
Visualizing Software Systems and Team Activity

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Francesco Rigotti

under the supervision of

Prof. Michele Lanza

co-supervised by

Alberto Bacchelli, Lile Hattori

September 2011

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in part, to
qualify for any other academic award; and the content of the thesis is the result of work which has
been carried out since the official commencement date of the approved research program.

Francesco Rigotti
Lugano, 7 September 2011

i

Abstract

Software evolution consists of the modifications made to a software system, throughout its life-cycle,
to cope with changes in its requirements or dependencies. Modifying a system, without having a
sufficient understanding of it, has a high probability of introducing defects. Program comprehension
is therefore required for an evolution that avoids system decay.

Software visualization techniques can be used to ease program comprehension through visual
metaphors that leverage the ability of the human eye to identify colors, shapes, patterns, and dif-
ferences. Many powerful software visualization tools exist, but the majority of them consists of
stand-alone systems that are not integrated with the development tools already in use.

We have developed Manhattan, an Eclipse plugin that visualizes projects in the workspace as
cities. While working on a project, a developer can see a representation of it, which is updated in
real-time according to the changes he performs. Moreover the developer is visually informed about
the changes performed by his colleagues in order to improve his awareness of the activity of the
team as a whole, thus providing some sort of implicit communication that eases collaboration among
developers.

iii

iv

Acknowledgements

First of all I want to thank Michele Lanza for being a great teacher and a great supervisor.
I was taught not just mere notions, but good style and passion.
Thanks for always helping me to do my best and making me proud of my work.

I want to thank Alberto Bacchelli and Lile Hattori for all the help they have given me regard-
less of their duties and deadlines. This thesis would not exist without them.

I have to thank my parents for supporting me in every way since I was born and for always
giving their all, and even more than they should, for our family.

I thank my brother for all the advice he has given me and for all the fun we had.

I want to thank my aunt for teaching me that if you always do your best regardless of the situ-
ation, then you won’t have any regrets, even if you fail.

My grandparents were the best. Grandpa was just too fun to be with and grandma was a great woman
and a great coook. Please look over me from up there.

I thank my nephews for brightening my days with their smiles and their astonishing growth.
Your uncle is proud of having taken care of you in these years. I also thank my sisters for being there
and for giving me four incredible nephews always willing to play pirates.

Thanks to Gio, Grazia, Nico, and Po for being more than friends since when I came to this country.
I won’t forget how Ando, Bock, Gillo, Indu, and Tet made these years at USI so cool and entertaining.

Thanks to Sangio for proving himself as one of my best friends in life, despite we have seen
each other for only two years; I hope that one day I will be able to repay you.

Thanks to Cora for introducing me to great people and great things.
Thanks to Ivo and Asta, for all the fun: everything was gerei!

Teo, with your actions and growth you showed that anyone can walk that path, but the choice
is his and, once he is in, he has to walk with his own legs. Nothing is more important than this.

Thanks to the other people of Luganega and Fonta for walking down the same path with me
and for turning every lunch and dinner into a feast.

v

vi

Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Software Visualization . 1
1.2 Collaboration Support . 2
1.3 Manhattan . 3
1.4 Structure of the Document . 4

2 State of the Art 5
2.1 Software Visualization . 5
2.2 Collaboration Support . 6

3 Manhattan 9
3.1 Contributing to Commons Math - a Use-Case for Manhattan 10
3.2 Visualizing Software Systems . 12

3.2.1 The Code-Model . 12
3.2.2 The City Metahpor . 14
3.2.3 The View-Model . 16
3.2.4 The Layout Algorithm . 17
3.2.5 Reacting to Changes . 19
3.2.6 Caching . 21
3.2.7 Rendering the Visualization . 22
3.2.8 Interacting with the Visualization . 23

3.3 Visualizing Team Activity . 24
3.3.1 Syde . 24
3.3.2 Awareness in the City . 26
3.3.3 Visualizing Change Notifications . 27
3.3.4 Visualizing Conflict Alerts . 29

4 Applications and Evaluation 33
4.1 Exploring a few Case Studies . 33

4.1.1 ActiveMQ . 34
4.1.2 Ant . 35
4.1.3 Cobertura . 36

vii

viii Contents

4.1.4 jEdit . 37
4.1.5 Vuze . 38
4.1.6 NetBeans . 39
4.1.7 Exploration Wrap Up . 40

4.2 Evaluating our Approach with an Exploratory Study . 40
4.2.1 Study Description . 40
4.2.2 Results . 42

5 Conclusions 43
5.1 Future Work . 44

5.1.1 Corner-Stitch Layout . 44
5.1.2 Improve the Visualization of Changes . 44
5.1.3 Improve Performance . 45
5.1.4 Support other Programming Languages . 45

A A 47

Bibliography 73

Figures

3.1 Manhattan running inside of Eclipse . 10
3.2 The tooltip for class LocalizedFormats . 11
3.3 The activity of contributors to Commons Math . 11
3.4 The tooltip for the emerging conflict on class GeneticAlgorithm 12
3.5 The code model used in Manhattan . 13
3.6 The city of Apache BCel . 14
3.7 The mappings defined by the city metaphor . 15
3.8 The city of ArgoUML . 15
3.9 The view model . 16
3.10 The city for a simple project (a) and the corresponding glyph tree (b) 17
3.11 The execution steps for the Rectangular-Packing algorithm, provided by Richard

Wettel . 18
3.12 The glyphs affected by an insertion (a), a resizing (b) and a removal (c) 19
3.13 The growth tolerance thresholds used to decrease the number of re-layouts 20
3.14 The design we conceived to render the visualization . 22
3.15 The selection step (a) and the resulting focused city (b) 23
3.16 An architectural view of Syde . 25
3.17 The information flow defined by our unified view . 26
3.18 An aerial view of Commons Math showing notifications of developers’ activity . . . 28
3.19 A bird’s view of the city of ArgoUML, enriched with change notifications 28
3.20 The tooltip description for a class modified by various developers 29
3.21 The city of CommonsMath with conflict alerts made visible using conflict beacons . 30
3.22 The tooltip description for a conflict sphere . 30
3.23 Conflict inspection in Manhattan . 31

4.1 The city of Apache ActiveMQ . 34
4.2 The city of Apache Ant . 35
4.3 The city of Cobertura . 36
4.4 The city of jEdit . 37
4.5 The city of Vuze . 38
4.6 The metropolis of NetBeans . 39

A.1 Participant1, pages 1-4 . 48
A.2 Participant1, pages 5-8 . 49
A.3 Participant1, pages 9-12 . 50
A.4 Participant1, pages 13-16 . 51

ix

x Figures

A.5 Participant1, pages 17-20 . 52
A.6 Participant1, pages 21-24 . 53
A.7 Participant1, pages 25-28 . 54
A.8 Participant1, pages 29-32 . 55
A.9 Participant1, pages 33-36 . 56
A.10 Participant1, pages 37-40 . 57
A.11 Participant1, pages 41-44 . 58
A.12 Participant1, pages 45 . 59
A.13 Participant2, pages 1-4 . 60
A.14 Participant2, pages 5-8 . 61
A.15 Participant2, pages 9-12 . 62
A.16 Participant2, pages 13-16 . 63
A.17 Participant2, pages 17-20 . 64
A.18 Participant2, pages 21-24 . 65
A.19 Participant2, pages 25-28 . 66
A.20 Participant2, pages 29-32 . 67
A.21 Participant2, pages 33-36 . 68
A.22 Participant2, pages 37-40 . 69
A.23 Participant2, pages 41-44 . 70
A.24 Participant2, pages 45 . 71

Chapter 1

Introduction

Software engineering is concerned with writing programs that satisfy a given set of requirements.
Throughout the entire life of a software system, specifications, used technologies, and the operational
environment continue to change. If no appropriate measures to cope with these changes are taken, the
system keeps aging until it becomes useless [Par94]. Software evolution is the set of modifications
performed on a system, throughout its life-cycle, to prevent it from aging.

Modifying a system without having a sufficient understanding of it has a high probability of
introducing defects or even disrupting the system’s design, thus accelerating the aging process.
Therefore the first requirement for a system to evolve properly is program comprehension: One
needs to know the functionality implemented in each module, how modules collaborate with each
other, and which modules are affected by a particular change in a given module. Nevertheless,
understanding a software system is not trivial, because software is extremely complex, is intangible,
and is in constant evolution.

The growth of software systems in size and complexity consequently leads to larger development
teams, thus requiring a high level of collaboration and coordination among developers, which is not
simple to achieve. In this context, two obstacles hinder the successful evolution of a software system:
The difficulty to understand the system and the collaboration issues introduced by large teams.

We devised an approach that helps developers to overcome both obstacles by combining the
efforts of researchers in the areas of software visualization and collaboration support. In the next
sections we first introduce these research areas, then we describe our approach.

1.1 Software Visualization

In the past decades, researchers in this field have eased reasoning about software systems by produc-
ing interactive visual representations that make software “more tangible”. Software visualization
techniques can be used to ease the comprehension of the design, behavior, and evolution of software
systems, as they allow one to perceive software through vision, the sense from which humans acquire
most information [War04].

1

2 1.2 Collaboration Support

Visual metaphors can be used to describe a system’s properties with shapes, colors, and patterns,
all of which can be identified by the eye quickly and in great quantity (i.e., in a single gaze, humans
can identify many different colors and shapes at once), thus making visualization scalable.

To best support developers in driving the evolution of a system, a software visualization tool
needs to be tightly integrated in the development process and used throughout the entire life of the
system. This is because software evolves from its inception to its end. There are many software
visualization tools that provide a considerable support to program comprehension, design assess-
ment, evolution analysis, and reverse engineering tasks. However, most of these tools are standalone
products that require a new piece of software to be installed on developers’ computers. Standalone
tools force developers to move away from the development environment, thus discouraging their use.

Although the ability of these tools to aid program comprehension is not affected by the de-
scribed integration issues, their usefulness in the context of software evolution decreases, as they
are less likely to be used. Since programmers build software systems using an IDE of some sort,
the easiest way to integrate a tool in the development process is having the tool reside in the IDE itself.

With these considerations in mind, we have created Manhattan, a software visualization tool,
in the form of an Eclipse plugin, that produces interactive visual representations of projects in the
workspace.

1.2 Collaboration Support

In multi-developer projects, successful development requires collaboration and coordination among
many developers. To properly coordinate their activities, developers need a certain level of awareness
of the team’s activity: Each developer needs to know who is currently working on what, who is
expert on a given artifact, and who has recently worked on a given piece of code [DISK07, DB92].

Awareness is mainly achieved via communication and inspection of code changes on software
configuration management systems (SCMs) . In co-located development teams, face-to-face meet-
ings are the preferred communication means [LVD06]. However, development teams spread across
diverse countries and timezones has become the standard for open-source projects and large compa-
nies. This setting is referred to as global software development (GSD).
Because of distance and differences in organizational culture, face-to-face meetings become im-
possible in GSD and are usually replaced with text-based communication, which revealed to be an
inadequate replacement [DISK07].

Researchers tried to address this communication issue by notifying developers, in real-time,
about changes performed by others and about emerging conflicts [BCSR07, dSCdW+06, HP08,
SRvdH08, SGPP04, Sch01]. However, these contributions either treat source code files as plain text,
thus losing important structural information, or do not store the collected change information for
future use, thus losing the benefits of evolution analyses (e.g., code ownership analyses).

3 1.3 Manhattan

In the context of her Ph.D. work, Hattori created Syde, a set of Eclipse plugins, providing
developers with real-time change notifications and alerts of emerging and emerged conflicts [HL09b].
Hattori’s approach does not suffer from the drawbacks illustrated above.
By including Syde information in our visualization, we propose a unified view focused on the
structure of software systems and on the activity of their development teams.

1.3 Manhattan

Projects in the workspace are visualized using the 3D city metaphor conceived by Wettel and Lanza
[WL07, Wet10]. This metaphor is effective, due to the many similarities between software engineer-
ing and architecture, and scales well for large projects.

To visualize a project, we first extract a model from its source-code and we create the visual-
ization based on the extracted information. Our model contains information about components and
their relationships, with a few metrics computed for the classes in the system. Since we model only
the basic concepts of object oriented languages, we can virtually visualize all systems written with
this language paradigm. Nevertheless, at the time of this writing, only a model extractor for Java
systems is available.

Every Eclipse plugin has access to projects’ source-code, to a multitude of core APIs, and to the
APIs offered by other plugins. By exploiting these APIs, Manhattan offers three main advantages
over many software visualization tools:

Autonomous Simplified Model Extraction
Without the need of additional tools, system models can be extracted by exploiting APIs
offered by language-integration plugins (e.g. JDT for Java). Using these APIs also allows one
to implement high-level parsers, which do not have to deal with language-specific syntaxes;

Real-time update
Both the model and the visualization are updated in real-time according to changes performed
by developers. This updates are also triggered when developers check out from a repository
the changes performed by their colleagues;

Interaction with code
If a building attracts the interest of a developer, he can open the corresponding artifact in
the Eclipse editor from within the visualization. When a programmer is assigned the task to
maintain a system he has no experience with, he can visualize it with our tool and explore
the system by exploring the visualized city. The ability to inspect code from within the
visualization is most useful in such a situation, because it makes the exploration process much
smoother and integrated with the code.

By exploiting the APIs offered by Syde, we inform developers about the activity of their
colleagues with clear notifications, based on colors, shapes, and lights, that do not clutter the
visualization. Every developer is notified about the changes performed by his colleagues and about
the emerging conflicts in which he is involved. Moreover, conflicts can be examined in an instance
of Eclipse’s compare editor opened from within the visualization.

4 1.4 Structure of the Document

1.4 Structure of the Document

Chapter 2 contains a description of the related work done in software visualization and collaboration
support. In Chapter 3 we describe our approach. We used Manhattan to visualize some real-world
systems and, in Chapter 4, we show the resulting cities and briefly describe interesting design aspects
highlighted by the visualization. Later in the chapter we describe an exploratory study we conducted
to validate our approach and present the results. In Chapter 5 we draw the conclusions and present
future improvements.

Chapter 2

State of the Art

Since our work is focused on two different research areas, we first describe the related work belonging
to the software visualization field. Then, in Section 2.2, we describe related work done in the area of
collaboration support.

2.1 Software Visualization

According to Price et al., software visualization is the use of the crafts of typography, graphic
design, animation, and cinematography with modern human-computer interaction and computer
graphics technology to ease both the human understanding and the effective use of computer software
[PBS93].

Diehl divides software visualizations in three main categories[Die07]:

• Structure visualizations - focused on the components of a system and their static relationships;

• Behavior visualizations - focused on information obtained by running a system;

• Evolution visualizations - focused on the changes a system undergoes throughout its lifetime.

Our work belongs to the category of structure visualizations. Out of the many contributions to this
category, we describe, in the next paragraphs, the work that most affected the direction of our thesis.

In 1986, Müller et al. creteated Rigi, a visualization tool offering a structure visualization of
systems in terms of components and relationships [Mul86, MK88].

Six years later, Eick et al. presented SeeSoft, a tool offering visualizations of systems from
different perspectives, among which structural and evolutionary ones [ESJ92].
In 1996, Ball and Eick reported the successful application of SeeSoft, at Bell Laboratories, to ease
the maintenance of "a system system containing millions of lines of code, developed over the last
two decades by thousands of software engineers" [BE96].

