either programmers make a couple of memos that help only themselves to
remember some tricks, or they employ a technical writer who does not know the system
for the documentation of their product. Such documentation surely won’t explain future
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programmers the behavior of the system precisely. Parnas believes that investing time
in good documentation would pay off substantially in later stages of development.

3.3.3 Software Evolution Based on Product Release History

Gall and Jazayeri examined the structure of a large telecommunication switching sys-
tem with a size of about 10 MLOC over several releases [GALL 97]. The analysis was
based on information stored in a database of product releases, the underlying code was
neither available nor considered. They investigated first by measuring the size of com-
ponents, their growth and change rates. The aim was to find conspicuous changes in the
gathered size metrics and to identify candidate subsystems for restructuring and reengi-
neering. A second effort on the same system focused on identifying logical coupling
among subsystems in a way that potential structural shortcomings could be identified
and examined [GALL 98]. For each subsystem a change sequence was extracted. They
defined a change sequence as an n-tuple of subsequent system release numbers where
the version number of the subsystem changed. They defined two subsystems to be cou-
pled if they have a common subsequence in their change sequence. This indicates that
they were changed in the same versions and therefore have a similar change behavior.
In a third work Riva developed a tool to visualize changes in 3D space [RIVA 98]. The
third dimension allows us to visualize historical information together with the system’s
structure. [JAZA 99]

The approach based on product release history scales up well to large systems con-
taining a huge amount of code. Considering all change details found in the source
code may be rather confusing than practical. An approach that is not based on source
code has an additional commercial advantage: developer teams need not to show their
source code to external consulting people. On the other hand the whole change anal-
ysis based on product release history remains a vague guess about actual changes in
the code. It happens that a new version of a subsystem is created without any changes
in the source code.

3.3.4 Changes in Calling Structures and Data Usage

Burd and Munro have been analyzing the calling structure of source code [BURD 99].
They transformed calling structures into a graph using dominance relations to indicate
call dependencies between functions. Dominance trees were derived from call-directed-
acyclic-graphs [BURD 99]. The dominance trees show the complexity of the relation-
ships between functions and potential ripple effects through change propagation. The
more ripple effects, the more effort is required to understand the code. More ripple ef-
fects signify more side effects after a change. The dominance relations were analyzed
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for several versions of the same software. Changes in the graph were tracked over time.
Such changes give an indication about the changing complexity of the software and
about change impacts. Burd and Munro defined metrics to quantify changes in com-
plexity on the proportion of strongly dominated nodes to direct dominance nodes. The
case study to validate the approach was Gnu compiler gcc written in C. In total about 9
million lines of code (MLOC) were analyzed.

In another approach Burd and Munro studied the usage of data defined within source
code of software systems [BURD 98]. They analyzed how data items change within
a program due to evolution. The information was retrieved through the use of data
clustering. Procedures using the same data items were grouped together to identify
potential candidates for encapsulation during re-modularization. The case study here
was a commercial application written in COBOL.

The use of dominance relations is an excellent tool to analyze change propagation within
source code. It is questionable how well such a practice could be adapted to analyze
object oriented systems as well. A precise identification of the invoked entity is not
always possible due to polymorphism. Especially in dynamically typed languages like
Smalltalk the invoked method may be any of all implemented methods with the same
signature 1. The list of candidate methods can be rather big. The available information
may be too blurry in order to calculate dominance trees. Additionally, a transformation
of source code into a graph means also a loss of information.

3.3.5 Efforts in Object Oriented Software Evolution

There has not been much effort done in concrete evolution analysis of object oriented
software systems. However the object oriented paradigm itself promises to support
development and evolution of software through various techniques:

• Data Abstraction: The internal data of an object is encapsulated and accessible
only through a public interface. Encapsulation limits the effects of internal changes
to the outside and vice versa.

• Reuse: Classes help to bundle methods designed to handle similar data struc-
tures. Each instantiated object will have access to the methods defined in its
respective class.

• Extensibility: Inheritance allows one to define common sets of superclasses,
also known as frameworks. Domain specific subclasses can be defined for each
concrete application, inheriting the functionality defined in the framework.

1A signature is composed of the method name and parameters assigned to the method.
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• Decomposition: The complexity of the whole domain is split into several classes.
Classes that interact more closely again form subsystems, an additional layer to
reduce overall complexity.

Apparently object oriented techniques themselves are not the promised silver bullet that
solves all problems in software development. It seems difficult to really make use of
the advantages an object oriented language provides. Software development would
be much easier if we had several excellent frameworks at hand, each one covering
certain domains [ROBE 96]. Those frameworks would have a structure simple enough
to understand the API quickly. Yet they would still provide enough functionality to be
easily extended and adapted to specific requirements. In reality unfortunately we rarely
find such first class frameworks. Developing good frameworks is difficult and expensive
since nobody will write a good framework from scratch. We first have to invest a lot
of time and effort to get experience in the domain before we can start building good
frameworks.

”People develop abstractions by generalizing from concrete examples. Every
attempt to determine the correct abstractions on paper without actually devel-
oping a running system is doomed to failure. No one is that smart...Domain
experts won’t understand how to codify the abstractions that they have in
their heads, and programmers won’t understand the domain well enough to
derive the abstractions.” [ROBE 96]

We’ll never get it right the first time. Therefore a usual development cycle starts with
writing prototypes. We need to check whether our ideas can be implemented the way
we thought. Once a prototype runs smoothly, we can extend it by adding more func-
tionality. The program also needs to be adapted to unforeseen shortcomings in the
implementation and changes in the requirements. Such operations normally entail a
drift away from the initial design. To counteract such forces, we have to insert consol-
idation phases where we restructure the code and try to find an elegant new design.
The new design should still provide the same functionality, but additionally comprise the
changed conditions. Our knowledge about the domain will increase the longer we work
on it. It will help us to find implementations that map better the required functionality.

Especially class hierarchies usually grow fast in expansion phases. We quickly expand
classes to add new functionality. In a consolidation phase we therefore have to factor
out common behavior and collect it in common superclasses. Only then we can avoid
duplication and keep the structure in shape with the design. We extract common core
functionality of different implementations through refactoring and use that code to build
new framework parts [FOOT 94].
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3.3.6 Evolution Observations of Industrial OO Frameworks

Mattsson has been analyzing historical data of object oriented frameworks over time.
One medium sized case study in the telecommunication domain (300-600 classes) con-
sisted of four main releases of a billing gateway. He compared his results with the
Microsoft Foundation Classes (MFC) framework. Mattsson collected various evolution
observations in his PhD thesis [MATT 00], a collection of previously published papers.
Mattsson and Bosch calculated size, change and growth metrics on entity level for the
whole system and all the subsystems. Based on these metrics they made assump-
tions about the structure of the framework. They declared subsystems with different
characteristics regarding growth and change rates compared to the whole system as
candidates for redesign [MATT 99a]. In another approach Mattsson used a set of archi-
tectural metrics, mainly calculations on the structure of class hierarchies. He compared
the metric values of different historical versions of the same OO-Framework. Based
on the collected metrics he formulated four hypotheses about framework stability, and
about how frameworks change during their lifecycle. As an example, the first hypothesis
states that stable frameworks tend to have narrow and deeply inherited class hierarchy
structures. Besides the structure of the framework he measured the development effort
for each version of the framework, normalized to the invested effort for the first release.
He also compared between the versions the relative effort spent for different activities
like design, implementation, tests, administration. He found out that the main effort for
the initial version was the actual development work, while in the last version the testing
part consumed most of the time [MATT 99b].

3.3.7 Refactorings in Object Oriented Code

”Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor you are improving the
design of the code after it has been written.” [FOWL 99]

This quote of Martin Fowler points out the key attributes of refactoring. Refactoring is
a coding technique applied mainly in consolidation phases during development. It has
been developed and propagated by Kent Beck and Ward Cunningham in the context of
the programming style XP (Extreme Programming, [BECK 99]). Bill Opdyke examined
refactoring systematically in his doctoral thesis back in 1992 [OPDY 92]. John Brant and
Don Roberts developed the Refactoring Browser for Smalltalk [ROBE 97], a tool that
assists developers to do basic refactorings. Examples for refactoring are the renaming
of a source code entity or the pushing up of methods in a superclass. Refactorings
promise the following four advantages:
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1. Improved Design: Periodical refactoring keeps you cleaning up your own code, it
allows you to purge unused elements and to eliminate duplication. Refactoring
techniques help a developer to counteract the inevitable decay of code and to
keep the structure of source code consistent with a proper design. Clean code will
help us to find better implementations during development.

2. Readability of Code: In expansion phases we just add new functionality. We first
need to check whether a function works before we can think about elegant imple-
mentations. If we don’t refactor our code periodically, we will keep lots of initial
quick hacks that were implemented only to check whether an idea for an imple-
mentation works.

3. Avoid Defects: The tighter the code correlates with our design, the faster and the
better we understand it. The better we understand our code, the less defects we
implement either directly or through change propagation. If we avoid duplication,
we need not fix a defect over and over in similar parts of the code.

4. Faster Programming: By definition we do not change the behavior during refactor-
ing, we also do not add functionality to the software as well. For the time being one
might think that we are not productive when refactoring in consolidation phases.
To achieve longer term goals however we simply have to go through such phases
to consolidate our current work. If we don’t take us time for consolidation, we will
suffer later on. At a certain stage of development we will have hard times to un-
derstand how our own code. If we fix a defect in a complex structure, we may well
introduce new defects at the same time.

In our evolution analysis of source code we intend to find also changes caused by refac-
torings. We want to find out if developers of a software system use refactorings to
improve their design or whether they only add new source without running through con-
solidation phases. For the found refactorings we try determine why they were performed
and what implication they caused in the development.

3.3.8 Finding Refactorings via Change Metrics

Imagine you would have to find a renamed attribute2 of a class by textual comparison
in a large system! Even if we would find one that looked like a renamed one, we would
have to check whether there was not just one attribute removed and another new one
added. We would have to analyze manually the job of this attribute. A manual search for
refactorings in the source code is really tedious. Demeyer, Ducasse and Nierstrasz in-
vestigated how change metric could be used for detecting refactorings [DEME 00]. They

2We use attribute in this document as a synonym to instance variables



3.4 Goals of an Evolution Analysis 17

examined four heuristics based on change metrics and validated them on three different
case studies. The four refactorings cover mainly refactorings for a shift of responsibilities
in the class hierarchy.

1. Split into Superclass/Merge with Superclass

2. Split into Subclass/Merge with Subclass, Move to other Class

3. Move to Other Class (Superclass, Subclass or Sibling Class)

4. Split Method/Factor out common Functionality

In our work we’re going to present an approach which expands the ideas described in
this paper. We’re going to explore the capabilities of an change detection based on
change metrics.

3.4 Goals of an Evolution Analysis

The main goal of an evolution analysis is to gain a more detailed understanding of
how and where change processes take place [BURD 00]. We want to know about the
amount and kind of changes performed on code during development. A change analysis
may expose repetitive patterns we try to understand and classify. Such an analysis
could reveal common problems and lead to new guidelines for software development in
general. We explain here a couple of reasons that justify the effort of a source code
evolution analysis.

Evolution Patterns: The most general goal of an evolution analysis is to reveal what
exactly happens during the development process; to find out what changes are
most frequently performed during development; whether these changes could be
partly automated to support more efficient development. Another important is-
sue is to find regularities regarding the impact of changes, to find out what effect
different changes will have on unchanged parts.

Design Analysis: Another interesting issue is to follow implementations of design pat-
terns through several versions. We would like to know which patterns hold through
the whole evolution of the software and which ones get substituted by others be-
cause they were not flexible enough to persist changing requirements. The tracing
of implemented patterns allows us to assess in reality whether they adapt well to
changes. We intend to extract successful implementations and to collect them as
patterns for the future. On the contrary we also try to identify inflexible implemen-
tations to learn why they do not conform with future requirements.
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Effort Estimation: Metrics measure different properties of code in various ways. Size
metrics measure the amount of lines or entities defined in the code, other metrics
the complexity of a problem and its implementation. Metric values can be used to
estimate the amount of time that needs to be invested for future implementations.
Especially change metrics, which include information about changes over time,
help to estimate time exposure for future work based on previous values.

Automatic Documentation: Code documentation is an everlasting controversial sub-
ject for developers. Probably every developer agrees that good documentation
of code as a matter of principle is useful. On the other hand documentation is
time consuming, especially the periodical synchronization after changes. In reality
many programmers just hack their lines first without documenting them. They try
to find the best implementation quickly and don’t want to lose time for documenta-
tion each time they change their code. Documenting after the implementation has
become stable is annoying as well. Moreover it is difficult to document code in a
reasonable way. The possibility of retracing changes in the code helps us to have
the changes documented automatically. This allows us to document only major re-
leases. Based on that we would have an automatically created documentation of
the changes for subsequent minor releases. The automatic documentation would
contain information about added and removed source code entities, and possibly
even list deprecated functions that are not in use anymore.

3.5 Studying Evolution Assists Software Development

We distinguish three target scenarios where we can study the evolution of software.
The scenarios differ in size of the analyzed code and in the knowledge about the code.
For each scenario we discuss how an evolution analysis can contribute to improve the
development process.

Small Project: A small software project covers a manageable amount of source code.
An individual developer or a small team work on the same system. The devel-
opers are supposed to know about the functionality and the collaboration of their
code with other components. Still it may be valuable for them to track removals,
additions and changes. With that change data they are able to step back to a
previous release in case they reach a dead end. Of course a version control tool
provides such basic change functions as well. However it won’t provide the detec-
tion of deprecated code that is still integrated in the release. Such a code should
better be purged since it just makes the API more complex without providing new
functionality. A code analysis tool that combines basic change information, entity
properties and metric heuristics, may lead developers to interesting parts in their
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code. Through a systematic evolution analysis, they may find out facts about their
code they would not have expected.

Large Project: Source code of a large development project consists of a huge amount
of code that cannot be completely browsed manually. The development team
is large and consists of several groups working on different subsystems. Open
source projects usually consist of a huge amount of code as well. Because of
the size and complexity nobody has a clear view over the whole code and how
subsystems interact with each other. Abstraction tools that create more abstract
views on the whole system are worthful to overview the structure of the whole
system. An evolution analysis tool provides additional information about changes
over time. Abstract views may reveal whether a subsystem is stable or whether it
changes a lot. It may detect unexpected dependencies and allow a user to track
them over time.

Reverse Engineering: Candidates for reverse engineering are usually large, complex
systems. People analyzing such systems normally have a broad knowledge about
writing quality code, but usually not about the code of the analyzed system. They
first need to get an overview over the reverse engineering candidate and try to
understand how different components work together. Information about previous
implementations and the changes between them give them additional hints about
how the system got in its current state. An analysis of the way to the end result
always contains lots of additional information compared with a snapshot of the end
result. We expect to reveal how a system turned from a healthy state to its actual
desolate state. That would be hard to see if we only consider information of the
last release.
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Chapter 4

A Query-based Approach to Recover
Software Evolution

It is hard to analyze code of large software systems just by browsing the files manually,
because we come across relevant sections only by chance. Meanwhile we lose quite
some time just browsing code, searching for relevant information. The amount of data is
so huge that we’d be just lucky if we were able to identify problematic implementations
in the unknown code. The evolution analysis of a software system would even force
us to browse multiple versions, and therefore a multiple of the amount of data stored
in one single release. A key problem is the separation of relevant parts from irrelevant
ones, especially from noise. We use the term noise for data that is not relevant for
our analysis. Source code information that has been misinterpreted by the parser, for
instance, belongs to noise. Luckily source code is much more structured than usual
data mining information. Relations between objects like aggregation or inheritance and
the identification of the same object in multiple releases help to reduce information and
extract desired facts.

In this chapter we’re going to describe our approach to reveal evolution data. Our ap-
proach is based on filters and simple metrics computed on source code entities. The
filters are expressed in queries which select from a collection of entities only those with
the correct properties to pass the filter. We provide a method to compose filters in se-
ries or in parallel. With such a composition method we can maintain flexibility for the
definition of new, more complex conditions for an entity to pass a filter. Filter templates
stored in a repository can be adapted and refined to analyze different software.

The computed metrics serve as an additional criteria to filter data. In our approach we
intentionally take only simple metrics into account. The higher the abstraction, the less
obvious the changes in the abstraction. Complex metrics such as coupling or cohesion
[FENT 97] help to state certain properties about the entity they are computed for, yet they
are difficult to compose in a meaningful way. The more complex the metric, the harder
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it is to trace back and state what exactly happened on source code level. For some
metrics we don’t see clearly what a change of the according value means on source
code level. If we combine conditions of complex metric values, the meaning of the
created combined condition gets even more blurry. Summarized, complex computations
simply do not necessarily give more information.

