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Abstract

Visualization approaches that leverage a 3D city metaphor have become popular over the years. There are
multiple variations of this concept, including virtual and augmented reality.

Summarizing the information provided by the evolution of software systems comprehensively is ben-
eficial since it provides insights about what happened in the past, allowing improvement, extension and
reuse of the previously created structures. Current approaches for visualizing software systems using the
city metaphor do not consider their evolution, which results in a visualization where buildings and dis-
tricts move around in unpredictable ways. Those circumstances can generate uncertainty to the viewer,
leading to possible misinterpretations of the information provided by the visualization.

In this thesis, we propose a novel approach to visualize the evolution of software systems using an
evolution-resistant layout. The visualization treats the system as an evolving city where buildings and
districts represent classes and packages, which undergo structural changes over time. A model that is able
to process the evolution of the software system, without losing any information it provides, can be used to
generate a layout that resists to changes happening over time.

The final result is a compact and understandable representation in which entities are placed consistently
over the evolution of the software system. To present our approach, we developed M3TRICITY, a web
application for analyzing and visualizing software systems evolution.
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Chapter 1

Introduction

Analyzing and displaying large software systems can be a difficult task due to the magnitude and com-
plexity they have reached today.

Software systems evolve during their lifecycle, hence extracting and displaying meaningful information
in a way that is consistent with their evolution is not a trivial task. According to Lehman’s second law of
software evolution, as software system evolves, their complexity increases unless work is done to maintain
or reduce it [8]. Reducing the complexity of a large software system is a tedious task. It requires in-
depth knowledge of the internal software system composition. This type of information is often not easily
accessible due to insufficient documentation. Also, knowing how software systems evolve can help plan
future decisions by giving insights about what happened in the past.

The complexity of software systems is derived from their intangibility [7]. One method to make them
more comprehensible is to use software visualizations. Price et al. defines it as the use of the crafts of
typography, graphic design, animation, and cinematography with modern human-computer interaction
technology to facilitate both the human understanding and effective use of computer software [9]. Soft-
ware visualizations can increase the human understanding of software systems using intuitive, visual rep-
resentations [10].

To visualize software systems, we can use metaphors. A metaphor is a stable and systematic relation-
ship between two conceptual domains, i.e., source and target [11]. In the past decades, multiple metaphor-
based visualizations have been made to remedy the intangibility of software systems. Some examples are
cities [12, 13], trees [14] or even solar systems [15].

FIGURE 1.1: Software as cities [1].

One widely researched and used metaphor for
visualizing software systems is the city metaphor
[16, 17, 18, 19, 13, 1] (see Figure 1.1). Cities shares
many similarities with software systems. They are
complex, human-made entities that follow specific
patterns. Like a software system, a city starts with
a planning phase in which architects aim to ful-
fill the requirements while maintaining function-
ality and design. Following this phase, they are
both built incrementally while requiring mainte-
nance over their evolution [7]. This metaphor has
been proven to facilitate program comprehension,
leading to an increase in terms of task correctness
and a decrease in task completion time [20]. How-
ever, this type of visualization falls short of expec-
tations when visualizing the evolution of software
systems. Buildings and districts are depicted as unique entities among each version, creating situations in
which the position of the entities are not consistent, making it difficult to interpret.
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In this thesis, we propose an approach to overcome this problem. Through the use of the information
contained in the versioning system, we have created an evolution-resistant layout that considers the evo-
lution of software systems to position the entities consistently over time. Besides, we have also created a
new evolution model for software systems which is used to explore the history of software systems. To
validate our layout, we developed M3TRICITY, a tool for visualizing software systems evolution.

1.1 Contributions

The main contributions of our thesis can be summarized as follows:

• We developed a new evolution-resistant layout for software systems. To do so, we created an algo-
rithm that exploits the evolution model.

• We developed a new evolution model for software systems that makes it easier to access and explore
their history.

• We developed a web-based application for visualizing software systems using the evolution-resistant
layout and the evolution model.

1.2 Document Structure

The document is structured as follow:

• In Chapter 2, we describe the state of the art in the field of software evolution and visualization. We
look at evolution models, 2D and 3D visualizations, and some examples of software as cities with
particular attention to CODECITY.

• In Chapter 3, we describe M3TRICITY. We discuss the approach, the tool and the current limitations.

• In Chapter 4, we analyze M3TRICITY and three other software systems with our tool. When possible,
we give insights about particular situations that have happened during development.

• In Chapter 5, we conclude the thesis with a summary and present possible future directions.
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Chapter 2

State of the Art

Over the past decades, much research has been carried out in the fields covered by this thesis. Evolution
and software visualization are recognized fields with venues dedicated to them.

2.1 2D Software Visualizations

FIGURE 2.1: Flow-chart [2].

In the 50s, Haibt created an approach (see Figure 2.1) that was able to
facilitate the understanding of a program to developers who were new
to it by making use of flow-charts [2]. A couple of years later, Knuth pre-
sented another approach that, always under the form of flow-charts, pre-
sented the documentation of software programs visually [21]. A decade
later, a visualization tool that made use of Nassi-Schneiderman [3] dia-
grams (see Figure 2.2) was presented by Nassi et al.

During the 80s software systems for visualizing software systems
started to appear, moving away from the previously used pretty-print
style. Knuth’s WEB system [22] used as the primary visualization tool
a markup language that combined source code and documentation. In
this period, software visualization research was mainly focused on pro-
gram behaviour [1], such as the visualization of sorting algorithms [23].
Muller et al. presented a tool that visualized the software’s components
and their relationship [24, 25].

In the 90s, the field of software visualization gained more interest,
with researchers experimenting with different approaches. Eick et al.
created SeeSoft a tool that provided fine-grained visualizations [26]. The
tool is able to visualize multiple information about the evolution of a
system. GASE, created by Hold and Pak, was a 2D representation of the
architecture over time [27]. In 1999, Lanza proposed a tool to generate
2D visualizations based on the metrics extracted from the source code
[28]. The research in 2D visualizations continues today. As an exam-
ple, Holten et al. presented Extravis [29], a tool for visualizing program
traces.

The born of UML influenced the research of software visualization.
UML, even if it was not born as a software visualization language, it was
able to display information about static and dynamic aspects of software
systems. In the following years, approaches have been made by making
use of different diagrams or their combination. What is interesting is the appearance of 3D visualizations
and their metaphors. Having a third dimension increased the space at disposal, therefore increasing infor-
mation that could be displayed.
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FIGURE 2.2: Nassi-Schneiderman diagram [3]

2.2 3D Software Visualizations

At the beginning of the 90s, 3D software visualization techniques emerged. A third dimension meant
having at disposition more space to display information. File System Navigator depicted in Figure 2.3,
was developed by Silicon Graphics and was one of the first 3D visualization tools. It was used to visualize
the hierarchy of the file system [4]. It gained popularity due to an appearance inside the movie Jurassic
Park in 1993.

FIGURE 2.3: File System Navigator user interface [4].

Gall et al. created a tool that used both 2D and 3D visualizations (see Figure 2.4A) of software systems
[30]. Hardware limitations were quite evident during that decade as visualizing complex information in
the 3D space required complex computations. In 1995, Reiss presented PLUM, a 3D customizable engine
that displayed a system’s information under multiple forms (see Figure 2.4B) [31]. At the same time, Young
& Munro started exploring the virtual reality world while visualizing software systems (see Figure 2.4C)
[32]. At the beginning of 2000, software visualization gained more attention, with the creation of dedicated
venues. Greevy et al. proposed TraceCrawler (see Figure 2.4D), a tool that analyzed the interactions be-
tween components statically and dynamically [33]. At the time, due to the hardware limitations, one of
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the challenges was to determine the amount of information to display. This problem was also reflected in
software evolution visualizations since the amount of data that needed to be processed was significantly
larger, making it difficult to display it all together.