5

6 2.2 Collaboration Support

In 1999, Lanza introduced the concept of polymetric views [Lan99] and implemented them
in CodeCrawler, a tool to support reverse engineering of software systems. Polymetric views are
simple interactive graphs, enriched with various software metrics. Lanza validated the effectiveness
of CodeCrawler, by attempting to reverse engineer an industrial system in a few days. The quality
of the obtained results is an additional proof of the supportive capabilities of software visualization.

In the 90s, 3D software visualizations began to appear. The early 3D visualizations didn’t exploit
the possibilities offered by having one more dimension [SB99], but later, novel metaphors, specially
conceived for 3D, were presented [TC09].

In 2000, Knight et al., proposed and implemented an innovative 3D metaphor called Software-
World [KM00]. In this metaphor the visualized system is the world, files are cities, classes are
districts and methods are buildings.

In 2003, Panas et al. described a 3D city metaphor able to show both architectural and behavioral
properties of a system, implemented in a visualization framework called Vizz3D [PBG03]. Four
years later [PEQ+07], Panas et al., proposed a unified single-view visualization consisting of a 3D
city enriched with information obtained from execution profiles and software repositories.

In 2007, Wettel and Lanza presented another city metaphor, which they implemented in CodeCity,
a visualization tool supporting program comprehension, evolution analysis and design assessment
[WL07]. To support evolution analysis, a city for each observed version of a system is produced.
Since a consistent layout is maintained across all cities (locality principle), users can observe the
evolution of a system as they would observe the evolution of a city.

Our work is inspired by CodeCity, a software system that combines many ideas into a multi-
purpose scalable visualization. Nevertheless, like any tool, CodeCity is not perfect. We believe
that being a standalone tool is its main drawback, as it hinders its integration in the development
process. A viable solution to this integration problem is re-implementing CodeCity as an Eclipse
plugin. Wettel has been working on CodeCity for multiple years, therefore in this master thesis we
focus on implementing the essential features of CodeCity in an Eclipse plugin.

2.2 Collaboration Support

Awareness, defined as "an understanding of the activities of others, which provides a context for
one’s activities" [DB92], is fundamental for successful collaboration among developers. In the
context of software engineering, awareness can be expressed as knowing who has recently worked
on a module and who is expert on which modules [DISK07].

The first benefit of awareness, is that it decreases the likeliness of merge conflicts on SCMs:
If a developer performing some changes notices that others are modifying artifacts affected by his
modifications, he can contact these programmers to find a solution that does not generate conflicts.

The work done by Grinter [Gri96], in 1996, shows that developers tend to rush in their changes,
or even do partial commits, to avoid dealing with merge conflicts.
The fact that developers do not take their time to review the changes they performed, reduces the

7 2.2 Collaboration Support

quality of the software being built. Moreover, broken builds affect the work of the entire development
team, thus causing planning and scheduling issues. This means that, by decreasing the likeliness of
conflicts, awareness also has a positive effect on the system’s quality and on the software process.

Developers become aware of the activity of others mainly through communication and inspection
of code changes on SCMs [LVD06]. Since the publication by Curtis et al. in 1988, it is known
that, in co-located development teams, informal meetings are the preferred communication means
[CKI88].

The research done by Sarma et al. in 2006 and by Damian et al. in 2007 show that, in the
context of global software development (GSD), awareness cannot be obtained with the same methods
applied in co-located teams, as distance makes informal meetings impossible and differences in
the organizational culture make text-based communication unreliable: Different teams are used to
communicate the same kind of information on different channels: (e.g. discuss about bugs in mailing
lists or in bug tracking systems) [DISK07, SvdH06].

Since the beginning of the 21st century, various researchers have focused on improving the
implicit communication provided by SCMs, instead of improving explicit communication channels
[BCSR07, dSCdW+06, HP08, SRvdH08, SGPP04, Sch01].
The common approach consists of notifying developers, in real-time, about changes performed
by the other team members and alert them of emerging conflicts. These contributions share two
drawbacks: They either treat source files as plain text, thus losing important information, or they
discard the collected information right after use.

In 2009, Hattori presented Syde, a set of Eclipse plugins, which provide real-time notifications of
changes and alerts of emerging conflicts [HL09b]. Syde records change information in a dedicated
change repository, which has been used, in conjunction with SCM commits, by Hattori and Lanza to
run code ownership analyses [HL09a]. Continuing her research, Hattori improved Syde to record
more fine-grained change information up to the level of field and method changes, thus providing
more precise conflict alerts [HL10].

During her master thesis, Anja Guzzi created Scamp, an Eclipse plugin to improve awareness
through visualization [Guz09]. Scamp builds on top of Syde’s notifications to produce three different
visualizations that give developers an insight into the recent activity of the team, regarding the most
active modules and the most active developers.

To take full advantage of change information, an understanding of the system’s structure is
required. We believe that visualizing change and conflict information together with the components
of a system can increase awareness and provide insights on the evolution of the system. Besides
implementing the basic features of CodeCity in an Eclipse plugin, we concentrate our efforts on
connecting this plugin with Syde, in order to provide a structural view of the visualized systems,
enriched with information about team-activity and emerging conflicts.

8 2.2 Collaboration Support

Chapter 3

Manhattan

Manhattan is a software visualization tool, implemented as an Eclipse plugin to encourage its
integration in the development process. The goal of this tool is to support developers to drive
the evolution of software systems by combining software visualization and collaboration support
techniques. We intend to help developers reasoning about and understanding software systems by
producing visual representations of their structure.
To support collaborative development, we make developers more aware of the activity of their
colleagues, in order to improve coordination, avoid duplicated work, and reduce the frequency of
merge conflicts on SCM repositories.
We implemented these ideas in Manhattan, which provides a unified view on software systems,
focused on their structure and on the activity of the developers.
Before describing in detail our approach, we present an imaginary use-case for Manhattan to
contextualize later explanations and give an overview on some of the available features.
We advise to read this chapter from a color-enabled support, as we make extensive use of color
images, and the ability to distinguish colors is important to understand the concepts we discuss.

9

10 3.1 Contributing to Commons Math - a Use-Case for Manhattan

3.1 Contributing to Commons Math - a Use-Case for Manhattan

In this section we describe how the developer Bob can benefit from of our tool to contribute to a
project he is not familiar with - Commons Math1. Bob wants to add to the class GeneticAlgorithm an
instance method that prints configuration information.
As a first step, Bob checks out the project from the Apache repository and visualizes it with
Manhattan. Figure 3.1 shows Manhattan running inside of Bob’s Eclipse instance. The Eclipse view
where we render our visualization is on the top-right of the screen.
We visualize software systems as interactive 3D cities, where buildings represent classes and districts
represent packages. The number of fields and methods in a class determine the size of its building.
Since Bob is seeing the city for the first time he has no idea of which classes are represented by
which buildings; threfore he explores the city for some time to build a mental map to orient himself
in the visualization.
While moving around the city, Bob notices a very wide and short building (label 1 in Figure 3.2) and
hovers the mouse on it to see a tooltip description of the corresponding class . From the name of the
containing package, Bob understands that this class contains functionality to deal with exceptional
behavior: By exploring the city, Bob is also exploring the project.

Figure 3.1. Manhattan running inside of Eclipse

1http://commons.apache.org/math/

11 3.1 Contributing to Commons Math - a Use-Case for Manhattan

Bob notices some other interesting buildings (2) and right-clicks on them to open the correspond-
ing classes in the Eclipse editor. By combining exploration with code inspection of “important”
classes, Bob quickly gathers the structural information required to implement his contribution.

12

Figure 3.2. The tooltip for class LocalizedFormats

In the meantime, other contributors to Commons Math begin to work on the system and Bob is
visually notified of their activity as shown in Figure 3.3. The buildings in yellow represent classes
that have been modified by other developers since Bob started his development session. As nobody is
working on the class he needs to modify (GeneticAlgorithm), he begins working on his contribution.

Genetic
Algorithm

Figure 3.3. The activity of contributors to Commons Math

12 3.2 Visualizing Software Systems

Nevertheless, when the contribution is almost complete, the building representing GeneticAlgo-
rithm turns yellow and a sphere of the same color appears on top it. This sphere represents an alert
for an emerging conflict: Another developer is concurrently modifying the class GeneticAlgorithm.
Yellow spheres represent emerging conflicts, while red spheres indicate that one of the developers
involved in the conflict has already committed his changes. Since the sphere is still yellow, Bob
knows that the conflict can be resolved before it is committed to the repository.

Figure 3.4. The tooltip for the emerging conflict on class GeneticAlgorithm

First he looks at the tooltip description for the conflict sphere (see Figure 3.4) to find out the
username of the other contributor: Marcus. Then he gets in touch with Marcus and they begin to
search for a strategy to solve the conflict. Bob inspects the conflict in an instance of the Eclipse
compare editor (opened from within the visualization) and they discuss their respective contributions,
while looking at each other’s code. By looking at the compare editor they find the conflicting
lines and modify them to solve the conflict. As soon as the conflict is resolved, the conflict sphere
disappears. Moreover, during the discussion, Marcus informs Bob that he is adding a logging
component to GeneticAlgorithm, therefore Bob changes the method he has added to make it work
with this logging component. Finally they both commit their contributions without having to merge
conflicts from the repository.
In the next sections we describe our approach in detail, explaining the rationales behind our decisions
and how we deal with specific issues. First we explain our visualization of software systems, then
we move to the visualization of developers’ activity.

3.2 Visualizing Software Systems

3.2.1 The Code-Model

The source-code of a system contains all the information about the system’s structure. However this
information needs to be extracted from it into a representation at a higher level of abstraction, i.e. a
code-model.

13 3.2 Visualizing Software Systems

Depending on the level of detail, a model can be language independent, at the cost of having no
notion of some language specific constructs. However, defining a model that works with all language
paradigms requires to omit too much information. Since object-oriented languages are widely
adopted, Manhattan focuses on object-oriented systems.
Figure 3.5 shows the artifacts and relationships described by the code-model used in Manhattan.
The entities are the ones common to many OO language: packages, classes and methods. The
modeled relationships are containment and inheritance: Method invocations are omitted, as they are
not visualized. Classes can have multiple super-types in order to support mix-ins (used for example
by SmallTalk and Python) and multiple inheritance (used by C++).
Although interfaces are a Java specific concept, the model distinguishes them from classes, as doing
otherwise can be misleading when analyzing Java systems. This issue is explained in more detail in
Section 3.2.2, after we describe the city-metaphor.
When extracting the code-model of a system, for every class we compute the number of fields (NOF)
and number of methods (NOM) metrics.
Every instance of the code-model refers to a project in the workspace and only the entities defined in
the project are included (i.e. external classes required by project members are ignored).

Project
Model

Package
Model

Method
Model

0..*

superTypes

subTypes

0..*0..*

0..*

0..* 0..*11

1 0..*

1 0..*

subpackages

classes methodspackages

ClassModel
interface: Boolean

Artifact Model
<abstract>

Figure 3.5. The code model used in Manhattan

To visualize a system written in a given language, Manhattan needs a language-specific parser
that extracts the model from the system’s source-code. The fact that Manhattan is an Eclipse plugin
can simplify the implementation of such a parser: Most language-integration plugins (e.g. JDT
for Java) build abstract syntax trees from source-code and provide an API to access them. By
exploiting such APIs one can implement language-specific parsers without having to care about
language-specific syntaxes. At the time of this writing, we have implemented only a parser for Java
systems. This parser is built on top of X-Ray 2, a software visualization plugin, which uses the APIs
offered by JDT to parse Java projects [Mal07].

2http://xray.inf.usi.ch

14 3.2 Visualizing Software Systems

3.2.2 The City Metahpor

People use metaphors to explain concepts from an abstract or complex domain (target domain)
by means of concepts that belong to a familiar domain (source domain). Software visualization
metaphors describe software artifacts and their properties using concepts from a familiar more
tangible domain. For a metaphor to be effective, the source domain needs to have some sort of strong
similarity with the target domain, and concepts should be mapped from one domain to the other in
the simplest and most direct way possible.

The metaphor used in Manhattan is a slightly modified version of the city metaphor introduced by
Wettel et al. I briefly describe the metaphor to contextualize our contribution; further details can be
found in [WL07, Wet10].

districts => packages

buildings => classes and interfaces

main district => project

Figure 3.6. The city of Apache BCel

The city metaphor maps architectural elements to software entities. Projects are represented as
cities, packages as districts, and classes as buildings. Figure 3.6 shows the city for Apache BCel,
annotated with a key for the artifacts. The mapping from districts to packages is immediate, as both
are members of a containment hierarchy and group related artifacts together. Representing classes as
buildings is an effective mapping, since it links the first-class entities of the two domains.
Besides defining analogies between concepts of the two domains, the metaphor introduces a set
of mappings from software properties to visual properties of the architectural artifacts. These
mappings are illustrated in Figure 3.7. Differently from Wettel’s metaphor, buildings representing
Java interfaces are colored and shaped in a different fashion than the others. This allows users to
clearly distinguish entities that contain behavior from those that only declare it.

15 3.2 Visualizing Software Systems

Classes

Packages

Buildings

DistrictsDepth	 in	 Package	 Hierarchy Color

Number	 of	 Fields Width

Number	 of	 Fields Length

Class	 or	 Interface Color

Class	 or	 Interface Shape

Software Architecture

	 	 	 	 	 	 	

Number	 of	 Methods Height

Figure 3.7. The mappings defined by the city metaphor

The described mapping produces three particular types of buildings shown in Figure 3.8.
Skyscrapers are thin and tall buildings representing classes with few fields and many methods.
Classes with many fields and few methods are represented by flat and wide buildings that we refer to
as parking-lots. Office buildings are wide and tall and they represent classes with many fields and
many methods. These types of buildings should be investigated first to understand the system under
analysis, because (1) skyscrapers are classes that describe the behavior of a system or the interfaces
it exposes, (2) parking lots represent entities that describe what kind of information is treated by the
system (e.g. constants holders) and (3) office buildings contain information about both behavior and
data. One of the main benefits of the city metaphor is that these kind of buildings are the first to be
noticed also in very large and complex cities.

parking-lot
many fields
few methods

skyscraper
few fields
many methods

office building
many fields
many methods

Figure 3.8. The city of ArgoUML

16 3.2 Visualizing Software Systems

3.2.3 The View-Model

The first step to visualize a project is extracting its code-model. The view-model is a geometrical
representation of the code-model in the form of a tree. Nodes in the tree are called glyphs.

Glyph
position: Point3D
dimensions: Point3D
color : Color

Geometry
<abstract>

children

geometry
1

0..*1

1

Cuboid

Cylinder

Sphere

Artifact
Model

<abstract>
model

10..*

Figure 3.9. The view model

The view-model can be used to realize different metaphors, depending on (1) what entities in the
code-model are represented by the glyphs, (2) what code-model relationship is represented by the
children relationship in the view-model, (3) how the children relationship is visualized, (4) how the
shape and size of the glyphs is computed, (5) and what layout algorithms are used to compute the
position information of the glyphs.
To realize the city metaphor, glyphs are shaped as cuboids and cylinders, and they are used to
represent projects, packages, classes, and interfaces. The children relationship between two glyphs
represents different code-model relationships, depending on what code-model entities are represented
by the two glyphs.
Nevertheless, in the city metaphor the children relationship only reflects the containment relationship
between projects, packages, and classes; moreover the relationship is not shown with a dedicated
visual element, but by putting the children (containees) of a glyph g (container) on top of it. In addi-
tion, the area of g depends on the surface occupied by its children, since the city layout is hierarchical.