We build our approach on an abstraction of the source code called FAMIX (FAMoos
Information eXchange model) [DEME 99b]. FAMIX is a format for the exchange of infor-
mation about object oriented source code entities. The FAMIX meta model maps the
basic structure of the underlying source code and contains the entities Class, Attribute
and Method. It also maps relations between entities such as Invocation, Access and
Inheritance Definition. Appendix A contains an informal description of the FAMIX meta
model.

The final intention of our query based approach is to collect a set of evolution queries
for a repository. These queries are supposed to be reused for the analysis of various
software systems. Each of the evolution queries reveals a set of source code artifacts
with certain change characteristics between releases. We then just need several ver-
sions of the source code of a software system. We parse the source code for each of
these versions and create a model. We then apply the whole set of collected queries
on the code. Each query reports facts about particular changes. This basic information
serves as a description of the overall change between the releases.

4.1 Extracting Information from Source Code

We use information extracted from source code for the assessment of the evolution of
software. Our evolution queries however are defined on the FAMIX meta model, not
directly on the source code. Therefore analyzed code needs to be parsed first and
transformed into the model format afterwards.

We need the source code of multiple releases as a prerequisite for a change assess-
ment. Therefore we can analyze only systems whose source code of different releases
is still available. Thus the code needs to be frozen and stored periodically during devel-
opment, or the whole development process bases on a version control system. Such
a tool ensures that either each step in development is stored separately, or at least the
daily work is stored as a new releases in a database.

4.2 Comparing Multiple Releases

Once at least two releases of a software are loaded and stored in FAMIX format, the
different models can be compared. At first we extract basic change data. This data
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describes us for each source code entity how it changed between two versions, or if it
changed at all. We distinguish four basic types of change between two releases:

changed

removed

added

unchanged

Figure 4.1: The four possible types of change for a source code entity

• Added: The entity did not exist in the previous release, but exists in the current
release. It has been added between the two releases.

• Removed: The entity existed in the previous release, but does not exist in the
current release. It has been removed between the two releases.

• Changed: The entity exists in both releases, but has changed properties. At least
one property of the entity has been changed between the versions.

• Unchanged: The entity exists in both versions and did not change. All properties
are identical in both releases

Every entity in the system conforms to one of these four types of change. Any informa-
tion about the evolution of a software must be derived from change data based on these
four types. An added entity only tells us that the system has grown, a removed entity
that the system has been reduced by one entity. An unchanged entity just states that
there have been no changes regarding that specific entity between the versions. This is
not much information, yet it can still be valuable for us: we need not analyze these enti-
ties further since they are the same as they were in the previous release. The changed
entities provide the most valuable information about changes between versions.

It is important to choose the right identification method to track entities between re-
leases. They need to be identified over a unique property that matches across versions.
A problem arises if the entity persists over two releases, but exactly the identifying prop-
erty has changed. In such a case we are not able to track the entity further.
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In our approach entities are identified between releases over their unique name. As the
term suggests, a unique name identifies a source code entity uniquely in a single model.
The name of an entity on the other hand may not be unique and may occur more than
once in the same model. In Smalltalk for example, the method named printOn: aStream
is implemented in several different classes. The unique name of each implementation
of printOn: however differs. It is composed of the class name the method belongs
to, followed by the name of the method. The printOn: method of the class Object for
example has the unique name Object.printOn:.

Renaming of entities between versions poses certain identification problems for our
identification algorithm. Imagine what happens if an object is renamed and thus its
unique name changes: our identification method fails, it seems as if an object disap-
pears in the old version while another object appears in the new version. We won’t
recognize that the removed and the added entity are the same. In case we take an-
other (unique) identifying property, we would again identify the entity as the same in
both versions. Metric values are generally not appropriate to identify entities between
versions because they are in most cases not unique and may even change. A good
identification technique for classes is the comparison of methods and attributes that be-
long to the class. They are usually not all renamed as well at the same time. For a
detection of renamed methods we may look at invocations defined in the method body.
For attributes we may calculate a kind of fingerprint that consists of entities accessing
the attribute and compare the fingerprints. Once we have identified the renamed enti-
ties, we need to combine the information about changes with the one about renaming
to track renamed entities further. If we manage that, we will realize that the name of the
entity has changed between the versions, yet we will see that it is still the same entity.

As stated above, the most interesting type of change from an evolution point of view
are the changed entities, because they can be identified as the same object over mul-
tiple models. The changed properties clearly indicate what happened with them during
evolution of the software. For our evolution analysis we will mainly focus on changed
entities and build our queries on changed properties.

4.3 The Concept of Query Composition

All queries in our approach have in common that they require a set of objects as input,
and also return a set of objects. In our original concept, all queries returned a subset
of the input, the objects that fulfill certain conditions defined in the query. Later on we
had to extend the concept by some additional queries that return a set of relatives to the
input objects. One defined query for example expects entities that belong to a class, like
methods or attributes, and returns the according classes instead of the input entities.
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operation:

CompositeQuery

operation:

BasicQuery

Query

operation:

Client

operation:

ChangeQuery

Figure 4.2: The composite pattern applied on queries

All queries follow the structure of a composite pattern [GAMM 95]. An object in a com-
posite structure is either a single object (leaf) or a composite. A composite has a tree
structure and consists of branches (other composites) and leaves (single objects). A
composite structure lets clients treat individual objects and compositions uniformly. In
our query composition concept, basic queries represent all kind of possible leaves while
composite queries represent different of branches (see Figure 4.2).

In the following sections we introduce the concepts of our different types of queries. We
discuss them in the following order:

• Basic Queries are filters on entity properties and metric values.

• Change Queries are filters on change metrics.

• Composite Queries are compositions of other queries.

4.3.1 Basic Queries

All basic queries expect objects of one single release as input and return a subset of the
input. They are used to filter objects according to certain properties. Basic queries rep-
resent the leaves in the composite pattern. They are never composed of other queries.
We count four different types of basic queries:

1. Type: Type queries filter objects of one specific FAMIX type only. The core FAMIX

types are Class, Method, Attribute, Invocation, Access and Inheritance Definition.

2. Name: Each Name query contains a regular expression. The string pattern is com-
pared with the name of each entity sent as input to the query. All entities with a
name matching the regular expression are returned.
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3. Metric: A set of metrics are defined in MOOSE for each specific entity type. The
values of these metrics are calculated in advance for each entity in the model. A
metric value is always numeric. Each metric query has a metric, a threshold and a
comparison operator (less than, less or equal, equal, ...) defined. The threshold is
compared with the metric values of the input entities using the operator defined in
the query. The query returns all entities with a metric value that holds the condition.
Section A.3 in Appendix A explains all metric abbreviations used in this document.

4. Property: A property is a value that further characterizes an object. The value of
the property is usually a boolean or a string. Examples for class properties are
belongsToSubsystem, isAbstract, isInterface, isStub.

4.3.2 Change Queries

A change query runs on at least two different models. Instead of comparing one single
property of a special entity, the query tests the change of a metric value or a property
between the two models. We need to define such additional Change Queries since we
cannot compose change conditions from basic queries. We are not able to express
conditions about the change of a metric value relative to the value it had in the previous
release. Therefore we introduce change queries. A change query represents a special
type of leaf in the composite pattern. We will frequently use change queries to compose
our evolution queries described in Chapter 5. These newly introduced queries help us
to identify changes about entities between two versions. This change information is very
useful for understanding the evolution of a software system. Furthermore, it is easier
only to compare numeric metric values than for example referenced entity attributes.

4.3.3 Composite Queries

Composite queries are all composed of a number of subqueries. We list here the dif-
ferent compositions of query conditions. Each different composite query reflects one of
the special kinds of composition defined here. The different compositions differ in two
ways. First they differ in the kind of delegating conditions over different relations to other
entities. Second they differ in the handling of the output of each subquery, and in the
merging of the outputs to an output of composite queries.

Affiliation An affiliation query consists of a query that runs on objects with belongsTo
relations. The objects can be classes that belong to subsystems, methods or
attributes that belong to classes, or also the respective set of classes a collection
of methods belong to. For each input entity, the appropriate class or subsystem it
belongs to is searched. The condition of the query is not formulated for the input
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aBasicQuery aBasicQueryaCompositeQuery

aCompositeQuery

aBasicQuery aBasicQuery

Figure 4.3: A typical structure of a composite query

entity directly. Instead, a condition for the object the entity belongs to is checked. If
the related object satisfies the query condition, the input method is returned. The
query therefore returns a subset of the input methods.
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Figure 4.4: OR-Composition of two queries

Composition A composition query contains a collection of subqueries. The output
of the subqueries is either merged (OR composition), or an intersection is taken
(AND composition). In case of an OR composition, each subquery is fed with all
input entities of the whole query. All output entities of the subqueries are then
merged and returned as the output of the composed query. Each output entity
satisfies the condition of at least one subquery (Figure 4.4). In case of an AND
composition, the output of the composed query is the intersection of the output
of the subqueries. Each entity in the output of an AND-composed query satisfies
all of the conditions defined in the subqueries (Figure 4.5). The subqueries must
be defined on the same model for both composition types. If this is not the case,
we get a heterogeneous output containing entities of several different models. A
heterogenous output is not useful since we may loose the correct references to
related entities in a specific model.
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Figure 4.5: AND-Composition of two queries

Dependency We define here dependency as one of the two following relations be-
tween objects: invocation and access. A dependency query expects methods or
attributes as input. The query condition does not test the actual input entity, the
condition is rather forwarded over an invocation definition or an access definition to
related entities. The checked entity is an invoked method or an accessed attribute.

Conversion The conversion composite query extends a basic concept of our queries:
that always a subset of the input entities is returned. A conversion query returns
objects that are in a certain relation with the input entities. For each input entity
that satisfies the query condition, an appropriate related object is returned. As an
example, a conversion query that expects a set of methods as input entities checks
the query conditions for each method. Instead of methods, the query returns all
classes that contain a method satisfying the query condition.

Hierarchy A specific predicate to object oriented code is inheritance and thus class
hierarchies. Like all other relations between entities, an inheritance relation also
helps us to characterize changes more precisely. Movements in the class hier-
archy usually entail rather heavy rearrangements in the structure of the source
code. Therefore changes in the class hierarchy are a good indicator for consider-
able restructuring. A Hierarchy Query allows us to define conditions on relatives
of a class. We can define conditions on superclasses, one single subclass or all
subclasses of a input class. A hierarchy composite query forwards the condition
to an appropriate relative, if the input entity has such a relative at all.

History A history query consists of a collection of queries that do not all need to be
defined on the same model. Like in a Concatenation Query described above,
the subqueries are performed one after the other composed the logic operators
AND or OR. Despite the Concatenation queries, the output entities from one query
are not passed directly to the next one. A direct passing is not possible since
each subquery needs to receive entities from an appropriate model as input. The
respective set of entities is searched in the correct model for the next query (4.6).
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A unique property is required for an identification of entities between two models.
We currently use the unique entity name for identification, but it may also be a set
of metric values or other uniquely identifying properties.
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Figure 4.6: Searching the appropriate entities in different models
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Chapter 5

Useful Evolution Queries

5.1 Introduction

We present in this chapter a collection of useful queries for a source code evolution
analysis. We first introduce five basic queries. They assist us to measure basic infor-
mation about each release. They also represent the basic modules for the composition
of complex queries. In Section 5.6 we list useful queries that are defined on one single
model. These queries extract facts about one release only, they do not use change
data between two or multiple releases. In Section 5.7 we present a collection of que-
ries defined on multiple models. These queries automatically retrieve special aspects of
change between loaded versions.

5.2 Structure of the Query Descriptions

We summarize basic properties in a header table for each query described in this chap-
ter:

• Query Type: Here we state the type of basic queries. For composite queries
we describe what kind of composition relation we use, according to the different
compositions described in Section 4.3.3.

• Model Scope: We state here on how many models the query is defined.

• Information used: Here we list what information of an entity is used to apply the
query. This information may be the entity name, special metrics or properties.

• Entity Scope: Here we describe which type of source code entities the query
expects as input.
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In the body of each query description we discuss the following aspects:

• Definition: Here we give a formal description of the query condition.

• Idea: Here we describe for each query what entities we expect to reveal, and
which kind of information about the system the query provides. We also describe
how the query extracts the correct entities.

• Example: Here we give an example of the syntax for the query in the MOOSE-
FINDER tool described in Appendix B. This syntax is used to load a query with
all defined parameters. The queries are stored in XML format since it is human
readable and supported by various open source parsers.

• Evaluation: The evaluation section illustrates in which cases the approximation
may fail. Most of the presented queries in this chapter do not provide precise re-
sults in all situations, they rather provide good approximations. The queries select
a subset of objects which can be further assessed, also by manual comparison
with the output of other queries.

• Variations: Here we list variations of the query. Many queries enable a user to
choose among a couple of similar representations. For complex queries usually a
couple of parameters of subqueries can be specified in various ways.

• Combinations: Here we list possible synergies with the output of other queries.
Since many queries provide approximations, a combination of the results from
different queries often helps to eliminate uncertainty. It is sometimes hard to find
a way to compose the results of two queries into one single query.

• Results: Here we illustrate and discuss what we found out running the query over
our case studies.

5.3 The Case Study

We took seven releases of Moose for a validation of our evolution queries. We chose
Moose as case study for several reasons:

• The source code of all (more than 100) releases from July 1999 up to now is still
available.

• The software has been written by people of our research group and is therefore
familiar to us. Analyzing known code opens the possibility to validate observations
before applying them on unknown systems. The fact that we have most of the
developers in-house allows us to ask them about the purpose of found changes.
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• The system has undergone several refactorings and redesigns from the first run-
ning version 1.01 to the last available version 3.49.

Table 5.1 contains basic size metrics about the different releases of our case study.
The values were counted after the generation of the FAMIX models. The classes are all
counted twice since there exists for each Smalltalk class a metaclass with an appropriate
anonymous name. The uneven number of classes in the last two results from stub
classes which were added to the model without their corresponding meta class.

Moose Release Number of

Number Date Classes Methods Attributes

1.01 1999/07/16 182 1621 248

1.09 1999/09/15 190 1724 262

2.02 1999/12/03 208 1813 275

2.35 2000/05/18 184 1925 264

2.55 2000/10/06 200 2015 280

3.31 2000/12/13 231 2031 294

3.49 2001/02/20 209 2101 280

Table 5.1: Basic size metrics of all Moose releases
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5.4 Syntax Declarations

We provide for each query a formal description of the condition. In the table below we
list all definitions we use for a the description of the query condition. In contrast, the
syntax of the respective query implementation in our tool MOOSEFINDER is much more
verbose than the description we provide here. The syntax of the implementations is
described in the example paragraph for basic queries.

We frequently use abbreviations of metrics. Section A.3 in Appendix A at the end of
this document contains a list of all metrics used in this document with their according
abbreviation.

Ex All source code entities defined in model x

Cx All classes defined in model x

Mx All methods defined in model x

Ax All attributes defined in model x

e ∈ Ex An arbitrary source code entity of model x

c ∈ Cx An arbitrary class of model x

m ∈ Mx An arbitrary method of model x

a ∈ Ax An arbitrary attribute of model x

Names(E) All unique names of entities in set E

metric(e) Any kind of metric defined for entity e

NOM(e) Number of methods of entity e (example for a concrete metric)

δNOM(e) Difference in NOM between two versions for the same entity

subclass(c) subclass of class c

super(c) superclass of class c

class(a) the class where attribute a belongs to

name(e) unique name of entity e

signature(m) signature of method m

attributename(a) name of attribute a

op. a comparison operator, op ∈ <,<=, =, >=, >
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5.5 Basic Queries

The query framework is built up from a couple of basic queries. Each query expects a
collection of source code entities as input and returns a subset of the input. The output
contains entities which fulfill the condition defined in the query.

5.5.1 Entity Name Query

Query Type Basic
Information used Name
Model Scope Single Model
Entity Scope Entities

Definition:

∀e ∈ Ex | name(e) ⊆ aString (5.1)

Idea:

Code of the same application frequently follows naming conventions like for:

• Classes: Class names may start with the abbreviation letters of the subsystem
they belong to.

• Methods: Accessor methods may be implemented as getX() and setX()

• Attributes: private attributes may contain only lowercase letters, while public at-
tributes may also contain upper case letters.

Such conventions can be used to extract entities that have some common characteris-
tics. A name query selects entities with names matching a given string pattern formu-
lated in a regular expression. The query either selects all these matching entities or it
rejects exactly those if the negation flag is set.

Parameters

comparison name, uniqueName
negation true, false
case sensitive true, false
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The design of the query leaves the choice to match a string pattern with the name or the
uniqueName of an entity. The query condition can be negated by setting the negation
flag to false. The comparison of the name is either case sensitive or just an order of
subsequent letters.