A. Software Release History [30]. B. PLUM [31].

C. FileVis [32]. D. TraceCrawler [33].

FIGURE 2.4: 3D Visualizations (1995-2006)

At this time, the first web-based visualization techniques appeared. Mesnage and Lanza created White
Coats, a tool that visualized software information about systems based on the extracted data derived from
revisions in versioning systems [34]. Lungu et al. developed the Small Project Observatory, a project that
visualized 3D information on the web [35]. 3D, when compared to 2D, permitted the immersion into the
data that could be used as a starting exploration point [7]. Knight et al. created Software World, where
software systems are displayed as cities, with buildings, trees, and streets [16]. Not all the information
displayed was relevant, but there was already a mapping between source files, that represented cities, and
methods that were representing buildings.

In 2003, Panas et al. depicted a software system as a city, with real information about static and dynamic
data [36, 37, 38]. Langelier et al. presented another landscape metaphor with cities in mind. Verso was the
first one that inserted in the 3D plane elements based on specific criteria to have a significant displacement
of blocks [39]. In 2007, Wettel et al. presented their approach of visualizing software systems as cities.
Based on the city metaphor (see Figure 2.10), they aimed to display software metrics in a meaningful way,
while keeping the layout of the city consistent with the information and giving viewers a sense of locality
in the city [1]. Two years later, they presented another paper in which they used the same tool to analyze
and visualize the evolution of the systems [40]. This approach was not resistant to time changes, creating
situations where the entire city was moving to another place in the visualization. In 2010, Steinbrückner
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and Lewerentz, based on the city metaphor, modeled a view that was taking into account also the evolution
of software systems (see Figure 2.5C). In this case, time was mapped to the height of the hills on which
the class was sitting [13]. As a downside, their approach was not displacing elements on the map in a
smart way, creating cities with disconnected districts. By making use of 3D blocks, Fittkau et al. presented
ExploraViz, a tool for visualizing traces using both 3D and 2D visualizations (see Figure 2.5A) [41]. In
2015, Tymchuk et al. proposed ViDI, a tool for quality analysis that made use of 3D visualizations (see
Figure 2.5B) [42]. In 2012, Erra and Scaniello proposed CodeTrees, a visualization of the software system
under the form of trees [14]. Two years later, always using the tree metaphor, Maruyama et al. [43] proposed
a 3D visualization that made use of both forests, representing classes, and trees representing information
about the class. More recently, Vincur et al. presented VR City, a tool that represented a software system in
a virtual reality environment [44].

A. ExploraViz [41]. B. ViDI [42].

C. EVO-STREETS [13].

FIGURE 2.5: 3D Visualizations (2010-2015)
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2.3 Evolution Models

The first versioning systems appeared during the 70s. At that time, it became clear that there was the
need to be able to revert changes that have been done previously to the source code. The first versioning
system was SCCS and introduced some concepts that are still used today, such as the possibility to check
out a specific revision or commenting on the changes [45]. SCCS made it possible to understand where,
when, and what changes have happened over time. The main problem of this versioning system is that the
models representing the history were basic, with only some text-lines, added to log files.

Comparing versions is one of the first approaches to understand the evolution of software systems.
Demeyer et al. used structural measurements to detect renames at method level over two versions [46].
Xing & Stroulia extended this by comparing different versions simultaneously, going more fine-grained in
the detection of changes [47], while Antoniol and Di Penta used word similarities to detect renames, split
or merge class [48].

When dealing with the evolution of software systems, different approaches have been developed to
make it understandable. In the next sections, we will look at some of them.

2.3.1 Evolution Charts

Evolution charts were used to display information about software systems. Figure 2.6 depicts one example
of evolution chart. On the x-axis is represented time, while metrics were represented on the y-axis. On
the right side, we can see that to visualize multiple metrics, additional charts are needed. Gall et al. also
implemented an approach to visualize the evolution of software systems [49]. His approach has also been
widely used but has the limitation that only one property can be visualized at a time.

FIGURE 2.6: Example of an evolution chart.

2.3.2 Evolution Matrix

The need for visualizing multiple properties at the same time led to the development of visualization that
uses the concept of a matrix. Lanza and Ducasse developed a layout that was able to display multiple
metrics over time of a software system (see Figure 2.7)[5]. Every row represents a class while each column
represents a version of that class. All entities of the system, represented as a rectangle in the image, can,
therefore, represent multiple properties at the same time by using the geometrical properties of the rectan-
gle. At each version, the size of the rectangle can change depending on the changes that happened inside
the class.
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FIGURE 2.7: Evolution matrix in action [5].

2.3.3 Hismo

Hismo [6] is an evolution model that can be easily applied to software systems’ evolution due to its internal
structure. The core of Hismo is depicted in Figure 2.8 and consists of three main entities:

• Snapshot Represents the time in which evolution data is extracted.

• History Is the container of a set of Versions. Represents the history of a single entity within the soft-
ware system.

• Version Represents the time and is related to a Snapshot. A Version knows which History belongs to
and can exist in only one History.

FIGURE 2.8: Hismo core model [6].

In Hismo, the entities are abstract and not tied to any data-models, creating a structure that can be
adapted to any entity related system that we want to study. The author of the model itself shows how to
apply it to model software systems evolution while using the evolution matrix developed by Lanza et al.
as a visualization [50].

The model uses the evolution matrix to display the evolution information and has two main concepts:
packages and classes. Figure 2.9 depicts Hismo applied to the evolution matrix. In the top part of the image,
Hismo is applied to Packages and Classes, while the lower one contains the evolution matrix itself. In
Hismo, a row indicates a class history while a column constitutes the version. The whole matrix, therefore,
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can be visualized as a package history while a complete column constitutes a package version. When
dealing with multiple packages, we then need to create multiple matrices, each one containing its own
rows and columns.

The model itself is the starting point for the evolution of a software system. In this thesis, we used
Hismo, together with the evolution matrix, for developing a new model that is able to store all the infor-
mation needed for visualizing the evolution of software systems. We discuss this in Section 3.1.

FIGURE 2.9: Hismo mapped to an evolution matrix [6].

2.4 Software Evolution Visualizations

Thanks to free and open-source projects and the popularity of hosted version control sites, the amount of
historical data about software systems increased, giving at the same time much larger information about
their evolution. Access to this information led to research about the evolution of software systems and their
visualization. In 1996, Holt and Pak created the first tool, called GASE, a tool to visualize information about
the evolution of software systems [51]. GASE displayed information about the architecture of the system
in multiple versions. In 2001, Lanza proposed the concept of evolution matrix [52]. This matrix kept track
of the evolution of single classes during the software system lifespan and defined the evolution pattern of
each file.

In 2004, Fischer et al. visualized the evolution of the features of large software systems [53]. One year
later, based on the work done by Lanza, Gîrba et al. presented Hismo, a tool for modeling software evo-
lution [6]. The meta-model of Hismo is based on the concept of “package history” and “class history”
composed by the information of the previous versions. D’Ambros and Lanza in 2006 visualized the evo-
lution of software bugs and the coupling between classes over time [54]. Later, D’Ambros et al. proposed
“Evolution Radar,” a method to visualize coupling between objects [55]. An approach that displayed met-
ric information was then presented by Gonzalez et al. [56] They discussed a 2D visualization of software
systems that was able to compare multiple metrics at once all in the same view. Alcocer et al. then pre-
sented the Performance evaluation matrix, which aimed to display software systems’ performance during
their evolution [57]. Novais et al. proposed a proactive and interactive visualization strategy for soft-
ware evolution [58]. Carol et al. proposed another visualization of software evolution called Evo-Clock,
an alternative way of displaying a large amount of historical information by making a trade-off between
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reduced-accuracy for a large amount of historical data and high accuracy of single components [59]. Ivapp
et al. presented EvoCells, a tool that visualizes changes using treemaps [60]. In addition to the classic 2D
visualization, the work done by Sondag et al. is interesting to mention, because even if it was not related to
the visualization of software systems, they implemented a stable visualization that makes use of treemaps
[61]. In their publication, the authors propose alternative ways to construct treemaps for hierarchical data,
which algorithm tries to modify the structure as little as possible when its internal data changes. EVO-
STREETS, on the other hand, can be seen in Figure 2.5C [13], in this case, the authors decided to map
evolution on the height of the hills, where a higher hill represents a more recently modified class. Another
application of this metaphor was found within CodeMetropolis [62].
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2.4.1 CODECITY

CODECITY is a language-independent 3D visualization tool for large software systems. The authors have
selected the city metaphor due to the many similarities it has with software systems. With this metaphor,
properties of the software systems such as source code metrics and package locations are mapped to prop-
erties of the city. By analyzing extensively multiple projects, the authors have demonstrated the versatility
of the city metaphor visualization for reverse engineering, increasing the program comprehension by re-
ducing software systems’ intrinsic complexity [7, 20]. CODECITY can be visualized in Figure 2.10, in which
Java JDK namespace is analyzed. Districts represent packages, each one containing multiple source files.
The building’s shape is defined by the metrics extracted by the lines of codes, such as number of methods
(NOM) for the height and number of attributes (NAM) for the width and depth.