Besides the city metaphor, many other metaphors are based on a hierarchical layout (e.g. all
the metaphors that draw a tree structure). For this reason, glyphs are designed to be responsible for
layouting their children. To execute a hierarchical layout, it is necessary to start from the leafs and
climb the glyph tree up to the root, while running the layout algorithm of choice (that we describe in
Section 3.2.4) on the children of every encountered node. After the layout phase is complete, the
visualization can be rendered; our rendering strategy is described in Section 3.2.7.

Figure 3.10 shows a city and the underlying glyph tree side by side. The root of the tree is the
city base and the immediate child of the root is the project. Every descendant of the project glyph is
either a district (package) or a building (class), depending on whether it has children or it is a leaf
node.

17 3.2 Visualizing Software Systems

City Base

Toy Project

pk2
pk1

Class1

Class2
Class3

(a) The city

Toy
Project

pk2

Class1 Class2 Class3

City
Base

pk1

(b) The glyph tree

Figure 3.10. The city for a simple project (a) and the corresponding glyph tree (b)

3.2.4 The Layout Algorithm

The problem of finding a layout for a city can be reduced to the rectangle packing problem 3,
consisting of placing a set of rectangles of varying dimensions into a rectangular container, while
minimizing the size of the enclosing container 4. This problem has many real-world applications, for
example in packaging, storage, transportation, computer graphics 5, and chip manufacturing.
Reducing the problem of computing a city layout to the rectangle packing problem is simple: The
contents of a district are the rectangles to place and the district is the enclosing container.
To create the layout algorithm for Manhttan, we re-implemented the Rectangular-Packing algorithm
used by Wettel in CodeCity and we added the support to real-time city updates triggered by code
changes performed by developers.

3http://en.wikipedia.org/wiki/Packing_problem
4Although other algorithms can be used, minimizing wasted space improves usability as cities do not grow too large
5http://en.wikipedia.org/wiki/Sprite_(computer_graphics)

18 3.2 Visualizing Software Systems

The Rectangular-Packing Layout Algorithm

A thorough description of the algorithm can be found in Wettel’s Ph.D. thesis [Wet10]. Here we give
a high level description to provide the reader with a context to understand the issues introduced by
the real-time city-updates and how we tackle them.
Given a list of rectangular items to layout, the algorithm computes a maximal container, in which all
items fit, but with large unused surface. Then the items are inserted one after the other into a growing
container that can’t grow larger than the maximal one. Placing the items in this container means
partitioning the maximal container in many lots: Every item is placed in a lot of its own, avoiding to
overlap with other items. This partitioning is implemented with a two-dimensional k-d tree 6. In this
tree, leaf nodes are empty lots, while the other nodes represent a space partitioning. To place an item
in the container, the algorithm searches all the leaves in which the item fits, in order to find a specific
leaf l such that placing the item in l does not require the container to grow and wastes the least space
possible. If no suitable leaf is found, the container is expanded by splitting an existing leaf.
If the collection of items is fixed, then the container will never grow larger than the maximal
container and every element in the least will find a place. Nevertheless, if the collection of items can
grow, the items added later to the collection, might not fit in the maximal container computed from
the initial collection. When this happens, it is necessary to re-layout all the items.
In the next section we describe why in Manhattan both collections and individual items can grow,
how this affects the usability and effectiveness of the visualization, and the approaches to tackle this
issue. Figure 3.11, kindly provided by Richard Wettel, shows the execution steps of the algorithm.

A A

B C

El.1 D

A

B C

El.1 D FE

GEl.2

A

B C

El.1 D FE

GEl.2

HEl.3

A

B C

El.1 D FE

GEl.2

HEl.3

I J

KEl.4

El.1
(8 x 6)

C
D El.1

(8 x 6)

El.2
(7 x 3)

F

D
G

El.1
(8 x 6)

El.3
(5 x 3)

El.2
(7 x 3)

F
H

D
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0

El.1
(8 x 6)

El.3
(5 x 3)

El.4
(4 x 4)

El.2
(7 x 3)

F
H

J

K

A

El.2
(7 x 3)

El.3
(5 x 3)

El.4
(4 x 4)

El.1
(8 x 6)

El.2
(7 x 3)

El.3
(5 x 3)

El.4
(4 x 4)

El.3
(5 x 3)

El.4
(4 x 4)

El.4
(4 x 4)

141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0

Figure 3.11. The execution steps for the Rectangular-Packing algorithm, provided by Richard Wettel

6http://en.wikipedia.org/wiki/K-d_tree

19 3.2 Visualizing Software Systems

3.2.5 Reacting to Changes

The visualization we implemented eases program comprehension, thus it can support software
maintainers in reverse-engineering tasks. However, we are more focused on helping developers
to drive the evolution of software systems by visualizing their structure. To support evolution, the
visualization should reflect the current state of the system, as developers are not concerned with how
the system was in the past. Therefore, the visualization should update itself according to the modifi-
cations performed on the system. These modification are not only the changes done by a developer to
his working copy, but also the changes, done by his colleagues, that he checks out from the repository.

Eclipse provides a service to which plugins can register in order to be notified when a developer
modifies the contents of a project. Using this service, Manhattan detects changes done to the system
and updates accordingly both the code-model and the view-model.
View-Model updates are the insertion of new glyphs, the resizing of glyphs representing buildings,
and the removal of existing glyphs. Insertions take place when a new package or class is created,
resizings are the result of a change in the number of fields or methods in a class or interface 7, and
removals are caused by the deletion of packages or classes.

Insertions and resizings can modify the layout of the city, as a district d could become too
small for its contents and a re-layout of the contents would be required. Moreover, since the city
layout is hierarchical, d could in turn become too large for its container, which in turn could also
become too large for its own container. This leads to a series of recursive re-layouts that, in the
worst case, ends at the root of the the glyph tree (Figure 3.12). Removals can affect the city lay-
out only if one tries to fill the empty space left in a district by compacting its contents with a re-layout.

Since, while navigating a city, a developer builds a mental map that he uses to orient himself
and to quickly locate a particular district or building [Wet10], these re-layouts should be avoided as
much as possible to avoid disorienting developers.

Toy
Project

pk2

Class1 Class2 Class3

City
Base

pk1

Class4

(a) Insertion

Toy
Project

pk2

Class1 Class2 Class3

City
Base

pk1

+1 Field

(b) Resizing

Toy
Project

pk2

Class1 Class2 Class3

City
Base

pk1

(c) Removal

Figure 3.12. The glyphs affected by an insertion (a), a resizing (b) and a removal (c)

7Only changes in the number of fields can change the layout, as the number of methods does not affect the area of buidings

20 3.2 Visualizing Software Systems

The Rectangular-Packing algorithm is not the best choice for an evolving hierarchical layout, like
the one we described. In fact, the ideal algorithm should allow a city element to grow and push the
elements around it, so that the city layout undergoes only minimal changes. The corner-stitch layout
8 fits the requirements, but we have not found an open-source implementation of it, and implementing
it was not a viable solution given the time constraints, as the algorithm is very complicated.

To mitigate this layout issue, we implemented a workaround to reduce the number of cases where
the growth of a glyph causes a re-layout. This workaround consists of setting two growth tolerance
thresholds based on the margin around a glyph and the padding inside of a container glyph, as shown
in Figure 3.13. A re-layout happens only if a glyph overflows the tolerance area defined by the two
thresholds. To further decrease the number of re-layouts, we tackle in the specific the three kinds of
view-model updates.

g

Margin

Threshold

(a) Margin Tolerance Threshold

g

Padding

Threshold

(b) Padding Tolerance Threshold

Figure 3.13. The growth tolerance thresholds used to decrease the number of re-layouts

Insertion
To insert a new glyph g, the first step is to attach it to its intended parent and container glyph c,
which represents either a package or the project itself. Then it is necessary to compute g’s
position and the new dimensions for c. The easiest way to do this is to re-layout c, but we
want to avoid this. A better way is exploiting the Recangular-Packing algorithm by trying
to insert c in the kd-tree of g: If this succeeds, the container is either unchanged (best case)
or expanded (worst case). If there is no leaf in the kd-tree that can contain c, then the only
option left is to re-layout g. Both the re-layout and the worst case of a successful insertion in
the kd-tree cause g to grow. In case that the growth is larger than the tolerance thresholds, a
recursive re-layout routine starts from g’s parent.

Resizing
This update is triggered by changes in the number of fields or methods in a class or interface.
When a glyph g is resized, a recursive re-layout is started if g’s growth is beyond the tolerance
thresholds. In case that g has shrinked, no action is taken, as a little waste of space is preferred
over a re-layout.

8The complete publication is available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/6352.html

21 3.2 Visualizing Software Systems

Removal
The first step to remove a glyph g is detaching it from its parent p. Then g is removed from
its containing leaf in p’s kd-tree. No other actions is taken, so that a re-layout is avoided and
an empty space is left instead of g. This solution is very appropriate as another glyph can be
later placed in this empty space: Like in a real city a construction site is created where an old
building was previously demolished.

The presented workarounds are designed to stop, as deep as possible in the glyph tree, the sequence
of recursive re-layouts shown in Figure 3.12, so that the number of glyphs involved in the sequence
is reduced as much as possible. However, the impact of a view-model update on the city layout
mainly depends on the district in which the update takes place and on the update itself: If an update
inside of a minor district forces a re-layout, the city structure undergoes only small changes; but if
an update taking place in one of the main districts causes a re-layout, then the impact on the city
structure can be substantial.
We have tested these workarounds by modifying different systems in different ways and we observed
the following results:

• With the tolerance thresholds we defined, re-layouts do not take place until more than four
fields have been added to a class since the last time that its container was laid out. Such an
increase in the number of fields frequently happens in a young system. However, in more
mature systems, such a change can be part of a refactoring or a more important change in the
design.

• Insertions in small districts often cause re-layouts, while larger districts usually have some
unused space available for new glyphs.

• Removals do not affect the city layout, as we take no layout-related action when performing
this kind of update.

3.2.6 Caching

If the view-model for a project is recreated every time that the system is visualized, the city is laid out
from scratch, thus disorienting developers and making the presented workarounds useless. Therefore,
we have implemented a simple caching mechanism that saves the view-model to a file using the
default Java serialization protocol. Since the view-model is a representation of the code-model and it
depends on the information contained in this model, we also cache the code-model in the same way.
Every plugin has access to a dedicated hidden directory located under the .metadata folder inside
the workspace. Since we store the cache in this dedicated folder, there is a separate cache for every
workspace.

Eclipse provides a hook that plugins can use to trigger the execution of a given routine right after
the IDE has finished booting. A similar hook allows to execute routines before Eclipse shuts down.
We use these hooks to load our models from the cache at the beginning of the development session
and to store them back when users quit Eclipse.
Besides maintaining the city layout consistent across Eclipse restarts, the cache also speeds up the
visualization process, as the code-model does not have to be extracted every time that a system is
visualized.

22 3.2 Visualizing Software Systems

3.2.7 Rendering the Visualization

As mentioned in Section 3.2.3, glyphs have the shape, color, position, and dimension information
needed to render the city. However, the view-model is not designed to be responsible for the render-
ing, in order to ease moving Manhattan to another rendering framework.

Our design supports only scene-graph-based rendering frameworks, because having a node in
the scene graph for every node in the glyph tree yields various benefits, among which making it
easier to deal with user interactions on the city elements (e.g., hovering the mouse on a building to
see its tooltip description).

Glyph
position: Point3D
dimensions: Point3D
color : Color

Geometry
<abstract>

children

geometry

1

0..*1

1

Artifact
Model

<abstract>
model

10..*IRenderable
<interface>

Ardor3dNodeNode

1
model

0..*

Ardor3d Renderables

View-Model Code-Model

children
0..*

1

Mesh
<abstract>

Figure 3.14. The design we conceived to render the visualization

Ardor3d 9 is the framework we are using at the moment. As shown in Figure 3.14, we have
defined the IRenderable interface, which declares methods to manage color, position, and dimension
information. Methods to manage textures, animations, and beacons (see Section 3.3.4) are also
declared by this interface. The children relationship in the view-model is reflected by the children
relationship in the scene graph. With this design, in order to use a rendering framework it is necessary
to define a subclass of the framework’s scene graph node class, and to make it implement IRenderable.

9http://ardor3d.com

23 3.2 Visualizing Software Systems

3.2.8 Interacting with the Visualization

We render our visualization in an Eclipse view composed of a 3D canvas and a status bar, where the
active navigation mode is indicated. Two navigation modes are available: first-person and orbital.
Both navigation modes are controlled with the keyboard and users can switch the navigation mode
by pressing O.
Using the first-person mode, developers can freely move around the city, controlling a free-fly
camera able to translate and rotate along the three dimensional axis. In this mode, users can observe
the city, or a district, from the angle they prefer: They can either “walk” in the city, move further
away from it, or stand on the roof-top of a building.
In the orbital navigation, we place an invisible dome on top of the city. This dome covers the whole
city and is centered on it. The camera is attached to the dome and can move along its surface.
By moving along the dome, users can orbit around the city and quickly move to another observation
point. When using this mode, the camera rotations are blocked.
While navigating the city, developers need to know what class is represented by a certain building.
By hovering the mouse on the building, users can get a tooltip description of the represented class
(Figure 3.2). Moreover, a textual description is shown in the status bar. If a user needs more
information about a class than what is provided in the tooltip, he can right-click on its building to
open the class in the Eclipse editor.
During a development session, a programmer usually works on a limited amount of code artifacts
related to each other (e.g. members of the same package or members of packages that are conceptually
related, like model and GUI), therefore he might prefer to visualize only these artifacts instead
of the whole project. Based on this observation, we added the ability to build focused cities that
contain only those parts of the city on which the programmer is going to work. Users first have to
select the districts and buildings they are interested in by left-clicking on them, then they can build
the focused city by pressing F. The selection step and the resulting city are shown in Figure 3.15;
selected districts are in green.

1

2
3

(a) The selected districts

1

23

(b) The Focused City

Figure 3.15. The selection step (a) and the resulting focused city (b)

24 3.3 Visualizing Team Activity

3.3 Visualizing Team Activity

Much research done in collaboration support is focused on making developers more aware of the
activity of their colleagues. Awareness gives various benefits for collaboration, like, for example,
avoiding duplicated work and conflicting changes. The visualization implemented in Manhattan
provides a unified view on software systems, focused on their structure and on the activity of
their development teams. In this section we describe our approach to improve awareness through
visualization.