Example:

<MooseQuery type="MSEMatchNameQuery">

<negateFlag value="false" />

<matchingPattern value="*Abstract*"/>

<considerCase value="true"/>

<compareUniqueName value="false"/>

</MooseQuery>

This example query reveals all entities with a name matching the pattern ’*Abstract*’.
The regular expression is compared with the entity name instead of the uniqueName.
The query condition is not negated and the comparison is performed case sensitively.

Results with Moose:

Each class of Moose is supposed to start with the letters ’MSE’. Additionally the name
of abstract classes is supposed to match the expression ’*Abstract*’ and vice versa.

As we see in Table 5.2, the total number of classes is always bigger than classes starting
with the key letters MSE. When a model in Moose is generated, a number of classes
outside the loaded application are also taken into account. Instances of classes such
as Object, String and Behavior are frequently used somewhere within loaded code, but
not defined there.

The collection of classes annotated as isAbstract does not exactly match with the classes
whose name matches the string pattern *Abstract*. This is due to the definition for ab-
stract classes in Smalltalk. There is no general definition of an abstract class in the
language itself. Therefore Moose interprets a class as abstract if at least one method of
the class sends the message subclassResponsibility.
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Number of Classes

Moose Name matching Property

Release Total MSE* *Abstract* isAbstract = true

1.01 91 67 17 11

1.09 105 83 17 15

2.02 104 77 20 13

2.35 92 80 19 15

2.55 100 92 20 14

3.31 116 93 21 14

3.49 105 96 21 15

Table 5.2: Class names matching expressions
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5.5.2 Metric Value Query

Query Type Basic
Information used aMetric
Model Scope Single Model
Entity Scope Entity

Definition:

∀e ∈ Ex | metric(e) op. aThreshold (5.2)

Idea:

For each entity in Moose a couple of metrics are computed. These metrics characterize
the entity. A Metric Value Query uses these values to select entities in the model that
satisfy a certain metric criteria. The query compares the metric values against a defined
threshold using a predefined comparison operator. Only entities with a metric value
below, equal or above the threshold are selected. Frequently used metric values are
HNL, NOM, NIV, NOC, WNI (abbreviations see Appendix A.3).

Parameters

metricName aMetricName
metricValue aValue
comparisonOperator <,<=, =, >=, >
negation true, false

For each query a metric and a threshold called metricValue need to be specified. For
the comparison with the entity’s metric values any of the five comparison operators can
be chosen. The metric condition can be negated setting the negate flag to true.

Example:

<MooseQuery type="MSEMetricValueQuery">

<negateFlag value="false" />

<metricName value="WNOC" />

<comparisonOperator value=">" />

<metricValue value="20" />

</MooseQuery>
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Results with Moose:

This query is suited to find out about reasonable thresholds for metric values in different
case studies. Once we know how many entities in total are above a certain metric
value, we can start adapting our predefined queries. We ensure by an adaptation of
the thresholds that we never get too many entities returned. The two classes in Moose
v3.49 with more than 100 methods are MSEClass and MSEModel.

Moose NOM NOC

Release >20 >50 >100 >5 >10

1.01 20 7 1 10 2

1.09 24 8 2 10 4

2.02 23 6 2 10 2

2.35 25 5 2 8 2

2.55 27 5 2 8 2

3.31 25 5 2 6 4

3.49 27 5 2 6 4

Table 5.3: Thresholds in Moose for the metrics NOM and NOC
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5.5.3 Type Query

Query Type Basic
Information used aType
Model Scope Single Model
Entity Scope Entity

Definition:

∀e ∈ E | type(e) = aType (5.3)

Idea:

A Type Query selects all objects of a certain FAMIX type in a model. We use the query to
extract all objects of the same type in a model. We can then for example compute size
metrics of the system. We can also use the query to filter only objects of one type. Only
then we can run queries afterwards that expect all input entities to responds to a certain
interface. In such a case the only task a type query has is to select only these types
of entities that understand a certain message. The message sent to each input entity
is one of those that check for a core FAMIX type: Class, Method, Attribute, Invocation,
Access and InheritanceDefinition.

Parameters

inputString [ :anObject | anObject aMessage ]
negation true, false

We implemented in MOOSEFINDER a query that contains its condition in a Smalltalk
Block. The Smalltalk block contains a parameter (anObject) and a message (aMessage)
sent to the object. The concept of blocks allows one to easily send a user specified
message to each object in a collection. We use this concept for sending a message
defined in the block to each input entity. The message is one of the following: isClass,
isMethod, isAttribute, isInvocation, isAccess, isInheritanceDefinition ... Each of these
messages checks if an entity conforms to a certain FAMIX type.

Example:

<MooseQuery type="MSEBlockQuery">

<inputString: value="[ :anObject | anObject isClass]" />

</MooseQuery>
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Results with Moose

We used type queries to generate the values in Table 5.1 of the case study description
Section 5.3. To count the number of classes, methods and attributes, we extracted
entities of the same type in one model with type queries.

Since Type Queries are basic queries, they are frequently used in various composed
queries to select only a defined type of entities as input for other queries.
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5.5.4 Property Query

Query Type Basic
Information used aProperty
Model Scope Single Model
Entity Scope Entity

Definition:

∀e ∈ E | property(e) = aPropertyV alue (5.4)

Idea:

A Property Query selects only objects matching a given property criteria. The checked
values for the properties isAbstract, isStub, isInterface are of the type boolean. For the
property SubsystemName, the checked value is a string.

Parameters

inputString [ :anObject | anObject aMessageSentToTheObject ]
negation true, false

To maintain flexibility, the property criteria is defined in a Smalltalk block like the type
query (see query 5.5.3). This block is passed to each of the input objects.

Example:

<MooseQuery type="MSEBlockQuery">

<inputString: value="[ :aClass | aClass isAbstract]" />

</MooseQuery>

Results with Moose:

Table 5.2 presents results of the example query above and compares the numbers with
a similar query matching the pattern ’*Abstract*’ in the class names.
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5.5.5 Metric Change Query

Query Type Change
Information used aMetric
Model Scope Two Models
Entity Scope Entity

Definition:

∀e ∈ Eold, e ∈ Enew | δmetric(e) op. aV alue (5.5)

Idea:

When we analyze two different releases of the same source code, we expect most
source code entities to exist in both versions. Some of these entities however may have
changed metric values. There may have been some methods added to a class, thus
the metric NOM is supposed to be increased. Especially the change of a metric values
provides useful information about what happened to the code in between. A Metric
Change Query calculates the change value and allows constraints to be defined on
this value. We allow a user to find out three main types of change through appropriate
specification of a Metric Change Query:

• Unchanged: We want to reveal entities with an identical value for a certain metric
in both versions. We therefore set the threshold to zero.

• Difference: We want to reveal entities with a certain absolute change for a metric
between the two versions. We set the threshold to a certain value of change.

• Percentage: We want to reveal entities with a certain percental change for a metric
between the two versions. We set the threshold to a certain value between 0 and
1 for an increment, and a value between -1 and 0 for a decrement.

Parameters

metricName aMetricName
changeValue aValue
changeOperator <,<=, =, >=, >
negation true, false
outputModel aModelName
modelList aModelList
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We need to specify for each query a certain metric and a threshold. Additionally we need
to choose a change operator to find out about increment, decrement or equality. The
models which are considered for the metric changes, are defined as a collection in the
parameter modelList. Since several instances are defined for each entity, outputModel
defines from which model the resulting entities are returned.

Example:

<MooseQuery type="MSEMetricChangeQuery">

<metricName value="HNL" />

<changeOperator value=">" />

<changeValue value="0" />

<changeMode value="difference" />

<outputModel value="1" />

<modelList value="#( 1 2 )" />

</MooseQuery>

Results with Moose

For an evolution analysis of a software system, it is always useful to collect at first a list of
basic changes between releases. Such a basic overview in Table 5.4 1 shows how many
classes have increased or decreased metric values, and how many have equal values
between the versions. We compare here each Moose release with the successive one.
Changes in the HNL metric report changes in the hierarchy. That is in most cases either
the movement of an existing class or an insertion of a new class. Changes in NIV often
indicate refactorings through a split. Changes in NOM may also denote refactorings like
push-ups, but NOM is generally more vulnerable for any kind of restructuring than NIV.
WNI is even more fragile since no movement of methods is required to change it. The
change of a method implementation suffices to change WNI. A class with unchanged
values for HNL, NIV, NOM and WNI has likely been taken over from the previous version
without changes.

1<: value has decreased; = unchanged; > increased
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Moose Release Number of Classes

HNL NIV NOM WNI

old new < = > < = > < = > < = >

1.01 1.09 2 174 2 - 176 2 2 154 22 3 152 23

1.09 2.02 - 146 44 3 184 3 4 170 16 10 169 11

2.02 2.35 - 164 - 6 148 10 8 107 49 10 104 50

2.35 2.55 - 154 4 2 153 3 13 104 41 23 94 41

2.55 3.31 4 166 - 3 159 8 39 111 20 33 117 20

3.31 3.49 - 185 12 1 191 5 9 167 21 12 159 26

Table 5.4: Changes in metric values between versions

Regarding HNL, the 44 classes with increased HNL values between Moose v1.09 and
v2.02 strike the eye. Besides there are 12 classes with changes between v3.31 and
v3.49 and some minor changes in the remaining releases. The 44 classes with changes
between v1.09 and v2.02 will be classified further by queries presented later on (see
section 5.7). The query described in 5.7.2 reveals that a new class named MSEAb-
stractModelRoot has been inserted relatively high in the hierarchy, moving down all
subclasses. The big number of classes with increased HNL values results only from
this insertion. We therefore defined more specific queries to better identify the differ-
ent causes for a change in the class hierarchy. We present such queries later on in
Section 5.7.
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5.6 Useful Single Model Queries

5.6.1 Subsystem Affiliation

QueryType Dependency
Model Scope Single Model
Information used subsystem
Entity Scope Entity

Definition:

∀e ∈ Ex | subsystem(e) = aSubsystemname (5.6)

Idea:

We usually compare the number of entities in the code between versions to estimate
the growth rate of a software system. If we count the number of entities for big systems
and make a comparison between versions, they normally do not state a lot about the
growth for a trivial reason: Some subsystems that were just add-ons in earlier versions
may be integrated in later versions. We need to know more precisely about changes in
different subsystems in order to see the real changes in number of entities. Therefore
we better compare the number of entities in different subsystems separately. The query
introduced here returns only entities that belong to a list of defined subsystems. The
query helps us to extract entities of one single subsystem only, or entities of a collection
of subsystems.

Evaluation:

Before the query can be run over a model, the respective subsystem needs to be as-
signed for each entity. Currently the subsystem affiliation is stored for each entity as a
property. For the moment there is no grouping entity defined in Moose. We would be
able to collapse a couple of entities belonging to the same subsystem in such a group
entity. An iterator runs over each entity of a model and extracts the appropriate subsys-
tem affiliation from another property. Different iterators derive the affiliation from different
sources such as source anchor, a property that contains the path and the filename a
source code entity is defined in. Smalltalk code is not stored in separate files, but can
be loaded directly from the image. The subsystem affiliation for Smalltalk entities can
be assigned directly since Smalltalk classes are defined in a category or an application.
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The category name or the application name are then just the appropriate subsystem for
the entity.

Example:

<MooseQuery type="MSESubsystemListQuery">

<mooseModel value="Model1" />

<negateFlag value="false" />

<subsystemPropertyName value="SubsystemName" />

<subsystemNamesList value="( Subsystem1 Subsystem2 )" />

</MooseQuery>

The example query reveals all source code entities in model named Model1 that belong
either to Subsystem1 or Subsystem2. The query expects the subsystem affiliation of an
entity to be stored in the property SubsystemName.

Results with Moose:

Table 5.5 shows the number of classes for selected subsystems in all analyzed versions
of Moose. We see that the number of classes in each subsystem generally declines.
This is due to the fact that several classes have been defined in one of the core subsys-
tems even though they do not belong to the core. Such classes have been moved out
occasionally to an extension subsystem. The number of classes in subsystem Moose-
Model on the other hand increases because numerous additional entity types were de-
fined and added. Subsystem MooseImporters has been renamed to MooseImporting
between v2.55 and v3.31.
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AbstractBase 10 10 10 8 8 14 14

CDIFReader 8 8 8 6 6 6 6

Importers 18 18 18 18 16 - -

Importing - - - - - 10 10

Model 44 44 56 54 64 64 64

Operators 28 28 34 20 22 8 8

ParseTree 14 14 14 10 10 10 10

Storage 24 24 24 22 24 18 18

Table 5.5: Number of classes in each Moose subsystem
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5.6.2 Invocations between Subsystems

QueryType Dependency
Model Scope Single Model
Information used A invokes B
Entity Scope Invocation

Idea:

We want to find out how subsystems interact with each other. Most of the interaction be-
tween subsystems goes over the invocation of methods defined in another subsystem.
We want to analyze how many times methods of a foreign subsystem are invoked. We
also want to find out if the invocations across subsystems are unidirectional or bidirec-
tional. It is also interesting to see which subsystems do not interact at all. Subsystem
A gets dependent from subsystem B in case a method defined in subsystem A invokes
a method defined in subsystem B. A change in an invoked method of subsystem B may
propagate to subsystem A. We use here the invocations defined in FAMIX. They base on
static information defined in the source code. We do not have any runtime information
available.

Example:

<MooseQuery>

<queryType value="MSESubsystemInvocationQuery" />

<mooseModel value="Model1" />

<negateFlag value="false" />

<subsystemPropertyName value="SubsystemName" />

<sourceSubsystemName value="SubsystemA" />

<targetSubsystemName value="SubsystemB" />

The example query retrieves all invocations from behavioral entities of subsystem A to
behavioral entities of subsystem B. Behavioral entities are an abstract type in FAMIX

and comprise all types of entities that implement behavior. In object oriented code such
entities are usually methods. Functions are another kind of behavioral entities.

Evaluation:

The assignment about subsystem affiliation is not automatically performed when loading
a model. This is simply because we apply different assignment methods according to
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where in the code the subsystem affiliation is defined. Before we apply the query on
a model, we need to run an iterator that assigns each source code entity the correct
affiliation. In Smalltalk it is usually the application or category the entity is stored in. In
C++ code the subsystem affiliation either appears from the directory structure, or we
need to rely on the classification by a developer.

Unfortunately we can not identify the invoked method precisely because in FAMIX we
have only static information available. In dynamically typed languages, the object on
which the method is invoked can be of any type that implements a method with the
same name. In statically typed languages we can reduce the candidate methods on
a subtree in the class hierarchy. We know at least the type of the object except for
polymorphic variations. In such cases we assume an instance of the base class in the
subtree to be invoked.

Results with Moose:

Table 5.6 and 5.7 show all found invocations between the listed subsystems. We see
that there have been a couple of cross dependencies removed in the release 3.49. In
MOOSE release 2.02 every subsystem accesses some methods of subsystem Storage.
In MOOSE release 3.49 these invocations have been removed. The subsystems CDIF-
Reader, ParseTree and Storage all have no invocations from outside. The decoupling
of these subsystems is clearly an improvement compared to the earlier release 2.02.
The invocation of the methods defined in the subsystems CDIFReader, ParseTree and
Storage are only accessed from the graphical user interface in MOOSE v3.34. The user
interface subsystem is not considered in tables 5.6 and 5.7.
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AbstractBase 9 - - - - - 1

CDIFReader - 75 5 4 - - 5

Importers 13 - 116 66 - 4 7

Model - - - 213 - - 8

Operators 40 - - 136 249 5 11

ParseTree - - 15 24 2 36 5

Storage 3 - - 4 8 - 420

Table 5.6: Invocations between subsystems, Moose v2.02
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AbstractBase 46 - - 2 2 - -

CDIFReader - 88 7 5 - - -

Importing 6 - 98 21 - - -

Model 2 - 8 555 - - -

Operators 2 - - 44 19 - -

ParseTree 2 - - 22 - 34 -

Storage 3 - - 41 - - 80

Table 5.7: Invocations between subsystems, Moose v3.49
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5.6.3 Accesses between Subsystems

QueryType Dependency
Model Scope Single Model
Information used A accesses B
Entity Scope Access

Idea:

We want to find out how data is accessed and exchanged between subsystems. We
therefore analyze from where attributes are accessed. It is problematic to let methods
access attributes defined in foreign subsystems. Such accesses violate the concept of
information hiding. If a method defined in subsystem A accesses an attribute of a class
in subsystem B, a change in the class of subsystem B may imply an adaptation of the
accessing method in subsystem A.

Example:

<MooseQuery>

<queryType value="MSESubsystemAccessesQuery" />

<mooseModel value="Model1" />

<negateFlag value="false" />

<subsystemPropertyName value="SubsystemName" />

<sourceSubsystemName value="SubsystemA" />

<targetSubsystemName value="SubsystemB" />

The query defined here returns all accesses of structural entities defined in subsystem
A through behavioral entities of subsystem B. The term structural entity derives from the
FAMIX meta model and comprises all types of variables like attributes or local variables.