FIGURE 2.10: CODECITY on JDK’s java namespace [7].

2.5 Summary

The previously mentioned techniques mostly focus on giving information about software systems, but their
visualizations did not consider the evolution of the software system itself. Regarding software as cities,
CODECITY can display the evolution of a system, but the visualization is not time resistant, with building
positions changing over time. EVO-STREETS has the same problem. Even if the history is mapped on hills,
the visualization of the evolution changes the position of streets and blocks, adapting them based on the
new information.

Compared to these techniques, we propose a novel approach to display software system information
consistently over time. The city’s initial layout will be computed by taking into consideration the history
of the software system so that building positions are consistent over the complete evolution visualization.
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Chapter 3

M3TRICITY

In this chapter, we present the approach and the tool we developed to visualize software systems using
the city metaphor and the evolution-resistant layout. In fact, despite its popularity, the city-metaphor falls
short when depicting the evolution of software systems, which results in buildings and districts moving
around in unpredictable ways throughout the revisions of a system. Part of the problem is that current
approaches for visualizing software systems do not use the information produced by the versioning sys-
tems, creating views in which each revision potentially represents a new city, and therefore a new layout.
In generating a layout resistant to the evolution of the system, we want to reduce the dynamism of the city
by decreasing the number of movements inside it. At the same time, we want to represent the evolution as
accurately as possible. All this to make the visualization itself more understandable to the viewer.

For this reason, we present a novel approach to visualize software systems as evolving cities that treats
evolution as a first-class concept. It renders with fidelity not only changes but also refactorings in a com-
prehensive way. To do so, we developed custom ways to traverse time. We implemented our approach in
a publicly accessible web-based platform named M3TRICITY depicted in Figure 3.20.

In Section 3.1, we discuss the approach used to model and visualize the history of software systems. In
Section 3.2, we discuss the tool that implements our approach, by looking at its architecture, at how history
was modeled but also by looking at features and user interface. Finally, in Section 3.3 we discuss the
limitations that have been discovered, together with some extra work that should be explored to achieve a
better structure for the history.

FIGURE 3.1: Evolution of a city with M3TRICITY.
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3.1 Approach

Software systems comprehending is difficult, mostly because of their size and complexity [7]. When deal-
ing with large systems, operations such as code refactorings can be used to decrease their complexity.
Software systems visualization is an approach that can be used to comprehend their functioning. Concern-
ing their evolution, current approaches represent this information inconsistently, generally by displaying
the evolution under the form of multiple single snapshots of every file in the system, where information
between two snapshots is missing. Visualizations in 2D, as opposed to 3D, do not give the possibility to
explore the environment due to the intrinsic limitation the flat world implies. At the same time, they also
limit the amount of information that can be displayed at once. 3D visualizations, on the other hand, let
the viewer immerse in environments with natural interaction. At the same time, they give much more
possibilities to develop new features. However, 3D visualizations also have problems such as occlusion,
perspective foreshortening and difficulty navigating [63]. Current solutions in software visualizations pro-
vide little interaction; therefore, the user can not explore the view. Moreover, interaction with the objects is
absent or often difficult to obtain, typically requiring a multi-step procedure to acquire and extract infor-
mation. 3D visualizations also let objects move freely within the scene, giving more in-depth information
about what is happening.

By using 3D scenes, we can visualize software systems using the city metaphor. Cities and software
systems have many things in common, making it possible to easily map the two domains. For example,
cities are constructed incrementally, just like software systems are being developed over time. Similarly,
they are composed according to a hierarchical structure, i.e., buildings inside a district vs. files inside a
directory or classes in packages. Using this simple mapping, we can construct a city using the software
system’s information.

Our approach provides an evolution-resistant layout, that places elements within the view using the
information extracted from the history of the software. Using this solution permit to place elements in the
view so that their initial placement is consistent over each revision. Particular attention must be given to
cases where a file has been renamed not to lose any kind of information about its evolution.

Combining the resistant layout with the evolution model is essential to give more knowledge about
software systems. In fact, the resistant-layout depends on the information that the software system’s evo-
lution model provides. In the next sections, we present our approach to model the evolution and visual-
ization of software systems using these two concepts.

3.1.1 M3TRICITY Evolution Model

To model the evolution of software systems, we developed a new evolution model that can be seen in
Figure 3.2. The ideas of our model are based on Hismo, an evolution model for software systems developed
by Tudor Gîrba.
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FIGURE 3.2: Evolution model of M3TRICITY.
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The need for creating a new evolution model comes from the fact that Hismo was developed on the
Subversion (SVN) versioning system.1 In SVN, a revision represents the state of the whole system, i.e., a
commit with changes of only a few files will increase the revision of the whole system. In Git,2 only the
modified files would get the version field updated. This notable difference influences our model too. The
author created Hismo based on three main entities which architecture can be seen in Figure 2.8:

• Snapshot. Represents the time, it contains multiple versions of the software system.

• History. It is a set of versions. History represents a specific entity’s evolution that might be, for
example, a class or a package.

• Version. It is part of a History and represents a specific revision over the evolution of that entity.

Our model consists of Histories and Versions, but the concept of Snapshot is dropped. The model has
been developed with the idea that a Repository has its own story, consisting of multiple versions. In this
way, we wanted to make more consistent the model proposed by Gîrba et al. for software systems. With
the new model, everything is represented as a tree of histories referencing versions, where on top, we have
the RepositoryHistory node. By making these changes, we made the model more suitable for describing
software systems.

The repository entity is used to access all the histories extracted from the software system. The Repos-
itoryHistory follows the same logic of PackageHistories and ClassHistories, where each has a series of
versions. In our case, a RepositoryVersion is defined as a series of changes during a commit.

The newly derived mode consists of one core entity, Repository, and three sub-entities:

• RepositoryHistory. A repository history is a single entity that represents a repository evolution. It
has some basic properties, such as the repository’s name and owner, together with a list of Reposito-
ryVersions. Using this as an entry point for any repository history, we can traverse its evolution over
time.

• PackageHistory. Similarly to a RepositoryHistory, a PackageHistory contains a list of PackageVer-
sions. By traversing this node, one can reconstruct all the changes that happened to a specific pack-
age. A package is identified by the path representing it.

• ClassHistory. It is the leaf of all histories. It represents a single file history and therefore is used to
construct the evolution of a class.

The structure defined above is the base for traversing histories that are extracted from the version-
ing system. Thus, histories represent unique objects that can evolve, such as classes, packages, and the
repository. The structure, as described above, does not give information about how versions are defined.
Versions are not always the same, and each RepositoryVersion, PackageVersion and ClassVersion entity
needs to be slightly different to have a complete representation of their evolution. In M3TRICITY they have
been defined in the following way:

• RepositoryVersion. It is part of a single RepositoryHistory and has a unique number representing its
version. It points to a collection of PackageVersions.

• PackageVersion. It contains a list of ClassVersions. In this way for each PackageVersion we can
navigate to the classes contained in that package at one specific version.

• ClassVersion. Is the actual class or file contained in the software system and is the base entity for
defining packages and repositories versions entities.

