
Exploiting Crowd Knowledge in the IDE

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Major in Software Design

presented by

Luca Ponzanelli

under the supervision of

Prof. Dr. Michele Lanza

co-supervised by

Alberto Bacchelli

June 2012

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in part, to
qualify for any other academic award; and the content of the thesis is the result of work which has
been carried out since the official commencement date of the approved research program.

Luca Ponzanelli
Lugano, 22 June 2012

i

To my father, my family and whoever backed me up to achieve this goal

iii

iv

"Any intelligent fool can make things bigger,
more complex, and more violent. It takes a
touch of genius – and a lot of courage – to
move in the opposite direction."

Albert Einstein (1879-1955)

v

vi

Abstract

Software development process is a non trivial endeavor. Documentation does not often hold the
pace of change of the project, thus lowering the support that developers need to understand the
system. To overcome this lack, developers consult other programmers with the hope of getting hints
to overcome a problem they encountered, or to gather suggestions about design ideas they have. The
research is often extended to online resources, such as tutorials and messaging boards. This practice
is defined as crowdsourcing.

It is not surprising that nowadays there are online communities in which developers collab-
orate to solve problems and programming issues or to discuss design ideas. Among the many
resources available on the web, Questions & Answer (Q&A) services are gaining popularity (e.g.,
stackoverflow.com, Yahoo! Answers etc.) and crowdsourcing is becoming an usual practice.

Even though the usage of Q&A services has dramatically increased, this new important resource
has been scarcely taken advantage of by any Integrated Development Environment (IDE). Interacting
with those communities requires developers to continuously switch between the IDE and the web
browser to read the discussions and to then perform modification to the code, thus leading to
interruptions in the programming flow that lowers the developers’ performance.

In this thesis, we present Seahawk, an Eclipse plugin to integrate Stack Overflow crowd knowl-
edge in the IDE. Seahawk allows developers to seamlessly retrieve Q&A from Stack Overflow in
the IDE, link relevant discussions to any source code in a collaborative fashion by also attaching
explanative comments, and to automatically generate queries from code entities.

vii

viii

Acknowledgements

This thesis could not have been possible without Prof. Dr. Michele Lanza, who did not just supervise
me, but he pushed me to put the best effort in my work. Without the challenges of this thesis I could
not have tasted the preliminary experience of the academic research. Thank you.

I must acknowledge Alberto Bacchelli for the patience in bearing with me for almost six months,
and for the help and the experience he provided me, disregarding the time zones.

I would like to acknowledge the REVEAL group, including Dr. Marco D’ambros and Fernando
Olivero, for the discussions and the exchange of ideas that took place in the weekly meetings.

A special acknowledgement is due to Remo Lemma, Patrick Zulian and Teseo Schneider for
their support during the past two years, and to have become, somehow, companions of a long travel
during my academic experience in Lugano.

I would like to thank and extend my heartfelt gratitude to my friends in Italy. During this two
years, they have been a stable landmark to rely on. Especially, I would like to acknowledge Adama
Faye for having tried to teach me english. Even though the results achieved by his student are still
debatable, moving to Lugano would have been a harder experience without his help.

Last but not least, I would like to thank all the members of my family. Especially, my father
Ernesto Ponzanelli, my mother Gabriella Bianchi, and my brother Claudio Ponzanelli. This achieve-
ment has been also possible because of you, for having encouraged me in trying this experience,
for having provided me with all the support needed and for the comprehension you had during the
hardest time. You are unique. Thank you.

ix

x

Contents

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Contributions . 3
1.2 Structure of the Document . 3

2 Related Work 5
2.1 Social Media & Software Development . 5

2.1.1 Studies on Q&A . 5
2.1.2 The case of Stack Overflow . 6
2.1.3 Limitation of Q&A services . 7

2.2 Crowd Knowledge & Recommendation Systems 7

3 Approaching Crowd Knowledge 11

4 Seahawk 13
4.1 The Architecture . 13
4.2 Data-Collection Mechanism . 14

4.2.1 Stack Overflow Data Pre-processing . 14
4.2.2 Data Import . 16
4.2.3 Document Model . 16
4.2.4 Search Engine . 17

4.3 The Recommendation Engine . 18
4.3.1 Query Engine . 19
4.3.2 Automation of Queries . 19
4.3.3 Annotation Engine . 21

4.4 User Interface Elements . 23
4.4.1 Document Navigator View . 23
4.4.2 Suggested Documents View . 25
4.4.3 Document’s Content View . 25
4.4.4 Notification System . 27
4.4.5 Invoking Seahawk . 27

xi

xii Contents

5 Evaluation 29
5.1 Experiment I: Java Programming Exercises . 29

5.1.1 Experiment I: Discussion . 30
5.2 Experiment II & III: Method Stubs and Method Bodies 32

5.2.1 Experiment II & III: Discussion . 32

6 Conclusions 35
6.1 Future Work . 36

A Experimental Data 37

Figures

3.1 The conceptual representation of our approach . 11

4.1 The Seahawk architecture . 13
4.2 Data Collection Mechanism Process . 16
4.3 Seahawk’s document model examples . 17
4.4 The query engine components . 20
4.5 The annotation engine components . 22
4.6 The document navigator view. 24
4.7 The suggested documents view. 25
4.8 The document’s content view. 26
4.9 The package explorer notification system. 27
4.10 The contextual menu to invoke Seahawk. 28

xiii

xiv Figures

Tables

5.1 Legenda: Document Relevance Levels . 30
5.2 Experiment I Data: Part I (0 = Not Relevant, 4 = Highly Relevant) 31
5.3 Experiment I Data: Part II (0 = Not Relevant, 4 = Highly Relevant) 31
5.4 Experiment II & III Data: Part I (0 = Not Relevant, 4 =Highly Relevant, I = Interface,

NI = Not Interface) . 33
5.5 Experiment II & III Data: Part II (0 = Not Relevant, 4 = Highly Relevant, I =

Interface, NI = Not Interface) . 33

A.1 Method Bodies: Experiment Data Part I (0 = Not Relevant, 4 = Highly) 37
A.2 Method Bodies: Experimental Data Part II (0 = Not Relevant, 4 = Highly) 37
A.3 Method Stubs: Experimental Data Part I (0 = Not Relevant, 4 = Highly Relevant, I

= Interface, NI = Not Interface) . 38
A.4 Method Stubs: Experimental Data Part II (0 = Not Relevant, 4 = Highly Relevant, I

= Interface, NI = Not Interface) . 38
A.5 Java Programming Exercises: Experimental Data - Part I (0 = Not Relevant, 4 =

Highly Relevant) . 39
A.6 Java Programming Exercises: Experimental Data - Part II (0 = Not Relevant, 4 =

Highly Relevant) . 40

xv

xvi Tables

Chapter 1

Introduction

Software engineering is a continuously evolving field. In its history, many aspects of this discipline
have changed, thus requiring developers and engineers to hold the pace of change. Of course,
the evolution of technology has played, and it is still playing, a prominent role in the software
development process. Developers are continuously introduced to new technologies, components,
ideas [RWZ10] and they often deal with systems depending on external libraries or even legacy code.
The time they spend in maintaining such systems requires a good comprehension of the behavior of
the system behaves and what the code is supposed to do. Researches have shown how developers
spend 50% of their time in program comprehension tasks [LS81]. Moreover, Corbi et al. pointed
out how "Software renewal tools are needed to reduce the costs of modifying and maintaining large
programming systems, to improve our understanding of programs" [Cor89]. The employment of
technology in assisting code comprehension has been tackled by research, and industry, in the last
two decades by producing tools to support developers in program comprehension. For example,
Kuhn et al. take advantage of software cartography and information retrieval techniques to represent
a program as a topic-map [KELN10] , Sridhara et al. automated the creation of Java comment from
code analysis [SHM+10], and Haiduc et al. presented a system to generate textual summaries from
source code [HAMM10][HAM10].

Among the tools and the systems developers have at their disposal, recommendation systems are
available as well. A recommendation system provides suggestions to developers by helping them
face and navigate the huge amount of information space a project has. According to Robillard et al.,
"the recommendation system for software engineering (RSSE) are emerging to assist developers
in various activities, from reusing code to writing effective bug reports" [RWZ10]. RSSEs could
be a potential means to help developer in code comprehension tasks, or to assist them to retrieve
additional information while developing or modifying part of a system.

Apart from the technological support in code understanding, developers also need to modify
or to develop new components. Although the software development process outcome is heavily
based on the knowledge and the creativity of software developers [Ye06], writing code often requires
knowledge beyond that which developers already possess [KDV07]. Developers create and maintain
software systems by standing on the shoulders of many others, by asking teammates for advice as
well as by reusing components, consulting project documentation, books and manuals, or referring
to online resources and tools [STvDC10]. However, project documentation is commonly inadequate
[LVD06], manuals tend to be outdated, and books may be hard to retrieve or link to the actual
task. Moreover, documentation is often biased by the technical aspects of the solution described,

1

2

missing information regarding the context of the design process [HP00]. For these reasons, often
developers’ knowledge needs can only be satisfied by posing questions to other programmers
or teammates [KDV07][HP00]. With the aim of leveraging these circumstances and the success
of social media, Question and Answers (Q&A) online services offer infrastructures to support
knowledge exchange between programmers. The reciprocal collaboration applies for every kind
of experience level a developer has, ranging from students to experienced developers.Even though
many studies (e.g., [AZBA08], [NAA09]) that investigated general purpose Q&A websites "suggest
that [they] may be poorly suited to provide high quality technical answers" [MMM+11], in practice,
Q&A sites for programmers and software engineers are filling "archives with millions of entries
that contribute to the body of knowledge in software development" [TBS11], where social media is
playing an important role in developing code [STvDC10]. Frequently, on Q&A websites developers
find suggestions, articles, discussions or even entire solutions for the problems they are dealing
with and the huge amount of entries that technical Q&A provide constitute a base knowledge for
example-programming practices. Well known solutions for common problems and ready-to-serve
implementations provided by code examples help newcomers to have a better understanding of the
programming issues and the context in which they are developing. Indeed, Q&A websites often
become a substitute for official product documentation whenever it is sparse or it does not exist
yet, being particularly effective at answering novices’ questions and explaining conceptual issues
[TBS11].

A prominent example of technical Q&A service is Stack Overflow1. This website has gained
popularity among developers and it is becoming a usual means to help them in solving programming
issues. Its growth since 2008 brought birth to the Stack Exchange network2. This network provides
various Q&A services that aim not only to answer questions related to programming issues but
also to maintenance purposes (e.g., Server Fault3) and to software-unrelated topics (e.g., Android
Enthusiasts4).

The crowd knowledge provided by a Q&A service, such as Stack Overflow, can be leveraged to
provide useful insight to developers. Even though the support given by the discussion in Q&A web-
sites comes from outside the context of the project, it could be a valuable support as well: for
example, programmers could tailor the information given by such external contribution and use it to
fix issues they are dealing with or understand an external library in use. If we consider the case of
Aptana5, the project’s discussions are totally hosted on Stack Overflow. In that case, both project
developers and external programmers collaborate and debate issues and ideas.

However, the accessibility of such Q&A services is disconnected from the IDE. Developers can
only use an external application, such as the web browser, to query and extract information. The
disconnection of Q&A websites is one of the limitations that hinders their full potential and adoption
in the software development process. The employment of RSSEs with this new source of knowledge
is a viable solution to overcome the aforementioned limitation. They can bridge the gap between
the IDE and Q&A services by providing suggestions that could be used and tailored both for code
comprehension, programming issues, writing new parts of a system and debating design ideas.