As stated in Section 2.2, awareness is mainly achieved through communication and through
inspection of changes in commits on SCMs. Nevertheless, research shows that the communication
means used by co-located development teams are not suitable in the context of global software
engineering (GSD). Moreover, SCMs are not able to provide a sufficient level of awareness by
themselves, because: (1) they ignore important semantic information by treating source-code as plain
text, and (2) the way in which they propagate changes does not reflect the dynamics of collaborative
software development.
From an awareness perspective, treating source-code as plain text is inappropriate, because it forces
developers to read the textual changes in order to derive how the system was modified by their
colleagues (relying on commit comments is not feasible, as they either contain information at a too
high level of abstraction, or they do not mention all the changes in the commit).
In the change propagation strategy employed by SCMs, a developer can see the changes performed
by his colleagues only after they are published to the repository and he retrieves them from it.
Because of this, some developers might work on the same piece of code without knowing, leading to
merge conflicts that, depending on the nature of the conflicting changes, may hinder the work of
many developers.
Various researchers focused their efforts in developing systems that improve awareness by providing
developers with real-time notifications of changes performed by their colleagues and with alerts of
emerging conflicts.
Section 2.2 describes two important drawbacks shared by these contributions: They either treat
source-code still as plain text, or do not record the collected fine-grained change information.
The Hattori’s approach implemented in a tool called Syde, does not suffer from these drawbacks. In
the next section we briefly describe this tool, on top of which we based our approach to improve
awareness.

3.3.1 Syde

Syde, which Hattori is developing in the context of her Ph.D. research, provides developers with
real-time change notifications and alerts about emerging conflicts, from within Eclipse.
Syde focuses on Java systems and describes them with a language-dependent model aware of
packages, files, classes, fields, and methods. Since this model represents a developer’s local copy of
the system, there is one model instance per developer, like, in the context of SCMs, every developer
has his own working copy. Code changes are modeled as change operations that represent additions,
deletions, and modifications of the entities in the system model. Real-time change notifications,
based on the detailed information contained in these two models, provide a higher level of awareness
than the diffs and commit comments provided by SCMs.

25 3.3 Visualizing Team Activity

The ability of awareness to reduce the amount of conflicts relies on developers’ cognitive ac-
tivities, which can be compromised by external factors (such as fatigue); therefore early conflict
detection should be automated to avoid that conflicts remain unnoticed until they show up in SCM
repositories.
By modeling the working copy of every developer and by tracking all change operations in real-time,
Syde can automatically detect conflict events and notify developers about them. Three conflict events
are considered: (1) a conflict emerges, (2) an emerged conflict is committed to the SCM repository,
and (3) a conflict is resolved. Since conflicts are detected early, they can be resolved before they are
committed.

Syde is implemented as a client-server application as shown in Figure 3.16. The client is a set of
Eclipse plugins grouped in two components: Inspector and Viewer. Whenever a developer modifies
the code, the Inspector creates the change operations representing his change and sends them to the
Syde server. The server is in charge of (1) recording the received change operations in the Change
Repository, (2) broadcast these change operations to the interested clients, (3) detect conflicts and
warn involved clients about them, and (4) provide clients with an interface to query the Change
Repository.

Server

Collector

Notifier

Conflict
Detector

Change
Repository

Eclipse

Syde Client

Viewer

Scamp

Replay

Conflicts

Inspector

Figure 3.16. An architectural view of Syde

Change notifications and conflict warnings are sent by the server to the Viewer component in the
clients. This component contains plugins that exploit the information sent by the server to provide
developers with awareness information with different focuses and in different ways: The Conflicts
plugin is focused on making developers aware of conflicts, while Scamp informs developers about
the overall activity of the team on the system’s classes. Conflicts presents information in a list-based
manner, while Scamp employs simple 2D visualizations based on typography and color [Guz09].
Replay is radically different from the other viewers, as it ignores messages from the server, and allows
developers to review the changes performed on the system, by querying the Change Repository.

26 3.3 Visualizing Team Activity

3.3.2 Awareness in the City

User
Colleague1

Colleague2

WorkingCopy

Syde
Server

WorkingCopy2

WorkingCopy1

SCM
Repository

CodeModel

ViewModel

Renderables

M
a
n
h
a
t
t
a
n

Structural Information

Team Activity Information

Unified View Information

Figure 3.17. The information flow defined by our unified view

In the following sections, we describe our approach to visualize team activity. To better contextu-
alize later explanations, we briefly comment the scheme in Figure 3.17, which shows the information
flow defined by our unified view for a team of three developers 10.
Developers modify their working copies (black arrows) and share their modifications with each other
by checking them in and out of the repository.
Modifications to the working copy, either performed by the user or caused by a check out from the
repository, are propagated to the CodeModel and reflected in the ViewModel and Renderables.
At the same time, the Inspector plugin 11 detects changes to the working copy in real-time and sends
them to the Syde server, which then broadcasts information regarding changes and emerging conflicts
to all interested clients.
In the context of Syde’s architecture, Manhattan is a viewer plugin interested in change notifications
and conflict alerts sent by the Syde server. The team activity information coming from the server is
combined, in the ViewModel, with the structural information coming from the CodeModel to create
the unified view that is then rendered on the Renderables.
Finally, the rendered visualization feeds back information to the user, who will act accordingly.

10Also the two colleagues are using Manhattan, but this is not shown in the scheme for the sake of simplicity
11See the architectural description of Syde in Section 3.3.1

27 3.3 Visualizing Team Activity

3.3.3 Visualizing Change Notifications

In the context of Syde’s architecture, Manhattan is a viewer plugin interested in change notifications
and conflict alerts. The awareness information it visualizes consists of (1) the emerging conflicts
in which the developer is involved, (2) classes that have been changed or deleted 12 by the other
developers, and (3), among the developers that modified a class, who is the one that modified it more
frequently. Before describing the strategies we employ to visualize this information, we describe the
rationales behind them.

From the point of view of a single developer, the state of the system is the code in his working
copy and the changes he is performing. Nevertheless, the developer sees only a local state of the
system, which does not take into account the changes being performed by the other developers.
The union of the local state of every developer creates the global system state, which includes all
the changes being performed by the development team and the conflicts that may arise from these
changes.

With the information received from Syde, Manhattan has access to the global system state and
can visualize it. To represent this state, the visualization seen by a developer should react not only to
his changes, but also to the changes performed by his colleagues. For example, if a developer adds a
method to a class c, his colleagues should see the building representing c grow taller13. Nevertheless,
we believe that such a visualization would disorient developers, as we are convinced that they are
used to reason on the system in the perspective of the local state they see. More precisely, our
hypothesis is that, unless developers check out changes from their colleagues, they expect the system
to change only according to changes they perform on their working copy.

Based on this hypothesis, we opted for a less invasive approach, where we ignore change notifi-
cations about the creation of new classes by other developers, and we map the remaining change
information to color, a visual property of buildings that is marginally used in our metaphor.
Although Syde distinguishes between field changes and method changes, we believe that such
distinction improves awareness only if the displayed information is detailed enough, i.e.: for every
developer that modified a given class, there should be a detailed description of which fields and
which methods he changed, added or removed. Such a detailed description can not be shown with
color alone and in a textual form it would clutter the visualization and cause information overload.
Therefore we treat both fields and method changes as modifications to the class they belong to.

12Deletions of packages are also visualized
13In the city metaphor, the height of a building depends on the number of methods inside the class or interface it represents

28 3.3 Visualizing Team Activity

Figure 3.18. An aerial view of Commons Math show-
ing notifications of developers’ activity

Figure 3.18 provides an aerial view of the
city for Commons Math, enriched with our
color-based change notifications. With these no-
tifications, we inform developers about which
classes are being modified. When a class c is
changed by one or more of his colleagues, de-
veloper d will see the corresponding building
turn yellow. If one of d’s colleagues removes
c from his working copy, c’s building will be-
come orange.
A problem with this notification strategy is that
if class c is modified multiple times, d might
only notice the first change, because the later
ones are not reflected by a visible color change,
since the building has already become yellow.
To solve this problem, we have conceived an
approach that combines color notifications with
texture changes and animations, but we have not
implemented it, because of some shortcomings,
in terms of scalability and visual noise, that we
have not managed to solve yet. In Section 5.1,
we describe the this approach and its shortcom-
ings in detail. Despite the described drawbacks, color-based notifications are still effective as they
are clearly visible and scale well to large projects, as shown in Figure 3.19.

Figure 3.19. A bird’s view of the city of ArgoUML, enriched with change notifications

29 3.3 Visualizing Team Activity

To let developers know who modified a class, we list the change authors in its tooltip description,
as shown in Figure 3.20. Developers are grouped by the kind of change the did and those that deleted
the class are put first. Inside each group, developers are sorted first according to the number of
changes done to the class and then alphabetically.

Figure 3.20. The tooltip description for a class modified by various developers

3.3.4 Visualizing Conflict Alerts

Syde broadcasts conflict alerts to all clients as it does for change notifications. However we visually
notify developers only about the conflicts in which they are involved. To visualize a conflict alert
on a class, we put a sphere on top of its building. The color of the sphere depends on the kind of
conflict it represents: Emerging conflicts are showed in yellow, while committed conflicts, those
where one of the involved developers has committed his changes, are shown in red.

While verifying the effectiveness of this notification strategy, we realized that depending on the
size of the building and on its surroundings, the conflict sphere can blend in with the background,
leading to unnoticed conflict alerts and, consequently, to conflicts on the repository.
To solve this issue, we introduced the concept of conflict beacons. A conflict beacon is a spotlight
positioned above of a conflict sphere and pointing towards the ground. These beacons illuminate
an area of the city around their associated conflict spheres, so that conflict alerts are clearly visible.
The algorithm that computes the height of the beacon is a function of the bounding box of the
whole city, so that the beacon illuminates an area that is large enough to be noticed and yet with a
well-defined proximity field (in which developers can search for the conflict) 14. Figure 3.21 shows
how conflict beacons allow to notice conflict spheres that are blending with the background: The
buildings close to the conflict sphere are colored differently from the others because of the beacon,
and this difference in color is clearly visible.

14The higher a beacon is placed, the larger is the area it illuminates

30 3.3 Visualizing Team Activity

Figure 3.21. The city of CommonsMath with conflict alerts made visible using conflict beacons

If multiple developers concurrently modify a class c, each of them is involved in multiple
conflicts on c. This situation is represented by a set of conflict spheres, one for each conflict, stacked
on top of each other. Moreover, we still put one conflict beacon per conflict sphere, so that a stack
of conflict spheres is highlighted by a stronger light than a single sphere. Putting the cursor on a
conflict sphere deactivates its beacon and shows a tooltip description for the conflict (Figure 3.22).
This description includes the state of the conflict (emerging or committed), the name of the other
developer involved in the conflict, and the time of the last event on this conflict, that is the last time
the conflict was committed or changed. A conflict changes when the involved developers modify the
class and their changes do not solve the conflict.

Figure 3.22. The tooltip description for a conflict sphere

31 3.3 Visualizing Team Activity

When a developer discusses on how to solve a conflict on a class, the first step is to understand
the modifications done by his colleague and his motivation. We ease this step by providing the
possibility to inspect conflicts from within the visualization: Right-clicking on a conflict sphere
opens an instance of the Eclipse Compare Editor, from where a programmer can see the differences
between the version he has and the version in the working copy of his colleague. When the conflict
is resolved, the corresponding conflict sphere is removed.

Figure 3.23. Conflict inspection in Manhattan

32 3.3 Visualizing Team Activity

Chapter 4

Applications and Evaluation

In Chapter 3, we discussed our unified view on systems’ structure and team activity. We have also
illustrated a possible use-case for Manhattan, which shows its intended use and how we expect
developers to benefit from the support it provides. In this chapter, we want to verify our approach
by checking that the use-case we describe can actually fit in the users’ workflow and that the
visualization is clear and intuitive. Moreover, we also want to verify that the implementation scales
to projects larger than CommonsMath, which we have extensively used in our tests while developing
the tool.
In the next section we explain how we verified the implementation, while in Section 4.2 we describe
an exploratory study we conducted to validate our approach.
We advise to read this chapter from a color-enabled support, as we make extensive use of color
images, and the ability to distinguish colors is important to understand the concepts we discuss.

4.1 Exploring a few Case Studies

In order to verify the scalability of our implementation, we have selected a few systems of diverse
size and belonging to different fields. We have visualized these systems and briefly explored the
resulting cities to check that the tool remains responsive. To visualize these systems, we have used
the same machine on which we developed our tool: A MacBookPro 4.1, with a 2.4 GHz Core2Duo
processor and 4 GB of RAM.
We has selected the following systems: ActiveMQ, Ant, Cobertura, jEdit, Vuze, and NetBeans.
For each system we show a picture of its city and briefly comment about the system’s architecture.

33

34 4.1 Exploring a few Case Studies

4.1.1 ActiveMQ

73 fields
173 methods

ActiveMQConnection

89 fields
220 methods

BrokerService

38 fields
102 methods

Message

47 fields
96 methods

MessageDatabase

Figure 4.1. The city of Apache ActiveMQ

ActiveMQ is a message broker implementing JMS 1.1. It provides language specific clients for
many programming languages and can be deployed on clusters. We visualized only the project’s
core, which consists of 2,456 classes, 185 interfaces, and 109 packages. There are many office
buildings that dominate the city skyline. The average number of classes per package is more than
260, but, when looking at the city, it seems much lower. The reason for this skew in the average lies
in the particular setting on the right edge of the city: Seven districts that look identical in size and
structure and even contain the same number of classes (110). These districts are named as version
numbers and their parent district is named openwire. OpenWire is a serialization protocol, native
to ActiveMQ, that turns live objects from different programming languages into binary streams.
The protocol evolves over time and seven version currently exist. We have not further investigated
for the exact reason why a new package is “replicated” for every version. A possible explanation
for this decision is the aim for backward-compatibility of new versions of the system with older
deployments.

35 4.1 Exploring a few Case Studies

4.1.2 Ant

89 fields
220 methods

Project

 66 packages
1,099 classes

ant

47 fields
87 methods

Javac

1

Figure 4.2. The city of Apache Ant

Ant is a tool to automate the execution of build processes for software systems. It is based on the
concept of tasks, which are steps in build recipes called targets. The system contains 1,194 classes
and 178 interfaces divided in 74 packages. The city consists of a main district named ant and a set
of “satellite” districts. These districts contain classes to interface Ant with e-mail and and the bzip,
tar and zip archive formats.
In the ant district, there are many office buildings and almost all of them are located inside of the
district we highlighted in green. This district is named ant.taskdefs and it contains the definitions for
all built-in tasks that ship with the default distribution of Ant. This package contains more than half
of the classes in the system and its district covers more than half of the city surface.
There are a few round parking-lots colored in purple: These are interfaces used as constants holders.
Among these, XMLConstants contains the constants defining the properties of the XML reports
produced by JUnitTask, a built-in task to automatically run test suites. On the bottom edge of the city
we see two very similar and adjacent office buildings (1) named FTP and FTPTask. We inspected
the classes for these two buildings and noticed that they have exactly the same Javadoc comment. It
is not clear whether one is the successor of the other or if they have a different relationship.