With this structure, when we traverse the list of RepositoryVersions found within a RepositoryHistory
we can find all the changes that happened over time.

1See https://subversion.apache.org/
2See https://git-scm.com/

https://subversion.apache.org/
https://git-scm.com/
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Building Histories

Defining History entities is not straightforward in all cases. ClassHistory, PackageHistory and Repository-
History all need to be uniquely modeled due to their internal structure. The simplest model of history is
the class. The information that we can extract for the Git only regards the changes at the class level, this all
histories will be based on class changes. Git provides the following information about file changes:

• Add. A file is added to the system.

• Delete. A file has been removed from the system.

• Modify. File content is modified.

• Copy. A file has been copied to a location (no information whether the location or the filename has
been changed).

• Rename. A file path has changed (whether the location or the filename has been changed).

From this, we can extract additional information for each file, such as its parent folder (defined by the
complete path except the filename) and also the filename itself. Given a set of modified files, for each
operation, we can determine how the change impacted the history of an entity.

When building histories, everything starts with An add operation. When a file is added to the system,
it will be inserted in our model as a new ClassHistory. Regarding PackageHistories, a file addition does
not always represent a new PackageHistory. A PackageHistory might be already existing if a file within
the same package has been added previously. In this case, the new file will be simply added at the latest
PackageVersion of that PackageHistory. A delete represents an end in a ClassHistory. However, regard-
ing PackageHistories, it only represents an end if all files contained inside the current PackageVersion
have been renamed or deleted. If not, then the package cannot be considered deleted. Modify is the most
straightforward operation, in which the new version is simply added in any case to the history that has
been previously constructed when the first add operation has happened. Regarding PackageHistories, if
all files contained in a specific version have been renamed, it represents a continuation of the history. In
contrast, if only a few have been renamed, it is a history split. On the other hand, copy also represents a
history split since a file starts to appear in multiple locations.

Figure 3.3 shows an example of how a ClassHistory, represented as a row in the evolution matrix, is
created. The first operation that needs to be detected inside the versioning system is an add. With this
operation, we know that a new file has been added to the system and therefore, a new ClassHistory needs
to be created (purple). At version two (r2), the file is modified, while at version 3 (r3), the file is copied. A
copy is a split within the linear evolution of the history of the file. Those cases are rare and are the only
ones in which the row of an evolution matrix is split into two (pink). However, conceptually the history
is still a linear succession of ClassVersions. Version 4 consists of a rename operation for the pink entity,
but in the matrix, this does not affect the evolution. The change in the name of the file does not imply a
change in the history. A rename is only used to keep track of the entity’s actual name and might be used
for understanding the location (package) of the file. Concluding, the delete operation consists of an end to
the evolution of that history when no copies have been created. If copies are found, it merely represents a
deletion of a child.

Detecting Changes: Merging Package Histories and Versions

To better understand changes within the development (for example, to handle renamed or merged pack-
ages), in addition to Git we also use tools that compute a similarity score between commits.

The simplest history model does not consider that package histories and class histories can be merged,
a crucial consideration for having a correct representation of the evolution of a software system. A file’s
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FIGURE 3.3: Example of ClassHistory in M3TRICITY with a copy operation.

history can be seen as a linked list, where a file gets inserted, modified up until no other elements are
added. Rename happens less frequently than modify, addition, or deletion; still, they represent a crucial
part of the system’s history. When a renamed is detected, we can see this as a simple addition to an already
existing history.

In our model, for simplicity, during the first pass every time we detect a new file path, we create a new
history. This operation results in creating unique histories, each one identified only by its complete path.
At the same time, we track every change that happens at name level, like renames, and we maintain a map
representing the evolution of the name itself. As soon as we finish creating histories, we can merge them
based on the information extracted from the versioning system and store in our map. Concluding, we
can merge histories, creating a linear succession of events that represent the complete evolution of a file.
Figure 3.4 show this operation in practice. On the left, we see the evolution matrix without information
about renames. History h2 and h3 are not linked and they represent two different files. On the right, we
can see what happens when information about renames is added. History h2 is merged with h3, and h3
being created after h2, it ceases to exist.

FIGURE 3.4: Example of merged ClassHistories: two separated histories are merged at version
4 due to the presence of a rename.

PackageHistory entities are much more challenging to define and represent within the evolution matrix.
Their creation happens when one or more files are added within a specific path that not existed before in the
history. After the appearance of the first source file in a folder, we need to keep track of every new addition
to the same location, together with all modifications and copies. To detect PackageHistory deletions, we
need to find a PackageVersion in which only delete and rename operations are found (rename at package
level and not a filename level). Moreover, new packages might be added to the path itself, therefore creating
sub-packages. The newly created history will not contain only a single reference to a file as it happens to
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a ClassVersion, but each PackageVersion will reference multiple ClassVersion entities. However, we need
to consider that renames might end up in different locations and in different packages. As an example of
history split, package A contains files A1, A2, A3. During a project refactoring, A1 is deleted, and A2 is
moved into a new package B then A3 into a new package C. In this case, we can state that the history of A
has been split into two more histories, B and C. This lead to another problem with the concept of history.
History is unique for a set of files, where each history represents the evolution over time of one or more
entities, but connecting the history of B and C with the history of A is conceptually wrong since packages
B and C are new and created after the rename operation.

A PackageHistory is defined as a series of PackageVersions, each containing ClassVersion. However,
nothing guarantees that in the history of a ClassVersion, it will always belong to a single PackageHistory.
ClassHistories can contain renames representing a move from a package to another. For this reason and the
sake of the simplicity of the model, we create a new History for every new package or folder that is found.
Figure 3.5 shows the multiple possibilities that happen when dealing with PackageHistory entities, as we
can see the amount of complexity that this type of entity can achieve is high due to all possibilities that can
happen. At version four (r4) h2 is renamed to h3, meaning that all files contained at version r3 of h2 have
been moved to a new location. Still, the same files that have been previously moved suffer the same fate
another time at version six (r6). Differently from before, the files of the h3 package are divided into two
different locations. This situation leads to some complexity in defining what a package’s history is. In our
model, the PackageHistories can be linked together by looking at the internal movements of the files, but
this creates situations in which distinguishing one history from another can be difficult.

FIGURE 3.5: Example of merged PackageHistories.

Histories are represented as unnamed entities as we cannot define their name due to the Git operations
cited above. We cannot merely say History A represents the “Activity.java” file, but either we can say that
a specific history represents a file that was named "Activity.java" for a particular time during its evolution.

Histories as Unnamed Objects

A significant difference in our model compared to Hismo and the evolution matrix is that histories are
represented as unnamed entities. That is, it is impossible to define a history simply by a filename or a
path. Paths and filenames are only represented inside versions and not inside histories because over the
evolution of a software system, files and packages can be renamed and, therefore, it would be wrong to
limit a history to a specific path. This concept is fundamental and makes it possible to model dynamic
histories. Without the concept of unnamed objects, we could not connect two histories such as it happens
with a rename or copy operation, making it too tied to the filename or path that is representing.

Figure 3.6 shows an example of how unnamed entities work. Inside the box, we can see an example
of a PackageHistory. The history itself can not represent a single path or package due to the multiple
possibilities that might happen to its name. The image shows that when the first file is added to the path
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/test/ui/tools. As soon as a copy operation occurs, the history itself consists of two different names,
/test/ui/tools and /test/ui/utils, generating a history that is represented with two different names.
If a rename operation also happens, the history will be represented by three different paths.

FIGURE 3.6: Example of a PackageHistory with multiple filenames.

3.1.2 Visualization

M3TRICITY is a web application for visualizing software metrics evolution. It uses the city metaphor, a way
to visualize software systems, that has been widely explored in the past years. We base our visualization
on CODECITY [7]. Due to its limitations when visualizing the evolution of software systems, we developed
a history-resistant layout that leverages the evolution matrix to place objects within the view to avoid the
viewer having wrong interpretations of the evolution. To understand the approach, we start by describing
CODECITY, a visualization for software systems that uses the city metaphor. After that, we will give the
notion of districts and buildings. In the end, we will discuss the history resistant layout, the core section of
the new visualization and of this thesis.