Evaluation:

For attribute accesses we do not have the same problem regarding dynamically typed
languages as we have for invocations. We can determine the class implementing an
attribute uniquely. However we cannot determine precisely the type of an instance at
runtime containing the attribute. The instantiated type can be of one of the subclasses
inheriting the attribute.

The query reveals only direct attribute accesses between subsystems. It does not detect
indirect manipulation and accesses of attributes over accessor methods. In Smalltalk
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all attributes are protected. Thus the attributes can only be accessed by another class
directly over accessor methods. We would have to count the invocation of pure accessor
methods instead of attribute accesses.

Results with Moose:

Since all attributes in Smalltalk are protected, they are only accessible by methods within
the same class or downwards the inheritance tree. Accesses across subsystems are
therefore only found in case a class inherits form a class defined in another subsys-
tem. In order to conform to the concept of data abstraction, in Smalltalk code there are
frequently accessor methods used instead of direct attribute access. An invocation of
the accessor method in the respective class returns the value of or a reference to the
attribute. In Moose we are able to find out whether an invoked method simply returns
the value of an attribute (pure accessor method) for Smalltalk code.
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AbstractBase 62 - - - - - -

CDIFReader - 37 - - - - -

Importing - - 80 - - - -

Model - - - 730 - - -

Operators 2 - - - 17 - -

ParseTree - - - - - 140 -

Storage - - - - - - 68

Table 5.8: Accesses between subsystems, Moose v3.49

The query provides more useful results for code written in languages with public at-
tributes. Section 7.3.5 contains results regarding attribute accesses between subsys-
tems extracted from an industrial case study written in C++.



54 5. Useful Evolution Queries

5.6.4 Subsystem Inheritance Query

QueryType Dependency
Model Scope Single Model
Information used A inherits from B
Entity Scope InheritanceDefiniton

Idea:

Apart from invocations and accesses, inheritance denotes a third aspect of dependency
between two subsystems. If a class defined in subsystem A inherits from a class in
subsystem B, a change of the superclass defined in subsystem B may imply an adap-
tation of the class defined in subsystem A. A class defined in an application subsystem
should inherit from a class in the respective framework subsystem and not vice versa.
In combination with a dependency analysis based on invocations between subsystems
a part of the uncertainty because of inherited polymorphic methods can be eliminated.

Example:

<MooseQuery>

<queryType value="MSESubsystemInheritanceQuery" />

<mooseModel value="Model1" />

<negateFlag value="false" />

<subsystemPropertyName value="SubsystemName" />

<sourceSubsystemName value="SubsystemA" />

<targetSubsystemName value="SubsystemB" />

The query defined here returns all inheritances of classes defined in subsystem A from
classes defined in subsystem B.

Evaluation:

The query shows up unwanted inheritance dependencies between subsystems, for ex-
ample from a framework part to the application part. We use this query to ensure that
there is no unwanted inheritance between classes defined in different subsystems. A
class defined in a framework should not inherit from a class defined in an application.
Such an inheritance relation would entail a change propagation from an application to
the framework. It would make the whole framework dependent from one single appli-
cation built on top of the framework. With the Subsystem Inheritance Query we can
assess if a system conforms to the design guideline stated above.
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Results with Moose:

Table 5.9 shows the inheritance across subsystems. All subsystems except ParseTree
inherit from a class defined in AbstractBase. We expected that since AbstractBase con-
tains abstract superclasses of Moose. Other core subsystems then inherit from classes
defined in AbstractBase. All subsystems except CDIFReader inherit only either from
classes of the same subsystem or AbstractBase. Two classes in CDIFReader inherit
from Importing: MSECDIFImporter and its respective meta class defined in subsystem
CDIFReader inherit from MSEImporter defined in Importing.
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AbstractBase 8 - - - - - -

CDIFReader 2 - 2 - - - -

Importing 8 - 2 - - - -

Model 8 - - 56 - - -

Operators 4 - - - 2 - -

ParseTree - - - - - 8 -

Storage 6 - - - - - 10

Table 5.9: Inheritance across subsystems, Moose v3.49
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5.7 Useful Multiple Models Queries

5.7.1 Added, Removed Entities

Composition Concatenation
Information used Name
Model Scope Two Models
Entity Scope Entity

DefinitionAdded Classes:

∀e ∈ En, m < n | e 6∈ Em (5.7)

DefinitionRemoved Classes:

∀e ∈ Em, m < n | e 6∈ En (5.8)

Idea:

The Added Entities query extracts the unique names of all entities that are defined only
in the new version. For each collected unique name, the respective entity is searched
in the new model. Added entities of a certain FAMIX type are collected as follows: All
entities of a defined type are extracted from both versions. From both resulting sets
of entities, the unique entity names are extracted and stored in another two sets. The
unique names that are defined also in the old model are rejected from the collection of
entity names of the new model. The respective entities of these names are the added
entities.

The Removed Entities query extracts the unique names of all entities that are de-
fined only in the old version. For each collected unique name, the respective entity
is searched in the old model. The removed entities of a certain FAMIX type are collected
just complementary to the extraction of added entities described above. The unique
names defined in the new model are rejected from the unique entity names defined in
the old model.

Evaluation:

Since entities are matched over their entity name, the query only holds as long as the
entity has not been renamed between the two versions. If an entity still exists in the new
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version but has been renamed, it looks as if it was removed in the old version and a new
entity added in the new version.

Variations:

To find out which methods or attributes of one defined class were added or removed, we
can extend our query condition by a belongsToClass condition. The query then returns
only removed or added entities of one specific class.

Results with Moose:

Table 5.10 shows quantitative summary of the changes among the classes of the system
between the subsequent Moose releases. For each class the respective meta class is
considered as a separate class. Therefore all values in Table 5.10 are multiples of 2.
The only exception are the uneven 61 classes added between Moose v2.55 and v3.31.
This is due to the fact that stub class Behavior has been added to the model without its
respective metaclass.

Changes between releases Number of Classes
old release new release added remaining removed

1.01 1.09 12 178 4
1.09 2.02 18 190 -
2.02 2.35 20 164 44
2.35 2.55 42 158 26
2.55 3.31 61 170 30
3.31 3.49 12 197 34

Table 5.10: Changes in Moose regarding classes
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5.7.2 Class Inserted in Hierarchy

Composition Hierarchy
Information used HNL, Name
Model Scope Two Models
Entity Scope Class

Definition:

∃subclass(c), c ∈ Cn, c 6∈ Cm, m < n | δHNL(subclass(c)) > 0 (5.9)

Idea:

In certain situations it makes sense to split a class into two to have a new abstraction
level. If for example a class gets a new sibling with a lot of common behavior, we can
define a new superclass and move up common behavior. At the same time as a new
super class gets inserted, also a sibling of the split class is inserted. There are also
other reasons for splitting a class: We may split a class in two if it simply got overloaded
with functionality. In both cases we add a new superclass somewhere in the middle of
a hierarchy tree. The original class moves down, and the new superclass takes position
of the split class in the hierarchy tree. The query described here is supposed to detect
to such inserted classes. The inserted class must not exist in the old version. In order to
detect the inserted class, at least one subclass of the newly inserted class needs to be
moved down. Otherwise HNL of the original class does not increase and the detection
algorithm fails.

Class B Class C

Class A

Class A

Class CClass D

Class B

Figure 5.1: Class inserted in the class hierarchy
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Evaluation:

In case a class in the upward hierarchy of the inserted class is removed at the same
time, HNL of the moved down class won’t increase. As consequence the inserted class
won’t be detected. Since classes are identified over their name between versions, a split
class won’t be recognized as the same if it has been renamed between two versions.

Results with Moose:

We found in total five inserted classes in the hierarchy, three between v2.02 and v2.35
and two between v2.35 and v2.55 (see Table 5.11). The detected classes have been
introduced to collect common behavior of an existing and a newly inserted class. Class
AbstractPackagable for example contains the common behavior of the existing class
MSEClass and the added class MSEPackage between the two releases.

Moose releases
Found Inserted Classes

old new

1.09 2.02
AbstractPackagable

MSEAbstractMetricOperator

MSEAbstractModelRoot

2.35 2.55
MSEAbstractLocalEntity

MSESingleValueConverter

Table 5.11: Classes inserted in the class hierarchy
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5.7.3 Removed Superclass

QueryType Hierarchy
Information used HNL, Name
Model Scope Two Models
Entity Scope Class

Definition:

∃superclass(c), c ∈ Cold, c 6∈ Cnew | δHNL(subclass(c)) < 0 (5.10)

Idea:

We want to detect classes that have been removed in the middle of a hierarchy tree.
We search for classes that have been removed between the two versions. Removed
classes that have subclasses...

Class A

Class C Class D

Class B

Class A

Class DClass C

Figure 5.2: Class B is removed between the versions

Evaluation:

The query holds as long as there are no other changes at the same time in the upward
hierarchy of the removed class. A renaming of subclasses also confuses the condition
of the query.

Results with Moose:

We found MSEModelDescriptor that has been removed between Moose v2.55 and
v3.31
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AbstractRoot

ModelDescriptor

#name

...

ModelAttribute
Descriptor

ModelClass
Descriptor

...

#name

ModelAttribute
Descriptor

ModelClass
Descriptor

...
...

AbstractRoot

Figure 5.3: Class ModelDescriptor is removed in Moose v3.49
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5.7.4 Subclass Becomes Sibling

Composition Hierarchy
Information used HNL, NOC
Model Scope Two Models
Entity Scope Class

Definition:

c ∈ Cnew | δHNL(c) = −1 ∧ δNOC(super(cnew)) < 0 (5.11)

Idea:

A Subclass Becomes Sibling query helps to classify different kinds of moving in the
class hierarchy. It detects child classes that move one level up and become a sibling of
their previous superclass. HNL of the class and NOC of the superclass are expected to
decrease.

Class C

Class B

Class A

Class B Class C

Class A

Figure 5.4: Class C becomes a sibling of former superclass B

Evaluation:

This query holds as long as the moved class is not renamed, else it is no longer rec-
ognized as the same class in the new release. If there are too many other changes in
the hierarchy, the query also fails. If class B in the figure above gets new children, NOC
won’t decrease. If a new class is inserted in the superclass line of A, HNL won’t de-
crease. In fact there are possible causes to make a detection fail. Yet from experience
analyzing existing systems the query generally extracts the targeted classes well. There
are rarely many different changes in the hierarchy of a system at the same time. And if
there are, one solution is to decrease the interval between two analyzed version to get
more fine grained data about changes step by step.
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Results with Moose:

We found class MSEGlobalVariable that became a sibling of MSEImplicitVariable in re-
lease 1.09. In release 1.01 the class was a subclass of the future sibling class MSEIm-
plicitVariable. Although the two classes have some functionality in common, a Global
Variable is conceptually not an Implicit Variable. The inheritance relation was therefore
removed, and the classes moved on the same level in the class hierarchy.

Variable
MSEImplicit- MSEGlobal-

Variable

MSEAbstract-
StructuralEntity

MSEAbstract-
StructuralEntity

Variable
MSEImplicit-

MSEGlobal-
Variable

Figure 5.5: MSEGlobalVariable get sibling of MSEImplicitVariable
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5.7.5 Sibling Becomes Subclass

Composition Hierarchy
Model Scope Two Models
Information used HNL, NOC
Entity Scope Class

Definition:

c ∈ Cnew | δHNL(c) = 1 ∧ δNOC(super(cnew)) > 0 (5.12)

Idea:

The query detects a special change in the class hierarchy: classes that move down
in the hierarchy and get a subclass of a previous sibling class (class B). The hierarchy
nesting level (HNL) of the moved class C increases by one. At the same time the number
of children (NOC) of the new superclass B increases by one.

Class B Class C

Class A
Class A

Class B

Class C

Figure 5.6: Class C becomes a subclass of former sibling class B

Evaluation:

In case there are many other changes in the hierarchy at the same time, the query may
fail. NOC won’t necessarily increase if a child of class B in Figure 5.6 is removed at
the same time. On the other hand if a superclass of class B is removed, HNL of class
C won’t increase. These are possible causes to make a detection of the discussed
hierarchy change fail. Our experience gained from an analysis of different systems tell
us that there are rarely other changes at the same time that make the query fail. The
query generally extracts the targeted classes well. Since we identify classes over their
unique name between models, the query only holds as long as the moved class is not
renamed. Else it is no longer recognized as the same class in the new release.
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Variations:

NOC may be replaced by weighted number of children (WNOC). WNOC counts all chil-
dren of a class, not only direct subclasses. Therefore WNOC changes more significantly
than NOC if the moved class has a whole hierarchy tree of subclasses.

Results with Moose:

Class MSEAbstractMetricOperator is a sibling class of MSEPropertyOperator in Moose
release 3.31. In release 3.49 MSEPropertyOperator is moved down one level in the
class hierarchy, it got a subclass of MSEAbstractMetricOperator in release 3.49. This
change turned out to be a refactoring by mistake. The weird inheritance has been
removed again in the newest release. Astonishingly, class MSEAbstractMetricOperator
of release 3.49 was still running correctly.

# counter
# result

MSEAbstractOperator

MSEPropertyOperator

# properties

MSEAbstractMetricOperator

MSEPropertyOperator

# properties

# counter
# result

MSEAbstractOperator

MSEAbstractMetricOperator

Figure 5.7: MSEAbstractMetricOperator gets a subclass of MSEPropertyOperator
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5.7.6 Heavy Change in Hierarchy

Composition Hierarchy
Information used HNL, WNOC, Name
Model Scope Two Models
Entity Scope Class

Definition:

∀c ∈ Cnew | δHNL(c) > 0 ∧ WNOC(c) > 20 (5.13)

Idea:

This query detects moved classes with relatively heavy impact on the whole hierarchy
structure. The classes have several children and get pushed down in the hierarchy. A
possible scenario for such a change is a split of an abstract class where one part gets
declared in a newly inserted class.

Evaluation:

The query holds if there is no superclass removed from the system at the same time
since in such a case HNL would not change. To specify a hard-coded threshold of 20
for changes in NOC is a risk since there might also be an interesting split candidate with
only 19 children in total. This change value is supposed to be adapted to the size of a
software system.

Results with Moose:

The class MSEAbstractObject has been moved down in the class hierarchy between
release 1.09 and 2.02. Class MSEAbstractModelRoot has been inserted as the new su-
perclass. Class MSEAbstractObject has been split into two classes. Part of the behavior
has been moved up in the new class MSEAbstractModelRoot.
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MSEAbstractRoot

MSEAbstractRoot

MSEAbstractObject

# commentCollection
# id
# namedPropertiesDict
# sourceAnchor
# MSEModelClass
# VerbosityPrintingLevel

# commentCollection

MSEAbstractObject

# namedPropertiesDict
# sourceAnchor

# id
# MSEModelClass
# VerbosityPrintingLevel

MSEAbstractModelRoot

Figure 5.8: MSEAbstractObject gets split into two classes
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5.7.7 Attribute Push Up Classes

Composition Hierarchy
Information used NIV
Model Scope Two Models
Entity Scope Class

Definition:

∀c ∈ Cnew | δNIV (c) < 0 ∧ δNIV (super(c)) > 0 (5.14)

Idea:

If a variable for some reason is pushed up in its superclass, NIV decreases by one.
NIV of the superclass instead increases by one at the same time. This combination of
change is not likely to happen for another reason, therefore it is an indication for variable
push-ups. The query detects candidate classes for pushed up attributes from release
Mold to release Mnew.

Evaluation:

The algorithm supposes to have at least one attribute removed from a class and added
in the respective superclass of the next version. If between the versions other attributes
were added to the class, δNIV (x) may not be negative. This implies that the class is
not be detected as push up candidate anymore.

Results with Moose:

Between Moose v2.02 and v2.35 we found class MSESTAbstractParseTreeModelAnno-
tator as candidate using the query for pushed up attributes. A verification shows that
indeed two attributes have been pushed up to superclass MSESTMetricParseTreeEnu-
merator. This push up would have been hard to detect over entity names since the
variables are renamed in the superclass.

We found another push up candidate between Moose v2.55 and v.3.31. Attribute stream
has moved from class MSECDIFSaver to superclass MSEAbstractSchemaSaver. There
were no false positives detected among the analyzed versions.
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+ theModel

ModelAnnotator

ParseTreeEnumerator

+ currentSmalltalkClass
+ enumeratingParameters
+ currentSelector

+ theModel

ModelAnnotator

+ currentClassEntity
+ currentMethodEntity

ParseTreeEnumerator

+ currentSmalltalkClass
+ enumeratingParameters
+ currentSelector
+ currentClass
+ currentMethod

Figure 5.9: Two attributes are renamed and pushed up
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5.7.8 Method Push Up Classes

Composition Hierarchy
Information used NOM
Model Scope Two Models
Entity Scope Class

Definition:

∀c ∈ Cnew | δNOM(c) < 0 ∧ δNOM(super(c)) > 0 (5.15)

Idea:

In case methods are pushed up to a superclass between releases Mold and Mnew, NOM
of the receiving superclass increases. Simultaneously the class pushing up the methods
looses them and has NOM decreased. The query checks changes in NOM for each
input class and the respective superclass. If δNOM is negative for the analyzed class
and positive for the superclass, the class is returned as a candidate class for pushed up
methods.