1http://stackoverflow.com
2http://stackexchange.com/
3http://serverfault.com/
4http://android.stackexchange.com/
5http://www.aptana.com/

http://stackoverflow.com
http://stackexchange.com/
http://serverfault.com/
http://android.stackexchange.com/
http://www.aptana.com/

3 1.1 Contributions

1.1 Contributions

We claim that the integration of those Q&A services in the IDE is a valuable solution to support
developers in the software development process. Devising a recommendation system to provide
suggestions for the programming issues could remove the current limitations of the interaction with
Q&A services. In this thesis we present Seahawk 6, a plugin for the Eclipse IDE7, whose main
contributions are the following:

• Stack Overflow crowd knowledge integration in the IDE.

• Linkage between relevant discussions and source code through an ad-hoc annotations system.

• Sub-versioning system integration to provide developers with collaborative support, exploiting
valuable Q&A in the context of team work.

• Example-based programming by allowing developers to retrieve code snippets from Stack
Overflow Q&A directly in the code editor.

• Automated creation of queries from source code entities.

1.2 Structure of the Document

• In Chapter 2 we discuss the related work concerning Q&A services and how crowd knowledge
has been leveraged so far in the software development process.

• In Chapter 3 we present our approach towards Q&A services, discussing how they can be
harnessed to become part of the software development process.

• In Chapter 4 we present Seahawk, a plugin for the Eclipse IDE that implements our approach
by integrating Stack Overflow in the IDE.

• In Chapter 5 we present the evaluation of Seahawk by discussing the results obtained in the
experiments we devised.

• In Chapter 6 we discuss the conclusion regarding our work and we present the future work.

6http://seahawk.inf.usi.ch
7http://eclipse.org

http://seahawk.inf.usi.ch
http://eclipse.org

4 1.2 Structure of the Document

Chapter 2

Related Work

In this chapter we present the related work concerning this thesis. In Section 2.1 we discuss
the studies on Q&A services and the role of social media in the software development process.
In Section 2.2 we present the state of the art regarding the crowd knowledge integration in the
development process and how it can be harnessed to provide a recommendation system.

2.1 Social Media & Software Development

Our work has been influenced by Q&A online services and how they can be leveraged to improve
developer productivity. Section 2.1.1 shows studies on Q&A services and their role in the software
development process. In Section 2.1.2 we discuss the features of Stack Overflow, a prominent
example of Q&A service. Finally, in Section 2.1.3 we explain the limitations of Q&A services.

2.1.1 Studies on Q&A

Q&A online services have gained popularity in the last years not only among users but also among
researchers. The software engineering research field is taking interest in Q&A services to understand
how and to what extent they can contribute to the process of software development.

Treude et al. [TBS11] presented an exploration of the Stack Overflow service by analyzing
randomly sampled data of the November 2010 data dump. They identified five categories of tags
used in Stack Overflow by its community: programming language, framework, environment, domain,
non-functional, and homework. The homework category is the only set comprising just one tag
called homework as well. They defined a classification for questions in 11 different categories. They
showed how categories such as how-to, discrepancies and environment were the most frequent ones,
while review, conceptual, how-to and novice were the more answered categories. According to those
findings, they claimed that Stack Overflow is particularly effective for code reviews, for conceptual
questions, and for novices.

In their subsequent work, Treude et al. discussed the impact of web content curated by the crowd
for software developers and their working practices [Tre12]. They raised questions about whether
and how a large valid amount of programming knowledge could redefine the attributes of good
programmers, about who owns the intellectual property of shared code, and about the impact of
social media programming knowledge on software engineering education and career planning.

5

6 2.1 Social Media & Software Development

Storey et al. [STvDC10] also discussed how the use of the social media mechanism influences
the software development practices. They posed and discussed questions with the aim of finding
answers for the innovation of future software engineering tools. They tackled discussions about the
role of social media usage in software engineering, how it can facilitate project coordination and
improve individual development activities.

2.1.2 The case of Stack Overflow

Among the available technical Q&A websites, Stack Overflow1 is becoming one of the most visible
venues for sharing knowledge on software development [MMM+11]. By analyzing the data from
the last public release (December 2011)2 of the entire Stack Overflow data dump we measure
approximately 880,000 registered users, about 2.3 million posed questions and 5 million answers, of
which more than 1.4 million were accepted as resolutive from the person who posed the question.
Mamykina et al. reported that more than 92% of the questions on expert topics are answered in a
median time of 11 minutes [MMM+11]. Moreover, Treude et al. pointed out how "Stack Overflow is
particularly effective for code reviews, for conceptual question and for novices" [TBS11].

Stack Overflow is designed by following nine specific design decisions 3: voting, tags, editing,
karma, pre-search, badges, Google is UI, critical mass and performance. The Stack Overflow service
aims to differentiate its method to access knowledge from those offered by web search engines. This
is mainly achieved through five of the aforementioned design decisions that guided the creation of
the service: voting, tags, editing, karma and pre-search.

Voting addresses the critical issue that arises when reusing code samples found on the web:
Before integrating a search result the developer has to assess its trustability to take a decision [GK10].
In the case of search engine results, developers have to take a decision only based on their knowledge
and experience. In Stack Overflow, on the contrary, developers can also rely on the result of the
voting mechanism: Site members can vote to approve or disprove any answer, and the sum of the
votes creates an overall quality score based on crowd knowledge.

Tags explicitly state the technology and the topic to which the question and answer applies.
When retrieving explanations and examples from generic websites, in fact, the referred technology
might be unclear. In Stack Overflow, users are forced to attach at least one tag per questions allowing
to retrieve and query the search engine through tags. Moreover, Stack Overflow provides a synonym
system to cope with multiple tags with the same meaning (e.g., lift and liftweb). Tags are the core
feature of the query syntax in stackoverflow.com. Whenever a user performs a search, the inserted
query is tokenized to identify possible tags and filter questions.

Editing clearly distinguishes this Q&A site from traditional web sites and web fora. Stack
Overflow site members can freely edit questions and answers to refine them over time, thus creating
a reliable and correct knowledge base that can be referenced and accessed later. The Stack Over-
flow community encourages editing contributions, allowing the person who asked the question to
give also an answer, thus creating a sort of mini-blog entries [TBS11].

Karma encourages users’ contributions. The user’s karma value is determined by the number of
rewards, called badges, users are assigned with. Every badge (i.e., bronze, silver or gold badges)
corresponds to a certain threshold of contribution reached: the more the user asks and replies to
questions in a useful way (e.g., the answer gets a high vote) the higher the reward is and the higher
the privileges the user gets.

1http://stackoverflow.com
2http://www.clearbits.net/torrents/1881-dec-2011
3http://www.youtube.com/watch?v=NWHfY_lvKIQ

http://stackoverflow.com
http://www.clearbits.net/torrents/1881-dec-2011
http://www.youtube.com/watch?v=NWHfY_lvKIQ

7 2.2 Crowd Knowledge & Recommendation Systems

Finally, pre-search helps avoiding duplicates at a question’s creation time. Whenever users have
just finished to type the question, titles of similar entries are shown such that they can stop creating
the question and solve their issue otherwise.

2.1.3 Limitation of Q&A services

Despite the aforementioned valuable features and its exceptional growth in usage and interest, we
currently see two limitations in Q&A sites (e.g., Stack Overflow) that hinder their full potential for
software engineering.

1. Users should be able to focus only on the current task without any major interruption or
disturbance [Ras00] but the interaction with Q&A online services is totally disconnected from
the IDE (Integrated Development System). The interaction is separated from the context in
which developers are performing programming tasks. LaToza et al. investigated developers’
work habits [LVD06] pointing out how developers spend most of their time in the IDE, not
only when writing code, but also when understanding it, and even when designing new parts
of a system.

Despite this, Q&A websites are currently only accessible from web browsers, disconnected
from the development process. This might limit a consistent adoption of Q&A sites as a means
to acquire knowledge: since Q&A sites are not integrated in IDEs, developers are forced to
interrupt their flow and change context every time they need to deal with them. Moreover,
there is no possibility to easily retrieve answers directly related to the current programming
context, since the action of retrieving answers relies on the ability of the user to write the
appropriate query.

2. Q&A websites provide a platform for questions aimed at "a general audience that is not part of
the same project" [TBS11]. We do not see this as a limitation of the interest that a whole team
working on the same project can have toward certain valuable discussions. In fact, we can
imagine a developer who bases her implementation of a part of a software system on a mean-
ingful discussion that took place on a Q&A site. Knowing the existence of such a productive
discussion would be a valuable resource to recover the rationale, design, or implementation
details of that particular portion of the system. Nevertheless, Q&A websites currently only
offer web links to refer to their data and do not offer any resource to collaboratively and
privately exploit valuable questions and answers in the context of a team working on the same
project. This reduces the usage context of Q&A sites.

2.2 Crowd Knowledge & Recommendation Systems

Robillard et al. discussed Recommendation Systems for Software Engineering (RSSE), showing
how they provide support to developers by tailoring data extracted from analysis, and discussing the
general architecture of a typical RSSE. As they state, "An RSSE is a software engineering application
that provides information items estimated to be valuable for a software engineering task in a given
context" [RWZ10]. According to this definition, our work falls in the context of RSSEs.

We consider the crowd knowledge a valuable resource to harness and to integrate in the IDE,
to help developers in the software development process. The integration of crowd knowledge in
the IDE has already been tackled by research in the past. Initial steps towards the integration of in-
project knowledge were made by Laugher and Rodden [LR93] by developing an annotation system.

8 2.2 Crowd Knowledge & Recommendation Systems

This system allowed to link documentation and discussions regarding design decisions at source
code level. Developers can access this knowledge through ad-hoc views that provide additional
information regarding the meaning of a code entity. Whenever a code entity is selected, the
information is shown in different forms (e.g., additional description, graphs etc.) and helps the
developer who has no knowledge of the system (e.g., newcomers in a project). Even though this
approach is good in assisting developers in understanding the code, forcing them to look at the
code to get additional information is a drawback. The information should be accessible even if the
developer is not working on the current entity.

Bacchelli et al. presented ReMail [BLH11], a plugin to integrate crowd knowledge from mailing
lists in the Eclipse IDE. In their previous work [BLR10], they employed information retrieval
techniques to extract information from emails and to consequently link them to source code entities
in a lightweight fashion. Given a code entity (e.g., class), the ReMail’s recommender system suggests
emails to developers such that the knowledge they contain is accessible from the IDE.

Holmes et al. presented DeepIntellisence [HB08], a plugin for the Visual Studio IDE 4 that links
bug reports, emails, events history (e.g., checkins, code changes etc.) and people to source code
entities. DeepIntellisense integrates all this information in three different views that are updated
accordingly to the entity under the cursor in the code editor.

Čubraniç et al. investigated the usefulness of project’s group memory for newcomers and created
Hipikat, an Eclipse plugin that "provides developers with efficient and effective access to the group
memory for a software development project that is implicitly formed by all of the artifacts produced
during the development" [ČMSB04]. Hipikat provides a recommender system to assist developers
who are new to the project by recommending items from problem reports, newsgroup, articles etc.

The aforementioned examples focus on integrating crowd knowledge for a specific project in
the IDE. Q&A services provide crowd knowledge that can be integrated in the IDE as well. The
information retrieved among discussions provided by an external community can be used to solve
issues. Even in the open source reality this practice is being adopted: Aptana5 is an example in
which crowd sourcing is used to provide support for developers, relying on Stack Overflow as a
means for hosting discussions regarding their project. In this direction, other examples of tools
and systems integrate external crowd knowledge in the IDE. They leverage the interaction of the
developers to find out the task context and recommend relevant information.

Brandt et al. presented Blueprint, a plugin built on top of Adobe Flex Builder that integrates
a web search interface. Blueprint "automatically augments queries with code context, presents a
code-centric view of search results, embeds the search experience into the editor, and retains a link
between copied code and its source" [BDWK10]. Blueprint is tightly coupled to the languages
that Adobe Flex Builder is designed for (i.e., Javascript and MXML); developers can import code
examples just for those. Blueprint allows keeping up to date the imported code samples by means of
an annotation system that works at the source code level. However, the link between copied samples
and their source is language dependent as well. For this reason, Blueprint limits the scope of its
action. To overcome such a limitation, Blueprint should provide developers with features to import
code snippets and to annotate them in a language independent fashion.