Software systems as cities

To understand our visualization, we start by describing CODECITY, a visualization that uses the city
metaphor. A city has many things in common with software systems. First of all, both can be seen as
a hierarchy of two types of entities:

• Districts and folders: both can be seen as a container for other elements. In a city, a district contains
multiple buildings, while in a software system, a folder can contain multiple files. Districts and
folders can contain recursively other entities of the same type.

• Buildings and files: are the smallest elements within cities and software systems. Buildings define the
landscape of a city, like source files define the main characteristics of a system. Properties of a source
file can be mapped to a building, for example, by letting the height of a building be proportional to a
specific metric.

In CODECITY, this similarity has been used to develop a visualization for software systems in which cities
and software systems are linearly mapped to transform a folder containing multiple files into a district.
In contrast, file metrics are used to shape buildings. The authors did not stop there, but also searched for
proof of utility for this visualization, by validating through controlled experiment that visualizing software
systems using the city metaphor was, in fact, useful to understand the system itself [7] .

The key idea of CODECITY comes from the fact that we need to learn from software systems, and the
internal complexity of a software system can also be found in cities [64] . By creating a visual mapping,
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FIGURE 3.7: Mapping from software system to cities in CODECITY [7].

the amount of information that needs to be processed is reduced. Moreover, the similarities among soft-
ware systems and a city let the user explore it as it would do in real life. To create a meaningful mapping,
CODECITY approach used a static mapping between the entities that compose the city to those that com-
pose software systems, such as districts and buildings. Figure 3.7 depicts the mapping used by the authors.
We have the two main entities at the domain level, software systems and city. At concept level we have class
and package for software systems, while for cities we have building and district. At the lowest level, we have
the properties. As an example, we have number of methods (NOM) for a class and height for a building. In
addition to mapping numeric values to shape properties, colors are also used for highlighting.

M3TRICITY differently from the approach used in CODECITY, let the user select the metrics to be visu-
alized, modifying the shape of the city.

The layout of the city is constructed based on the Rectangle Packing Layout for a collection of elements.
The idea behind this algorithm is that the structure representing the city is a tree, where each node contains
other packages or classes. The algorithm works recursively. It starts from the leaves and goes up in the
hierarchy in a post-traversal order laying out all the elements. Figure 3.8 shows the result of the algorithm
applied to ArgoUML.

One problem of CODECITY is that it did not use the evolution data to display a city where buildings
and districts do not move every revision. In fact, over the evolution, objects such as buildings and districts
were moved around, possibly leading to wrong interpretation of the visualization. For this reason, we
developed a history-resistant layout.

Bin-packed history resistant layout

The history-resistant layout is used to consistently place elements within the view over the evolution of
the software system. The main difference is that it is using the evolution matrix to discover the final size of
each component of the software system to find the best placement within the view while minimizing the
total area occupied by the city.

The construction of the layout starts with analyzing the history of each class (row in the matrix) found
within the software system evolution. This information is represented directly through ClassHistory en-
tities that are stored within all Repository models. By iterating over all versions of class histories, we
understand how the class evolved over time (Figure 2.7). In this case, since we want to place the object in a
specific position, we will be looking for the largest evolution version among all. By looking for that specific
version, we find the maximum size that the class will reach over time. This information can be used to
define a placeholder in the layout for that class, which is the maximum width and depth that the building
will reach over all revisions. Software systems do not only contain classes but also packages. To maintain
the resistant layout, additional steps need to be done to determine the final size of the packages.

To define the layout of a package in the view, we need to iterate over all PackageVersions of it. For each
version, we then look at all the ClassVersion that the version itself contains. While doing this operation,
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FIGURE 3.8: CODECITY layout algorithm of ArgoUML.

we need to extract and keep track of each maximum ClassVersion contained in each package. In the end,
by adding all the information collected about the ClassVersion, we know the size of all packages and
classes within the package itself. This operation requires the creation of an entity called PhantomVersion,
which represent packages in the recursion. This entity has much less information, and it is used only as
a placeholder for packages. It can be seen as a class in the system, but in reality, it contains other classes.
PhantomVersion is used to simplify the creation of the layout because, for each nesting level, we only deal
with entities as they were classes and not as they were nested packages. At the end of this first step of
the algorithm, we have a list of versions for each package, each one of them representing the maximum
evolution of that class. This information is then passed to a second algorithm that assigns each class and
packages to a specific position inside the layout. In this thesis, we use a simple implementation of a bin-
packing algorithm. The algorithm’s output is a list of History entities each one with a specific position
within the layout.

Figure 3.9 shows the history-resistant layout (left side) as opposed to a standard bin-packing layout
(right side), like the one used by CODECITY, where the goal was to optimize space.

In the figure, each row is a revision of a system. We use blue to denote classes and light blue to denote
packages. Consider C, for example, which is not present in revision R1. In the bin-packing layout, C
appears in R2, and it is placed according to some heuristic (e.g., to optimize space). In R3, however, it
is moved. Using our history-resistant layout, the final space and position of C is kept free in R1, then
occupied with the first instance of C in R2 and assumes its final larger shape in R3. The “jumps” we
mentioned before are visible in the bin-packing layout on the right side, as its goal is to use space as
efficiently as possible. Therefore, the package containing classes A and B in R1 is only as big as needed
and grows in the successive versions. With the history-resistant layout, that package uses the space it will
ultimately need, already starting from R1.
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FIGURE 3.9: History-Resistant Layout vs. Bin-Packing.

The overall effect of our history-resistant layout is, therefore, a more robust and less jumpy visualization
from revision to revision, making it easier to follow the evolutionary process, as we illustrate in Section 4.

3.2 Tool

In this section, we discuss the architecture of M3TRICITY and the design choices that have been made
throughout its development. In Section 3.2.1, we describe the architecture of the tool by looking at the
backend and frontend. Finally, in Section 3.2.2 we present the user interface of the tool.

3.2.1 Architecture of M3TRICITY

The architecture of M3TRICITY consists of a backend and a frontend. The application itself is accessible
through a web interface and can be used to analyze and visualize Java projects. Figure 3.10 shows a high-
level diagram of the application.

The backend is written in Java and built using Spring Boot3 that is Spring’s convention-over-configuration
[65] solution for creating stand-alone, production-grade Spring-based applications. It consists of two core
modules, History-builder and View. The History-builder is responsible for cloning the repository locally
and initiating the analysis of the history. This module is the only one that requires access to the outside
world as it needs to contact Git. On the other side, the View is responsible for preparing the data for users
who want to visualize the evolution of a software system. This module, given the evolution-matrix of the
system, generates a layout that is resistant to the evolution. In the end, the backend will send the required
data to the frontend. In addition to the two core modules, there is also a third one that is responsible for
providing public endpoints.

3See https://spring.io/projects/spring-boot

https://spring.io/projects/spring-boot
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The frontend application is developed in Vue.js4 an open-source JavaScript framework for building
user interfaces and single-page applications. The frontend communicates with the backend through REST
endpoints together with WebSockets. The frontend also has settings that can be personalized and a chart
that shows where changes have been made over time.

FIGURE 3.10: Architecture of M3TRICITY.

Backend

The backend service is implemented using Java.5 We also used Spring Boot, a Spring-based tool for devel-
oping web applications efficiently. The backend is developed using two main technologies for communi-
cation: Rest and WebSockets.

REST API This type of communication is used in M3TRICITY for retrieving information based on the
users’ interactions. In our application, two main HTTP methods can be used: GET and POST, where the
first one is used to access data and the second one to insert it. The endpoints can be divided into three
different sections.

Home: are the ones used to initiate a new repository analysis and to retrieve the analyzed repositories,
together with their status:

⇒ POST /api/analyze is used to start a new analysis and only requires an URL to a Github repository.

⇒ GET /api/home/listing/repositories returns a list of repositories that have been analyzed or are
in the process of being analyzed.