Evaluation:

We detect pure method push-ups without problems with the above presented metric
change conditions. However in case other changes are performed between versions
at the same time, the query may fail. The NOM value is rather fragile, there are many
more methods added between versions than attributes. Therefore to be sure whether
the changes really originate from a push up it is necessary to compare the names of
removed methods in the analyzed class with added methods in the superclass.

False Negatives: δNOM(x) < 0 may not hold in case that methods were added to the
push-up candidate at the same time.

False Positives: There may have been some methods removed in the analyzed class
and some methods added in the superclass. In such a case the class fulfills the condi-
tions regarding changes in NOM even though no method has been pushed up.

Combinations:

If we compare the results of this query with the ones of query 5.7.10 (Moved Methods),
we find out whether there were really some methods moved up to the superclass class.
A combination of both queries provides more precise results.
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Results with Moose:

We found a couple of false positives between various Moose versions. Usually we found
a couple of removed deprecated methods, and at the same time some added methods
in the superclass. Nevertheless we found a pushed up method between Moose v2.02
and v2.35: Method import() moved up from subclass MSEVisualWorksParsingImporter
to class MSEVisualWorksAbstractImporter.
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5.7.9 Moved Attributes

Composition History
Model Scope Two Models
Information used name, unique name
Entity Scope Attribute

Definition:

anew ∈ Aadd | ∃aold ∈ Arem, attributename(anew) = attributename(aold) (5.16)

Aadd : ∀a ∈ Anew | name(a) /∈ Names(Aold)

Arem : ∀a ∈ Aold | name(a) /∈ Names(Anew)

Idea:

A Moved Attributes query helps us to find attributes that were moved from one class to
another one. If an attribute is moved to another class, its unique name changes. The
unique name 2 is a concatenation of class name and attribute name whereof the class
name part changes. The attribute name (in contrast to the unique name) however does
not change. We use the unique name as identifier of entities between versions. Since
the unique name of a moved attribute changes, it seems for us as if the moved attribute
is removed in the new version. At the same time it seems as if an attribute with the
same name appears in another class. To detect moved attributes, we make use of the
fact that the unique name changes, however the attribute name does not. We therefore
extract two sets containing attributes: one with all attributes that disappear in the old
version, and one with all added attributes in the new version. We compare these two
sets and use the attribute name as identifier instead of the unique name as usual. Pairs
with matching name are candidate moved attributes.

Evaluation:

We find all moved attributes that are not renamed at the same time. In case of a renam-
ing, the attribute name would change as well as the unique name. If there are classes in
the system that were renamed, their attributes are listed in the result as well. Attributes
of renamed classes look as if they were moved from one class to another one. In sys-
tems with lots of renamed classes, a considerable part of the result are attributes of
renamed classes. In a system without renamed classes, the resulting candidate moved
attributes are push ups, push downs or another kind of moved attributes.

2attribute unique name: ’classname.attributename’
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Variations:

We’d like to compare the set of moved attributes in both releases to see from which
classes they were moved to which ones. However our query concept does not allow
us to return both matching attributes from two different versions. It only allows a result
collection to contain only entities of one single model. Therefore we need to choose
either the new version or the old version as output model. To identify from where to
where an attribute has been moved, we have to compare the output of both versions.
Therefore we define two queries, one returning attributes of the new model and one
returning attributes of the old model.

Combinations:

In case we are interested only in the classes the moved attributes belong to, we can
extend the query by an additional conversion composite (see Section 4.3.3). The new
query returns classes instead of the moved attributes.

Results with Moose:

We found many moved attributes between the different versions. In we list an informal
classification of different reasons for the movement of attributes. The different reasons
are mainly renaming of the class they belong to, attribute push ups and push downs.
As we see in Table 5.12, many of the resulting attributes were not really moved, instead
the class they belong to was renamed. We have always two classes defined in Moose
for each class defined in Smalltalk code (instance and class side). If a Smalltalk class
is renamed, both the instance side and the class sides get renamed. We therefore
expect even numbers for detected renamed classes. However we have also uneven
numbers in Table 5.12. If one of the class sides has no methods defined, we do not
detect that class side as renamed. The numbers in brackets stand for false positives.
False positives occur if two distinct attributes with the same name are defined in two
different classes: one in a class that is removed and the other one in an class that is
added between the versions.

We present as an example the moved attributes between Moose v2.55 and v3.31 more
in detail. In total we found eleven moved attributes. We list the resulting attributes in
Table 5.13 and additionally state for each attribute the reason of the movement.

Class MooseLoader, which is an implementation of a graphical user interface, has
been renamed to MSESmalltalkLoaderUI, taking over 6 of 9 attributes. A part of the
graphical user interface defined in class MooseLoader got separately defined in class
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Release Total Class Attribute pushed misc.

old new moved renamed up down

1.01 1.09 2 1 - - (1)

1.09 2.02 6 - 5 - (1)

2.02 2.35 14 4 - - 10

2.35 2.55 29 28 - 1 -

2.55 3.31 11 7 2 1 1

3.31 3.49 6 6 - - -

Table 5.12: Moved attributes between subsequent Moose releases

Attribute Belongs to Class
Name in Version 2.55 in Version 3.31

checkedIntermediates MooseLoader MSESmalltalkLoaderUI
cmbImportLevel ” ”
leftPanel ” ”
reificationLevels ” ”
selectedClasses ” ”
selectedClassList ” ”
fileName MooseLoader MSEFileLoaderUI
converter MSECDIFSaver MSEAbstractSchemaSaver
stream ” ”
name MSEModelDescriptor MSEModelAttributeDescriptor
schemaDictionary MSESchemaSaveToStream MSESchema

Table 5.13: Moved attributes, Moose v2.55 and v3.31

MSEFileLoaderUI in version 3.31. The attributes converter and stream of class MSE-
CDIFSaver have been moved up to superclass MSEAbstractSchemaSaver. Class MSE-
ModelDescriptor is removed in version 3.31, attribute name has been moved down to
subclass MSEModelAttributeDescriptor. Class MSESchemaSaveToStream has been
renamed to MSESchema.

The 10 moved attributes in column miscellaneous of Table 5.12 between Moose v2.02
and v2.35 result from the extracted class MSEImportingContext (see Figure 5.10). The
importing context contains information about how to load a model. It has been extracted
from the importer class in order to be able to instantiate a couple of default importing
contexts without changing the importer.
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# DefaultHaveExplicitMetaClasses
# DefaultSaveCategory
# DefaultSaveComments
# DefaultSaveSourceReference
# haveExplicitMetaClasses

# omitMethodInvocations
# saveCategory
# saveComments

MSEVisualWorks-
AbstractImporter

# isMetaClass

# saveSourceReference
# smalltalkClasses

# importingContext

# omitMethodInvocations
# operators
# smalltalkClasses

MSEVisualWorks-
AbstractImporter

# isMetaClass

# DefaultHaveExplicitMetaClasses
# DefaultSaveCategory
# DefaultSaveComments
# DefaultSaveSourceReference
# haveExplicitMetaClasses
# levelOfModel
# saveCategory
# saveComments
# saveSourceReference

Context
MSEImporting-

Figure 5.10: ImportingContext has been extracted from VisualWorksAbstractImporter
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5.7.10 Moved Methods

Composition History
Model Scope Two Models
Information used signature, unique name
Entity Scope Method

Definition:

mnew ∈ Madd | ∃mold ∈ Mrem, signature(mnew) = signature(mold) (5.17)

Madd : ∀m ∈ Mnew | name(m) /∈ Names(Mold)

Mrem : ∀m ∈ Mold | name(m) /∈ Names(Mnew)

Idea:

A Moved Method query helps us to find methods that were moved from one class to
another one. In case a method is moved to another class, its unique name changes.
The method signature however does not. Since the unique name of a moved method
changes, it seems for us as if the method is removed in the new version. It seems also
as if a method with the same signature appears in another class. For the detection of
moved methods, we make use of the fact that the unique name changes, however the
method signature does not. We extract two sets containing methods: one with all meth-
ods that disappear in the old version, and one with all added methods in the new version.
We compare these two sets and use the method signature as identifier instead of the
unique name as usual. Pairs with matching signature are candidate moved methods.

Evaluation:

We find all moved methods that are not renamed at the same time. In case of a re-
naming, the method signature would change as well as the unique name. If there are
classes in the system that were renamed, its methods are listed in the result as well.
Methods of renamed classes look as if they were moved from one class to another one.
In systems with lots of renamed classes, a considerable part of the result are methods
of renamed classes. The query therefore also allows us to detect renamed classes. In
a system without renamed classes, the resulting candidate moved methods are push
ups, push downs or another kind of moving methods.

The Moved Methods query generally contains more noise than a Moved Attributes query
5.7.9. In Smalltalk code nearly every class implements a method called initialize. If
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between the versions a class is removed and another one added, both implementing a
method named initialize, the two methods are identified as a pair. They are therefore
listed in the result even though there was no method moved between the two versions.

Variations:

We’d like to compare the set of moved methods in both releases to see from which
classes the methods were moved to which ones. However our query concept does not
allow us to return both matching methods from two different versions. It only allows
a result collection to contain only entities of one single model. Therefore we need to
choose either the new version, or the old version as output model. To identify from
where to where a method has been moved, we have to compare the output of both
versions. Therefore we define two queries, one returning entities of the new model and
one returning entities of the old model.

Combinations:

The query can be combined with a belongs to class relation query to retrieve only the
classes with moved methods. An intersection with all classes that have an increased
NOM metric value reveals candidates that received the moved methods.

Results with Moose:

Since there are methods than attributes with the same name defined in several classes,
the amount of false positives is bigger. Table 5.14 shows the amount of moved methods
for all analyzed releases. The number of moved methods in the old version does not
match with the number for the new version. These numbers should theoretically be
identical since a moved method exists in both versions. The result therefore contains
also noise. In the last two columns we state the amount of methods with the signature
initialize. We see that for example between the first two versions that one method with
signature initialize has been removed, and 16 classes implementing the same signature
added. Only one of these 16 initialize methods is the moved method one.

Analyzing moved methods also helps to detect renamed classes. A method that belongs
to a renamed class likely kept its name, but has a changed unique name since the
according class name has changed. If a class is renamed, all its methods appear as
alleged moved methods (it looks as if they were moved from the old class name to the
new one). Classes with a big number of moved methods are potential candidates for
renaming (Table 5.15).



78 5. Useful Evolution Queries

Moose Total Methods initialize

Release old new old new

1.01 1.09 5 21 1 16

1.09 2.02 133 127 16 7

2.02 2.35 103 104 21 11

2.35 2.55 230 236 15 14

2.55 3.31 78 75 6 25

3.31 3.49 49 50 13 15

Table 5.14: Moved methods between subsequent Moose releases

Moose Number of Moved Methods

Release 1 >1 >5 >10

1.01 1.09 - 1 - -

1.09 2.02 5 3 - 3

2.02 2.35 18 8 1 1

2.35 2.55 10 14 6 9

2.55 3.31 27 10 - 1

3.31 3.49 9 2 3 1

Table 5.15: Number of classes containing a number of moved methods
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5.7.11 Method Extracted

Composition Affiliation
Model Scope Two Models
Information used NOM, NI
Entity Scope Method

Definition:

m ∈ M | δNI(m) < 1 ∧ δNOM(class(m)) > 0 (5.18)

Idea:

Too many invocations in one method indicate split candidates. A part of the algorithm
defined in complex methods may be used for other methods as well. Furthermore meth-
ods containing lots of invocations are hard to understand. A Split Methods query tries
to find methods that have been split. What happens if a method is split in two? First the
number of invocations (NI) of the method decreases. The removed invocations need
to be implemented somewhere else, usually in a newly created method of the same
class. Therefore we expect that the number of methods (NOM), of the class the method
belongs to, increases.

Evaluation:

There are usually a couple of classes with increased number of methods. Also methods
with a more elegant implementation in the new version are frequently found. Therefore
NOM and NI are both volatile metrics. As a consequence the query also returns some
false positives. In case we get too many false positives as result, we can adapt the
thresholds. However if we choose too restrictive thresholds, we risk to increase the
number of false negatives.

Variations:

The missing invocations in the method may have been refactored and pushed up in a
superclass. We could also check the condition NOM(super(class(x))) instead to see
whether there were any methods extracted in the superclass.
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Results with Moose:

A part of the functionality of method preClass in class MSESTParseTreeBuildingEnu-
merator has been extracted between Moose release 1.01 and 1.09. The extracted func-
tionality is implemented in two methods reifyClassAndSuperClass and reifyAttributes. in
release 1.09.

preClass

"Create a MSE class if not already created, then create

its superclass and the inheritance relationships between

the two."

super preClass.

self reifyClassAndSuperClass.
self reifyAttributes.
selfVarDefinition := nil.

superVarDefinition := nil

Astonishingly we only found a couple of false positives besides the above mentioned
method. A lot of methods are usually extracted in the prototyping phase of a develop-
ment cycle. The analyzed core of Moose is rather stable now. This may be a reason
why we did not find method extractions. Frequently when we extract functionality from
a method, we give the original method a new appropriate name. Unfortunately we don’t
find extracted renamed methods with our query. We have to combine the information
about renamed classes with the information about extracted methods to tackle this prob-
lem. We are then able to track renamed methods beyond a renaming. We would also
detect extracted parts of a renamed method.
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5.8 Summary

In the previous sections we described our findings about MOOSE for each query sepa-
rately. Here we summarize our results to show what we found out about the analyzed
case study using our queries. Table 5.16 summarizes the findings of Table 5.10 and
Table 5.12. We take into account that each Smalltalk class is stored twice in a MOOSE

model (instance and class side) and count each class only once.

Release Number of Classes
Total Added Removed Renamed

1.01 91 - -
1.09 95 5 1 1
2.02 104 9 - -
2.35 92 8 20 2
2.55 100 8 - 14
3.31 116 27 11 4
3.49 105 3 14 3

Table 5.16: Summary of the changes in Moose regarding classes

We see that MOOSE is a rather vivid system with changes between two releases up to
about 25% of the total amount of classes. Compared to other case studies we detected
many movements in the class hierarchy and many renamed classes. The changes in
metric values (see Table 5.4) further suggest that there has been continuous refactoring
applied on the source code. The developers seem to care about where they implement
new functionality and to adapt existing parts if necessary. Moose has been implemented
in VisualWorks Smalltalk. This software development environment supports well differ-
ent refactorings through the use of the Refactoring Browser [ROBE 97].
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Chapter 6

Towards a Methodology for an
Evolution Analysis

6.1 Introduction

In Chapter 5 we presented a number of different queries, each one extracting entities
with specific characteristics regarding change, dependency or other criteria. Based on
these findings we try to define a methodology in order to retrieve essential information
about an analyzed software system. We suggest which queries we best apply in which
situation. We also suggest a certain order in which we best apply our queries. The idea
is to apply more general queries first to get an overview of the system. Once we have
determined interesting aspects to follow more in-depth, we apply more specific queries
on particular subsystems to analyze them more in detail.

6.2 An Initial Methodology

We group our queries described in Chapter 5 into different categories. Each category of
queries enables us to investigate a part of the code structure or to filter the model from
irrelevant data. The functional categories are the following:

• Filtering: Filtering of Source Code Entities to Create a Clean Model

• Change: Calculation of Size Metrics and Change Metrics of the System

• Subsystem: Grouping of Entities into Subsystems, Subsystem Dependency Anal-
ysis

• Hierarchy: Detection of Changes in the Class Hierarchy
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• Move: Moving of Features between Entities

• Renaming: Detection of Renaming

Table 6.1 shows an overview of all queries described in Chapter 5. There we classified
the presented composite queries into different query types according to the composition
mechanism used. Here we assign each query to one of the above described functional
categories. These categories are targeted for practical use to retrieve information about
specific criteria.