Sawadsky et al. presented FishTail [SM11], a plugin for the IDE Eclipse that is built on top
of Mylyn6 (previously introduced as Mylar [KM06]). The goal of FishTail is to automatically
suggest code examples from the web that are relevant to what the programmer is trying to accomplish.

4http://www.microsoft.com/visualstudio/en-us
5http://www.aptana.com/
6http://www.eclipse.org/mylyn/

http://www.microsoft.com/visualstudio/en-us
http://www.aptana.com/
http://www.eclipse.org/mylyn/

9 2.2 Crowd Knowledge & Recommendation Systems

To suggest code examples, they generate keywords from the program element name (e.g class,
method or fields) that has changed the most, according to the Mylar’s DOI (Degree Of Interest)
policy. They rely on Google as a means to retrieve documents, creating four different queries for four
different targets (i.e., article, blog, example and tutorial). Generating queries just from the name of
the most used program element is a limitation. As they suggest in their work, this approach seems to
point out relevant documents just in case of interfaces. One possible improvement to that approach is
to enrich the query with topics extracted from one or more program entities, providing users with the
capability of deciding which entities are interesting for their issues. Eventually, this approach could
also reveal some hidden relationships among entities that cannot be spotted from code analysis.

Finally, Goldman et al. presented Codetrail, a system that connects source code with web
resources by exploiting a communication channel and a shared data model to implement a variety
of interactive tools [GM09]. The communication relies on an ad-hoc backbone where a plugin for
Eclipse IDE is present at one end and a plugin for Mozilla Firefox 7 is present at the other. Codetrail
harnesses information available in the IDE and in the web browser (e.g., editing history, code
contents and browsing history) to tackle the problem of the context switch by eliminating the effort
required to synchronize the two applications. Therefore, the browser, or the IDE, is focused on the
relevant source code, or web page. Even though the web browser provides additional functionalities,
relying on an external application limits the user interactions. For example, code snippets can only be
imported manually. On the contrary, a full integration in the IDE can help developers to manipulate
information contained in the web pages and use it for their purposes.

The related work defines the initial context from which our work takes place. All the afore-
mentioned limitations can be tackled by implementing the discussed improvements. In the next
chapter we illustrate the approach we followed to enhance the interaction with Q&A services and
the additional features developers should be provided with.

7http://www.mozilla.org/

http://www.mozilla.org/

10 2.2 Crowd Knowledge & Recommendation Systems

Chapter 3

Approaching Crowd Knowledge

In Section 2.1 we discussed the limitations of Q&A services. We pointed out how those services
suffer of disconnection from the IDE, thus lowering the developers’ performance. In this chapter we
present the concepts behind our approach: we discuss what we consider a valuable process to cope
with those limitations and offering a better interaction with Q&A services to the developers.

Figure 3.1. The conceptual representation of our approach

As shown in Figure 3.1 project development and Q&A services are the two key actors. Q&A web-
sites and project development can be considered as two separate worlds. If developers need to access
online resources, there is no direct connection with Q&A services. On the contrary, they have to
travel between the two spaces, search for the needed information, and come back to the development
phase. If we think about the current state of the art, as already discussed in Chapter 2, the absence
of a direct integration in the IDE of such a source of information (Q&A) causes the context-switch
between the two spaces. Our approach is the link between the two, represented by the grey arrow
in Figure 3.1. Instead of letting developers mine the Q&A entries, we should provide a means that
leverages and tailors such information to make it available in the IDE.

11

12

If we think about Q&A services, we can imagine them as a huge database built of millions of
entries in which a multitude of topics are discussed. Among them, developers can crowd source
solutions and even tasks that can help dealing with issues during the software development process.

Initially, we must eliminate the web browser as a vehicle to get those services. The developers
should be provided with the capability of querying such a database from the IDE itself. It would
be useful for a developer to open up a new view in the IDE, write the query and get the related
documents. As a second step, we have to enhance the interaction between the content of the
document and the developer. In technical Q&A services, the code can be tailored to get a partial
implementation which compiles and works. Without any support tool, developers need to locate the
code, copy and paste it in the editor before starting to modify it. Providing them with an ad-hoc view
that automatically locates code snippets and allows to easily drag and drop them in the editor could
be a valuable enhancement. Finally, the IDE itself should be able to provide support in building the
query by understanding the context in which the developer is writing code. For example, the user
should be able to automatically generate a query from the source code, adding additional information
as needed, and retrieve entries from the Q&A services.

In a project, developers do not only work alone but they cooperate as well. Similarly, in
Q&A services users collaborate, even without having a common end. Another valuable feature a
developer should be provided with is the possibility to share the crowd knowledge with teammates.
At the moment, developers can just share this information via communication means such as email,
instant messaging etc. On the contrary, this kind of knowledge sharing should be provided directly
in the IDE: A recommendation system could suggest the documents already added by teammates
and notify new entries to the developer without having to leave the IDE.

The aforementioned enhancements are the base of our approach. In the next chapter we give a
detailed presentation of how those ideas take place in reality. We propose the approach we discussed
so far by implementing a tool to support developers: Seahawk.

Chapter 4

Seahawk

In this chapter we present Seahawk and its backbone system. We give an overview of the Seahawk’s
architecture with a detailed description of the plugin side’s components, we discuss the data collection
mechanism of the Seahawk backbone, and finally, we present the User Interface (UI) elements of the
Eclipse plugin we built.

4.1 The Architecture

Data-collection Mechanism Eclipse

Seahawk

System model

Annotation
engine

Apache
Solr Search

EngineMbox
files
Mbox
files

XML
data
dump
files

XML dump
importer

DB
PostgreSQL

Annotation
Cache
(SQLite)

Query
engineHTTP

POST

XML

POST

XML

Document
builder

Figure 4.1. The Seahawk architecture

According to Robillard et al., a recommendation system is generally composed of three main
components: A data-collection mechanism, a recommendation engine and a user interface [RWZ10].
We follow this schema to present Seahawk’s architecture depicted in Figure 4.1.

As we explained in the previous chapter, we want to build a recommendation system that
provides suggestions from Q&A services’ crowd knowledge. The first step towards this direction
concerns the definition of a data collection mechanism. This component in the Seahawksystem is
the one responsible of gathering Q&A from Stack Overflow. As we discuss in Section 4.2, the Stack
Overflow data is retrieved through a set of XML files.

13

14 4.2 Data-Collection Mechanism

The data contained in the files is then extracted through the XML dump importer and put in a
relational database. We built a tool to query such a database and reconstruct a JSON representation
of each document in order to make it available for any language. This representation is then included
in an additional document schema required by the Apache Solr1 search engine. When documents
are indexed by the search engine, they become immediately available for any query. Apache
Solr provides a RESTful interface to perform searches by mean of both GET and POST requests
and it replies with XML data containing the relevant documents. For further details regarding the
data-collection mechanism, see Section 4.2.

On the other side of the Seahawk system chain we implemented an Eclipse plugin. Its main
purpose is to implement the recommendation engine and the user interface. The interaction with
a recommendation system can be both manual (i.e., a query is inserted by the user) and automatic
(i.e., the recommendation engine generates the query) [RWZ10]. In Seahawk we implemented
both: the user is provided with an ad-hoc view to manually insert queries (see Section 4.4.1) as
well as queries that can be provided by Seahawk itself by analyzing the code (see Section 4.3.1).
Seahawk also provides an annotation system (see Section 4.3.3) that allows developers to annotate
Stack Overflow documents directly in the code. Developers receive recommendations for the
documents annotated in the code via an ad-hoc view (see Section 4.4.2) and they get notified
whenever another developer has put a new annotation in the code (see Section 4.4.4).

4.2 Data-Collection Mechanism

This section presents the work behind the data collection mechanism we implemented in the
Seahawkbackbone. We initially present the possible ways to gather data and our adopted solution.
We provide an analysis of our document modeling idea, how it is designed to support more than the
Stack Exchange documents, and the data manipulation process, taking also a look at the advantages
and drawbacks of the solution adopted.

4.2.1 Stack Overflow Data Pre-processing

The first step to accomplish in building the Seahawk backbone concerns the data collections
mechanism. Even though getting data from a website or a web service seems to be an easy task, this
does not apply for the Stack Exchange network, in particular for Stack Overflow. As explained in
Chapter 1, the size of the Stack Overflow data dump is not negligible. There are many challenges
to take into consideration when dealing with such a huge amount of data. Moreover, the level of
difficulty increases when the data needs to be manipulated or a new representation of the information
is needed. We evaluated different solutions to collect data and perform searches among the millions
of documents stored in the Stack Exchange network.

In the first place, the Stack Exchange network provides a public RESTful API2 to inter-
act with its own data. The network does not only comprise of Stack Overflow, but it consists
also of a series of websites that can be taken into consideration for the goal of this thesis (e.g.,
gamedev.stackexchange.com), as well as other websites treating completely unrelated topics (e.g.,
cooking.stackexchange.com and android.stackexchange.com).

1http://lucene.apache.org/solr/
2https://api.stackexchange.com

http://lucene.apache.org/solr/
https://api.stackexchange.com

15 4.2 Data-Collection Mechanism

The data of all of web sites are accessible through the API. such that every information regarding
users, posts, tags etc. can be retrieved in JSON format. Such a web service can be useful to facilitate
the data collection but not to search for a document. As the API states, the searching capabilities are
limited on purpose to just retrieve documents using, for example, title matching. They also suggest
to implement a custom search engine or take advantage of another available one which focuses on
just the Stack Exchange website of interest.

However, the web service could be still leveraged as a data source to reconstruct a local,
periodically updated, database. This solution would not require a difficult manipulation of data or a
high degree of maintenance: Due to the JSON format used by the service, it would require just a
crawler to retrieve documents and a non-relational database (e.g., CouchDB or MongoDB) to store
JSON documents. Unfortunately, the Stack Exchange policy regarding the usage is very limited.
They allow one hundred queries per day to be performed from the same IP address.

In the second place, we could just discard the idea of creating a local database and decide to
perform searches directly on the Stack Exchange website of interest. To retrieve the documents, it
would require to implement a webpage scraper to parse the search results and extract the URLs of
the questions. This solution requires little effort to be implemented as well as no local database and
the related maintenance. However, this would limit our interaction with the raw data and it would
give less additional information (e.g., user information). Moreover, it sounds as an unstable solution
since the maintenance of such a backbone would require a new Stack Exchange crawler whenever
the page layout is changed.

As a last approach, Stack Exchange provides a public data dump of their data3. All of the
websites’ data in the Stack Exchange network are available and released every three months. The
dump comprises several XML files that represent the dump of the database of the website. We can
limit the files needed to the ones representing the data (i.e., posts.xml, users.xml, comments.xml),
thus discarding the files regarding the evolution of the website (e.g., posthistory.xml, badges.xml,
votes.xml etc.). Even though this could limit the amount of information available to study, we are
more interested in the documents provided by Stack Exchange than the users’ data regarding their
interaction with the community. Extracting more information about users to define an accurate policy
based on user’s reputation and interaction in the community could be a valuable feature. However,
this is out of the scope of this thesis and we can consider that as a future work.

Collecting data from Stack Exchange allows us to have full control on the data collected, thus
deciding to take into consideration just what we consider useful. Nevertheless, dealing with XML
files that are released every three months has some drawbacks: first of all, this approach can stand
as long as the data dump is provided. If the policy regarding the distribution of such data changes,
this methodology would not work anymore. Secondly, the process of importing and manipulating a
considerable amount of data from websites such as Stack Overflow requires a significant amount of
resources. As we discuss in Section 4.2.2, the whole process requires a relational database, a search
engine and about 8 hours of data pre-processing. Finally, data is not up to date since posts are at least
three months old. Although well known languages (e.g., C++, C#, Java etc.) could be discussed
enough to help with programming issues, newborn languages and technologies (e.g., Scala, Haskell,
Dart etc.) could suffer because of this update limitation.