General: when a repository is selected for visualization, interaction with the canvas acts on the follow-
ing endpoints.

⇒ GET /api/repository/{owner}/{name} uses the information provided by the two parameters to re-
trieve some basic information about the repository that will be then used for constructing the city. The
type of information is mainly numeric and textual. The first one is used to give visual information
about the evolution while the textual one is used for configuration purposes.

⇒ GET /api/repository/{owner}/{name}/{commitHash} is used to retrieve information about a spe-
cific commit in a repository. Each commit contains some basic information such as time, author and
a message.

⇒ GET /api/repository/{repoOwner}/{repoName}/commits/{page} this endpoint list all the commits
of a repository. It uses paging as the amount of commits can be large.

4See https://vuejs.org/
5See https://go.java/

https://vuejs.org/
https://go.java/
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⇒ GET /api/repository/{repoOwner}/{repoName}/{version}/terminal this endpoint, given a ver-
sion, return information about authors of the current, previous and future commits.

⇒ GET /api/class/history/{owner}/{name}/{id} endpoint is responsible for retrieving information
about class objects, that might be any type of file existing in a specific repository. It requires an Id,
the repository owner and a repository name. The fields are used to access the in memory-database
through an interface. After retrieving the object, it is converted to a DTO object through a mapper
that only contains the necessary data.

Evolution timeline: is the element responsible for visualizing where changes have been made over
the software system’s evolution. The endpoints return a list of numeric values for each version and each
metric. Higher values mean more changes involving that metric.

⇒ GET /api/repository/{owner}/{name}/timeline/series it returns a series of values for each met-
ric. The values are normalized between 0 and 1 and represent the amount of changes for each version.

⇒ GET /api/repository/{owner}/{name}/{version}/class/timeline/series it returns a series of val-
ues for a specific class, representing the changes over time of that class.

⇒ GET /api/repository/{owner}/{name}/{version}/package/timeline/series it returns a series of
values for a specific package, representing the changes over time of that package.

⇒ GET /api/repository/{owner}/{name}/timeline/series/{mode} it returns a series of values but
grouped by day, week, month or year.

⇒ GET /api/repository/owner/name/version/class/timeline/series/mode similarly as before, it re-
turn a series of values but grouped by day, week, month or year for a specific class.

⇒ GET /api/repository/{owner}/{name}/{version}/package/timeline/series/mode it return a se-
ries of values but grouped by day, week, month or year for a specific package.

Communication using WebSockets is done through the following endpoints:

⇒ PUBLISH /api/history/evomatrix/versioned/start is responsible for initializing the layout of the
city.

⇒ PUBLISH /api/history/evomatrix/versioned/update is responsible for updating the view with the
information of a new version.

History-builder Module The history-builder module is responsible for analyzing software system histo-
ries and constructing their evolution. It is composed of three different sub-modules and two core entities
using them. Figure 3.11 shows the composition of this module.

M3ConstructStarter is the service that is called directly from the API endpoint /api/analyze and is
responsible for initiating the download, setting up the structures that will store the histories together with
their linkers. This component constructs the RepositoryHistory and save it in the memory. CommitWalker,
together with DiffResolver, are used to iterate over the commits using JGit.6 DiffResolver makes the diff
between the two commits while also using the RenameDetector, which is responsible for detecting renames
and copies within two commits. This solution, although it is not perfectly precise, aims to solve some
problems with Git internal solution that not always detect these two cases safely. This component is also
responsible for generating all the version entities. Versions are derived directly from the changes of a
commit; therefore, every change in a commit represents a new version.

In the constructor module, we also have three other sub-modules: downloader that is responsible for
creating a local copy of the remote repository, metric that uses srcML7 to extract and compute the source

6See https://www.eclipse.org/jgit/
7See https://www.srcml.org

https://www.eclipse.org/jgit/
https://www.srcml.org


3.2. Tool 25

FIGURE 3.11: Class Diagram of the History-builder module.

code metrics, and linker. Linking histories is a crucial part of these modules. Figure 3.12 shows the internal
structure of a linker together with their methods.

FIGURE 3.12: Class Diagram of the Linkers module.

Linker module is made up of components that are responsible for the various types of History entities. In
this case, we have RepositoryHistoryLinker, PackageHistoryLinker and ClassHistoryLinker all extending
the abstract class Linker. It exposes methods: add(T,DiffEntry) and getHistories(). Internally, when a
new VersionEntity is created and added to a linker, it will be added and connected based on the information
contained in the file’s path that generated the version. When add(T,DiffEntry) is called, it will look for
the type of Git operation that the version represents and then call the appropriate method.

Figure 3.13 shows the sequence diagram for the creation of the history of a repository. When the con-
troller receives a new analysis request, it contacts the ConstructStarter that initializes a repository. The
acknowledgement is sent back to the user as soon as the repository is downloaded. From that point on, the
CommitWalker iterates over the commits and asks the linker to compute the history between the various
versions. At the end of the loop, the histories are retrieved and stored.

View Module The view module is the second core component of the backend. It is responsible for the
preparation and visualization of the city. It communicates with the clients through the use of WebSockets.
It is composed of two sub-modules, and one core component, the View.
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FIGURE 3.13: Sequence diagram for the creation of histories.
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View is an abstract class that contains all the logic for visualizing the software system. During the
development cycle of M3TRICITY, multiple iterations of different layouts have been developed:

• EMView. With this view, all classes are placed with a flat layout, i.e., there is no package concept.
It can be used to visualize the evolution of classes. The main idea of this view is that the software
system can be visualized as a matrix, where each class has a slot assigned and will evolve inside it.

• EMViewLight. Extends EMView, and uses the same logic except for the positioning of the elements.
In this case, the matrix layout has better performance when compared to the previous one.

• EMVBinPackedView. Extends EMView with the concept of a package that contains other classes or
packages. With this view, we also started to model the visualization while making it resistant.

• EMVBinPackedViewDate. Extends EMVBinPackedView and has added bucketing for the evolution
data. Bucketing can be by day, week, month and year, reducing the amount of information processed
inside the visualization.

The View uses the Packing module to compute the evolution-resistant layout for clients visualization. It
exposes a service that can be used to call the algorithm used to compute the layout. The main idea behind
this is that each class occupies a space that is derived from properties of their evolution. The other module,
glyphs, contains the models of the cuboids that will be displayed on the frontend. Their creation is the result
of a mapping between the layout algorithm results and the information needed in the frontend.

Figure 3.14 shows the sequence diagram for computing the layout of a software system. The client
subscribes to the two topics (start and update) and communicates which repository it wants to visualize.
The View then retrieves all the evolution history and calls the packing service with the information that has
been collected and modeled. The result of the packing algorithm assigns a location to every package and
class of the system. When the /update is ready, it will provide information about the successive version of
the visualization.

Resistant Layout: From Model to Objects In Section 3.1.2 we discussed our approach for modeling
histories. The model implemented in metricity is the result of multiple iterations in which the relationships
between the entities have been modified to best represent the evolution of a software system. For this
reason, in this paragraph, we discuss more in detail the data contained within each of the entities of the
model. Figure 3.15 show relationships of the evolution-model developed within metricity.

Everything starts with the concept of Repository. The Repository is the entity from which everything
is accessible. The object contains a list of Commits, a RepositoryHistory, a list of PackageHistory and
ClassHistory entities. In addition to these entities, the Repository has a particular object called MXNode.
This object is used to describe the relationship between PackageHistories. PackageHistories have an inter-
nal hierarchy to describe the package structure in the source code. By traversing this unique object, we can
understand the nesting level of every package.