Query Name Information Used Scope Category

Entity Name name Entities Filtering

Metric Value metric values Entities Filtering

Subsystem Affiliation change metrics Entities Filtering

Metric Change change metrics Entities Change

Added Entities name Entities Change

Removed Entities name Entities Change

Subsystem Invocations invocation Invocations Subsystem

Subsystem Accesses accesses Accesses Subsystem

Subsystem Inheritance inheritance Inheritance Definitions Subsystem

Class Inserted HNL, name Classes Hierarchy

Removed Superclass HNL, name Classes Hierarchy

Subclass Becomes Sibling HNL, NOC Classes Hierarchy

Sibling Becomes Subclass HNL, NOC Classes Hierarchy

Heavy Change in Hierarchy HNL, WNOC, name Classes Hierarchy

Attribute Push-up Classes NIV Classes Move, Hierarchy

Method Push-up Classes NIV Classes Move, Hierarchy

Moved Attributes name Attributes Move, Renaming

Moved Methods name Methods Move, Renaming

Method Extracted NOM, NI Methods Move

Table 6.1: An overview of all presented queries in Chapter 5

Figure 6.1 suggests a procedure for an analysis of unknown case studies. We describe
here some rationale for each category separately:

Filtering: We start on top with the category Filtering. We apply these queries first on a
case study to remove unimportant source code information.

Change Overview: The queries in the next category Change Overview support us to
get to know about overall changes between different source code releases. We
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Subsystem
Dependency

Changes in
Class Hierarchy

RemovedEntities

SubsystemInheritanceQuery

Detection
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Setup of Model /
Filtering

EntityNameQuery
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AttributePushUpClass
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SubclassBecomesSibling
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RemovedSuperclass

AddedEntities

MetricChangeQuery
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MovedAttributes

MethodExtracted

Renaming

Figure 6.1: Towards a methodology to identify changes and dependencies

find out about additions and removals of entities, and about changes of persisting
entities.

Subsystem Dependency: In a next step we can apply Subsystem Dependency que-
ries on each of the releases separately. It is advisable to group the functionality
of a large system into functionally related parts. This makes a system more un-
derstandable and encapsulates closely related functionality like for example I/O
handling in subsystems. With our subsystem dependency queries we want to find
out how the different parts interact with each other. We want to see whether the
functionality of one subsystem is only accessible over a well defined interface to
the outside, or if external classes have direct access to data defined in other sub-
systems.
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Class Hierarchy: Once we know about overall changes in the history of a system, we
may analyze changes in the class hierarchy more in detail. We search for classes
which have been implemented quickly somewhere in the system, but would rather
belong to another place. We find them in case they have been moved during
redesign. We may also find classes that have been added to generalize common
behavior that would otherwise be implemented twice.

Moved Features: We want to analyze movements of objects between classes or within
the same class (method extraction). Such movements express a redistribution of
responsibility. We want to find out where features turned out to be implemented at
the wrong place, for example after an initial design has been extended. We may
also detect moved features as a consequence of refactoring.

Renaming Detection: Since we heavily rely on the identification over unique entity
names between versions, we are interested to see where such an identification
fails. Therefore we need a to find renamed classes, methods and attributes. A
Renaming Detection query finds candidate entities that have likely been renamed.

6.3 Conclusion

We applied the described methodology or parts of it on five case studies. The results
of two case studies are presented in this work: the result of MOOSE for each query
separately in Chapter 5, and the analysis of a large C++ system developed at Nokia
Networks in Chapter 7. Additionally we analyzed the visualization tool CodeCrawler
written in Smalltalk (∼ 100 classes) [LANZ 99], a smaller C++ case study from industry
(∼ 150 classes) and the Java Swing framework. Presenting the results of all these case
studies would go beyond the scope of this work. We rather evaluate for each category
separately the results we were able to extract:

• Filtering: We use the filtering mainly for non-Smalltalk code. We cannot control
the extracted data in external parsers and therefore need to filter it before we
analyze the model. We observed drastic differences regarding system metrics
(number of classes etc..) between filtered and unfiltered model information. We
were able to exclude irrelevant stub classes by taking only classes containing at
least one method, or by filtering according to naming conventions. We were able
to select entities of desired subsystems for Smalltalk code as well as for non-
Smalltalk code.

• Change: We got a good overview of additions and removals regarding entities for
all analyzed case studies. We also got clear statements about changes regard-
ing metric values. We especially focused on changes in HNL, NOM, NIV, NOC
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and WNI. Since we did not encounter heavy renaming between two versions of
the analyzed case studies, we got our results rather confirmed in a manual code
analysis.

• Subsystem: We were able to detect dependencies between static information de-
fined in the source code. The queries regarding inheritance and invocation worked
well for all case studies. We were able to detect weird accesses, invocations and
inheritance from classes defined in a framework to attributes defined in the source
code of an application. We could not find accesses across subsystems in Smalltalk
code since the language does not support direct access of attributes from outside
a class.

• Hierarchy: In four of the five case studies we detected only few changes in the
class hierarchy, still we found some in each analyzed case study. Since a change
in the class hierarchy entails rather heavy restructuring in the code, we still regard
the queries of this category to be useful. Moose contains the most interesting
movements in the class hierarchy.

• Move: We analyzed moved methods and attributes in the two Smalltalk case stud-
ies only. We found out that the result contained many methods defined in renamed
classes. This showed us that we need to split these queries, one extracting entities
of renamed classes, and one extracting the actually moved entities.

• Renaming: We found an efficient way to detect renamed classes with the analysis
of moved methods and attributes between releases. However we did not integrate
the information about renamed classes into our change analysis. This would allow
us to track changes of a class beyond the release where it got renamed.
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Chapter 7

Experience and Validation in Industry

”We end up writing papers that are read by our fellow researchers but not
many others. We also spend too little time finding out what practitioners
know, think and need.” [PARN 94]

7.1 Introduction

During the now concluded FAMOOS project (see Section A.1) we initiated a collabora-
tion on reengineering topics with partners in industry. This collaboration allowed us to
validate and extend our reengineering platform Moose and tools based on Moose in
a non-academic environment. Our research group has been able to analyze twice a
software system during a one week workshop at Nokia, a leading telecommunications
equipment manufacturer. During a seven month internship at Nokia in summer 2000,
we were able to test and adapt the research tool for an analysis of code written in indus-
try. The internship has been funded by the ESAPS project, a project within the Eureka
Σ! 2023 Programme (ITEA project 99005).

All results presented in this chapter are extracted from the same case study, a large em-
bedded system written in C++ and partly in C (∼ 600 KLOC). The system is a network
node management software developed at Nokia Networks. The system consists of a
whole family of software that manages the access between various wireless and cable
networks. The software has been developed over several years. Customized versions
of the system have been delivered to various network service providers in the telecom-
munication domain. We have extracted a core part called Network Access Node for an
evolution analysis.

First we describe how we extracted the source code from the system and loaded the
data for an analysis in our reengineering tool. In a second part we present an informal
overview of the results we gathered while we analyzed the software. The results should



90 7. Experience and Validation in Industry

present what information we are able to extract from the source code and how the data
can be interpreted. We did not intend to present an in-depth analysis of the software
system.

7.2 From the Source Code to the Moose Model

7.2.1 Code Extraction and Metric Calculation

The source code of the Network Access Node software was stored in the version control
tool ClearCase [RATI 00]. We extracted the information directly from the source code.
First we parsed the C and C++ files using the software analysis tool Sniff [SNIF 00]. We
extracted the information from Sniff using a tool that directly accesses the Sniff API and
stores relevant entities information in the exchange format CDIF [DEME 99b]. Then we
loaded the CDIF file containing the whole model information of one single release and
stored it as a model in the Moose environment. Furthermore we ran several operators
over the entities, each operator calculated some basic metrics of the entities. For a
comparison between different versions it was necessary to load several models at the
same time. We stored each version in a separate model.

7.2.2 Cleaning the Model

When information is extracted directly from the source code of a large framework, there
are always a lot of details extracted that are not important for an analysis of the struc-
ture. Our parser of the code was rather tolerant, therefore we had as a consequence
some data stored in the model that may be misinterpreted. Such noise in a model can
significantly falsify metrics calculations. As an example, our parser interpreted each de-
fined STRUCT as a class with attributes but no methods. Therefore we had a lot more
classes stored in the model. A major part of the stored classes were just data structures
which were not classes with responsibilities defined in methods and attributes. Using
different queries we were able to detect such struct classes. These queries contained
conditions about name conventions, metric values, source anchor etc.

7.2.3 Size Metrics on System Level

The queries defined in the tool MOOSEFINDER are helpful for counting entities satisfying
specific conditions. A query always requires a set of meta objects as input and then
returns a selected set of them as output. New metrics can easily be set up running
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a query over one version, simply counting the number of output objects satisfying the
query conditions.

7.2.4 Extracting Subsystem Information

The grouping of entities is not yet implemented in Moose. However each stored entity
in the CDIF file has a source anchor attribute. The source anchor contains information
about the path and the file where the entity is defined in the code. If classes are stored in
different directories, one directory for each subsystem, then the subsystem information
can be extracted from the source anchor. In the analyzed software the entities are
stored in different subfolders according to the subsystems structure. Before running
queries using subsystem information, a subsystem operator has to run over the model
and assign each entity its according subsystem. The subsystem is currently stored as
a property of the entity.

7.3 Results of the Code Analysis

7.3.1 How we apply query-based approach

An important issue of our query based-approach is scalability. It is helpful to follow a
systematic sequence applying queries on a case study. We first apply a set of general
queries on the code to get an overview of the system and the changes between ver-
sions. We collect the results for different releases and subsystems in a spreadsheet.
The spreadsheet shows us which parts of the system have changed and what kind of
changes have been performed. After we have identified some general types of changes,
we apply more specific queries on the respective system parts. These queries reveal
more precise information about detected changes in the code. We avoid analyzing more
in detail subsystems that did not change. We just state the parts of the code that did not
change during evolution. In case we detect subsystems with for example no changes in
the class hierarchy, we do not further analyze and classify the movements in the class
hierarchy.

7.3.2 System Level Metrics

Table 7.1 gives an overview of the system size and the changes between the subsequent
versions. The system grows slightly in size from version to version. The time from the
release of the first version to the last version is about 18 months.
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Number of

Release Classes Methods Attributes Invocations Accesses

1 2305 24240 28237 55638 62703

2 2348 24936 28248 56587 64190

3 2475 26227 30183 61514 68969

4 2478 26306 30325 61707 69349

5 2742 29125 34683 69438 77670

6 2822 29650 37106 71067 83328

Table 7.1: Basic size metrics of the 6 extracted releases
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Figure 7.1: Relative size of the analyzed subsystems

7.3.3 Change Analysis between Versions

Changes in Class Names

We first analyzed the changes regarding the names of classes defined in each of the
six analyzed versions. A new class name indicates that either the class has been added
to the system or an existing class has been renamed. Figure 7.2 shows the changes
regarding class names over the lifecycle of the system. Each pile is split in existing class
names and added class names in the respective release. The remaining classes are
at each case less than the previous total number of classes. This shows that between
each release some classes have been removed. These numbers were calculated using
queries matching a specific entity type in the same release and counting the output.
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Figure 7.2: Changes regarding class names

Changes in Class Level Metrics

Comparing the metric values of the same entity defined in two subsequent versions
shows where and what changes have been performed between two versions. Figure 7.3
shows the total number of classes in for each version and the amount of classes with
changed NOM value. A change in NOM of a class shows where functionality has been
added or removed. Towards version 5 and 6 the change rate has increased more than
the total number of classes. This indicates that there has been more restructuring on
method level than in earlier versions. Nevertheless a major part of the classes in the
system has no methods added or removed, this assumes that the interface of the frame-
work remains quite stable.
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Figure 7.3: Changes in NOM among all classes
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Number of Classes

Versions Common HNL NIV NOM

Classes < = > < = > < = >

V1 − > V2 2281 2 2271 8 6 2257 18 2 2243 36

V2 − > V3 2347 0 2347 0 4 2332 11 8 2330 9

V3 − > V4 2471 0 2470 1 5 2434 32 5 2422 44

V4 − > V5 2440 5 2425 10 38 2327 75 46 2271 123

V5 − > V6 2560 6 2552 2 33 2428 99 22 2392 146

Table 7.2: Changes in metric values between versions between V5 and V6

7.3.4 Subsystem Level Metrics

One goal when analyzing a system is to be able to detect hot spots in the system with
significant changes. These hot spots should consist of a reasonable amount of code
entities which can be further analyzed manually. The system may be so big that also
hot spots contain too many entities to analyze all of them in depth. In such a case
its easier to classify closer related entities into subsystems. Each subsystem may be
a reusable component in other applications. In case we can reuse only one specific
subsystem of the whole, we need to analyze a single subsystem only anyway. In the
Network Access Node case study, each stored entity of the model has a source anchor
attribute. This attribute contains the path and name of the file where the entity is defined.
Classes that belong to the same subsystem are stored in the same subdirectory. That
offers an easy way to determine subsystem affiliation for each entity.

Metrics on Class Level

The change of metric values for classes that persist over several versions indicates var-
ious changes between versions. Table 7.3 presents for each subsystem the change of
the metric values HNL, NOM and WNI between the latest two releases. We see that
a major part of the common classes do not have changed values. There are only few
classes with increased NOM and even less having methods removed. We also see that
there are hardly any changes in the hierarchy nesting level (HNL). Yet there are a couple
of changes in the weighted number of invocations. WNI seems to be the most fragile
metric value, indicating also slight changes in invocations inside a method. Based on
these extracted change metrics we can conclude that the main changes between ver-
sion 5 and 6 are some added classes (Figure 7.2) and adaptations in existing methods.

A significant amount of classes with changed HNL value indicates either that a whole
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Number of Classes

Subsystem Total HNL NOM WNI

< = > < = > < = >

Application D 31 - 31 - - 31 - - 31 -

Framework D 1 - 1 - - 1 - - 1 -

Application G 269 - 269 - - 261 8 16 241 12

Framework G 338 - 338 - - 335 3 54 271 13

Framework L 28 - 28 - - 27 1 3 23 2

Application N 132 - 132 - 7 102 23 25 72 35

Framework N 446 - 446 - 2 432 12 38 377 31

Application P 45 - 45 - - 45 - - 45 -

Application Q 128 6 122 - 4 115 9 30 86 12

Framework Q 836 - 834 2 3 787 46 168 618 50

Application S 5 - 5 - - 5 - - 5 -

Framework S 165 - 165 - - 165 - 2 163 -

Application T 253 - 253 - 3 218 32 68 139 46

Framework T 316 - 316 - 3 301 12 37 254 25

Table 7.3: Change metrics for each subsystem separately

leaf has been moved with the root inheriting from a new class, or a class at a high level
in the hierarchy has been inserted (HNL increased) or removed (HNL removed). We
analyzed further the decrease in HNL of the 6 classes in application Q. The decrease
mainly originates from a shift of a whole leaf containing one superclass and 4 inheriting
classes. The superclass inherits in the new release from a stub class outside the scope
of the analyzed subsystems 7.4. Classes SUserPort1 and VObserver have a HNL value
of 0 because their superclasses are not defined in the analyzed code.

Changes between Releases on Subsystem Level

The analysis of each individual subsystem separately gives more fine grained informa-
tion about the evolution of the different parts of the software system. For an analysis
of a single subsystem we only consider entities that belong to the chosen subsystem.
We may detect rather stable, autonomous subsystems that do not change over several
versions. Other subsystems may grow fast and change a lot between each release.

1The class names in the diagram were renamed, preserving part of the meaning they have in the
software system.
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Figure 7.4: Changed class hierarchy from versions 5 to 6

Besides the growth and change rate of subsystems another interesting aspect is the
coupling between different subsystems. Do they change synchronously because of
close interaction and therefore change propagation? Figure 7.5 shows the changes in
WNI of the application side of subsystem Q.
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Figure 7.5: Changes in weighted number of invocations WNI
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7.3.5 Subsystem Dependency

Besides changes in metrics of entities, dependency changes among subsystems are
another interesting aspect in evolution of a software system. Subsystem dependency
is interpreted here counting invocations, accesses and inheritance across subsystems.
A high number of invocations and accesses between two subsystems means that they
interact closely. In this case changes in one subsystem may affect also the other subsys-
tem. If a clean initial design separates the subsystems rather strictly, evolution analysis
may document that the code gets more dependent through quick adaptations, ignoring
the concepts of a clean design. Inheritance from a class defined in another subsys-
tem means that each time the subclass is changed, also the subsystem containing the
superclass has to be tested and recompiled.

Invocations across Subsystems

Version 6 Application
Invocations D G N P Q S T

Fr
am

ew
or

k

D - - - - - - -
G - 26 - - - - -
L - 2 - - - - -
N - 17 7 - - - -
Q - 73 3 - 46 - -
S - 2 - - - - -
T - 64 - - - - -

Table 7.4: Invocations from framework to application

Version 6 Framework
Invocations D G L N Q S T

A
pp

lic
at

io
n

D - - 3 - - - -
G - 201 1 - - - 87
N - 147 3 428 15 - 407
P - - - - - - -
Q - 61 10 16 1805 - -
S - 4 - - - - -
T - 57 12 - - - 1072

Table 7.5: Invocations from application to framework
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An interesting dependency in the analyzed case study is the one from the application
to the framework part. From an architectural point of view it would be preferable that
the framework part does only invoke methods in the application part that have been
implemented as hooks in the framework part already. In other words, the framework
part should invoke in the application overridden methods defined in a framework class
only. Only then the framework provides the common basic functionality for different
applications built on top of it. Table 7.4 shows the result of queries counting the number
of invocations across subsystems. Comparison over several versions indicates whether
the subsystems get more dependent from each other when adding complexity.