All these drawbacks sound like substantial limitations. If, and only if, the Stack Exchange net-
work would have provided an open and unlimited API, we could have avoided the pre-processing
effort. However, this approach is the only way to have a real search engine accessing the data without
limitation in usage.

3http://www.clearbits.net/creators/146-stack-exchange-data-dump

http://www.clearbits.net/creators/146-stack-exchange-data-dump

16 4.2 Data-Collection Mechanism

4.2.2 Data Import

Among the Stack Exchange websites, Stack Overflow is the one requiring more effort to manipulate
data. According to the information extracted from the last public dump (December 2011) the total
approximate size is about 9 GB. The XML file containing Q&A is the biggest one (∼ 7GB).

Figure 4.2. Data Collection Mechanism Process

In Figure 4.2 we see the process we devised to import and manipulate data to reconstruct
documents that are then indexed by the search engine. We just consider three XML files: posts.xml,
users.xml, comments.xml. Being a plain representation of the tables in Stack Overflow’s database
model, one of the challenges in extracting the documents is to join the data among those files. The
total amount of entries in posts.xml, according to the December 2011 dump, sums up to more than
7 millions. To recreate a document, we need to gather a question and all the related answers. For
each answer, but also for the opening question, we need to extract the users, the comments and their
authors. Performing this operation by manipulating data directly from the XML files would require
too much resources and time. This operation should be done by a relational database. For this reason,
we decided to perform an intermediate import phase in which we partially reconstruct the Stack
Overflow’s database.

Once the database has been populated with the data contained in the XML files, the documents
can be extracted. We chose to represent the document in JSON format in order to make them portable
as much as possible. To perform this task, we implemented a importer that queries the database, thus
extracting all the information needed to get complete documents. Those documents are then included
in an additional document representation required by Apache Solr, whose details are discussed in
Section 4.2.4. Finally, the search engine indexes the documents extracted by our tool, making them
available for any research.

4.2.3 Document Model

The good feature of Stack Exchange network is that these websites have the same structure. To be
tied to just one kind of service, we wanted to achieve a flexible model that allowed us to represent
any kind of document. We have decided to represent this model in the JSON format. Storing and
indexing the document in this format allows to deserialize to any language the JSON describing
a document. Even if the target language in this thesis is Java, those JSON objects can easily be
deserialized to C#. Thus the Seahawk’s backbone could be also ported to Visual Studio.

17 4.2 Data-Collection Mechanism

(a) The document model (b) Example of document node extension for Q&A (c) Q&A document representation

Figure 4.3. Seahawk’s document model examples

In Figure 4.3a we depict the model we use to describe a document. From a conceptual point
of view, a document can be seen as composition of document nodes. This way of representing
documents is commonly used in XML languages. Extending that idea to textual documents is not
hard. For example, a book is composed of chapter nodes that can have section nodes as children.
The same applies for Q&A documents (see Figure 4.3c). Take into consideration the case of
Stack Overflow: A question defines the beginning of a document and the answers can be seen as
children of the opening question. Comments can be considered children as well for both question
and answer nodes. Every additional information can be added by specializing the DocumentNode
class as in Figure 4.3b. The DocumentBase class represents the general information regarding the
document (e.g., title, author etc.), and it contains the root of the document’s tree. Thus, in case of
Q&A documents, an instance of DocumentBase contains a QuestionNode as a root.

One of the good aspects of such a model is that every document represented become traversable
as well as an XML. This feature is useful to build a navigator for those documents, thus allowing
users to jump from one point to another. To that aim, in Section 4.4 we present how one of Seahawk’s
view can take advantage of this representation to provide a useful interface to traverse the document.

4.2.4 Search Engine

The main purpose of the search engine is to index documents whenever a document is extracted and
reconstructed from the database, and to make them available for queries. Rebuilding from scratch a
search engine would have required a huge effort. In particular, the reliability of the search system
should have been tested extensively to guarantee its effectiveness.

We chose to take advantage of Apache Solr instead of developing a search engine from scratch.
Apache Solr stores and indexes documents in a vector space model, relying on Apache Lucene 4

as core engine. The weighting algorithm used by Apache Lucene, and thus by Apache Solr, is a
variation of the standard tf-idf [Hat10]. To use such an implementation, we needed to define one
more document schema. Apache Solr requires an XML schema that describes the fields composing
a document, what must be indexed, and which one is the unique identifier for a document. Moreover,
the schema defines what kind of text processing must be performed on those fields at indexing time
and at query time.

4http://lucene.apache.org/

http://lucene.apache.org/

18 4.3 The Recommendation Engine

In our case, we defined the subsequent fields in the schema:

• Id: The unique identifier of the document.

• Title: The title of the document, that is, the question for a Stack Overflow document.

• Document: The JSON representation of the document.

• Tag: The list of tags, if any, describing the document.

According to that schema, we replicate data on purpose. Fields such as Title and Tag are already
available in the JSON representation contained in the Document field. However, this replication is
needed to enhance the search functionalities. As we explained in Section 4.1, the Seahawk’s query
engine does not search only in the Document field. The actual configuration treats Id, Title and Tag
as strings, while Document is considered text. Thus, information retrieval pre-processing is applied
to just the Document field. We configured Apache Solr to remove stop words, to filter out possessive
words, to stem words, to trim white spaces, to filter synonyms and to lower the case (see [MRS08]).

We tried to apply tag synonym filtering as in Stack Overflow through the synonym filter of
Apache Solr. The list of synonyms can be retrieved by the API provided by Stack Exchange. To
improve the indexing phase and to enhance the tags contained in the document’s text, we used the
same tag synonyms list as Stack Overflow does. Tags often define the technology discussed in the
posts (e.g., java-se, .net etc.), thus enhancing them is worth being done. We implemented a crawler to
retrieve the tag synonyms list from the Stack Exchange API. We noticed that for some technologies
that requires a version number, the list generalizes the number by putting an "x" (e.g., python-3.x).
Since document tokens have to match the tag text, and considering that it is unlikely to have users
writing the version number in that way, we applied the following approach: we removed the ".x" or
the "x" from the tag string and we enlarged the synonyms set to match the versions ranging between
1 and 9. Thus, synonyms like "python-3.1", "python-3.2" etc. are indexed as "python-3". This
applies also at query time: If a user searches for a specific topic and puts a tag synonym in the query,
for example "python-3.5", the synonym is considered as "python-3".

An advantage of having the Apache Solr schema resides also in the field Id. For that field, we
decided to use the original URL. This allows to put together Q&A taken from every website in Stack
Exchange. Having a unique id to distinguish documents allows to perform online updates without
interrupting the web service provided by the search engine. If Apache Solr indexes a document that
has been already indexed, it just overwrites it. Once the indexing phase is complete, the Apache
Solr engine can be queried via HTTP in a RESTful fashion. The Seahawk plugin can thus query the
search engine to get relevant documents in XML format and to extract the JSON object from the
Document field, deserialize and show its content.

4.3 The Recommendation Engine

The recommendation engine of Seahawk provides both manual and automatic interactions. The core
is divided in two main engines that provide developers with the possibility of querying the crowd
knowledge external to the project (e.g., Stack Overflow) or to suggests documents to other developers
working in the same project. In this section we present the query engine and the annotation engine.

19 4.3 The Recommendation Engine

4.3.1 Query Engine

Seahawk’s Eclipse plugin makes the Q&A crowd knowledge available in the IDE. The users can
interact with this knowledge in multiple ways that the website normally does not allow to. We
explained in Section 4.1 that the data-collection mechanism exposes a search engine (Apache Solr)
as a means to retrieve the Q&A services data. The main goal of the query engine is to communicate
with Apache Solr, thus creating a query given an input string. As presented in Section 4.2, Apache
Solr uses a document schema that defines fields to be used in a query. The document schema we
defined comprises four fields: id, title, document, tag.

The query engine focuses on just the document field and the title to build query for Apache Solr.
Being Q&A documents the target of such queries, it is likely to have some information also in the
title. It is worth giving a different weight to the document’s title in order to exploit possible keywords
that can be relevant for the target search. We now present how a query is built by mean of example.
Assume that a developer wants to query the search engine with the following query: "change label
color in Java". The query engine takes the string inserted by the developer and tokenizes it. Then,
the engine builds the query, according to Apache Solr syntax, in a way that every token must be
present in the document field or at least one of those is contained in the title field. Thus, the resulting
query is the following:

(document:change AND document:label AND document:color AND document:in AND docu-
ment:Java) OR (title:change OR document:label OR title:color OR title:in OR title:Java)

In this query the overall relevance of a document is determined by the relevance of the body of
the document and its title. Documents whose title is interesting for the query researched even if
the document’s content does not match any of the tokens are enhanced anyway. For a simple query
as the one used in the previous example, the title can be a key factor to retrieve a document that
can solve a programming issue. Even on Stack Overflow, the first result given for such a query is
"How can I change label color in Java?" that is exactly what a developer could have looked for. In
those cases, the document body could be discarded. From a certain point of view, this approach
can lead to poor results. For a particular query that has no relevant document to be associated with,
documents could still be found. However, the documents that matches only the title would have a low
relevance value given by Apache Solr. To create the query we avoided text processing on the tokens
on purpose. Stop words such as "in", are left in the query because we rely on a post-processing
phase made by Apache Solr on the server side. The only pre-processing made on the query inserted
by the developer regards the reserved words of the query syntax. For example, words like "AND",
"OR" and symbols can easily break the query, thus leading to a failure. To avoid these problems, we
filter those words from the input string.

4.3.2 Automation of Queries

The part of the query engine explained in Section 4.3.1 is responsible for the manual interaction
with the recommendation engine. None of the previous features explained allows to automatically
generate a query but it assumes that someone has built the query (e.g., developers). In Seahawk we
want to provide developers with the support of an automatic tool to extract relevant keywords from
the code to build a query.

In Figure 4.4 we depict the internal structure of the query engine. Section 4.3.1 discussed
the functionalities of the component at the top of structure (i.e., the Solr Query Syntax Adapter).
We now focus on the rest of the structure, presenting the mechanism behind the automatic key-
words extraction. The first technical issue to overcome regards the code written by developers.

20 4.3 The Recommendation Engine

Eclipse

Query Engine

Keyword Extractor

Java Entity
Extractor

Imports
Extractor

Solr Query Syntax
Adapter

System model

Figure 4.4. The query engine components

It is likely that developers need to understand their code even though it does not compile at all.
Dealing with code that does not compile brings some limitations. If compiling code can provide
a full Abstract Syntax Tree (AST), in case of compilation errors the AST can be partial or even
absent. Moreover, the partial AST is the representation of the code until the compilation failed and it
discards any possible compilable code that comes after. That applies also the Eclipse IDE when its
framework is asked to produce an AST for a Java program. Without the chance of having an AST to
extract structural information from the code, a way to get at least some coarse grained information
is to perform island parsing. Bacchelli et al. implemented a similar strategy to extract Java code
snippets from emails [BCLM11]. They were able to extract class definitions, method definitions,
method invocations, stack traces etc. from text with natural language. Having source code is not
that different: the uncompilable code plays the same role as the natural language and it can be
ignored by the parser. We can thus use island parsing techniques to extract structural information
to leverage. Fortunately, the Eclipse IDE already provides a framework to apply similar parsing
approaches to Java code: It allows to identify classes, methods and fields in a source file even though
the compilation fails. For the approach followed in this thesis, we do not consider fields but we just
extract keywords from method and classes.