36 4.1 Exploring a few Case Studies

4.1.3 Cobertura

3 packages
41 classes

parser
6 packages
55 classes

javancss

1

50 fields
662 methods

JavaParser

50 fields
662 methods

JavaParserDebug

Figure 4.3. The city of Cobertura

Cobertura is a test coverage tool for Java
systems. It consists of 23 packages, 110
classes, and 8 interfaces. This system is
not as large as the other projects we are
showing in this section, but it has some
interesting peculiarities that we discovered
while exploring its city.
The city is dominated by four massive
skyscrapers having similar names and di-
mensions. The structure of the parser dis-
trict is recursive: The same compound
consisting of a parking-lot, a small office
building and a skyscraper, is replicated
four times. Moreover, using diff we have
verified that the four parking-lots contain
the same constants. While inspecting the
skyscrapers we have found some lines, in-
cluded in the comments for the code li-
cense, which state that these are automat-
ically generated classes. We also discov-
ered that the whole javancss package con-
tains classes that belong to JavaNCSS, a
project that computes various metrics for
Java systems. We have not investigated
the reason why these classes have been di-
rectly included in Cobertura.
Another interesting trait of this system is
the small district (1) on the bottom left
corner: Cobertura is used as input for its
own test-suite, and this package is put in a
different source folder to verify that Cober-
tura works properly on systems with mul-
tiple source folders.

37 4.1 Exploring a few Case Studies

4.1.4 jEdit

13 fields
351 methods

Parser

1

60 fields
255 methods

TextArea

Figure 4.4. The city of jEdit

jEdit is a text editor, written in Java, featuring macros, extendible syntax highlighting for many
file types, and many plugins that can be installed from a built-in plugin manager. The system consists
of 927 classes and 67 interfaces organized in 50 packages. There are two skyscrapers and three
parking-lots in the northern edge of the city. Parser is responsible, together with the other classes in
its package, to parse and interpret BeanShell 1 based macros. All text editors providing advanced
editing functionality and syntax coloring have to represent text with some object. Modeling every
character in a text document with a live object would be an overkill. jEdit represents portions of text
with instance of TextArea 2, which inherits from JComponent, a class belonging to Swing 3. Outside
of the jedit district, the one highlighted in green, there are four satellite districts (1) that contain a
threading pool and classes to build package installers for OSX and Linux.

1http://www.beanshell.org/
2More precisely it represents portions of text using JEditTextArea, a subclass of TextArea
3http://en.wikipedia.org/wiki/Swing_(Java)

38 4.1 Exploring a few Case Studies

4.1.5 Vuze

80 packages
699 classes

ui

46 packaegs
266 classes

ui

75 packages
540 classes

core

122 packages
1,004 classes

core

29 packages
421 classes

bouncycastle

242 classes
15 interfaces

pluginsimpl

30 classes
292 interfaces

plugins

29 packages
126 classes

plugins

Figure 4.5. The city of Vuze

Vuze is a famous bit-torrent client written in Java. It was previously named Azureus, but it was
renamed in 2006, after a large new release that enhanced the system with a new user interface and a
content distribution platform that provides users with access to HD content organized in channels
[Wik]. Since not all users are interested in the content distribution platform, after installing Vuze it is
possible to disable the new components and run the “old” Azureus.
The city as a whole contains 511 districts and 3,800 buildings. The district with a blueish overlay is
azureus2 (Azureus), while the district with a purple overlay is azureus3 (Vuze). azureus2 contains 258
packages, 1,332 classes, and 534 interfaces, while azureus3 contains 224 packages, 1,422 classes,
and 91 interfaces.
The first difference that can be noticed is that the core of Vuze has 500 classes more than the core of
Azureus and that the opposite is true for the ui districts. In Azureus plugins are divided in two districts,
one defining the plugin interfaces and one containing the implementations of these interfaces.

39 4.1 Exploring a few Case Studies

Vuze does not have a package containing plugin interfaces. Both Vuze and the “old” Azureus allow to
encrypt traffic and they use the BouncyCastle cryptography APIs to do so.
It is not clear whether the azureus2 district is the ancestor of azureus3 or if the latter contains the
implementation of the Vuze content distribution platform and azureus2 is still actively used in Vuze
to transfer data. Although we have inspected various classes in both districts, we have not found
information clarifying this question in either comments or Javadoc.

4.1.6 NetBeans

1,474 fields
446 methods

FortranParser

2,029 fields
306 methods

FortranParser2

385 fields
683 methods

CppParser

2,034 fields
5 methods

NamedCharacter
Reference

Figure 4.6. The metropolis of NetBeans

As a final stress test, we tried to visualize all the modules of NetBeans. We have cloned the
whole Mercurial repository, which contains 817 modules. It took more than 47 minutes to build the
project on our benchmark machine and it took almost 15 minutes to visualize the project.
The end result is a metropolis containing 4,844 districts and 42,514 buildings.
The three massive office buildings and the parking-lot in the back are a quite unexpected surprise
and are an exception in a very large city where there are not many buildings particularly larger
than the others. Also NamedCharacterReference is related to language parsing, as it belongs to the
html.parser module.
With a system of this size, the visualization is unusable due to a considerable amount of lag.
Moreover, we have noticed depth-fighting 4 issues when looking at the city from too far. We had to
move closer to the city in order to get a screenshot without much depth-fighting.

4http://en.wikipedia.org/wiki/Z-fighting

40 4.2 Evaluating our Approach with an Exploratory Study

4.1.7 Exploration Wrap Up

To test the scalability of our implementation, we have visualized a few systems of diverse size.
We have briefly explored every system and illustrated some of the findings we obtained.
Apart from NetBeans, Manhattan visualized all systems in less than 30 seconds.
When exploring ActiveMQ and Vuze, we have experienced lag in the tooltip descriptions: It took
more than one second for the tooltips to appear. We ignore the reason why OpenGL picking takes so
long with these systems and we have created a thread about this issue in the forum of the rendering
framework we are using to verify whether we are using the provided picking functionality in the
wrong way. We have also noticed that the plugin memory consumption was much higher than
expected. Suspecting a memory leak, we have investigated the issue with the Memory Analyzer
plugin 5. We fixed the memory leak and reduced memory consumption by more than 50%.
Although Manhattan was not responsive enough to be usable when visualizing NetBeans, we still
managed to see its city and we discovered four very large classes.

4.2 Evaluating our Approach with an Exploratory Study

Manhattan is focused on software visualization and collaboration support. A quantitative study on
such a tool requires a large population of developers and a considerable amount of time, because
the experiment participants have to get used to the visualization and they should be observed for
a period of time long enough to provide us with meaningful data. Therefore we have opted for a
qualitative exploratory study aimed at verifying whether we are on the right track with our approach
by collecting feedback from the participants.
More precisely we want to understand (1) whether our visual notifications of changes are visible
and intuitive, (2) if our conflict alerts are usable and provide relevant information, and (3) if the
participants believe that a more mature version of our tool would help them in their everyday
development sessions.

4.2.1 Study Description

Hattori has designed an experiment to verify the conflict detection capabilities of Syde. In this
experiment she asks participants to perform a set of programming tasks on Checkstyle6, to fix a set
of broken tests from the project’s test suite. Participants are given three tasks each and whenever
they complete a task, they have to commit their changes to a repository. Before moving to the next
task the participants have to successfully incorporate each other’s changes so that, at the end of the
experiment, the whole test suite is passing for the working copy of both participants. Each pair of
programming tasks is designed to lead to conflicts on the repository. Hattori verifies the effectiveness
of her approach by allowing developers to use, for every pair of tasks, a different subset of Syde’s
conflict-related features . Participants are also asked to fill two questionnaires, one before and one
after the programming tasks. We asked Hattori the permission to include the described experimental
setup in our experiment, to validate the strategies we employ to visualize team activity.

5http://www.eclipse.org/mat/
6http://checkstyle.sourceforge.net

41 4.2 Evaluating our Approach with an Exploratory Study

Our experiment is structured as follows: At the beginning, participants are asked to fill-in a
pre-experiment questionnaire. Then, after a brief tutorial on Manhattan, the participants have to
perform a program comprehension task on Checkstyle using our tool. After that, we ask participants
to perform, with the support of Manhattan, the programming tasks designed by Hattori.
Finally, when the participants are done with their tasks, we ask them to fill a post-experiment
questionnaire. Before discussing the results, we describe each phase more in detail.

Pre-Experiment Questionnaire
This questionnaire is made of two parts. The first one is focused on assessing participants’
experience in software development. More precisely participants are asked about the size of
the systems they work with, the size of their development teams, and their experience with
SCMs. In the second part we ask participants about their knowledge in software visualization
and their reverse engineering experience and habits. We also ask some questions to assess
whether the features of Manhattan match what participants expect from tools to support
collaborative development. The first part of the questionnaire is taken from the experiment
designed by Hattori.

Program Comprehension Task
Participants are given ten minutes to explore Checkstyle using our tool and to report their
findings about the design of this system. The main goal of this task is to give participants
some time to get acquainted with the visualization, so that they can use it more efficiently
during the programming tasks that they will be assigned later. Ten minutes is not a realistic
amount of time for a program comprehension task and we are not specifically interested in the
quality of the findings reported by the participants. Still we ask them a report to verify that
they understand how to use the tool.

Programming Tasks
The assigned tasks are those designed by Hattori. While performing the first task, participants
are not allowed to use Manhattan and they will have to merge conflicting changes. In the
remaining tasks, participants are supported by our tool and we expect the number of merge
operations to decrease thanks to the information we visualize. During all programming tasks,
participants are allowed to communicate with each other via Skype 7.

Post-Experiment Questionnaire
The first part of this questionnaire aims at verifying that the experiment was designed ap-
propriately, meaning that it was not too complicated for the participants to understand, and
that our guidance during the experiment was sufficient. After that, we ask a few questions to
assess the usability of Manhattan during the program comprehension task. Then participants
are asked to report their experience during the programming tasks, by answering a set of
questions for every task. These questions aim at discovering if participants managed to avoid
merge conflicts thanks to our conflict alerts and to what extent they communicated with each
other to resolve emerging or committed conflicts. After that, we ask participants feedback
about the way we visualize awareness information and about the tool in general. Finally,
participants are asked to write the positive and negative aspects of Manhattan and the future
improvements they are most interested in. The first part of the questionnaire and the questions
on the programming tasks have been conceived by Hattori.

7http://en.wikipedia.org/wiki/Skype

42 4.2 Evaluating our Approach with an Exploratory Study

4.2.2 Results

Given the feedback received by participants, both in the questionnaires and in the open-answer
questions, we believe that we are on the right track. In fact we have received very positive feedback
about the possibility to “see” the activity of the development team from all participants but one.

We find the feedback provided by two participants in particular very interesting; we refer to them
as a and b. a really appreciates our unified view, while b likes our structural visualization, but is not
interested in seeing the activity of the development team. We first discuss the comments from the
participant that has given positive feedback on the unified view as a whole.

Participant a has almost eight years of experience in the industry, working on large industrial
systems. When asked about the positive aspects of Manhattan, the participant wrote “It is a very
intuitive way to get familiar with a code base, and also for informing of conflicts before they become
too painful to fix”. We find this feedback a strong argument in favor of our approach, because it
comes from a person with much experience, who is used to merge conflicts “one third of the times”
before doing the check in of changes.

Since the results presented by Grinter show that developers commit even incomplete changes
to avoid conflicts [Gri96], we were not expecting a feedback such as that given by b, because we
visualize team activity in order to reduce merge conflicts. We informally asked the participant a
more thorough explanation to the answers provided in the post-experiment questionnaire. From this
further investigation, we understood that b is used to work in a small co-located team of classmates
where the degree of communication is very high and each member of the development team is well
aware of the activity of others. With such a high level of awareness, the participant can merge
conflicting changes without much trouble, therefore merging conflicts once a programming task is
complete, is preferred over solving emerging conflicts.
Our approach is focused on settings, such as GSD, where the level of awareness drops, because the
explicit communication channels can not be used. Participant b is used to work in a setting opposite
to GSD, therefore the given feedback is only partially a relevant argument against our approach:
In the perspective of the participant, the information we provide is not relevant, as our approach is
focused on a setting different from the one in which the participant is used to work.

The participants shared some critical remarks about the usability of the navigation system, which
lacks mouse interactions such as rotating the camera by dragging the mouse or zooming by scrolling.
We agree with most of these suggestions, which can be easily applied. In fact we have already
implemented part of them after receiving the participants’ feedback.

We lack the support of a quantitative study of appropriate scale to draw any definitive conclusion
proving that our approach is appropriate for all kinds of systems and all kinds of development teams.
However, the questions in the exploratory study give us detailed information that can not be obtained
with a quantitative study alone. Moreover, although they are not many, the participants we managed
to gather come from different backgrounds and one of them has much experience working in the
industry. For these reasons, we find the positive feedback given by the participants encouraging
indeed: We are convinced to be on the right track and that our approach deservers further exploration
and a later quantitative study.

Chapter 5

Conclusions

Being convinced that the visualization implemented in CodeCity should be deeply integrated in the
development process, we implemented its essential features in an Eclipse plugin named Manhattan.
By including the team activity information provided by Syde, we created a unified view on the
structure of systems and on the activity of their development teams.

To assess the scalability of our implementation we have visualized on our laptop some well
known Java systems and briefly explored their cities. These systems have been visualized in less
than thirty seconds and for almost all of them, the visualization was responsive: When exploring
the cities for ActiveMQ (2,500+ classes) and Vuze (3,800+ classes), we have experienced lag in the
tooltip descriptions. We also tried to visualize the NetBeans IDE: It took more than fifteen minutes
to visualize the system and the resulting visualization was not responsive enough to be usable, but
we still managed to take a few pictures and discover four massive classes in the system.
We have devised a strategy to improve performance, described in Section 5.1.

Finally, we have conducted a qualitative exploratory study, where we asked the participants to
perform a set of tasks on a system and then collected their feedback about our unified view. The
participants shared some remarks about the lack of mouse interactions in the navigation, such as
rotating the camera by dragging the mouse. These interactions are simple to add and we have already
implemented some of them.
Regarding our unified view, we have received very positive feedback, especially from a participant
with almost eight years of experience in the industry.

We have submitted a paper to the Eclipse-IT 1 workshop: The paper has been accepted and, later
this month, we will present Manhattan to various members of the italian Eclipse community.
To conclude, we have brought to the Eclipse platform a software visualization tool to help developers
to reason about the systems they are building and to support their collaborative effort; the feedback
we received has convinced us that our approach is worth of being further explored and refined.

1http://2011.eclipse-it.org

43

44 5.1 Future Work

5.1 Future Work

5.1.1 Corner-Stitch Layout

The rectangular-packing layout algorithm is well suited for the city metaphor, as it improves scalabil-
ity and helps to convey the metaphor, by producing compact and realistic layouts. Nevertheless, it is
not able to cope with changes in the elements to layout. Although the corner-stitch layout algorithm
2 is the ideal choice for our requirements, implementing it was not a feasible solution given the time
constraints we had. Therefore we have used the rectangular-packing algorithm and we implemented
some workarounds to reduce the impact of code changes on the city layout.
We have tested these workarounds by performing realistic modifications to a few systems.
The results of these tests convinced us that the workarounds are not effective enough, and, that
implementing the corner-stitch algorithm is the only solution to keep the visualization up-to-date
with the contents of a developer’s working copy, while preserving the layout of the city and the
mental map learnt by the developer.