History entities constitute the evolution of single versions that are found within the software system.
M3TRICITY, features a single RepositoryHistory, and multiple PackageHistories and ClassHistories, each
one representing a package or a class. Due to the evolution, packages and classes can be merged. This
information is extracted from the versioning system, by looking for rename operations. It is important to
mention that Histories do not have a name, but either an ID that defines them, as discussed in Section 3.1.1.
Class A will not be contained inside a ClassHistory that’s named in the same way. This choice is the result
of the possibility that the class itself in the future might change the name into another one, therefore naming
the history as the class would have been a wrong choice. As a result, the linking of history to a name is
done only at the version level. PackageHistories, on the other hand, also contain a list of sub-packages that
are the result of the hierarchy of MXNode. Figure 3.16 depicts the entities’ hierarchy inside our tool.
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FIGURE 3.14: Sequence diagram for the visualization of software systems evolution.
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FIGURE 3.15: Evolution model as represented in M3TRICITY.
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FIGURE 3.16: Class diagram of History entities.

Version entities represent the leaves of the evolution. A version is a single point in the history of the
software system i.e., snapshot of the system. MetricityVersionEntity is the base object that is extended by all
other versions. Inside it, we find the NamingData object that contains the naming information given to the
entity at that point in time. To understand to which history it belongs to, we have an inverse relationship
with the HistoryEntity. A parent-child relation depicts a simple pointer between two consecutive versions,
while the set of MetricData contains information about the metrics at that specific version. PackageVersion
and ClassVersion entities have two special fields named versions and modifiedVersions. The first one contains
all the versions within that specific version, while the second one contains only the modified ones. We
separated these cases because packages can contain multiple classes making expensive to iterate on the
versions field. On the other hand, commits typically contain only a few changes and iterating over them is
much faster. Figure 3.17 shows the final structure of the version entities.

FIGURE 3.17: Class diagram of Version entities.
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Frontend

The frontend is developed using Typescript,8 and uses Vue.js, an open-source JavaScript framework for
building user interfaces. Regarding the styling framework, we decided to use Bootstrap,9 an open-source
CSS framework directed at responsive, mobile-first frontend web development. Regarding the visualiza-
tion of the software systems, we used Babylon.js,10 is a real-time 3D engine using a JavaScript library for
displaying 3D graphics in a web browser.

In Figure 3.18, we summarize the interactions needed to visualize the evolution of a software system on
the canvas. Everything starts when the user selects a repository. At this point, the client subscribes itself to
specific endpoints through the WebSocket protocol. After having received the information about the first
version of the system, it creates an initial layout. Every object gets assigned an identifier representing the
same identifier that is generated in the backend. This will be later used during the interaction with the
canvas to retrieve additional information. When the objects are constructed and displayed on the canvas,
the application checks whether the rendering of objects completed before requiring an update with the next
version. From this point on, the logic is the same until no more versions are found. After the first version,
animations are added to give a sense of growing/shrinking city. The animations are computationally heavy
and require resources from the user’s machine. For this reason, updates are managed by a scheduler which
guarantees that the animation has been completed correctly, to ensure a correct view of the evolution.

When developing the frontend, we needed to fulfill the following requirements:

• Easily extensible to new languages. M3TRICITY is designed to support multiple programming lan-
guages. By extending the MetricExtractor, developers can implement their logic to extract metrics
from files and add new metrics.

• Portable. M3TRICITY is accessible from anywhere through the web. The tool was developed to be
used on multiple platforms, including mobile, smoothly.

• Resistant layout. The placement of the elements within the view is resistant to changes. Their place-
ment is computed in advance while taking into consideration the evolution of the element itself. This
placement guarantees a better representation of the evolution of the system.

• Navigable. The evolution of any software system can be navigated through specific interactions. Thus,
we consider the possibility of exploring only a selected part of the history that is in the interest of the
user. For this, users can jump in time or increase the speed of the evolution.

• Customizable. Users can personalize the metrics used in the visualization. In addition, for example,
the user can use specific functions to highlight different areas of interest within the city.

• Interactive. M3TRICITY was designed to ease the access to versions information. User can access it
simply by using simple operations such as hovering and clicking (e.g., highlighting of the evolution-
timeline and details about the selected class).

3.2.2 User Interface

In this section, we present an overview of the user interface of M3TRICITY. To do so, we go through the
web pages of the application and discuss the main features available on each page.

8See https://www.typescriptlang.org/
9See https://getbootstrap.com/

10See https://www.babylonjs.com/

https://www.typescriptlang.org/
https://getbootstrap.com/
https://www.babylonjs.com/
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FIGURE 3.18: Sequence diagram for the visualization of software systems evolution in the
frontend.
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Home Page

The home page of M3TRICITY consists of two main sections: an input field and a repositories list. Figure
3.19A shows the input field, in which a user can insert a GitHub url. As soon as the analysis is started,
the repository will appear in the list that is highlighted in Figure 3.19B. The list also contains the already
analyzed repositories that can be navigated by clicking on the project name.

FIGURE 3.19: M3TRICITY home page.

City View

Figure 3.20 shows the main view of M3TRICITY. To access it, the user needs to select one of the analyzed
repositories from the home page. If the user wants to analyze other repositories, he needs to submit a new
request. From the top bar (see Figure 3.20A), users can learn more about M3TRICITY or reach the project
homepage where they can open the visualization on a pre-existing project or start the analysis of a new
GitHub repository. M3TRICITY shows the name and the author of the project being analyzed (see Figure
3.20B) and displays the timestamps and the authors of the five last commits (see Figure 3.20C).

At the bottom, a timeline (Figure 3.20D) summarizes the evolution of the project. It indicates when
metrics have been changed, i.e., the number of fields, methods, for-loops, and lines of code, computed for
each revision. We use a timeline visualization to depict this information: On the x-axis, there are the project
versions crawled from the repository, while on the y-axis, there are the four categories of changes. The
size of each dot represents the value for each change category in a specific version normalized across the
complete history of the system. A larger dot means, therefore, more changes during the version. A cursor,
highlighted in Figure 3.20E, keeps track of the snapshot being depicted in the canvas (Figure 3.20H). By
clicking on the timeline, users can jump to the visualization of the selected version.

On the bottom right, M3TRICITY displays the commit message of the current snapshot (Figure 3.20F).
The control panel (Figure 3.20G) lets users move through time by playing, pausing, forwarding, or rewind-
ing the visualization. The visualization canvas (Figure 3.20H) occupies the central part of the screen.

By hovering on elements in the visualization, M3TRICITY shows a tooltip with additional information
(Figure 3.20I), while by clicking over any of the elements, additional information is displayed like the
complete filename but also its metrics and version.
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On the top right corner of the screen, M3TRICITY summarizes information about the history of the
system at hand (Figure 3.20J), lets the user choose between different ways to traverse time (Figure 3.20L),
and change the settings (Figure 3.20K).

In the snapshot depicted in Figure 3.20H, JETUML is undergoing a structural refactoring [66] where
all classes in a package com.horstmann.violet are moved to package ca.mcgill.cs.stg.jetuml. The
visualization uses 3D edge bundling to highlight structural refactorings depicting arcs from the original
position to the new one. In addition, the packages and classes that are modified are highlighted during
each revision.
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FIGURE 3.20: Visualizing a snapshot of JETUML with M3TRICITY with the main UI elements
highlighted.

Settings Panel

Figure 3.21 shows the settings panel of M3TRICITY where users can toggle the visualization of different
elements (e.g., title, date, commit messages, pop-ups) and change the metrics used in the visualization
(e.g., depth and height of the cuboids).

General Settings (Figure 3.21A) enable the user to fine-tune the visualization. It is possible to hide some
elements on the canvas or switch to full-screen mode. Artifacts Settings (Figure 3.21B) allow choosing
the metrics used in the visualization and defining some parameters, i.e., the minimum width and height,
the gap between the objects (i.e., bump). Names PopUp Settings (Figure 3.21C) lets users toggle automatic
tooltips to show the names of the elements (i.e., classes and packages) that have been modified in the current
snapshot. Figure 3.21D is used for hiding objects matching a regular expression. Colorization (Figure 3.21E)
lets users assign specific colors to objects, based on the tags extracted from the name of the file, a regular
expression, or by manually selecting the elements on the canvas.

3.3 Limitations

This section discuss the limitations of M3TRICITY. When possible, we will also propose possible solutions
to these problems.
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FIGURE 3.21: The settings of M3TRICITY.