Differently from all other features of Seahawk, the automatic query generation is the only feature
to be Java dependent. Seahawk provides developers with the possibility of selecting a group of Java
entities (see Section 4.4.5) to extract keywords from. Among the entities, developers can also select
packages or compilation units, but only the classes contained in those are considered targets for
keywords extraction. Seahawk also allows to select an entity from the cursor position in the editor.
Since we are able to identify the entities in a source file, we can thus detect their position in the text
and evaluate which one is the target entity by checking the cursor’s offset.

When an entity is selected, the query is built by merging the keywords obtained by two kind
of extractions: import analysis and entity’s body processing. The former extraction concerns the
creation of a set of keywords from the import statements. To accomplish that, we take all the
import statements in the source file and we filter out the ones that are not used by the target entity.

21 4.3 The Recommendation Engine

We identify the used imports by applying a naïve matching on the class name: If the class name is
contained in the entity’s body, we consider this import or we discard it otherwise. This approach can
lead to false positives in case two classes have the same name, but reside in different packages, are
used by the same entity. However, we believe that such situations rarely happen. Once identified
the imports, we proceed by tokenizing each statement on the "." character, and by building a set of
unique tokens that become part of the query. For example, assuming we have the following import
statements used by an entity:

import java.util.List;
import java.util.ArrayList;

The resulting set of tokens is [java, util, List, ArrayList]. The latter extraction concerns the entity’s
body. We apply some information retrieval techniques to extract the ten most frequent keywords
in the body. First of all, we tokenize the entity’s body on white spaces. For every token obtained,
we split it on case change, digits and symbols. Finally, we lower the case and remove stop words.
The set of tokens we obtain is then ordered by frequency and the first ten are taken into account to
become part of the query. To this set of keywords we always add the entity’s name. The reason why
we also take into consideration the name of the entity is due to the Java interfaces. If the entity is a
method, including the name would enhance the research. Being fixed, the method’s name of a Java
interface in a library, or framework, is always the same. A Stack Overflow document would use this
method’s name if one of the code snippets is tackling the implementation of a specific interface.

We believe that the combination of information extracted from imports and entity’s body could
provide a good overview of the topics and the context of the development. We focused on imports
because, in a Java application, they somehow define the context in which the developer is working.
For example, from the imports we can understand which libraries are used or what framework the
developers is programming with. This information is valuable to filter out discussions in Stack
Overflow. Looking for the class names used in a library, or framework, could lead to specific
discussions or code snippets. Moreover, we also believe that topics taken from the entity refines the
scope of the research. For that reason, we use all the tokens from the import statements to then add
the keywords of the target entity.

4.3.3 Annotation Engine

Apart from integrating crowd knowledge from Stack Overflow in the IDE, we want to make
developer able to collaborate by means of the crowd knowledge itself. To this aim, we implemented
an annotation engine to provide developers with the possibility of putting annotations in the code.
This system is one of the core part of Seahawk’s recommendation engine. Differently from the query
engine, that provides automated query generation, the annotations engine implements the second
aspect of the manual interaction in the recommendation system. It exploits the collaboration among
teammates to filter out and suggest documents from Stack Overflow’s crowd knowledge.

In Figure 4.5 we depict the main components of the annotation engine. There are two main
purposes in the annotation engine: creating and parsing annotations. In order to be language
independent, the annotation structure must be flexible. We wanted to achieve this flexibility
by embedding annotations in multi-line comments. A similar approach has been followed in
Doxygen5 to integrate documentation in, for example, C++ and Java code and in Blueprint
[BDWK10] to link code examples to code. Both of them enclose meta-information between
multi-line comment delimiters (i.e.,/* and */) and define fields by putting "@" as prefix character.

5http://www.doxygen.org/

http://www.doxygen.org/

22 4.3 The Recommendation Engine

Eclipse

Annotation Engine

System model

Annotation
Parser

Annotation
Creator

Annotation
Cache
(SQLite)

Figure 4.5. The annotation engine components

The Seahawk’s approach follows the same guideline but it enlarges the scope by including more than
languages whose multi-line comments uses, for example, Java’s delimiters. To that aim, we allow
developers to define custom delimiters that, of course, need to match the target language’ syntax for
comments. For example, Python multi-line comments can be enclosed in delimiters for strings (i.e.,
""" and """), and the same applies also for XML (i.e., <!– and –>). A developer can define custom
delimiters for Seahawk by just extending those delimiters with additional characters.

To not conflict with Doxygen or JavaDoc annotations, we decided to put an exclamation mark as
last character for the opening delimiter. For example, in Java the opening delimiter would become
/*! (instead of /*) while in XML it would become <!–! (instead of <!–).

Listing 4.1. Example of Seahawk’s annotation for Java/C++ languages

/*!

* @documentId http://gamedev.stackexchange.com/questions/1901

* @title Unit Testing a C#/XNA Game Project

* @comment example comment

* @author Seahawk

* @creationTime 2012.04.13 17:29:13.460 CEST

*/

Listing 4.1 presents an example of Seahawk’s annotation. The annotation is very similar to
Doxygen’s. The meta-information represented is limited to the necessary: whenever an annotation is
created, we report the id of the document, its title, a comment put by the developer, the author of the
annotation and the creation time. The id of the document allows to identify the target document to be
suggested (see Section 4.4.2). The other fields are used to implement the basis of the collaborative
part. Seahawk does not use any backbone to provide collaborative functionalities. It just relies on
the fact that a versioning system (e.g., Git, SVN etc.) is used in the development phase. Putting
annotations in the code in enough to keep track of the document suggested by developers, thus
linking documents to a specific revision of the source code.

23 4.4 User Interface Elements

The whole collaborative process is embedded in the normal development phase: whenever a
developer commits, the annotations are committed too.

The role of the comment, author and creationTime fields is to guarantee that annotations are
unique. The comment field is mainly used to allow developer to communicate with each other
through the annotation system. Whenever a developer updates the repository, the new annotations
are updated together with the comment explaining the purpose of the linked document. We want
to be able to distinguish annotations among themselves and to have the same document linked in
different part of the same source code file. For that reason, we introduced the creationTime field:
It allows to distinguish an annotation from another even though they have the same value in the
remaining fields. The granularity of the timestamp is maintained at milliseconds level on purpose. In
doing so, this way of distinguishing annotations fails in just one rare case: Two developers must link
the same document, with the same comment, having the same author value in the same millisecond.
This is unlikely to happen.

To definitely exploit the collaborative functionalities, the annotation engine provides also a
notification system to keep track of the annotations already seen by developers. For that reason we
had to use two different ways of parsing code. We implemented our own parser for annotations as
well as taking advantage of the partitioning system provided by the Eclipse IDE. The latter requires
to declare delimiters for the interested partitions in the code. Thus, putting a third character allows
to define an ad-hoc delimiter, as explained before, meeting the requirements. Whenever a source
file is opened or modified in the code editor, the partitioning system notifies the view showing the
suggested documents (see Section 4.4.2) and stores the annotations in the cache. The latter relies
on our implementation of the parser that works in background whenever a project is updated, thus
extracting annotations from the files being updated. The annotations obtained are then checked
in the cache. If some of them are not present in the cache, they are notified to the developer (see
Section 4.4.4).

4.4 User Interface Elements

In this chapter we present the user interface of Seahawk. We discuss the functionalities implemented
by all views, how the User Interface (UI) takes advantage of the recommendation engine described
in Section 4.3 to suggest documents inherent to the development context, and how they provide
developers with collaborative functionalities.

4.4.1 Document Navigator View

The first view to discuss concerns the manual interaction with the recommendation engine. As
depicted in Figure 4.6, in the document view the use can manually enter a query to retrieve documents
from the Stack Overflow crowd knowledge. When interacting with any of the Stack Exchange web-
sites, the results of a search is shown as a list of entries. There is no way to get any other information
unless the users clicks on the entry and gets the Q&A document. We have already followed this
approach in a preliminary version of Seahawk [BPL12]. We believe this approach is too limited, in
particular if users have to check a huge amount of documents before getting the desired solution, or
hints, for their programming issues.

For that reason, we decided to provide developers with a tree view. In doing do, they can
easily navigate through the document without having to redo the query and jump from one part of a
document to another part in another document. Initially, results are presented as a list of documents.

24 4.4 User Interface Elements

Figure 4.6. The document navigator view.

Each document shows the title and the list of tags on its right side while each node reports the
author’s name as title and the date in which it was created. Every time the user navigate in the tree
and moves on a node, the content of that node is presented in the document’s content view (see
Section 4.4.3). Thus, a developer can visualize the entire document or a single node (e.g., question,
answer etc.) without having to read everything or scroll the document from the beginning.

The tree view used maps the model we discussed in Section 4.2.3: Every root node is a document
(i.e., DocumentBase instance) and its children are either questions and answers (i.e., DocumentNode
instances). As we can observe, we used colors to identify the different types of nodes. We assigned
orange to question nodes, blue to answer nodes and green for the accepted answer. Question and
answer node can have children as well. We avoid to put comments in the tree as children of them,
but instead we show code snippets. The reason why we made this choice is related to the interaction
this view provides developer with. As we explained in Chapter 3, we want to enhance example-
programming practices by improving the way developers import code snippet from Stack Overflow.
Moreover, we want to provide a means to exploit collaboration between developers through an
annotation system (see Section 4.3.3). We believe that this view can be used to both purposes and
we employed a drag and drop (D&D) interaction to achieve it. A developer can drag a document or
a code snippet into the code editor. Whenever a document is dropped in the editor, Seahawk asks
the user to put a comment via a dialog. The user can still decide to confirm the creation of the
annotation or to rollback the operation. Whenever a code snippet is dropped in the editor, the code is
automatically copied in it. The user can then start manipulating and tailoring the code to achieve the
desired result. The other document nodes presented in the tree view cannot be dragged. We do not
see the need of linking a specific node to the code, or to let developers import Q&A text as comment.

25 4.4 User Interface Elements

Figure 4.7. The suggested documents view.

4.4.2 Suggested Documents View

As we discussed in Section 4.3.3, Seahawk provides developer with an annotation system to link
documents to the source code. As depicted in Figure 4.7 a tree view similar to the one presented in
Section 4.4.1 is used. Instead of presenting documents retrieved from a query, this view tightly works
with the annotation engine. Whenever an editor is brought top and become active, the annotation
engine parses the file, extracts all the Seahawk’s annotations and notifies the view. In the notification,
all the ids of the documents are reported. Through the query engine, the view retrieve the documents
in order to display as well as it happens in the document navigator. Here, consistency could become
a problem: Seahawk does not provide any mean to check the annotations put in the code. Thus, the
annotations could link documents that do not exist anymore. As a result, there is no way to show
such documents in the view, since the documents’ data is unavailable.

To cope with this situation, we decided to show the document anyway, to add the message "[Not
Available]" in front of the document’s title and to make it not traversable. As well as the document
navigator, also this view is coupled with the document’s content view. The user can visualize part
of the document and jump from one node to another. Differently from the document navigator
view, D&D functionalities are disabled. Thus, the user cannot neither import code snippets nor
create annotations from documents. The only functionalities provided concern the manipulation of
annotations. Through a contextual menu, users can modify the comment of an annotation or delete
the annotation as well. Of course, users can still directly manipulate the code and modify or delete
annotations by hand, without having to use the view. Finally, users can access information regarding
the link (e.g., comment, author and creation time) through an overlay on the view that pops up when
the mouse is over the document’s title.

4.4.3 Document’s Content View

As explained both in Section 4.4.1 and Section 4.4.2, the document’s content view is a passive view
that waits for documents, or documents’ node, to be pushed into. The main purpose of the view is to
render documents as an HTML page trough a web browser widget. The reason why we wanted to
use HTML instead of building the view on top of the Eclipse IDE framework are mainly two.

26 4.4 User Interface Elements

Figure 4.8. The document’s content view.