5.1.2 Improve the Visualization of Changes

While devising an approach to efficiently visualize the information provided by Syde, we have made
the hypothesis that, since collaboration among developers has been supported by SCMs for decades,
developers reason about the systems they develop from the point of view of their working copy.
Based on this hypothesis, we have decided to visually notify a developer about the changes performed
by his colleagues only when they modify, or delete, the code artifacts that are also in his working
copy, and to show conflict alerts only for the conflicts in which the developer is involved. In order to
maintain the visualization as clean as possible, we have designed visible and clear notifications of
team activity based on color, shape, and lighting.
Nevertheless, as described in Section 3.3.3, this strategy has one main drawback: It does not notify
developers about consecutive modifications to a class.
The first step to solve this issue is to use textures: Besides painting the building for a modified
artifact in yellow3, a texture (e.g.: vertical stripes) should be applied on the building. If the artifact
is modified again, a very different texture (e.g.: horizontal stripes) should be applied, and for later
modifications, the two textures should be alternated. In this way developers will notice a change in
the texture of a building and deduce that the class represented by the building has being changed
once more. However, texture changes are hard to notice for small buildings, therefore they should
be accompanied by minimalistic animations that make such buildings more visible. We claim that
the animation that best fits the requirements is bouncing. To limit the amount of visual noise, only
buildings smaller than a certain threshold should be animated. Moreover, the algorithms computing
the threshold and the height of the bounce should be functions of the bounding box of the city, so
that buildings bounce just high enough to be noticed. Although we find this strategy promising, there
is still an open issue: Depending on the city and on the activity of the team, too many buildings
might start bouncing, thus annoying users with visual noise.

2The complete publication is available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/6352.html
3Or in orange in case that the artifact is deleted

45 5.1 Future Work

5.1.3 Improve Performance

We have noticed performance issues when visualizing systems with more than 2,500 classes. We
know that the main reason for this performance overhead is due to how the rendering framework
we have used integrates with SWT. Moreover, the threading model offered by this framework is not
sophisticated enough. For these reasons, we have decided to switch to a more promising and better
documented framework, which at the moment does not support SWT. We plan to ask guidance to the
framework’s core developers to include support for the toolkit and to later update Manhattan to use
this framework.

5.1.4 Support other Programming Languages

At the moment we are able to visualize only Java systems. However, Eclipse provides support for
many other programming languages through language integration plugins. We plan to leverage these
plugins in order to implement code-model extractors for C++ and Python.

46 Appendix

Appendix A

A

In this appendix we provide the complete handouts of the textual instructions we have given every
pair of developers that participated in our exploratory study.

47

48 Appendix A

Introduction

Understanding software systems is difficult, because software is large and complex.
Moreover, like all conceptual artifacts, software is intangible, thus even more difficult to understand.
Software visualization techniques have been investigated since the end of the 80s to produce visual
representations of systems in order to ease reasoning about various aspects of software (e.g.
architecture, evolution, performance, ...).

Software development is a collaborative process, where members of a development team concurrently
modify the system. In order to share and coordinate changes to the system, developers employ software
configuration management systems (SCM), such as Subversion or Git.
However, a developer only knows what his colleague has changed after he checks in the code.
As a consequence, when people change the same parts of the code, they have to deal with merging
and resolving conflicts.
If developers were aware of the activity of their colleagues (i.e. which code artifacts they are modifying),
they could discuss with each other to find a way to complete their tasks without running into a conflict.

In the context of my master thesis I have developed Manhattan, a software visualization tool in the form
of an Eclipse plugin. The visualization provided by this tool is focused on easing program comprehension
(understanding architecture) and supporting collaborative development by making developers aware of
the activity of their colleagues.

The goal of this experiment is to assess the effectiveness of the proposed visualization.

The system you will work with in this experiment is Checkstyle

“Checkstyle is a development tool to help programmers write Java code that adheres to a
coding standard. It automates the process of checking Java code to spare humans of this boring
(but important) task. This makes it ideal for projects that want to enforce a coding standard.”

Checkstyle documentation

In short, Checkstyle takes as input a Java source file and an XML configuration file that specifies the
coding standards that must be enforced (i.e., the checks that are to be used). Most people are not
familiar with Checkstyle’s implementation. However, IDEs (such as Eclipse) may be able to assist in
understanding Checkstyle’s inner workings, and most of the source code is fairly well documented.

Manhattan Evaluation Experiment

Participant:

T2

You and the other participant will be assigned 4 tasks to perform on the project.

We kindly ask you to:
• perform the tasks in the specified order;
• write down the current time before starting to work on a new task and once after completing all tasks;
• not return to earlier tasks because it affects the experiment;
• notify the experimenter before starting a task, and wait for his authorization.

The experiment begins with a questionnaire and ends with another questionnaire and a debriefing talk.

Thank you for participating in this experiment!

 Francesco Rigotti, Michele Lanza, Alberto Bacchelli and Lile Hattori

Manhattan Evaluation Experiment T2

Pre-experiment Questionnaire

Figure A.1. Participant1, pages 1-4

A

#years of experience 0 1 2 3 4

Java development
Development in a team
Developing industrial size systems
Using IDEs (Eclipse, VisualStudio, NetBeans, etc)
Using Eclipse for Java development
Using SCM (e.g., CVS, SVN, Git)
Familiarity with Checkstyle
Testing with JUnit

Pre-experiment Questionnaire

General Survey
In this short survey a number of questions regarding your experience with software
development and use of software configuration management systems will be asked to get
an impression of your skills and expectations.

1 The first questions are about you. Please answer the following questions about your personal
background. Your answers will be kept private and will only serve to put your other answers in
context.

What is your age? ...

Education background (e.g., computer science, electrical engineering) ...

..

Current job/education position(s) (e.g., developer, project manager, master student)

..

Current affiliation(s) (company and/or University) ...

2 Below a few statements regarding your software development experience are shown. Please
indicate: 1) the number of years of experience, and 2) rate each statement about your personal
experience according to the following scale:
0 - None (you don’t know this subject);
1 - Beginner (you are familiar with this subject but still have some difficulties to use it);
2 - Knowledgeable (you are comfortable in this subject);
3 - Advanced (you know the subject well and use it on a daily basis);
4 - Expert (you consider yourself highly proficient in this subject).

Pre-experiment Questionnaire

3 Some questions regarding the use of software configuration management (SCM) systems are
shown below. Please answer them according to your experience.

What SCM system(s) do you currently use? ..

..

Do you usually work in teams? ..

If yes, what is the size of your team? ...

With what frequency do you check out a project (or part of it) from the repository?

..

With what frequency do you check in a project (or part of it)? ..

..

With what frequency do you have to resolve conflicts during merging? ...

..

Have

you ever heard about software visualization before participating in this experiment?

..

Name any software visualization tools you used in the past

..

Have you used software visualization tools to understand a system’s architecture before?

..

4 Some questions regarding the use of software visualization tools are shown below.
Please answer them according to your experience.

yes / noyes / no

Have you ever being assigned the task to reverse engineer a system to
maintain it?

Rank how often you use these techniques to understand a system and how to use itRank how often you use these techniques to understand a system and how to use itRank how often you use these techniques to understand a system and how to use it

 1 2 3 4 5

Read documentation before reading the code
Read code and comments
Look at architectural descriptions and UML diagrams
Run the system using a debugger
Run the system after placing logging instructions

 1 2 3 4 5

The tool should make me aware of what the other developers are doing
(e.g. which code artifacts they are modifying)

The tool should warn me if my changes are leading to a conflict that will
show up in the SCM repository

Information about what artifacts are being modified by others and
about conflicting changes should be very fine-grained

The tool should inform me about the resolution of a conflict
The tool should notify me when the other developers interact with the
repository

Pre-experiment Questionnaire

5 Some questions about your experience and habits in reverse engineering systems to
understand how they work and how to use them
Please rate each statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

6 Some questions regarding your expectations from a tool to support collaborative development
Please rate each statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

Figure A.2. Participant1, pages 5-8

50 Appendix A

Tutorial on Manhattan

Manhattan visualizes software systems as 3D cities. The metaphor used to create these cities is
described below.

Buildings represent classes and interfaces, while districts represent packages.
The height of a building depends on the number of methods inside the class it represents.
The width and length of a building depend on the number of fields.
Blue buildings are classes, while purple buildings are interfaces.

This metaphor produces some “special” kinds of buildings that represent classes important to the
system. The figure below shows the city for ArgoUML, annotated with a description of these “special”
buildings.

Before starting the experiment, I will show a brief tutorial on how to use Manhattan.

districts => packages

buildings => classes and interfaces

main district => project

Topic Keys Notes

NavigationNavigationNavigation

Switch navigation mode O The navigation mode is indicated on
the left in the status bar

Controls for the first-person
navigation mode

Move using WASD
Turn using arrow keys

Controls for the orbital
navigation mode

Move on the orbit using
WASD

When entering this mode you will be
moved to an observation point on
the orbit

Going back to the default
observation point 0 (zero)

Tooltip descriptionsTooltip descriptionsTooltip descriptions

See the description for a city
element

Hover on it with the
mouse for a little time

Open the class/interface
represented by a building

Right-click on the
building

Tooltip descriptions for changes and conflictsTooltip descriptions for changes and conflictsTooltip descriptions for changes and conflicts

See the description for a
change

Hover the mouse on the
city element highlighted
by the change

See the description for a
conflict

Hover the mouse on the
conflictʼs sphere

See the two versions of a
class with a conflict on it

Right-click on the
conflictʼs sphere

Figure A.3. Participant1, pages 9-12

A

Experiment Program Comprehension

Your first task is to explore Checkstyle using Manhattan.
You are given 10 minutes to find out as much information as you can about the project’s architecture.
Please write your findings below, when you are notified that the exploration time is over.

Architecture Exploration Architecture Exploration

Figure A.4. Participant1, pages 13-16

52 Appendix A

Collaboration Support

Typical execution stages:

A typical execution of Checkstyle takes as inputs a set of Java source files and an XML configuration file
that specifies the coding standards that must be enforced. The execution itself can be divided into 4
main stages:

1. Initialization. It sets the environment by parsing the command, and reading the configuration.
2. Source parsing. Reads and parses the source input files. It constructs an abstract syntax tree (AST)

for each source file.
3. Checking. Checks each input file.
4. Error reporting. It outputs the report of the checks. The output can be in plain text, as an XML file,

or other formats.

These execution stages can be easily identified in the class
com.puppycrawl.tools.checkstyle.Main

Architectural view:

Checkstyle is divided into 7 main packages:

1. com.puppycrawl.tools.checkstyle - the main package containing the Main, Checker,
DefaultConfiguration and logging/auditing classes

2. com.puppycrawl.tools.checkstyle.api - the core API to be used to implement a check
3. com.puppycrawl.tools.checkstyle.checks - the checks that are bundled with the main

distribution
4. com.puppycrawl.tools.checkstyle.doclets
5. com.puppycrawl.tools.checkstyle.filters
6. com.puppycrawl.tools.checkstyle.grammars
7. com.puppycrawl.tools.checkstyle.gui

The tasks of this assignment are concentrated in the first three packages.

Overview of Checkstyle

There are a few broken tests at the moment and you are responsible to fix half of them.
Your and your pair’s ultimate goal is to have fixed all the tests by the end of the assignment.

Each task contains the name of the test you need to make pass and the class you need to change in
order to fix the test. You are not allowed to change or commit the tests.

Running the tests:

Your Eclipse setup contains a project with Checkstyle’s source (and links to its external libraries).

• To run the tests, click on the arrow besides the run button and choose the pre-configured JUnit
called ‘checkstyle’. Alternatively, right-click on ‘src/tests’, and choose ‘Run As’ -> ‘Run
Configurations’... and then select ‘JUnit/checkstyle’.

ß

Communicating with the other participant:

You can only consider a task done when your pair also finished his task and both succeeded in fixing the
tests. In addition, the code changes you and the other participant are going to perform will most likely
conflict with one another. Skype is at your disposal, and you can use it at any time to communicate with
your pair to better coordinate your tasks.

Coordinating begin/end of programming tasks:

At the beginning of each task, read the description and, when you are ready to start changing the code,
notify the experimenter. You should wait for the experimenter’s authorization to start coding.

When you finish a task, check with the other participant whether (s)he also finished. When both of you
have finished, you can go to the next task.

Troubleshooting:

1. My test is failing because it cannot find the input file (File not found!).
This can happen when: i) you run a single test - try running the complete test suite; ii) you do not select
the project in the package explorer before running the tests - try selecting the project first.

2. I tried running the tests and got the following error: ‘Launching checkstyle’ has encountered a
problem. Variable reference empty selection: ${project_loc}.
Before running the tests, select the project in the package explorer.

Should you have trouble while performing the task, please consult us.! ! !

Instructions to perform the assignment

_ _ : _ _
 hours minutes

Current Time

Figure A.5. Participant1, pages 17-20

A

Warm up!

Test to pass:
! com.puppycrawl.tools.checkstyle.checks.coding.EqualsAvoidNullTest
Class to modify:
! com.puppycrawl.tools.checkstyle.checks.coding.EqualsAvoidNullCheck

Let’s start to get used to the Checks. The goal of this warm up is to fix the test EqualsAvoidNullTest.

Class EqualsAvoidNullCheck checks that any combination of String literals with optional assignment is
on the left side of an equals() comparison. Here is an example:

String person = “myself”;
if (person.equals(“you”)) {
	 ...
}

In this case, the string literal is in the right side, which can potentially cause a NullPointerException if
person is null. Hence, the check logs a warning indicating that tis expression should be reversed.

The same rule applies for equalsIgnoreCase(), however it is not being checked.

Modify method visitToken(final DetailAST aMethodCall) to add the check for method
equalsIgnoreCase().

Note: you do not need to coordinate with the other participant for this warm up task.

_ _ : _ _
 hours minutes

Current Time

Tasks

Figure A.6. Participant1, pages 21-24

54 Appendix A

Preparing for Task 1

For Task 1, you are not allowed to use the visualization, please minimize it (do not close it)

_ _ : _ _
 hours minutes

Current Time Improving MethodCountCheck

Test to pass:
! com.puppycrawl.tools.checkstyle.checks.sizes.MethodCountCheckTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.checks.sizes.MethodCountCheck

Task 1

The goal of this task is to fix the test MethodCountCheckTest by changing the code of class
MethodCountCheck. It is divided into 2 parts. After you have finished them, all tests from
MethodCountCheckTest should be passing.

1. Fix testThrees:

This test is failing because checkCounters(MethodCounter aCounter, DetailAST aAst) in
MethodCountCheck is not verifying the number of package methods (those with default visibility).
Implement this verification and test again.

2. Fix testEnum:

This test is failing because checkCounters(MethodCounter aCounter, DetailAST aAst) in

MethodCountCheck is not verifying the number of private methods. Implement this verification and test
again.

To complete the task, check in the changed class to the repository.

Figure A.7. Participant1, pages 25-28

A

_ _ : _ _
 hours minutes

Current Time Preparing for Task 2

For Task 2, you are allowed to use the visualization and the notifications about the activity of your
colleague.

The experiment manager will tell you how to enable the notifications.
After this, notifications and alerts will appear in the visualization.

_ _ : _ _
 hours minutes

Current Time Finishing PlainTextLogger

Test to pass:
! com.puppycrawl.tools.checkstyle.PlainTextLoggerTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.PlainTextLogger

Task 2

The goal of this task is to fix the test PlainTextLoggerTest by changing class PlainTextLogger.