There are very few invocations from the framework to the application compared with
invocations from the application part to the framework part. However the invocations in
the direction Framework -> Application are critical, especially those invoking between
different subsystems. There are several framework methods invoking methods of the
application G (General Services). We need to say here that we are not able to derive
an invoked method precisely since we do not know exactly the type of an object due to
polymorphism. Yet in case of invocations, a dependency problem remains anyway, since
either classes of the framework part invoke or inherit from classes of the application part.
Polymorphism is only possible up the inheritance branch.

Accesses across subsystems

Version 6 Application
Accesses D G N P Q S T

Fr
am

ew
or

k

D - - - - - - -
G 2 347 - - - - 20
L - - - - - - -
N - - 109 - - - -
Q - - - - 102 - -
S - - - - - - -
T - - - - - - 116

Table 7.6: Accesses from framework to application

Accesses unlike invocations can be determined uniquely in a static analysis of C++
code. We do not have the information about the exact type of an object in our model.
Protected and public attributes may belong to a variety of object types at runtime due
to polymorphism. The possible types are reduced to the set of subclasses of the class
the accessed attribute is defined in after all. We were astonished to detect various
direct attribute accesses across subsystem boundaries. To be sure, we really checked
a couple of these accesses manually and found our findings confirmed.
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Version 6 Framework
Accesses D G L N Q S T

A
pp

lic
at

io
n

D - - - - - - -
G - 26 - - - - -
N - - - - - - -
P - - - - - - -
Q - - - - - - -
S - - - - - - -
T - - - - - - -

Table 7.7: Accesses from application to framework

Inheritance across Subsystems

Version 6 Application
Inheritance D G L N Q S T

Fr
am

ew
or

k

D - - - - - - -
G - 4 - - - - -
L - - - - - - -
N - 6 - - - - -
Q - 2 - - - - -
S - 1 - - - - -
T - 3 - - - - -

Table 7.8: Inheritance from framework to application

Inheritance relations state another kind of dependency between subsystems. Changes
in a superclass may have an influence on the subclasses. If the implementation of
an inherited method changes, it changes also for all subclasses that do not override
the method. Also changes in protected or public attributes are propagated down the
hierarchy tree. Inheritance between classes defined in different subsystems therefore
makes the subsystems dependent from each other. In statically compiled languages, all
dependent subsystems have to be recompiled after changes in one subsystem.

In a clean framework-application design classes defined in a framework should not in-
herit form classes defined in an application. Table 7.8 shows that classes defined in
framework G inherits from a class defined in the application part G. We checked these
classes manually in the source code and found out that several classes inherit from an
obsolete class defined in the application subsystem G. We suggest to either remove the
obsolete class, or to move it at leas in the framework part.

A closer analysis in CodeCrawler showed a rather heterogeneous hierarchy tree. Figure
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Version 6 Framework
Inheritance D G L N Q S T

A
pp

lic
at

io
n

D - - - - - - -
G - 18 - - - - 1
N - - - 51 2 - 18
P - - - - - - -
Q - - - - 77 - -
S - - - - - - -
T - - - - - - 194

Table 7.9: Inheritance from application to framework

Application

Framework

Figure 7.6: Heterogeneous class hierarchy

7.6 shows an abstract schema of the hierarchy tree structure. We see that in subsystem
G a framework class inherits from classes defined the application. Further down in the
hierarchy are again framework classes defined, inheriting from an application class. The
uncolored classes are defined outside subsystem G.

7.4 Conclusion

We were able to detect different types of change such as additions or removals of enti-
ties. We also found out changes in metric values of persisting classes. These changes
are not big compared to the total size of the system. There were never more than
15% of new classes added between two releases, and classes with changed number
of methods (NOM) were generally less than 5% of the total amount of classes. We did
not detect many movements in the class hierarchy and not many changes of NIV values



7.5 Lessons Learned 101

either. We therefore conclude that the main changes between the analyzed releases
are classes added due to a system extension. The analyzed system presumably was
pretty mature since the first analyzed version already. Yet the sum of the changes for
the whole system equalizes the changes we detected in separate subsystems. An anal-
ysis of each subsystem separately revealed subsystems with quite substantial changes
regarding size. Yet we did not find many changes in consequence of refactoring in
separate subsystems either.

The analysis of subsystem dependencies revealed that the subsystems do not satisfy
the criteria we would expect for object oriented code. The concept of encapsulation
and hiding of internal data was not followed strictly. In contrast we even found classes
defined in a framework part that were dependent from classes defined in the application.

Based on the changes of metric values we can assume that the developers did not
refactor their code a lot. We detected hardly any changes in the class hierarchy (HNL
values). We need to state that we did not extract moved methods and attributes for this
case study in depth. We thought we would not detect many movements anyway. As a
consequence we did not search for renamed classes either.

Summarized we can state that we were able to detect the changes we were looking
for. We were able to assess the stability of different subsystems in terms of changes
between releases. However some metric change queries returned too many entities to
analyze all of them manually. We only checked whether metric values changed at all,
and if they changed, whether they increased or decreased. We did not evaluate reason-
able thresholds for the metric changes. The subsystem dependency queries generally
returned too many invocations or accesses to browse them further manually. We used
the results mainly to get to know between which subsystems there were dependen-
cies at all, not for an analysis of each dependency separately. Up to now we need to
combine the results manually to characterize a software system. We plan to investi-
gate more combinations of the proposed queries to retrieve precise information more
automatically.

7.5 Lessons Learned

Academic research is often accused of creating good ideas, but not considering the
realization of the ideas in industry. We believe that our efforts finding new methodologies
to improve code quality could be of great use in industry. We know that many software
development teams in industry are too tightly focused just on achieving the next step in
their project plan. They don’t have time to test new and maybe immature implementation
techniques. Our aim is to develop techniques an tools that can be used in industry. This
was the driving force for us not only to invest time in searching new methodologies, but
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also to validate and adapt our own tools in an industrial context. We believe that this is
essential especially in a reverse engineering context.

7.5.1 Our Tools

Our tools are prototypes, we change them constantly to implement new ideas. Yet the
core functionality of MOOSE runs rather stable already. A couple of industrial software
systems have been analyzed with MOOSE during the FAMOOS project. Nevertheless our
tools are not used regularly in ”real world” software development projects. We normally
validate new functionality just on example case studies written in Smalltalk. Despite
our aim to provide language independent analysis techniques, the adaptation for the
analysis of C++ code in industry still consumed a considerable amount of time of this
whole work. We list here a couple of problems we had to solve before we could carry
out an effective code analysis:

• In our tool that converts C++ code into a FAMIX model we made the assumption
that entity names would not exceed a certain length. The upper limit for the length
of entity names was never reached before, probably because we just never ana-
lyzed such large systems before.

• In FAMIX it is not possible to have in the same model an attribute that has the
same unique name as a class. The unique name of an attribute is a concatenation
of the attribute name and the class name it belongs to, separated by a dot in
between (classname.attributename). In our C++ case study we had structs that
had the same name as attributes defined in the same model. There is no struct
entity defined in FAMIX. Our C++ parser and conversion tool interpreted structs as
classes. In MOOSE we rely on the unique entity names as a unique identifier of
the stored objects. The fact that we had two entities with the same unique name in
the model, and not even entities of the same type (attribute and class), confused
our whole model concept. It was impossible to reference entities and calculate
metrics or dependencies. Therefore we had to exclude the interfering structs from
the model. It turned out that this was not a big loss for our analysis anyway.

• When we detected weird facts about the analyzed code, it was not always clear
whether these facts really existed in the code. After checking the source code
manually we sometimes found out that the mapping of the source was not correct.
Some abnormalities in the code led us to a bug in the transformation from the
source code into a model representation.

Such problems show how difficult the development of language independent reverse
engineering tools can be. We really need to test all our tools constantly on software
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written in different programming languages before we can claim to support language
independent proceedings. The quality of the results heavily relies on the quality of the
used parsers and source code conversion tools, in fact on the whole chain of tools our
reverse engineering platform is based on.

7.5.2 The Case Study

Dealing with the amount of data of a huge black box framework is a challenging task. It
is a delicate work to filter out unused information and to keep only meaningful material.
We risk to count information that falsifies our results if we don’t cut the noise. Yet if we
cut too much information, we corrupt our results more than ever. There was some doc-
umentation about the system around, but it was not really useful for an understanding of
the whole system. A manual code analysis was unimaginable because of the system’s
size, therefore we had to rely mainly on our tools.

After having created our first models we found all kind of classes with strange properties
in that model. We first had to clean the model and decide which information to keep.
For the cleaning we had to set up several criteria: Do we consider classes without any
method definition? How do we exclude C++ structs that are not real classes in the object
oriented sense? Is it reasonable to only consider classes stored in a file with a name
matching the class? Although we had our reverse engineering tools available, we still
had to make a couple of decisions for each case study manually. On the other hand,
without our tools we would probably have been simply lost in the sheer amount of data.

For the analysis of our case studies we mainly used a PC with an Intel Pentium III
running at 600MHz and 256MB of memory. Since so far we do not use an underlying
database to store model information, Smalltalk loads the whole data in memory. As con-
sequence we had to deal with hardware limitations when loading multiple large models.
We were able to load two models easily without swapping memory on the hard disk, yet
it was not possible to load all six analyzed versions at once without heavy swapping.
Luckily for most of our change analysis we did not have to load more than two models
at once. With two models loaded we were able to compare all possible combinations of
models. We loaded two models, calculated changes, then purged one model, loaded
a third one and compared those. To avoid losing time loading models we usually ran
some scripts overnight which handled the loading of the models automatically.

7.5.3 The Developers

People conducting research on reverse engineering subjects have a difficult task to
communicate their efforts to project managers and programmers. Developers generally
agree that tools that support the understanding of source code are useful. However they
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are sceptical whether it is worth investing time for learning and applying concrete new
methods. Each programmer has his own technique to browse code and won’t easily
change it. The risk of just losing time for testing a new tools that might not be of much
use after all keeps them working with familiar techniques. The programmers have a
much more in depth knowledge of their own software systems. Reverse engineers don’t
want to present results that seem trivial to them. To get within their reach regarding
code understanding means an investment of a considerable amount of time. Yet our
task goes even beyond code understanding since we want to help them improving their
code after all.

Project managers basically don’t like critiques on their running code. They would like
much more to have the quality of their code approved by experts. Such an approval
helps them to sell their products, yet the knowledge about all kind of problems in the
code simply means additional work (at first). Project managers also don’t like to make
available their source for a code analysis, unless they see a real advantage for the
project. There is a risk that we might just spy their future products in development and
make use of the gained knowledge.

It is difficult to explain unconventional research efforts and techniques to experienced
developers in industry. They learned in their daily work the objectives for finding imme-
diate solutions and for accelerating their implementation phases. They therefore have
doubts about revolutionary approaches like for example extreme programming. Revolu-
tionary approaches normally have also many previously undiscovered drawbacks when
they get applied in practice.



Chapter 8

Conclusion

8.1 Summary

In the context of this work we investigated the benefits of historic change data for reverse
engineering with our environment MOOSE [DUCA 00]. We extended MOOSE to be able
to load the source code of several different versions of a software. We developed a query
engine on top of the new multi-model MOOSE to extract changes between versions. We
provided the query engine with composition facilities to query the system in a flexible
way. The query engine got integrated in a research prototype named MOOSEFINDER.
We put up a repository of queries, each one extracting a specific aspect of change. We
proposed a methodology based on queries defined in MOOSEFINDER to

• provide techniques to clean a model from unnecessary information before we an-
alyze it.

• compare different releases of the source code and detect added, removed and
renamed entities.

• extract a number of refactorings performed on the source code such as changes
in the class hierarchy, moved entities or renaming.

• locate different dependencies such as invocations, accesses and inheritance be-
tween subsystems of a software system.

• guess the behavior and skills of the developers, for example in which extent they
do restructuring or apply refactoring techniques.

We validated our approach on five case studies: two written in C++, two in Smalltalk
and the Java Swing framework. The results of two case studies we analyzed in depth
are presented in this document: a large system written in C++ and our research tool
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MOOSE written in Smalltalk. Our methodology worked well and helped us to find differ-
ent aspects of change. The amount of added and removed entities states something
about the current state of a software product in the development phase. There are gen-
erally more additions and removals of whole classes in early phases of development.
Changes in entities that persist over several versions state whether developers apply
refactoring techniques or just add and remove functionality. The change data helped us
to make assumptions about the stability of different parts, and to some extent also about
the quality of source code. We detected that the two Smalltalk case studies changed
much more during their evolution compared to the analyzed software written in C++ or
Java. The results confirmed our assumptions that refactoring is better supported and
therefore more frequently applied in VisualWorks Smalltalk than in C++ development
environments.

We do not provide a systematic interpretation of the different findings. The interpretation
of our change facts still depends on each analyzed system. This is mainly due to the
fact that our evolution queries do not all provide precise information. Especially queries
based on changes in metric values return only candidates for a certain type of change.
Yet a query output at least substantially narrows the amount of data we need to analyze
further manually to sort out false positives. A main goal of our flexible query engine
targets the quick adaptation to different systems. The query composition possibilities
allow us to reduce the amount of false positives by switching multiple queries serially to
filter noise.

We still need to combine the results of different queries manually to derive general
statements abut a software system. In order to formulate general statements about the
evolution of object oriented software systems, we have to analyze more case studies.
Only then we find significant thresholds for metric change values and can measure the
efficiency of different queries.

8.2 Main Contributions

The main contributions of this work are the following:

• Scalability: We established a query engine with composition functionality on top
of our reverse engineering tool MOOSE. This enables us to interactively create
and change queries. The ability to compose queries scales well to different case
studies.

• Historical Data: We investigated the use of historical source code information for
reverse engineering. We detected that focusing on changes only is an excellent
way to reduce the amount of analyzed data and concentrate on relevant parts only.
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• Language Independence: Our reverse engineering platform MOOSE allows us
to analyze source code of different programming languages. In the context of
this work we validated our approach on systems written in C++, Smalltalk and
Java. Furthermore we were able to prove platform independence of our tools. We
successfully analyzed systems on various operating systems (Windows, UNIX,
MacOS).

• Validation in Industry: We were able to validate our tools and the proposed
methodology on software systems developed in industry. We found out desired
information about analyzed case studies and detected drawbacks we’re going to
work on.

8.3 Limitations of the Approach

We were able to extract interesting facts, yet we also discovered a couple limitations in-
herent to our approach. We list here three general limitations of our reverse engineering
approach:

Static Information: Our approach bases solely on information extracted from source
code. We therefore have only static information available for a code analysis. We
lack information about the dynamic behavior of the analyzed system. Dynamic
information would let us identify the invoked methods precisely. We would be able
to eliminate uncertainty due to polymorphism. Dynamic information allows us to
trace possible impacts of changes more precisely. The deeper we trace a change
over invocations and accesses using static information only, the more blurry our
results get. Despite the above mentioned advantages we still believe that static
code analysis is superior to dynamic code analysis in many respects. Dynamic
code analysis leads to a much larger amount of data we have to process. We also
have problems to validate the full functionality of a system instead of assessing
specific code sequences only.

Multiple Layers: We obtain our results at the end of a chain of conversions. First we
need to have a good parser to extract information from underlying source code.
Second we need a tool to convert the parsed code into a FAMIX meta model.
Third we need a tool that stores the model information and allows us to query
the stored data. In the end we apply our MOOSEFINDER tool to detect changes.
The result is at best as good as the weakest part in the chain. For Smalltalk
code we’re able to do the whole conversion from the code parsing to the model
creation in MOOSE, thus we are able to perform necessary corrections in MOOSE

directly. For C++ code however we have to rely on a commercial product for the
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source code parsing [SNIF 00]. Commercial tools don’t allow a user to calibrate
the source code conversion at will. We therefore intend to move to open source
parsers where possible.

Difficulty of Portability: Our approach claims to be language independent based on
the general FAMIX meta model. Language independent approaches always face
a tradeoff between portability and specialization. We lose language specific infor-
mation in case we consider only general observations. Yet we jeopardize language
independence if we take into account language specific details. If for example we
define an evolution query that assumes the language to be statically typed, we
may run into problems applying the same query on dynamically typed Smalltalk
code. From the analysis of source code written in different languages we learned
that we cannot avoid adaptations to different languages. That underlines the im-
portance of keeping the composition facilities for query conditions as flexible as
possible.