The former concerns the usability in terms of development, since using HTML results to be a
more flexible solution from a rendering point of view. The latter concerns the freedom of defining a
custom renderer to show different types of documents in the same environment. As we discussed in
Section 4.2.3, every kind of document could be potentially represented. Another good feature that
justifies the use of a web-browser in the view concerns the external links a developer can find in a
document. For example, it is likely to have posts in Stack Overflow that refer to external resources
(e.g., Java documentation, forums, webpages etc.). Preventing users to access those resources brings
to a limitation of usefulness of some documents. With the view we built, the user can navigate those
resources and come back to the document.

In Figure 4.8 we depict the document’s content view. It shows an example of Stack Overflow’s
document rendered in HTML. We have chosen a different layout to present the Stack Overflow’s
documents and we adopted this for all the Stack Exchange websites. For example, if the document is
taken from another website different from Stack Overflow (e.g., gamedev.stackexchange.com) the
rendering would be the same. To render such documents we devised the following layout: We put a
label on the left side of every posts, thus identifying is it is a question (Q) or an answer (A). Under the
letter we put the score given by the user in Stack Overflow. Thanks to the structure of Q&A’s content,
we are able to easily identify code snippets by looking for the <code> tags. We used a Javascript
library6 to automatically put syntax highlighting on the text contained in the <code> tags, without
knowing the programming language. To keep the view consistent with both the document navigator
view and the suggested documents view, the coloring scheme for Q&A is the same: questions are
orange, the accepted answer is green and the other answers are blue.

At the end of each post we put the author, date of creation and the possibility of visualizing
comments. Differently from Stack Overflow, we decided to optionally show comments, thus
following the Facebook7 approach. A link reporting the number of comments for a specific post can
be clicked by users, and the list of comments is then shown.

6http://code.google.com/p/google-code-prettify/
7http://www.facebook.com

http://code.google.com/p/google-code-prettify/
http://www.facebook.com

27 4.4 User Interface Elements

4.4.4 Notification System

Figure 4.9. The package explorer notification system.

In Section 4.3.3 we discussed the core functionalities of the Seahawk plugin, that is, the
annotations. Developers can put annotations in the code in a collaborative fashion and we also
discussed the mechanism in the annotation engine that permits to understand what annotations were
not previously linked to the code. Being part of the recommendation engine, we have to provide
developers with a functionality that allows them to rapidly spot new annotations in the project.

To this aim we implemented a simple notification system embedded in the package explorer.
An example of notification for a project is depicted in Figure 4.9. Whenever a project is refreshed,
thus updating all the files contained in it, the annotation engine parses the files and create a list
of annotations. Subsequently, it checks for all of them in the annotation cache to understand
which one has not been seen yet by the developer. If some new annotations have been found, the
notification system decorates the package explorer with the number of new annotation between
square brackets. For example, in the image new annotations has been found for the compilation
units DocumentDropListener.java and Activator.java. The related packages reports the cumulative
count of the annotations (e.g., ch.usi.inf.seahawk.dnd reports 1). Since we treat packages as well as
directories, the cumulative count is also present in root packages or folders. Therefore, the package
ch.usi.inf.seahawk reports a total count of two as well as the root folder src. Whenever the developer
opens one of the compilation units, the annotation engine parses the file and puts the annotations in
the cache before the number shown in the package explorer is updated, thus reducing the count of
the annotations.

4.4.5 Invoking Seahawk

In Section 4.3.2 we discussed how the query engine can automatically build queries given a pro-
gram entity. We implemented two different way of interacting with this feature provided by the
query engine: The former, as depicted in Figure 4.10, is implemented with a contextual menu.

28 4.4 User Interface Elements

Figure 4.10. The contextual menu to invoke Seahawk.

A developer can get the Ask Sehawk... entry in the contextual menu from the Package Explorer, the
Editor Outline and from the code editor. In the first two cases, the developer can click on a Java
element represented in the tree (e.g., class, method, package etc.) to access the menu and visualize
Seahawk’s entry. Of course, the selection is not restricted to just one element but can comprise many
of them. If the developers clicks on an element which is not a Java Element (e.g., a folder), this entry
in the contextual menu becomes unavailable. In the last case, the developer can open the contextual
menu by clicking on every part of the code. According to the position of the cursor, the query engine
understands which is the referred Java element. When the developer invokes Seahawk, the set of
relevant keywords is generated and put in the document navigator view as a query. The query is then
automatically triggered.

The latter interaction is implement through key bindings available only in the code editor. A
developer can thus invoke Seahawk by pressing Ctrl+U on the keyboard. As well as for the contextual
menu, Seahawk understands the target entity by looking at the current position of the cursor in the
text. Differently from the previous case, if the user invokes Seahawk from the keyboard, the query is
not automatically fired. On the contrary, Seahawk just puts the keyowords in the query box inside
the document navigator view and allows the developer to write some additional text. In doing so we
let the user to specialize the query with some additional information.

Chapter 5

Evaluation

In this chapter we present a preliminary evaluation of Seahawk, without aiming at proving that these
results are valid from a statistical point of view. We devised three experiments in which we tested the
potential impact of the tool in border-line situations. We describe the approach we followed in those
experiments and then, we conclude by discussing the results obtained, trying to asses the advantages
and the drawbacks of the approach we followed in Seahawk.

5.1 Experiment I: Java Programming Exercises

The first experiment we devised is the one that really reaches the limit of the Seahawk’ scope. In
this task we wanted to assess to what extent our tool can deal with just text. To that aim, we used a
set of exercises taken from a Java programming course 1 2 and we tried to evaluate the relevance of
the documents retrieved from the Stack Overflow’s crowd knowledge by just extracting keywords
from them.

According to what discussed so far in this thesis, we know that Seahawk is not designed to
directly deal with just text. We had to recreate the right conditions to allow Seahawk to extract
keywords from the exercise’s text. Since it needs at least a Java entity, the only clean solution is to
create a class stub and to put the entire exercise’s text as comment before, or inside, the class body.
We also consider the name of the Java entity as part of the keywords. To not bias the results, we gave
a name that summarizes the topic of the exercise to the class.

Listing 5.1. Example of Java exercise prepared for the test

/* Write a class that implements the CharSequence interface

found in the java.lang package.

Your implementation should return the string backwards.

Select one of the sentences from this book to use as the data.

Write a small main method to test your class.

Make sure to call all four methods. */

public class CharSequenceImpl { }

1http://www.home.hs-karlsruhe.de/~pach0003/informatik_1/aufgaben/en/java.html
2http://codingbat.com/java

29

http://www.home.hs-karlsruhe.de/~pach0003/informatik_1/aufgaben/en/java.html
http://codingbat.com/java

30 5.1 Experiment I: Java Programming Exercises

In Listing 5.1 we present one of the exercise that we tailored to let Seahawk correctly work.
As we can see, the class is just a stub with no implementation. Since we used a compilation unit
that contains just one class, every part of the code, including comments, is considered as part of
the body of the class. We do not care about the additional words and characters introduced by this
solution since they are either stop-words (i.e., public and class) or symbols to be discarded during
the keywords extraction process (i.e., curly brackets, slashes and stars).

With this environment we tested Seahawk on 35 exercises. For every exercise, we created a
class similar to the one presented in the previous example, we generated keywords from it and we
queried the search engine. From the result returned, we considered the first 15 documents. We
manually inspected every document and we evaluated the relevance of the information contained
in the discussion. With the term "relevant", we mean that the discussion can lead to a solution
of the exercise either through the tackled topic or the code snippets. For example, let’s take into
consideration the exercise in Listing 5.1. If we find a discussion about the implementation of the
CharSequence interface, thus showing what method must be implemented but tackling a complete
different problem, we consider this as relevant. To avoid a binary notion of relevance (e.g., useful,
useless) we defined five levels of relevance, ranging from 0 to 4, to classify a document:

Relevance Level Value
Highly Relevant 4
Relevant 3
Related 2
Slightly Related 1
Not Relevant 0

Table 5.1. Legenda: Document Relevance Levels

To have a numerical assessment of this experiment, we refer to the normalized discounted
cumulative gain (NDCG). It is generally used to evaluate ranked retrieval results from search engines,
by using a multi-valued notion of relevance [MRS08]:

NDCG(Q,k) =
1
| Q |

|Q|∑
j=1

Zk j

k∑
m=1

2R(j,m)−1
log2(1 + m)

(5.1)

where k is the size of the result set, Q is the set of queries performed, R(j,d) is the relevance score
gave to document d for query j and Zk j is the normalization factor calculated such that NDCG = 1.0
in the ideal scenario (i.e., all the documents have the maximum level of relevance). In our experiment,
k = 15, |Q| = 35 and the normalization factor we calculated is Zk j = 0.011373948.

5.1.1 Experiment I: Discussion

In the first experiment we wanted to asses the behavior of Seahawk in dealing with text. We wanted
to have a numerical assessment of the experiment and we used the NDCG value for that purpose.
However, the result we obtained from the index is 9.07%, thus meaning that barely one time in ten
the documents retrieved were relevant for the Java exercise we used. In Table 5.2 and Table 5.3 we
present a subset of the data collected. For the complete data, we refer to Table A.5 and Table A.6 in
Appendix A.

31 5.1 Experiment I: Java Programming Exercises

Exercise Name D1 D2 D3 D4 D5 D6 D7 D8
ElectricalResistance 0 0 0 0 0 0 0 0
Fibonacci 2 3 3 0 0 0 2 3
Metropolis 0 0 0 0 0 0 0 0
NaturalMergeSort 3 3 4 0 3 0 4 3
RouletteStrategy 0 0 0 0 0 0 0 0
SudokuSolver 3 4 3 2 0 0 0 0
WindSpeed 0 0 0 0 0 0 0 0

Table 5.2. Experiment I Data: Part I (0 = Not Relevant, 4 = Highly Relevant)

Exercise Name D9 D10 D11 D12 D13 D14 D15
ElectricalResistance 0 0 0 0 0 0 0
Fibonacci 3 3 3 3 3 3 4
Metropolis 0 0 0 0 0 0 0
NaturalMergeSort 0 0 0 3 2 2 2
RouletteStrategy 0 0 0 0 0 0 0
SudokuSolver 0 0 0 0 0 0 1
WindSpeed 0 0 0 0 0 0 0

Table 5.3. Experiment I Data: Part II (0 = Not Relevant, 4 = Highly Relevant)

Even though the value of the NDCG is not encouraging, there are some considerations to take
into account. First of all, we noticed that the Seahawk’s approach failed on exercises being too much
simple. For example, exercises like ElectricalResistance or WindSpeed, where the student is asked
to write a simple function to calculate the value of the resistance and the wind speed value, provided
too few information and the document returned were not related at all. Sometimes the topic of the
exercise was a subset of a more complex one. For instance, RouletteStrategy required to calculate
the number of turns required to lose all by betting betting only on color at poker. The documents
retrieved for this exercise were discussing the same topic but with an higher level of difficulty (e.g.,
machine learning approach), thus making them not relevant at all.

One reason why the results for those exercises were not relevant could reside in the absence
of of information in Stack Overflow’s crowd knowledge. Even though Stack Overflow has a lot
of discussions regarding homework, the requirements of the exercises were not enough specific.
Just in one case the exercise was in one of the document returned. Another reason concerning the
difficulties on retrieving relevant documents could reside in exercises requiring the implementation
of data-classes (e.g., Metropolis). The documents returned for those topics were completely not
related. When the exercise tackled a well known topic, the relevance of the documents increased. We
were able to find out solutions or even the implementations in pseudocode, Java or similar languages
that could be easily adapted to Java. For example, exercises requiring the implementation of the
fibonacci algorithm, sorting algorithms or sudoku solvers (i.e., Fibonacci, NaturalMergeSort and
SudokuSolver) returned an high number of relevant documents that could have provided the solution.

32 5.2 Experiment II & III: Method Stubs and Method Bodies

5.2 Experiment II & III: Method Stubs and Method Bodies

The second and the third experiments concerned the evaluation of Seahawk in other two border-
line contexts. We wanted to assess the impact of Seahawk in dealing methods stubs and fully
implemented methods. We decided to use real implementations taken from projects and, in some
cases, we implemented simple programs to solve basic exercises.