PlainTextLogger is a class to output the violations as plain text, similarly to DefaultLogger but, with
customized log message.

In the following, we show an example of an output of a check formatted in plain text and default text.

Plain text:

Starting audit...
starting file=Test.java
Test.java line=1 column=1 severity=warning message=key
finished file=Test.java
Audit done.

Default text:

Starting audit...
Test.java:1:1: warning: key
Audit done.

Currently, there are two broken tests: testAddError and testFileStarted. Fix them in the following order:

1. Fix testAddError:

This test is failing because method addError(AuditEvent aEvt) in PlainTextLogger is not checking
whether the severity level is ‘ERROR’. Implement this check and make sure the test pass before you go to
the next fix.

2. Fix testFileStarted:

This test is failing because method fileStarted(AuditEvent aEvt) in PlainTextLogger is currently
empty. Implement this method and rerun the tests.

To complete the task, check in the changed class to the repository.

Figure A.8. Participant1, pages 29-32

56 Appendix A

_ _ : _ _
 hours minutes

Current Time Preparing for Task 3

No further preparation steps are required.

_ _ : _ _
 hours minutes

Current Time Finishing JsonLogger

Test to pass:
! com.puppycrawl.tools.checkstyle.JsonLoggerTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.JsonLogger

Task 3

The goal of this task is to fix the test JsonLoggerTest.

JsonLogger is a class to output the violations in JSON (Javascript Object Notation) format. JSON is a
data-interchange format that is easy to read/write and parse/generate. JSON is built in two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

We show an example of an output of a check formatted in JSON and XML (See XMLLogger).

{"checkstyle version":"5.3"
{"file":{
"name":"Test.java"
{"error":{
"line":"9"
"column":"40"
"severity":"error"
"message":"Parameter text should be final."
"source":"Test"
}}
}}
}

<?xml version="1.0" encoding="UTF-8"?>
<checkstyle version="5.3">
<file name="Test.java">
<error line="9" column="40" severity="error" message="Parameter text should be final."
source="Test"/>
</file>
</checkstyle>

In this task, you should fix two tests in the following order:

1. testAddErrorMessage:

This test is failing because there is an error in method addError(AuditEvent aEvt) in JsonLogger. It
should only print the message when aEvt.getMessage() is not null nor empty. but it’s printing it every time.
Fix it to make the test pass.

1. testFileFinished:

This test is failing because the method fileFinished(AuditEvent aEvt) in JsonLogger is empty.
Implement it and make the test pass.

To complete the task, check in the changed class to the repository.

Figure A.9. Participant1, pages 33-36

A

_ _ : _ _
 hours minutes

Current Time

Post-experiment Questionnaire

Post-experiment Questionnaire

Experiment evaluation
Thanks for completing the tasks! To get an impression of your experience with the
experiment and to allow you to give your comments, please fill in the questions below.

1 This question is about your overall experience in performing the experiment. Please rate each
statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

 1 2 3 4 5

Overall, the tasks were feasible
I felt time pressure
I would have needed more guidance to complete the tasks
The warm up phase was useful
The tasks were interesting to do
The tasks were realistic
The experiment was fun to do

1 2 3 4 5

The visualization is effective in supporting program comprehension
The ability to access code from the visualization is very important
The navigation system is easy to use
Tooltips are usable and provide useful information
Overall the visualization is usable and intuitive
The visualization is not usable on a laptop screen, as it is too small
The visualization highlights important system components
I would use the visualization in everyday coding

Post-experiment Questionnaire

2 These statements relate to the usability of the visualization and its effectiveness to support
program comprehension.
Please rate the following statements on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

Figure A.10. Participant1, pages 37-40

58 Appendix A

Post-experiment Questionnaire

3 Answer the following statements about your experience when performing each task.
The statements should be rated either with yes/no or on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

Task 1

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

I saw emerging conflicts
As soon as I saw conflicts emerging, I communicated with the other
participant

Knowing about conflicts in advance helped me to avoid them at check in
time

Task 2

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

I saw emerging conflicts
As soon as I saw conflicts emerging, I communicated with the other
participant

Knowing about conflicts in advance helped me to avoid them at check in
time

Task 3

Post-experiment Questionnaire

4 Rate the following statements about the effectiveness of Manhattan in supporting collaboration
The statements should be rated either with yes/no or on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

 1 2 3 4 5

The activity of the other developers is revealed by the visualization
Change notifications are clearly visible
Change notifications should be more detailed and have a more
informative description

Conflict alerts are clearly visible
Conflict alerts are informative enough to understand how to proceed in
resolving them

I would use the visualization, with notifications and alerts enabled, in my
everyday collaborative development

Post-experiment Questionnaire

5 Positive aspects about Manhattan

Post-experiment Questionnaire

6 Negative aspects about Manhattan

Figure A.11. Participant1, pages 41-44

A

Post-experiment Questionnaire

7 How would you improve Manhattan?

Figure A.12. Participant1, pages 45

60 Appendix A

Introduction

Understanding software systems is difficult, because software is large and complex.
Moreover, like all conceptual artifacts, software is intangible, thus even more difficult to understand.
Software visualization techniques have been investigated since the end of the 80s to produce visual
representations of systems in order to ease reasoning about various aspects of software (e.g.
architecture, evolution, performance, ...).

Software development is a collaborative process, where members of a development team concurrently
modify the system. In order to share and coordinate changes to the system, developers employ software
configuration management systems (SCM), such as Subversion or Git.
However, a developer only knows what his colleague has changed after he checks in the code.
As a consequence, when people change the same parts of the code, they have to deal with merging
and resolving conflicts.
If developers were aware of the activity of their colleagues (i.e. which code artifacts they are modifying),
they could discuss with each other to find a way to complete their tasks without running into a conflict.

In the context of my master thesis I have developed Manhattan, a software visualization tool in the form
of an Eclipse plugin. The visualization provided by this tool is focused on easing program comprehension
(understanding architecture) and supporting collaborative development by making developers aware of
the activity of their colleagues.

The goal of this experiment is to assess the effectiveness of the proposed visualization.

The system you will work with in this experiment is Checkstyle

“Checkstyle is a development tool to help programmers write Java code that adheres to a
coding standard. It automates the process of checking Java code to spare humans of this boring
(but important) task. This makes it ideal for projects that want to enforce a coding standard.”

Checkstyle documentation

In short, Checkstyle takes as input a Java source file and an XML configuration file that specifies the
coding standards that must be enforced (i.e., the checks that are to be used). Most people are not
familiar with Checkstyle’s implementation. However, IDEs (such as Eclipse) may be able to assist in
understanding Checkstyle’s inner workings, and most of the source code is fairly well documented.

Manhattan Evaluation Experiment

Participant:

T2

You and the other participant will be assigned 4 tasks to perform on the project.

We kindly ask you to:
• perform the tasks in the specified order;
• write down the current time before starting to work on a new task and once after completing all tasks;
• not return to earlier tasks because it affects the experiment;
• notify the experimenter before starting a task, and wait for his authorization.

The experiment begins with a questionnaire and ends with another questionnaire and a debriefing talk.

Thank you for participating in this experiment!

 Francesco Rigotti, Michele Lanza, Alberto Bacchelli and Lile Hattori

Manhattan Evaluation Experiment T2

Pre-experiment Questionnaire

Figure A.13. Participant2, pages 1-4

A

#years of experience 0 1 2 3 4

Java development
Development in a team
Developing industrial size systems
Using IDEs (Eclipse, VisualStudio, NetBeans, etc)
Using Eclipse for Java development
Using SCM (e.g., CVS, SVN, Git)
Familiarity with Checkstyle
Testing with JUnit

Pre-experiment Questionnaire

General Survey
In this short survey a number of questions regarding your experience with software
development and use of software configuration management systems will be asked to get
an impression of your skills and expectations.

1 The first questions are about you. Please answer the following questions about your personal
background. Your answers will be kept private and will only serve to put your other answers in
context.

What is your age? ...

Education background (e.g., computer science, electrical engineering) ...

..

Current job/education position(s) (e.g., developer, project manager, master student)

..

Current affiliation(s) (company and/or University) ...

2 Below a few statements regarding your software development experience are shown. Please
indicate: 1) the number of years of experience, and 2) rate each statement about your personal
experience according to the following scale:
0 - None (you don’t know this subject);
1 - Beginner (you are familiar with this subject but still have some difficulties to use it);
2 - Knowledgeable (you are comfortable in this subject);
3 - Advanced (you know the subject well and use it on a daily basis);
4 - Expert (you consider yourself highly proficient in this subject).

Pre-experiment Questionnaire

3 Some questions regarding the use of software configuration management (SCM) systems are
shown below. Please answer them according to your experience.

What SCM system(s) do you currently use? ..

..

Do you usually work in teams? ..

If yes, what is the size of your team? ...

With what frequency do you check out a project (or part of it) from the repository?

..

With what frequency do you check in a project (or part of it)? ..

..

With what frequency do you have to resolve conflicts during merging? ...

..

Have

you ever heard about software visualization before participating in this experiment?

..

Name any software visualization tools you used in the past

..

Have you used software visualization tools to understand a system’s architecture before?

..

4 Some questions regarding the use of software visualization tools are shown below.
Please answer them according to your experience.

yes / noyes / no

Have you ever being assigned the task to reverse engineer a system to
maintain it?

Rank how often you use these techniques to understand a system and how to use itRank how often you use these techniques to understand a system and how to use itRank how often you use these techniques to understand a system and how to use it

 1 2 3 4 5

Read documentation before reading the code
Read code and comments
Look at architectural descriptions and UML diagrams
Run the system using a debugger
Run the system after placing logging instructions

 1 2 3 4 5

The tool should make me aware of what the other developers are doing
(e.g. which code artifacts they are modifying)

The tool should warn me if my changes are leading to a conflict that will
show up in the SCM repository

Information about what artifacts are being modified by others and
about conflicting changes should be very fine-grained

The tool should inform me about the resolution of a conflict
The tool should notify me when the other developers interact with the
repository

Pre-experiment Questionnaire

5 Some questions about your experience and habits in reverse engineering systems to
understand how they work and how to use them
Please rate each statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

6 Some questions regarding your expectations from a tool to support collaborative development
Please rate each statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

Figure A.14. Participant2, pages 5-8

62 Appendix A

Tutorial on Manhattan

Manhattan visualizes software systems as 3D cities. The metaphor used to create these cities is
described below.

Buildings represent classes and interfaces, while districts represent packages.
The height of a building depends on the number of methods inside the class it represents.
The width and length of a building depend on the number of fields.
Blue buildings are classes, while purple buildings are interfaces.

This metaphor produces some “special” kinds of buildings that represent classes important to the
system. The figure below shows the city for ArgoUML, annotated with a description of these “special”
buildings.

Before starting the experiment, I will show a brief tutorial on how to use Manhattan.

districts => packages

buildings => classes and interfaces

main district => project

Topic Keys Notes

NavigationNavigationNavigation

Switch navigation mode O The navigation mode is indicated on
the left in the status bar

Controls for the first-person
navigation mode

Move using WASD
Turn using arrow keys

Controls for the orbital
navigation mode

Move on the orbit using
WASD

When entering this mode you will be
moved to an observation point on
the orbit

Going back to the default
observation point 0 (zero)

Tooltip descriptionsTooltip descriptionsTooltip descriptions

See the description for a city
element

Hover on it with the
mouse for a little time

Open the class/interface
represented by a building

Right-click on the
building

Tooltip descriptions for changes and conflictsTooltip descriptions for changes and conflictsTooltip descriptions for changes and conflicts

See the description for a
change

Hover the mouse on the
city element highlighted
by the change

See the description for a
conflict

Hover the mouse on the
conflictʼs sphere

See the two versions of a
class with a conflict on it

Right-click on the
conflictʼs sphere

Figure A.15. Participant2, pages 9-12

A

Experiment Program Comprehension

Your first task is to explore Checkstyle using Manhattan.
You are given 10 minutes to find out as much information as you can about the project’s architecture.
Please write your findings below, when you are notified that the exploration time is over.

Architecture Exploration Architecture Exploration

Figure A.16. Participant2, pages 13-16

64 Appendix A

Collaboration Support

Typical execution stages:

A typical execution of Checkstyle takes as inputs a set of Java source files and an XML configuration file
that specifies the coding standards that must be enforced. The execution itself can be divided into 4
main stages:

1. Initialization. It sets the environment by parsing the command, and reading the configuration.
2. Source parsing. Reads and parses the source input files. It constructs an abstract syntax tree (AST)

for each source file.
3. Checking. Checks each input file.
4. Error reporting. It outputs the report of the checks. The output can be in plain text, as an XML file,

or other formats.

These execution stages can be easily identified in the class
com.puppycrawl.tools.checkstyle.Main

Architectural view:

Checkstyle is divided into 7 main packages:

1. com.puppycrawl.tools.checkstyle - the main package containing the Main, Checker,
DefaultConfiguration and logging/auditing classes

2. com.puppycrawl.tools.checkstyle.api - the core API to be used to implement a check
3. com.puppycrawl.tools.checkstyle.checks - the checks that are bundled with the main

distribution
4. com.puppycrawl.tools.checkstyle.doclets
5. com.puppycrawl.tools.checkstyle.filters
6. com.puppycrawl.tools.checkstyle.grammars
7. com.puppycrawl.tools.checkstyle.gui

The tasks of this assignment are concentrated in the first three packages.

Overview of Checkstyle

There are a few broken tests at the moment and you are responsible to fix half of them.
Your and your pair’s ultimate goal is to have fixed all the tests by the end of the assignment.

Each task contains the name of the test you need to make pass and the class you need to change in
order to fix the test. You are not allowed to change or commit the tests.

Running the tests:

Your Eclipse setup contains a project with Checkstyle’s source (and links to its external libraries).

• To run the tests, click on the arrow besides the run button and choose the pre-configured JUnit
called ‘checkstyle’. Alternatively, right-click on ‘src/tests’, and choose ‘Run As’ -> ‘Run
Configurations’... and then select ‘JUnit/checkstyle’.

ß

Communicating with the other participant:

You can only consider a task done when your pair also finished his task and both succeeded in fixing the
tests. In addition, the code changes you and the other participant are going to perform will most likely
conflict with one another. Skype is at your disposal, and you can use it at any time to communicate with
your pair to better coordinate your tasks.

Coordinating begin/end of programming tasks:

At the beginning of each task, read the description and, when you are ready to start changing the code,
notify the experimenter. You should wait for the experimenter’s authorization to start coding.

When you finish a task, check with the other participant whether (s)he also finished. When both of you
have finished, you can go to the next task.

Troubleshooting:

1. My test is failing because it cannot find the input file (File not found!).
This can happen when: i) you run a single test - try running the complete test suite; ii) you do not select
the project in the package explorer before running the tests - try selecting the project first.

2. I tried running the tests and got the following error: ‘Launching checkstyle’ has encountered a
problem. Variable reference empty selection: ${project_loc}.
Before running the tests, select the project in the package explorer.

Should you have trouble while performing the task, please consult us.! ! !

Instructions to perform the assignment

_ _ : _ _
 hours minutes

Current Time

Figure A.17. Participant2, pages 17-20

A

Warm up!