8.4 Future Work

We plan to refine and expand our analysis methodology based on combinations of dif-
ferent query conditions to better classify different types of change. We will improve our
query engine to provide more predefined composition possibilities. We also plan to val-
idate our approach on more case studies to get to know which queries fit best to which
type of system. We intend to refine our metric heuristics to reduce the amount of false
positives in the output. We also plan to create sets of evolution queries that we apply
automatically on an analyzed software system and store obtained results to a file.

So far our query-based approach provides only collections of entities as results. These
collections need to be browsed further manually. A visualization of changes between
versions would provide a clear overview of the system and promote a faster understand-
ing of code structures. A graphical representation of the results would allow us also to
study multiple types of change in parallel.



Appendix A

Moose

A.1 The Famix Meta Model

FAMIX has been introduced in the context of the FAMOOS research project. FAMOOS

is an acronym for Framework-based Approach for Mastering Object-Oriented Software
Evolution. FAMOOS has been a project in the context of ESPRIT, a R&D programme of
the European Union on information technology. The three year project FAMOOS ended
in September 1999. Six partners were involved in the project, among them the leading
European companies Nokia and Daimler-Benz.

The FAMOOS partners have built a number of tool prototypes to support object oriented
reengineering. These prototypes were validated during experiments on various case
studies. The source code of the available case studies was written in different im-
plementation languages (C++, Ada, Java and Smalltalk). To avoid equipping the tool
prototypes with parsing technology for all those programming languages, a common in-
formation exchange model with language specific extensions was specified (see Figure
A.1). This model has been named FAMIX (FAMOOS Information Exchange Model).

The core model consists of the basic entities in object oriented languages, namely
Class, Method, Attribute and InheritanceDefinition. For reengineering we additionally
need to know about relations between the basic entities. Invocations and accesses
provide information about such relations. An Invocation represents the definition of a
method calling another method. An access represents a method accessing an attribute.
These abstractions are needed for reengineering tasks such as dependency analysis,
metrics computation and reengineering operations.

To satisfy the need for information exchange between tools, the CDIF standard was
chosen in the FAMOOS project as the basis for transferring information. CDIF is an
extensible format supported by industry standards. The plain text encoding facilities of
CDIF have ben adopted to support information exchange between tools. The chosen
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Figure A.1: Core of the FAMIX meta model

format is human readable and simple to process. The need for data exchange has
increased rapidly in the last years through the wide use of the internet. XMI has been
accepted in industry as a new standard for information exchange. We plan to shift from
CDIF to XMI as exchange format to keep compatibility with industry standards.

A.2 The Structure of Moose

MOOSE is our reengineering research platform implemented in Smalltalk [DUCA 00]. It
has been developed during the FAMOOS project to reverse engineer and re-engineer
object-oriented systems. It consists of a repository to store models of source code.
The models are stored based on the entities defined in FAMIX. The software analysis
functionality of MOOSE is language independent. The FAMIX models can be loaded
from and stored to files. Besides the repository there are other features implemented to
support reverse engineering activities:

• a parser for Smalltalk code

• an interface to load and store information exchange files

• a software metrics calculation engine

• an interface for additional tools to browse and visualize stored entities

Figure A.2 shows the architecture of MOOSE. Various tools are implemented on top of
MOOSE, using the interface to the above described repository functionality of MOOSE:
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Figure A.2: The architecture of Moose

CodeCrawler: CodeCrawler is a visualization tool that supports different views on a
model [LANZ 99]. The tool visualizes entities with shape and color according to
metric values combined with different graph layouts. It enables a user to gain
insights in large systems in a short time. Furthermore the graphs help to quickly
identify source code entities with special combinations of metric values.

MooseExplorer: This tool [DUCA 00] provides a uniform way to represent model infor-
mation. It addresses the problems of navigating large amounts of closely related
information. MOOSEEXPLORER allows a user to browse different entity types in a
consistent way. MOOSEEXPLORER shows for each entity its properties and related
entities. A user can click through the entities and thereby further explore related
entities.

MooseFinder: MOOSEFINDER is a query tool that helps to compose queries to retrieve
source code entities matching special criteria [LANZ 01]. Such queries can also
be defined on multiple models defining certain change criteria. This tool helped
us to gain the evolution facts presented in this work. Appendix B provides a more
detailed description of MOOSEFINDER.
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A.3 Metrics defined in Moose

A.3.1 Class Metrics

In Table A.1 we list the currently defined class metrics in Moose. Classes are the core
entities of every object oriented language. They provide implementations of methods
and define attributes. Class metrics measure the complexity of classes and how they
interact with other source code entities.
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Name Description
HNL Hierarchy nesting level, also called depth of inheritance tree. The number of

classes in superclass chain of class. In case of multiple inheritance, count the
number of classes in the longest chain.

NA Number of accessors, the number of get/set - methods in a class.

NAM Number of abstract methods.

NC Number of constructors.

NCV Number of class variables.

NIA Number of inherited attributes, the number of attributes defined in all super-
classes of the subject class.

NIV Number of instance variables.

NMA Number of methods added, the number of methods defined in the subject
class but not in its superclass.

NME Number of methods extended, the number of methods redefined in subject
class by invoking the same method on a superclass.

NMI Number of methods inherited, i.e. defined in superclass and inherited unmod-
ified.

NMO Number of methods overridden, i.e. redefined in subject class.

NOC Number of immediate children of a class.

NOM Number of methods, each method counts as 1. NOM = NMA + NME + NMO.

NOMP Number of method protocols. This is Smalltalk - specific: methods can be
grouped into method protocols.

PriA Number of private attributes.

PriM Number of private methods.

ProA Number of protected attributes.

ProM Number of protected methods.

PubA Number of public attributes.

PubM Number of public methods.

WLOC Lines of code, sum of all lines of code in all method bodies of the class.

WMSG Number of message sends, sum of number of message sends in all method
bodies of class.

WMCX Sum of method complexities.

WNAA Number of times all attributes defined in the class are accessed.

WNI Number of method invocations for a class, i.e. the sum of the invocations of
all methods defined in a class

WNMAA Number of all accesses on attributes.

WNOC Number of all descendants, i.e. sum of all direct and indirect children of a
class.

WNOS Number of statements, sum of statements in all method bodies of class.

Table A.1: Additional class metrics defined in Moose
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A.3.2 Method Metrics

In Table A.2 we list every method metric currently defined in Moose. Methods can be
seen as a flow of instructions which take input through parameters and which produce
output. Methods can invoke other methods or access attributes. The method metrics
are defined in this context.

Name Description
LOC Lines of code in method body.

MHNL Hierarchy nesting level of class in which method is implemented.

MSG Number of message sends in method body.

NI Number of invocations of other methods in method body.

NMAA Number of accesses on attributes in method body.

NOP Number of parameters which the method takes.

NOS Number of statements in method body.

NTIG Number of times invoked by methods non-local to its class, i.e. from methods
implemented in other classes.

NTIL Number of times invoked by methods local to its class, i.e. from methods
implemented in the same class.

Table A.2: The method metrics defined in Moose

A.3.3 Attribute Metrics

In Table A.3 we list every attribute metric currently defined in Moose. Attributes repre-
sent properties of classes. Their main function is to return their value when accessed
by methods. The attribute metrics are defined in this context.

Name Description
AHNL Hierarchy nesting level of class in which attribute is defined.

NAA Number of times accessed. NAA = NGA + NLA.

NCM Number of classes having methods that access it.

NGA Number of times accessed by methods non-local to its class.

NLA Number of times accessed by methods local to its class.

NM Number of methods accessing it.

Table A.3: The attribute metrics defined in Moose
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Moose Finder

B.1 Introduction

Figure B.1: MooseFinder main window containing the query list

MOOSEFINDER is the query tool used for the evolution analysis described in this work
(see also [LANZ 01]). It has been implemented to validate the presented ideas. MO-
OSEFINDER is built on top of MOOSE, a reengineering tool described in Appendix A.
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Figure B.2: Template Queries in the popup menu

Both programs are implemented in VisualWorks Smalltalk 3.0. MOOSE serves as the
database to store models of source code. Queries composed in MOOSEFINDER then
run on these models. The first description contains a section about the GUI of MOOSE-
FINDER, then follows a section where the query composition mechanism is described.
The common API of all queries is presented at the end of this chapter.

B.2 How to use MooseFinder

The main window of MOOSEFINDER contains a list with the currently loaded queries.
These queries can be applied on a set of entities by pressing the run button. The query
is applied on entities of the default model defined in the query. The query list contains
a basic description of each query. Below in a text field a more detailed description of a
query is shown if for the query that is selected. A popup window in the query list offers
several manipulations on the query list and selected queries (see Figure B.2):

• Query Manipulations: We can edit a selected query to view and change its at-
tributes. We can also duplicate the query, change the model a query is defined on
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or add a description for the query. We can also inspect the actual query instance
in a Smalltalk inspector window.

• List Manipulation: We can delete items from the list of queries or just delete the
whole list. We can change the order in which the queries in the list appear using
drag and drop.

• Template Queries: We can load a predefined template query from the popup
menu (Figure B.2). All template queries have default models assigned and there-
fore need to have the right models assigned first before we can apply them on
loaded code.

• Input/Output: We can file out a selected query or a list of queries. In such a case,
all attributes of a query are stored in an ASCII file. The queries, once stored in a
file, can always be reloaded in the query list.

Figure B.3: Moose Explorer showing some loaded VisualWorks core classes

Each query returns a collection of source code entities. We can choose to which tool
this collection is passed to show the output. The default tool is MOOSEEXPLORER, a
navigation tool to browse the models loaded in MOOSE (Figure B.3). MOOSEEXPLORER
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shows the basic properties of entities and additionally allows a user to apply differ-
ent views on a list of entities. An instance of MOOSEFINDER is always integrated in
MOOSEEXPLORER as a separate panel. This allows us to use MOOSEFINDER also in
MOOSEEXPLORER and to define or load queries from there directly. MOOSEEXPLORER

allows a user to store different sets of entities in a buffer. Thanks to the buffering it is
possible to run queries not only on a default collection of entities, but also on a buffered
collection of entities. This allows us to apply queries serially, each query then gets the
output of the previous query as input.

The output collection of entities can be passed to any other application. The output
collection can also be passed to the Smalltalk inspector to analyze and manipulate the
actual instances of the resulting entities. Another option allows the user to pass output
entities directly to the visualization tool CodeCrawler.

MOOSEFINDER has a query composer window integrated. The composer user interface
helps a user to create new queries and to compose complex queries using the queries
defined in the list. The query composition window consists of several subpanels, each
one covers the configuration of a special type of query. We quickly explain each of the
different subpanels:

Figure B.4: The Query Composition Window
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• Block: The block panel allows a user to define a query that contains a condition
expressed in a Smalltalk block. This block is passed to each input entity of the
query. All entities satisfying the block condition are collected for the output. A
block query should be used with care since it may happen that not all input entities
understand the messages defined in the block.

• Composite: In the composite panel we can compose more complex queries of
existing ones defined in the query list. We therefore drag queries from the query
list and drop them in the panel’s composite list of the new composite query. The
user can choose several composition options. In case we want the entities to fulfill
all conditions defined in the subqueries, we choose AND composition. In case the
output entities need to fulfill at least one of the conditions defined in subqueries,
we choose OR composition. We can also specify in the panel how to pass entities
from one subquery to the next one. A NameCompositeQuery identifies the entities
over their unique. We can therefore have subqueries defined on different models
in the same composite query. ObjectCompositeQueries just pass the resulting
output entities of one query as input of the next one.

• Hierarchy: The hierarchy panel provides an interface to compose queries with
constraints on entities that are related over their class hierarchy tree. Hierarchy
queries contain other queries and delegate the condition to superclasses or sub-
classes of the actual input entities. The hierarchy interface also allows a user
to compose queries that return all subclasses of a set of classes defined by the
output of a subquery.

• Metric: The metric panel allows a user to define conditions on metric values.
Either a single metric value is checked against a threshold or a set of metric con-
ditions can be consolidated in one single query. A metric condition is understood
as the comparison of a metric value with a threshold.

• Metric Change: The metric changes panel helps a user to define a query con-
taining a condition about the change of a specific metric between several versions.
The desired models can be chosen among the defined ones in the model.

• Name: The name panel provides an interface to define a query with a condition
on entity names. The user can choose whether a string pattern should also match
the case and if name or unique name are compared.

• SelectReject: The select/reject panel allows a user to compose a query using set
operations. In all cases a query defined as base provides a basic set of entities.
Entities that satisfy all conditions of the queries dragged in the select list are kept in
the basic set of entities. Entities that do not satisfy all conditions are rejected from
the basic set. All entities that satisfy a condition of a query dragged in the reject
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list are rejected from the basic set of entities. The remaining set of basic entities is
then returned as output. If the subqueries are defined on different models, entities
are identified over their unique name.

• Subsystem: The subsystem panel helps a user to create queries with conditions
on subsystem affiliation. Queries to select only entities defined in a single sub-
system or a set of subsystems can be composed here. Also queries that select
invocations, accesses or inheritance definitions between two defined subsystems
can be instantiated over this panel.

We can edit a string representation of a query and in an editor window (Figure B.5). The
editor window shows the same string representation created for storing a query in a file.
Subqueries are separated by a <SubQuery> tag from the attributes of the main query.
We introduced identification numbers for a correct referencing among the subqueries.
The id’s of the subqueries of a composite query are listed in subQueryIdList:.

Figure B.5: The Query Editor Window
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B.3 Implementation of the Queries

B.3.1 Conceptual issues

We built the all queries on the concept of a composite pattern described in Section 4.3.
The Basic Queries represent the leaves that contain only a condition to filter source code
entities. The Composite Queries represent branches in the composite pattern. They
do not contain a query condition directly, though they contain subclasses containing
conditions. Figure B.6 shows the implemented class hierarchy of the queries.
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Figure B.6: Class hierarchy of the defined queries

B.3.2 Implementation

Each query has three distinct kinds of responsibility. These responsibilities must be
implemented or inherited for each defined query.

Condition: Since each query operates as a filter the query has a special condition
defined. implementation of the condition runOn: aCollection and fulfills: anObject

Load/Store: A query needs to know how to store its attributes as a string. Each query
also has the responsibility to know which of its attributes need to be assigned in
order to know create a running query instance. The reading of a stored query from
an ASCII file is delegated to an I/O Handler. We chose a format based on XMI to
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store the queries because it is human readable and supported by various open
source parsers.

Representation: Since we want to list and browse query instances in a graphical user
interface, we need different string representations for each query: a string that fits
on one line to represent the query in a list widget; a compact representation in a
couple of lines to display the most relevant attributes in a textfield widget; a full
string representation to load and store a query, and to edit all its attributes.

B.3.3 The Common Query API

This section lists the common application programming interface for all predefined que-
ries. The common API of all queries provides the key structure for a composition of
complex queries in a flexible way. The fact that all queries know how to handle a defined
set of messages ensures the flexibility in composing complex queries. The subqueries
will handle invocation messages correctly as long as the communication between the
main query its subqueries bases on the common API,

runOn: aCollectionOfEntities expects a set of entities as input and returns a subset
of the input entities that satisfy the condition defined in the query.

defaultInputObjects returns all default entities the query runs on. If a query expects
classes as input, defaultInputObjects of that query returns all classes of the model
the query is defined on.

runOnDefault gets as input the entities returned by defaultInputObjects, runs on the
input entities and returns all entities that satisfy the query condition.

runOnDefault

^self runOn: self defaultInputObjects

setMooseModel: aModelname sets the a new model the query runs on. This method
is mainly used for basic queries that are defined on one single model only. If a
query is defined on more than one model, the model defined as output model is
changed.

outputModelName returns model name of the output entities. This information may
be needed because the collection of output entities does not provide information
about model affiliation of the entities. For further navigation in the correct model,
MOOSEEXPLORER needs to know to which model the output entities belong to.
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listOfModelsUsed returns all models defined in the query or in any subquery. We need
this method to get to know on how many different models especially a composite
query is defined.

replaceCurrentModels: aListOfCurrentModels with: aListOfNewModels replaces the
models a query is defined on by other ones. The first model of list aListOfCurrent-
Models is replaced by the first element of aListOfNewModels. The same replace-
ment applies for the rest of the elements. Therefore both lists need to contain the
same amount of model names.

storeInstance returns a string representation of the query containing a list of all current
attribute values.

displayProperties returns a string listing all attribute values of a query. For a complex
query also the types of assigned subqueries are listed. The information is more
compact than in the string returned by storeInstance. It is for a presentation of the
query attributes in a textfield widget.

compactStringRepresentation returns a short string with the most important informa-
tion about a query instance. The information is kept on one line and is meant to
be displayed in a list widget.

requiredKeys returns for each query type a set of keywords for attributes that need to
be defined to create the query.
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