For the second experiment, we selected eight different methods in projects developed by students,
and two exercises taken from a Java programming course, thus reaching a total of ten methods where
50% of the methods were implementing part of a Java interface while the remaining 50% were
random methods. This distribution is done on purpose since we wanted to see if the behavior in
case of interface changes in respect to other types of method. Differently from the first experiment,
we have not changed or tailored the code, but we just removed the implementation from the target
method to obtain a stub, thus leaving everything else unchanged.

For the third experiment, we selected seven methods with full implementation. Only two methods
were implementing an interface. Differently from the previous experiments, this one has been done
to assess the behavior of Seahawk while having the full solution at hand. We wanted to see if the
documents returned by the search engine could have been used to help the developer during the
development phase. The assessment of the documents for both the experiments takes place as well
as for the first one. However, we do not calculate the NDCG but we limited to observe and assess the
documents.

5.2.1 Experiment II & III: Discussion

Due to the limited amount of data, we cannot use any index to get a numerical assessment of the
Seahawk’s behavior. However, we believe that the NDCG would not have been improved in respect
to the first experiment.

Listing 5.2. Example of Java method stub

@Override

public boolean addAll(Collection <? extends Integer> arg0) {
return false;

}

While dealing with method stubs, Seahawk has mainly two different behaviors. Before describing
the insights we have regarding the behavior of the tool in such a context, we have to make a premise:
A method stub can provide just the name of the method and the potential tokens contained in the
imports. For example, the stub in Listing 5.2 would provide the query "Collection arg addAll
override java addall collection add util", where tokens such as java, util and collection are provided
by the import java.util.collection.Collection, while the remaining are extracted from the method. All
the keywords generated from the stub refer to the name of the method or to the parameters. The
scope of such queries are limited to the minimal information provided by it.

Seahawk brought to relevant results in case the stub concerning an interface method. Due to its
unchangeable signatures, methods implementing interfaces could provide enough information to
get relevant documents. For instance, the decorate method had really useful documents in the first
entries. This method is a method interface used in the Eclipse framework to implement a package
explorer decorator. By reading the documents returned, a developer could have obtained the right
examples to implement a fully working decorator (i.e., REmailLightweightDecorator (decorate)).

33 5.2 Experiment II & III: Method Stubs and Method Bodies

Type Class (MethodName) D1 D2 D3 D4 D5 D6 D7 D8
I REmailLightweightDecorator

(decorate)
4 2 4 0 0 0 0 0

NI SpreadsheetReader
(removeDoubleQuotes)

0 2 1 1 0 1 0 0

Table 5.4. Experiment II & III Data: Part I
(0 = Not Relevant, 4 = Highly Relevant, I = Interface, NI = Not Interface)

Type Class (MethodName) D9 D10 D11 D12 D13 D14 D15
I REmailLightweightDecorator

(decorate)
0 0 0 0 0 0 0

NI SpreadsheetReader
(removeDoubleQuotes)

0 1 0 0 0 0 0

Table 5.5. Experiment II & III Data: Part II
(0 = Not Relevant, 4 = Highly Relevant, I = Interface, NI = Not Interface)

However, this does not apply in case of random methods. The documents retrieved were com-
pletely irrelevant unless the method’s name contained some keywords regarding a very specific
topic. For instance, the method’s name removeDoubleQuotes (i.e., SpreadsheetReader (removeDou-
bleQuotes)), pointed out discussion regarding regular expressions that, in this specific case, could
have led to a better solution in respect to the one implemented in the full method. In Table 5.4 and
Table 5.5 we report the results for the two aforementioned stubs.

The difference in the Seahawk’s behavior changed while dealing with fully implemented methods.
Due to additional information provided by the body, having an interface method did not affected the
results. On the contrary, we believe that some other factors influenced the outcome of the research.
First of all, the single responsibility principle could play an important role: If a method has its own
delimited scope and accomplishes one single goal, the resulting number topics would be limited as
well. Thus, the scope of the query could be more specific and could led to better results. Secondly,
the library or the framework used in the implementation of the method can refine the scope of the
research. For example, a method implementing a menu on top of the SWT framework should better
define the scope of the query. Somehow, the classes used play the role of the topic in the method and
the more popular those classes are, the highest the chance of getting relevant results. We do not have
any evidence to sustain this idea, but it is just a feeling we had by looking at the results gathered. For
a complete overview of the data gathered in this two experiments we refer to Table A.3, Table A.4,
Table A.1, and Table A.2 in Appendix A.

34 5.2 Experiment II & III: Method Stubs and Method Bodies

Chapter 6

Conclusions

As we stated in Section 1.1, the contributions of this thesis are:

• Stack Overflow crowd knowledge integration in the IDE.

• Linkage between relevant discussions and source code through an ad-hoc annotations system.

• Sub-versioning system integration to provide developers with collaborative support, exploiting
valuable Q&A in the context of team work.

• Example-based programming by allowing developers to retrieve code snippets from Stack
Overflow Q&A directly in the code editor.

• Automated creation of queries from source code entities.

In the following, we discuss how we tackled those points in this thesis, through the implementa-
tion of our approach. As we initially discussed in Chapter 3, we believe that integrating the crowd
knowledge in the IDE would be a valuable support for developers. In Chapter 4 we presented the
implementation of the aforementioned approach by presenting Seahawk , a tool for the Eclipse
IDE. With Seahawk we showed how Q&A services and, in particular, the Stack Overflow’s crowd
knowledge can be integrated in the IDE by mean of a recommendation system. We then presented
the three main components of Seahawk: the data-collection mechanism, the recommendation engine
and the user interface.

In Section 4.2 we discussed the approach we followed to gather data from Q&A services. We
described the architecture of the data-collection mechanism, the pro and the cons of our solution,
and the the design idea behind the document model. In Section 4.3 we presented the key idea behind
the recommendation engine. We explained how we provided suggestions regarding Stack Overflow’s
documents by implementing a manual and automatic interaction with the plugin, the rational behind
the query engine implemented in Seahawk. We also showed how the tool can provide both an usual
manual interaction with a search engine as well as it can produce queries for it by analyzing the code
entities written by the developer. We described the approach for the collaborative support: with an
annotation system, developers can link Stack Overflow’s documents to a version of a source file by
transparently integrating versioning systems.

Finally, in Section 4.4 we presented the user interface of Seahawk. We discussed the different
views and the approach followed to let developers navigate documents. We also explained how we
used drag&drop interactions to let developers import code snippets from documents to the code
editor, thus favoring example-based programming in a language independent fashion.

35

36 6.1 Future Work

6.1 Future Work

We showed how we achieved the contributions stated in Section 1.1 by implementing our recommen-
dation system: Seahawk. We discussed how Seahawk and, in particular the plugin side, provided
developers with the needed features to leverage the Q&A services in the software development pro-
cess. Even though we can claim that those features meet the requirements posed by the contributions
we stated, there are still enhancements to be done:

• We can improve Seahawk by making it less coupled with Apache Solr. A future work concerns
the definition and construction of an intermediate web service between the search engine
and the plugin. The introduction of such a web service would allow new solutions regarding
the processing of the queries made by Seahawk. We designed the Apache Solr’s document
schema to contain the information regarding the tags. We do not use of such a field but we
just defined it just for further development. In particular, the combination of the information
present in the field and the web service in front of the search engine can allow us to provide
tag filtering on the queries, thus having the same feature as the Stack Overflow’s search engine
provides. The web service could periodically crawl the Stack Exchange API to get the list of
tags. Any query coming from the Seahawk plugin could be parsed to check the presence of
tags in it, thus refining the scope of the actual query.

• The user interface of Seahawk can be enhanced. Instead of using a drag&drop interaction to
import code snippets, we could provide an ad-hoc dialog to be called inside the code editor.
This solution would save space in the Eclipse workspace (there would be no more need of
having a tab always opened) providing the same navigation system for documents.

• A valuable improvement is to provide a Q&A service inside the context of project. Sea-
hawk could be provided with additional features in its backbone to allow developers to ask
questions to teammates. This would help newcomers to understand some part of the project
by asking questions to more experienced teammates. The discussions stored would build a
knowledge that could also document the evolution of the system.

Seahawk provides useful features to exploit the crowd knowledge of Q&A services. The
improvements discussed in this section can bring our application to a higher level of efficiency. Even
though our approach is still not perfect, we believe that it is a valuable way to leverage and integrate
crowd knowledge in the software development process.

Appendix A

Experimental Data

In this appendix we present the data referring to the evaluation of Seahawk discussed in Chapter 5.
All the following tables summarize the evaluations of the documents retrieved for a specific task in
each experiment.

Class (MethodName) D1 D2 D3 D4 D5 D6 D7 D8
REmailLightweightDecorator (decorate) 0 0 0 0 0 0 0 0
SpreadsheetReader (removeDoubleQuotes) 0 0 0 0 0 0 0 0
Parser (parseFunction) 0 0 0 0 0 0 0 0
SpreadsheetReader (loadFile) 2 1 2 0 0 0 4 4
MarkerInitActionDelegate (prepareSQLite) 2 3 0 2 0 2 0 0
MapEditor (buildMenu) 1 0 4 4 4 4 0 0
MapEditor (buildWest) 2 0 2 0 2 2 1 3

Table A.1. Method Bodies: Experiment Data Part I (0 = Not Relevant, 4 = Highly)

Class (MethodName) D9 D10 D11 D12 D13 D14 D15
REmailLightweightDecorator (decorate) 3 0 0 0 0 0 0
SpreadsheetReader (removeDoubleQuotes) 0 0 0 0 0 0 0
Parser (parseFunction) 0 0 0 0 0 0 0
SpreadsheetReader (loadFile) 2 2 0 0 0 4 0
MarkerInitActionDelegate (prepareSQLite) 0 0 0 0 0 0 0
MapEditor (buildMenu) 0 0 0 0 1 4 1
MapEditor (buildWest) 3 2 0 0 0 2 0

Table A.2. Method Bodies: Experimental Data Part II (0 = Not Relevant, 4 = Highly)

37

38

Type Class (MethodName) D1 D2 D3 D4 D5 D6 D7 D8
I EnumerationImpl (hasMoreElements) 0 0 3 4 0 0 4 0
I REmailLightweightDecorator (decorate) 4 2 4 0 0 0 0 0
I IntegerList (addAll) 2 2 2 3 1 0 2 0
I MarkerInitActionDelegate (selectionChanged) 0 0 0 0 0 0 0 0
I PreferencePaneMbox (createFieldEditors) 0 1 0 0 0 2 0 0
NI MarkerInitActionDelegate (prepareSQLite) 0 0 0 0 0 0 0 0
NI CopyPaste (copy) 0 0 0 0 0 0 0 0
NI SpreadsheetReader (loadFile) 0 0 0 0 0 0 0 0
NI SpreadsheetReader (removeDoubleQuotes) 0 2 1 1 0 1 0 0
NI Parser (parseFunction) 0 0 0 0 0 0 0 0

Table A.3. Method Stubs: Experimental Data Part I
(0 = Not Relevant, 4 = Highly Relevant, I = Interface, NI = Not Interface)

Type Class (MethodName) D9 D10 D11 D12 D13 D14 D15
I EnumerationImpl (hasMoreElements) 0 0 0 0 0 0 0
I REmailLightweightDecorator (decorate) 0 0 0 0 0 0 0
I IntegerList (addAll) 0 1 0 0 1 2 2
I MarkerInitActionDelegate (selectionChanged) 0 0 0 0 0 0 0
I PreferencePaneMbox (createFieldEditors) 0 0 0 0 0 0 0
NI MarkerInitActionDelegate (prepareSQLite) 0 0 0 0 0 0 0
NI CopyPaste (copy) 0 0 0 0 0 0 0
NI SpreadsheetReader (loadFile) 0 0 0 0 1 1 1
NI SpreadsheetReader (removeDoubleQuotes) 0 1 0 0 0 0 0
NI Parser (parseFunction) 0 0 0 0 0 0 0