Test to pass:
! com.puppycrawl.tools.checkstyle.checks.coding.EqualsAvoidNullTest
Class to modify:
! com.puppycrawl.tools.checkstyle.checks.coding.EqualsAvoidNullCheck

Let’s start to get used to the Checks. The goal of this warm up is to fix the test EqualsAvoidNullTest.

Class EqualsAvoidNullCheck checks that any combination of String literals with optional assignment is
on the left side of an equals() comparison. Here is an example:

String person = “myself”;
if (person.equals(“you”)) {
	 ...
}

In this case, the string literal is in the right side, which can potentially cause a NullPointerException if
person is null. Hence, the check logs a warning indicating that tis expression should be reversed.

The same rule applies for equalsIgnoreCase(), however it is not being checked.

Modify method visitToken(final DetailAST aMethodCall) to add the check for method
equalsIgnoreCase().

Note: you do not need to coordinate with the other participant for this warm up task.

_ _ : _ _
 hours minutes

Current Time

Tasks

Figure A.18. Participant2, pages 21-24

66 Appendix A

Preparing for Task 1

For Task 1, you are not allowed to use the visualization, please minimize it (do not close it)

_ _ : _ _
 hours minutes

Current Time Improving MethodCountCheck

Test to pass:
! com.puppycrawl.tools.checkstyle.checks.sizes.MethodCountCheckTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.checks.sizes.MethodCountCheck

Task 1

The goal of this task is to improve the code of class MethodCountCheck, making sure you do not break
the tests. You should perform the refactoring described below.

Refactoring of checkCounters(MethodCounter aCounter, DetailAST aAst):

Right now checkCounters has many repetition of ‘if’ statements. Create a utility method that reports if a
maximum has been exceeded and refactor checkCounters to call it.

Your utility method should have the following signature:
checkMax(int aMax, int aValue, String aMsg, DetailAST aAst)
where aMax is the maximum allowed value, aValue is the actual value, aMsg is the message to log, and
aAst is the AST to associate the message with.

After the refactoring is done, rerun the tests to make sure MethodCountCheckTest is still passing.

To complete the task, check in the changed class to the repository.

Figure A.19. Participant2, pages 25-28

A

_ _ : _ _
 hours minutes

Current Time Preparing for Task 2

For Task 2, you are allowed to use the visualization and the notifications about the activity of your
colleague.

The experiment manager will tell you how to enable the notifications.
After this, notifications and alerts will appear in the visualization.

_ _ : _ _
 hours minutes

Current Time Finishing PlainTextLogger

Test to pass:
! com.puppycrawl.tools.checkstyle.PlainTextLoggerTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.PlainTextLogger

Task 2

The goal of this task is to fix the test PlainTextLoggerTest by changing class PlainTextLogger.

PlainTextLogger is a class to output the violations as plain text, similarly to DefaultLogger but, with
customized log message.

In the following, we show an example of an output of a check formatted in plain text and default text.

Plain text:

Starting audit...
starting file=Test.java
Test.java line=1 column=1 severity=warning message=key
finished file=Test.java
Audit done.

Default text:

Starting audit...
Test.java:1:1: warning: key
Audit done.

Currently, there are two broken tests: testAddError and testFileStarted. Fix them in the following order:

1. Fix testAddErrorColumn:

This test is failing because method addError(AuditEvent aEvt) in PlainTextLogger is not printing the
column information. Add this information and make sure the test pass before you go to the next fix. The
column information should only be printed if it’s greater than 0 (attention not to break
testAddErrorColumn2).

2. Fix testFileFinished:

This test is failing because method fileFinished(AuditEvent aEvt) in PlainTextLogger is currently
empty. Implement this method and rerun the tests.

To complete the task, check in the changed class to the repository.

Figure A.20. Participant2, pages 29-32

68 Appendix A

_ _ : _ _
 hours minutes

Current Time Preparing for Task 3

No further preparations are necessary

_ _ : _ _
 hours minutes

Current Time Finishing JsonLogger

Test to pass:
! com.puppycrawl.tools.checkstyle.JsonLoggerTest
Class to modify and check in:
! com.puppycrawl.tools.checkstyle.JsonLogger

Task 3

The goal of this task is to fix the test JsonLoggerTest.

JsonLogger is a class to output the violations in JSON (Javascript Object Notation) format. JSON is a
data-interchange format that is easy to read/write and parse/generate. JSON is built in two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

We show an example of an output of a check formatted in JSON and XML (See XMLLogger).

{"checkstyle version":"5.3"
{"file":{
"name":"Test.java"
{"error":{
"line":"9"
"column":"40"
"severity":"error"
"message":"Parameter text should be final."
"source":"Test"
}}
}}
}

<?xml version="1.0" encoding="UTF-8"?>
<checkstyle version="5.3">
<file name="Test.java">
<error line="9" column="40" severity="error" message="Parameter text should be final."
source="Test"/>
</file>
</checkstyle>

In this task, you should fix two tests in the following order:

1. testAddInfo:

This test is failing because the method addError(AuditEvent aEvt) in JsonLogger is printing “error”
when the severity level is INFO. Change it to print “info” when the severity level is INFO (attention not to
break testAddError).

1. testFileStarted:

This test is failing because the method fileStarted(AuditEvent aEvt) in JsonLogger is empty.
Implement it and make the test pass.

To complete the task, check in the changed class to the repository.

Figure A.21. Participant2, pages 33-36

A

_ _ : _ _
 hours minutes

Current Time

Post-experiment Questionnaire

Post-experiment Questionnaire

Experiment evaluation
Thanks for completing the tasks! To get an impression of your experience with the
experiment and to allow you to give your comments, please fill in the questions below.

1 This question is about your overall experience in performing the experiment. Please rate each
statement on a scale from 1 to 5 to indicate to what extent they apply to you.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

 1 2 3 4 5

Overall, the tasks were feasible
I felt time pressure
I would have needed more guidance to complete the tasks
The warm up phase was useful
The tasks were interesting to do
The tasks were realistic
The experiment was fun to do

1 2 3 4 5

The visualization is effective in supporting program comprehension
The ability to access code from the visualization is very important
The navigation system is easy to use
Tooltips are usable and provide useful information
Overall the visualization is usable and intuitive
The visualization is not usable on a laptop screen, as it is too small
The visualization highlights important system components
I would use the visualization in everyday coding

Post-experiment Questionnaire

2 These statements relate to the usability of the visualization and its effectiveness to support
program comprehension.
Please rate the following statements on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

Figure A.22. Participant2, pages 37-40

70 Appendix A

Post-experiment Questionnaire

3 Answer the following statements about your experience when performing each task.
The statements should be rated either with yes/no or on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

Task 1

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

I saw emerging conflicts
As soon as I saw conflicts emerging, I communicated with the other
participant

Knowing about conflicts in advance helped me to avoid them at check in
time

Task 2

yes / no 1 2 3 4 5

I had to merge the code before checking it in
The merge was difficult
I had to resolve conflicts during the merge
I communicated with the other participant over Skype
The communication was helpful to coordinate ourselves to perform the
task

I saw emerging conflicts
As soon as I saw conflicts emerging, I communicated with the other
participant

Knowing about conflicts in advance helped me to avoid them at check in
time

Task 3

Post-experiment Questionnaire

4 Rate the following statements about the effectiveness of Manhattan in supporting collaboration
The statements should be rated either with yes/no or on a scale from 1 to 5.
1 - strongly disagree, 2 - disagree, 3 - neither agree or disagree, 4 - agree, 5- strongly agree.

 1 2 3 4 5

The activity of the other developers is revealed by the visualization
Change notifications are clearly visible
Change notifications should be more detailed and have a more
informative description

Conflict alerts are clearly visible
Conflict alerts are informative enough to understand how to proceed in
resolving them

I would use the visualization, with notifications and alerts enabled, in my
everyday collaborative development

Post-experiment Questionnaire

5 Positive aspects about Manhattan

Post-experiment Questionnaire

6 Negative aspects about Manhattan

Figure A.23. Participant2, pages 41-44

A

Post-experiment Questionnaire

7 How would you improve Manhattan?

Figure A.24. Participant2, pages 45

72 Appendix A

Bibliography

[BCSR07] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, Fastdash: a visual
dashboard for fostering awareness in software teams, CHI 2007 (25th SIGCHI
Conference on Human Factors in Computing Systems), ACM, 2007, pp. 1313–1322.

[BE96] Thomas Ball and Stephen G. Eick, Software visualization in the large, IEEE Computer
29 (1996), no. 4, 33–43.

[CKI88] B. Curtis, H. Krasner, and N. Iscoe, A field study of the software design process for
large systems, Communications of the ACM 31 (1988), no. 11, 1268–1287.

[DB92] P. Dourish and V. Bellotti, Awareness and coordination in shared workspaces, Pro-
ceedings of the CSCW 1992 (ACM Conference on Computer-supported Cooperative
Work), ACM Press, 1992, pp. 107–114.

[Die07] Stephan Diehl, Software visualization: Visualizing the structure, behaviour, and
evolution of software, Springer, 2007.

[DISK07] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, Awareness in the wild: Why
communication breakdowns occur, Proceedings of the ICGSE 2007 (International
Conference on Global Software Engineering), IEEE Computer Society, 2007, pp. 21–
30.

[dSCdW+06] I. da Silva, P. Chen, C. V. der Westhuizen, R. Ripley, and A. van der Hoek, Lighthouse:
Coordination through emerging design, ETX 2006 (OOPSLA Workshop on Eclipse
Technology eXchange), ACM Press, 2006, pp. 11–15.

[ESJ92] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E. Jr, SeesoftÑa tool for visual-
izing line oriented software statistics, IEEE Transactions on Software Engineering 18
(1992), no. 11, 957–968.

[Gri96] R. Grinter, Supporting articulation work using software configuration management
systems, Computer Supported Cooperative Work 5 (1996), no. 4, 447–465.

[Guz09] Anja Guzzi, Supporting collaboration awareness in multi-developer projects, Master’s
thesis, University of Lugano, Switzerland, 2009.

[HL09a] L. Hattori and M. Lanza, Mining the history of synchronous changes to refine code
ownership, MSR 2009 (6th IEEE Working Conference on Mining Software Reposito-
ries), IEEE CS Press, 2009, pp. 141–150.

73

74 Appendix A

[HL09b] Lile Hattori and Michele Lanza, An environment for synchronous software devel-
opment, Proceedings of ICSE 2009 (31st ACM/IEEE International Conference on
Software Engineering, ACM, 2009, pp. 223–226.

[HL10] , Syde: A tool for collaborative software development, Proceedings of ICSE
2010 (32nd ACM/IEEE International Conference on Software Engineering), ACM,
2010, pp. 235–238.

[HP08] R. Hegde and P.Dewan, Connecting programming environments to support ad-hoc
collaboration, ASE 2008 (23rd IEEE/ACM International Conference on Automated
Software Engineering), IEEE CS Press, 2008, pp. 178–187.

[KM00] Claire Knight and Malcolm C. Munro, Virtual but visible software, Proceedings of
the International Conference on Information Visualisation, IEEE Computer Society
Press, 2000, pp. 198–205.

[Lan99] Michele Lanza, Combining metrics and graphs for object-oriented reverse engineer-
ing, Master’s thesis, University of Berne, Switzerland, 1999.

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine, Maintaining mental models:
a study of developer work habits, Experience report in International Conference on
Software Engineering (ICSE) 2006, ACM, 2006, pp. 492–501.

[Mal07] Jacopo Malnati, X-Ray - An Eclipse Plug-in for Software Visualization, Bachelor’s
thesis, University of Lugano, Switzerland, 2007.

[MK88] H.A. Muller and K. Klashinsky, Rigi: a system for programming-in-the-large, ICSE
’88: Proceedings of the 10th International Conference on Software Engineering, IEEE
Computer Society Press, 1988, pp. 80–86.

[Mul86] Hausi A. Muller, Rigi Ñ a model for software system construction, integration, and
evaluation based on module interface specifications, Ph.D. thesis, Rice University,
1986.

[Par94] David Lorge Parnas, Software aging.

[PBG03] Thomas Panas, Rebecca Berrigan, and John Grundy, A 3d metaphor for software
production visualization, Proceedings of the Seventh International Conference on
Information Visualization, IEEE Computer Society Press, 2003, pp. 314–319.

[PBS93] Blaine A. Price, Ronald M. Baecker, and Ian S. Small, A principled taxonomy of
software visualization, Journal of Visual Languages and Computing 4 (1993), no. 3,
211–266.

[PEQ+07] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc, Communicating
software architecture using a unified single-view visualization, Proceedings of 12th
the IEEE International Conference on Engineering Complex Computer Systems,
IEEE Computer Society Press, 2007, pp. 217–228.

[SB99] Matthew L. Staples and James M. Bieman, 3-d visualization of software structure,
Advances in Computers 49 (1999), 96–143.

Bibliography Bibliography

[Sch01] T. Schümmer, Lost and found in software space, HICSS 2001 (34th Annual Hawaii
International Conference on System Sciences), IEEE Computer Society, 2001.

[SGPP04] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette, Mining a software devel-
operÕs local interaction history, MSR 2004 (1st International Workshop on Mining
Software Repositories), 2004, pp. 106–110.

[SRvdH08] A. Sarma, D. Redmiles, and A. van der Hoek, Empirical evidence of the benefits of
workspace awareness in software configuration management, FSE 2008 (16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering), ACM
Press, 2008, pp. 113–123.

[SvdH06] A. Sarma and A. van der Hoek, Towards awareness in the large, First International
Conference on Global Software Engineering, 2006, pp. 127–131.

[TC09] A. R. Teyseyre and M. R. Campo, An overview of 3d software visualization, IEEE
Transactions on Visualization and Computer Graphics 15 (2009), no. 1, 87–105.

[War04] Colin Ware, Information visualization: perception for design, Morgan Kaufmann
Publishers Inc., 2004.

[Wet10] Richard Wettel, Software systems as cities, Ph.D. thesis, University of Lugano,
Switzerland, 2010.

[Wik] Wikipedia, Vuze, http://en.wikipedia.org/wiki/Vuze.

[WL07] Richard Wettel and Michele Lanza, Program comprehension through software habit-
ability, Proceedings of ICPC 2007 (15th IEEE International Conference on Program
Comprehension), IEEE Computer Society, 2007, pp. 231–240.

	Contents
	List of Figures
	Introduction
	Software Visualization
	Collaboration Support
	Manhattan
	Structure of the Document

	State of the Art
	Software Visualization
	Collaboration Support

	Manhattan
	Contributing to Commons Math - a Use-Case for Manhattan
	Visualizing Software Systems
	The Code-Model
	The City Metahpor
	The View-Model
	The Layout Algorithm
	Reacting to Changes
	Caching
	Rendering the Visualization
	Interacting with the Visualization

	Visualizing Team Activity
	Syde
	Awareness in the City
	Visualizing Change Notifications
	Visualizing Conflict Alerts

	Applications and Evaluation
	Exploring a few Case Studies
	ActiveMQ
	Ant
	Cobertura
	jEdit
	Vuze
	NetBeans
	Exploration Wrap Up

	Evaluating our Approach with an Exploratory Study
	Study Description
	Results

	Conclusions
	Future Work
	Corner-Stitch Layout
	Improve the Visualization of Changes
	Improve Performance
	Support other Programming Languages

	A
	Bibliography