Table A.4. Method Stubs: Experimental Data Part II
(0 = Not Relevant, 4 = Highly Relevant, I = Interface, NI = Not Interface)

39

Exercise Name D1 D2 D3 D4 D5 D6 D7 D8
Metropolis 0 0 0 0 0 0 0 0
UnicodeToUTF8 0 0 0 0 0 0 0 0
ElectricalResistance 0 0 0 0 0 0 0 0
ChemicalElements 0 0 0 0 0 0 0 0
WindSpeed 0 0 0 0 0 0 0 0
RationalNumber 0 0 0 0 0 0 0 0
Polynomial 0 0 0 2 2 2 0 0
PrintTable 0 0 0 0 0 0 0 0
SortThreeNumber 0 0 0 0 0 0 0 0
GermanGrades 0 0 0 0 0 0 0 0
DayOfWeek 0 0 0 0 0 0 0 0
RouletteStrategy 0 0 0 0 0 0 0 0
NumberOfBytes 0 0 0 0 0 0 0 0
SimpleCalculator 0 0 0 0 0 0 2 2
Anagrams 0 4 0 0 0 0 0 3
SumOfDigits 0 1 1 0 0 0 0 0
SmallNeighboringDistance 0 0 1 0 0 0 0 0
SudokuSolver 3 4 3 2 0 0 0 0
SudokuCreator 1 1 1 0 1 1 1 0
EnglishPegSolitaireSolver 3 3 0 2 1 2 0 0
ZerosOfContinuosFunction 0 0 0 0 0 0 0 0
NewtonMethod 0 0 3 0 0 0 0 0
BottomUpMergeSort 1 1 0 1 0 0 0 0
ShellSort 0 1 3 0 0 0 0 0
NaturalMergeSort 3 3 4 0 3 0 4 3
Queue 2 0 0 0 0 3 0 0
CompareChemicalElements 3 1 0 0 0 0 0 2
HexToDecimal 0 0 0 0 0 0 0 0
LoadChemicalElementsFromFile 0 0 0 0 0 0 0 0
Fibonacci 2 3 3 0 0 0 2 3
Factorial 3 0 0 0 0 4 3 0
PowerN 4 4 4 0 0 0 0 0
GroupSum 0 1 1 0 0 0 0 1
CountCode 0 0 1 0 0 0 0 0
CharSequenceImpl 0 3 2 4 2 1 1 0

Table A.5. Java Programming Exercises: Experimental Data - Part I
(0 = Not Relevant, 4 = Highly Relevant)

40

Exercise Name D9 D10 D11 D12 D13 D14 D15
Metropolis 0 0 0 0 0 0 0
UnicodeToUTF8 0 0 0 0 0 0 1
ElectricalResistance 0 0 0 0 0 0 0
ChemicalElements 0 0 0 0 0 0 0
WindSpeed 0 0 0 0 0 0 0
RationalNumber 0 0 0 0 4 2 0
Polynomial 0 0 0 0 1 2 1
PrintTable 1 0 0 0 0 0 0
SortThreeNumber 0 0 0 0 0 0 0
GermanGrades 0 0 0 0 0 2 0
DayOfWeek 0 0 0 0 0 0 0
RouletteStrategy 0 0 0 0 0 0 0
NumberOfBytes 0 0 0 0 0 0 0
SimpleCalculator 0 4 3 4 0 0 0
Anagrams 0 0 0 2 0 4 0
SumOfDigits 0 0 0 0 0 0 0
SmallNeighboringDistance 0 0 0 0 0 0 0
SudokuSolver 0 0 0 0 0 0 1
SudokuCreator 0 1 4 1 1 0 0
EnglishPegSolitaireSolver 0 0 0 0 0 0 0
ZerosOfContinuosFunction 3 0 0 0 0 0 0
NewtonMethod 0 0 0 0 4 3 3
BottomUpMergeSort 1 1 0 0 1 0 0
ShellSort 0 0 0 0 0 0 0
NaturalMergeSort 0 0 0 3 2 2 2
Queue 0 0 0 0 0 0 0
CompareChemicalElements 4 0 0 0 0 0 0
HexToDecimal 0 1 0 0 0 0 0
LoadChemicalElementsFromFile 0 0 0 0 0 0 0
Fibonacci 3 3 3 3 3 3 4
Factorial 4 0 0 0 0 0 4
PowerN 0 0 0 0 0 0 0
GroupSum 1 1 0 0 1 1 0
CountCode 0 0 0 0 0 0 2
CharSequenceImpl 0 0 0 1 0 1 0

Table A.6. Java Programming Exercises: Experimental Data - Part II
(0 = Not Relevant, 4 = Highly Relevant)

Bibliography

[AZBA08] Lada A Adamic, Jun Zhang, Eytan Bakshy, and Mark S Ackerman. Knowledge sharing
and yahoo answers: everyone knows something. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web. ACM, April 2008.

[BCLM11] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. Extracting
structured data from natural language documents with island parsing. In ASE ’11:
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, November 2011.

[BDWK10] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. Example-
centric programming: integrating web search into the development environment. In
CHI ’10: Proceedings of the 28th international conference on Human factors in
computing systems. ACM Request Permissions, April 2010.

[BLH11] Alberto Bacchelli, Michele Lanza, and Vitezslav Humpa. RTFM (Read the Factual
Mails) - Augmenting Program Comprehension with Remail. CSMR, pages 15–24,
2011.

[BLR10] Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails and source
code artifacts. In ICSE ’10: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering. ACM Request Permissions, May 2010.

[BPL12] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. Harnessing Stack Overflow
for the IDE. In Proceedings of RSSE 2012 (3rd International Workshop on Recommen-
dation Systems for Software Engineering), April 2012.

[ČMSB04] Davor ČubraniĆ, Gail C Murphy, Janice Singer, and Kellogg S Booth. Learning from
project history: a case study for software development. In CSCW ’04: Proceedings of
the 2004 ACM conference on Computer supported cooperative work. ACM Request
Permissions, November 2004.

[Cor89] Thomas A Corbi. Program Understanding: Challenge for the 1990s. IBM Systems
Journal (), 28(2):294–306, 1989.

[GK10] Florian S Gysin and Adrian Kuhn. A trustability metric for code search based on
developer karma. In SUITE ’10: Proceedings of 2010 ICSE Workshop on Search-driven
Development: Users, Infrastructure, Tools and Evaluation. ACM Request Permissions,
May 2010.

41

42 BIBLIOGRAPHY

[GM09] M. Goldman and R.C. Miller. Codetrail: Connecting source code and web resources.
Journal of Visual Languages & Computing, 20(4):223–235, 2009.

[HAM10] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program comprehension
with source code summarization. In ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering. ACM Request Permissions, May
2010.

[HAMM10] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. On the Use of
Automated Text Summarization Techniques for Summarizing Source Code. In WCRE
’10: Proceedings of the 2010 17th Working Conference on Reverse Engineering. IEEE
Computer Society, October 2010.

[Hat10] M McCandless E Hatcher O Hatcher. Lucene in Action, Second Edition: Covers (text
only) 2nd(Second) edition by M.McCandless.E.Hatcher.O.Hatcher. Lucene, Jmeter,
Apache Http Server, Apache Tomcat, Nutch, Spring Framework, Jspwiki, Codeigniter.
Manning Publications;, 2 edition edition, 2010.

[HB08] Reid Holmes and Andrew Begel. Deep intellisense: a tool for rehydrating evaporated
information. In MSR ’08: Proceedings of the 2008 international working conference
on Mining software repositories. ACM, May 2008.

[HP00] Morten Hertzum and Annelise Mark Pejtersen. The information-seeking practices of
engineers: searching for documents as well as for people. Information Processing and
Management: an International Journal, 36(5), September 2000.

[KDV07] Andrew J Ko, Robert DeLine, and Gina Venolia. Information Needs in Collocated
Software Development Teams. In ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, May 2007.

[KELN10] Adrian Kuhn, David Erni, Peter Loretan, and Oscar Nierstrasz. Software Cartog-
raphy: thematic software visualization with consistent layout. Journal of Software
Maintenance (), 22(3):191–210, 2010.

[KM06] Mik Kersten and Gail C Murphy. Using task context to improve programmer pro-
ductivity. In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering. ACM Request Permissions,
November 2006.

[LR93] Robert Lougher and Tom Rodden. Supporting Long-term Collaboration in Software
Maintenance. In COCS ’93: Proceedings of the conference on Organizational comput-
ing systems, pages 228–238, New York, New York, USA, 1993. ACM Press.

[LS81] Bennet P Lientz and E Burton Swanson. Problems in Application Software Mainte-
nance. Commun. ACM (), 24(11):763–769, 1981.

[LVD06] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a
study of developer work habits. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering. ACM Request Permissions, May 2006.

43 BIBLIOGRAPHY

[MMM+11] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann. Design lessons
from the fastest q&a site in the west. Proceedings of the 2011 annual conference on
Human factors in computing systems, pages 2857–2866, 2011.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 1 edition, July 2008.

[NAA09] Kevin Kyung Nam, Mark S Ackerman, and Lada A Adamic. Questions in, knowledge
in?: a study of naver’s question answering community. In CHI ’09: Proceedings of the
27th international conference on Human factors in computing systems. ACM Request
Permissions, April 2009.

[Ras00] Jef Raskin. The Humane Interface: New Directions for Designing Interactive Systems.
Addison-Wesley Professional, April 2000.

[RWZ10] Martin P Robillard, Robert J Walker, and Thomas Zimmermann. Recommendation
Systems for Software Engineering. In ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 80–86. ACM Request Per-
missions, July 2010.

[SHM+10] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker.
Towards automatically generating summary comments for Java methods. In ASE
’10: Proceedings of the IEEE/ACM international conference on Automated software
engineering. ACM Request Permissions, September 2010.

[SM11] Nicholas Sawadsky and Gail C Murphy. Fishtail: from task context to source code
examples. In TOPI ’11: Proceedings of the 1st Workshop on Developing Tools as
Plug-ins. ACM Request Permissions, May 2011.

[STvDC10] M.A. Storey, C. Treude, A. van Deursen, and L.T. Cheng. The impact of social media
on software engineering practices and tools. Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 359–364, 2010.

[TBS11] Treude, Christoph, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web? (NIER track). In ICSE ’11: Proceeding of the
33rd International Conference on Software Engineering. ACM Request Permissions,
May 2011.

[Tre12] Treude, Christoph. Programming in a Socially Networked World: the Evolution of the
Social Programmer. pages 1–3, January 2012.

[Ye06] Yunwen Ye. Supporting software development as knowledge-intensive and collabo-
rative activity. In WISER ’06: Proceedings of the 2006 international workshop on
Workshop on interdisciplinary software engineering research. ACM, May 2006.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure of the Document

	Related Work
	Social Media & Software Development
	Studies on Q&A
	The case of Stack Overflow
	Limitation of Q&A services

	Crowd Knowledge & Recommendation Systems

	Approaching Crowd Knowledge
	 Seahawk
	The Architecture
	Data-Collection Mechanism
	Stack Overflow Data Pre-processing
	Data Import
	Document Model
	Search Engine

	The Recommendation Engine
	Query Engine
	Automation of Queries
	Annotation Engine

	User Interface Elements
	Document Navigator View
	Suggested Documents View
	Document's Content View
	Notification System
	Invoking Seahawk

	Evaluation
	Experiment I: Java Programming Exercises
	Experiment I: Discussion

	Experiment II & III: Method Stubs and Method Bodies
	Experiment II & III: Discussion

	Conclusions
	Future Work

	Experimental Data