Improving the history building. Constructing the evolution model of a software system requires to check
out every commit in increasing order. Performance on this phase of the analysis is sub-optimal, with times
that increase as the number of change in each commit increases. Git versioning systems hierarchy is based
in a tree-like structure, where each commit is a node. To increase the performance, one possible solution for
the future is not to check out every commit but either using the information contained in the log, such as
the lines modified and what has actually changed. By doing so, we will avoid to check out every commit.
Another solution consists in keeping the current structure while trying to parallelize the extraction of the
commits. This second solution requires to rethink how to connect histories since results might not be
ordered anymore.

More resistant layout. The layout of M3TRICITY could be more resistant if we are able to deal with all
possible cases that might happen with packages. In fact, our visualization approach assigns an area in the
layout for every package, without taking into consideration the possibility that packages might be renamed
or split. However, the correct approach would have been to try to display also those cases, while reusing
the space that the package before the rename/split was using. The problem with this approach is that time
must be spent to understand all possible situation that might happen during the evolution of software sys-
tems. In addition to this, even the simplest solution would require to rethought the visualization, together
with the packing algorithm as our implementation do not support it.

Space reuse. To achieve a more compact layout, the free space that in future revisions of the software
system is not used anymore, should be reused by newly appearing packages and classes to avoid to have
dead areas within the city. To do this operation, we need to track the evolution when we compute the
resistant-layout. We can then reassign previously used space to new elements. Figure 3.22 depicts how the
layout will change when the space is reused. On the top row we can see the current implementation of the
history-resitant layout. In revision 2 (R2), package B gets deleted. Still, within the layout that space will be
reserved for the complete evolution of the software system, even if not needed anymore. At the bottom,
the space reuse let package C occupy the space that was reserved by B in the previous version. With this
operation, the layout becomes more compact as can be seen in version 3 (R3), where D is placed closer to
the other packages.
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FIGURE 3.22: Example of space reuse vs History-resistant layout.

Rename and copy detection. Git entities can be added, renamed, copied and deleted. In two of these four
cases, Git does not seem to do a good job: rename and copy detection. JGit, the tool used for accessing Git
by Java, has an external library that tries to increase the chances of detecting these two crucial cases. It uses
math to understand if two files are the same or not. Still, this is far from optimal because some files might
be undetected. The library itself has parameters that can be changed to try to increase the match score. In
the future, we will try to increase the detection of those cases, going down to method level to have a more
in-depth knowledge of the changed that happened over time.

Metric Extraction For each commit, M3TRICITY it generates an XML for each source file, containing in-
formation about its composition using tags. This double pass is slow as the tool not only needs to wait that
the commits are checked-out, but also that srcML finishes the parsing of each file and writes the output to
another file. These steps require unnecessary IO operations that could be avoided. In the end, M3TRICITY

compute the metrics based on the information found in the XML. As a solution to this problem, our tool
should avoid using external tools for this pass and work directly within M3TRICITY. For this, a parser for
multiple languages should be integrated and used to compute metrics.

Database integration. One of the first simplifications made to our tool, was to drop the remote database
in favour of an in-memory one. The major problem is due to the performance of the remote database when
retrieving the histories. In fact, to generate the resistant-layout, all histories for a repository need to be
retrieved, discussed in the next paragraph.

Bin-packing at construction level. The logic of the application consists of two main operations:

• History building: deals with constructing the evolution of the software system

• Visualization: deals with computing how the elements should be visualized and simplify the objects
sent to the frontend.
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The View component is also responsible for computing the layout of the software system. The main prob-
lem with this approach is that during the first request of the visualization, the component needs to retrieve
the whole history of the repository to compute the layout. By moving this operation in the history-building
phase, the amount of time spent would be decreased since no requests would be made to the database while
asking for all entities. In addition, the position of each class and package will be already defined at any
version, not requiring any computation when trying to access it.

Redefine PackageHistories. PackageHistories have a big problem, as they represent the history of a series
of entities. When we think of a history of a class or package, we imagine it as a single entity with a start
and an end. PackageHistory entities can have a much more complicated structure, in which a package is
split into multiple new ones, or in which it is merged into an existing one.

Dealing with this case of scenarios is not straightforward. In our case, we decided to generate a new
PackageHistory for every package, while in reality histories might be related to other histories depending
on their content. This approach simplified on one side the visualization of the evolution but created a
situation in which information extracted from the versioning system was dropped to preserve a linear and
straightforward structure.

In future, we will model these entities differently. PackageHistories might connect to other histories
since what defines them are the actual classes contained, and they might belong to multiple packages
during their evolution. A better representation for this would be a graph, in which history is not unique but
can accept that at a given point in time gets connected to other histories, creating a hierarchy of histories.
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Chapter 4

M3TRICITY in Practice

This section shows the capabilities of our evolution-resistant layout and M3TRICITY in general. We use
M3TRICITY to analyze the evolution of the tool itself, followed by JetUML, the test project on which we
relied during the development of the tool. Finally, we conclude by viewing the development of two other
projects. The characteristics of these systems in terms of the number of Java classes and lines of code (LOC,
excluding comments and empty lines) are described in Table 4.1.

Name First Analyzed Commit Last Analyzed Commit Classes LOC

M3tricity Apr 10, 2020 Aug 18, 2020 141 6,587
JetUML Jan 4, 2015 Jul 28, 2020 247 23,639
cwa-server Apr 26, 2020 Aug 25, 2020 194 10,293
jib Jul 23, 2017 Aug 27, 2020 512 46,815

TABLE 4.1: Main characteristics of the analyzed software systems.

4.1 M3TRICITY

In this section, we analyze the evolution of M3TRICITY using M3TRICITY. With this approach, we want to
verify if the work done by us in the past six months is reflected in our visualization. Our tool has been
developed in Java and Typescript and consists of 141 Java files and 195 commits on the Master branch.

FIGURE 4.1: Separation of frontend and backend in the view using highlighting.

Figure 4.3A shows the first implementation of the backend. On the other hand, the frontend is not
visible since we decided to prioritize the creation of the evolution model over the actual visualization. The
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separation between frontend and backend inside our visualization can also be seen in Figure 4.1. In the
picture, the backend has been highlighted in red and the frontend in green.

Figure 4.3B depicts the moment when the frontend has been added to the Master branch. Inside the
picture, we can see that all elements have the same size. This effect is the result of our tool not being able
to extract metrics information for Typescript and Javascript languages (see Figure 4.2). M3TRICITY still
assigns a minimum size to every element in the source code and the folder, therefore creating a complete
representation of the software system.

FIGURE 4.2: M3TRICITY frontend district.

In Figure 4.3C, version 128 represents the
moment in which we started developing the
evolution-resistant layout using the bin-packing al-
gorithm. During this phase, we tried multiple dif-
ferent approaches while trying to achieve a pleas-
ant visualization that respects the software sys-
tem’s evolution. All the different approaches for
the bin-packing algorithm and resistant layout can
be visualized in the bottom-left part of the city.

One of the latest versions of our tool can be vi-
sualized in Figure 4.3D. In the picture, we can see
that the evolution of the system regarding the pack-
ing algorithm, in the bottom-left district, has grown over time, resulting from multiple buildings, repre-
senting classes, added to the city.

Nevertheless, the tool was able to visualize the evolution of M3TRICITY, in a way that, being familiar
with the development, we could identify all the major phases in the lifespan of M3TRICITY.



4.1. M3TRICITY 41

FIGURE 4.3: M3TRICITY evolution.
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4.2 JetUML

JETUML1 is a desktop application for fast UML diagramming. Written mostly in Java, the history of the
system starts in early 2015 with the first commits of M.P. Robillard. Up to today (August 31, 2020) has 1,846
commits and of 247 Java files.

Violet, Violetta, and JetUML. Figure 4.4 shows six key snapshots of JETUML visualized with M3TRICITY.
Figure 4.4A depicts the first available version [67] of the project. Most of the canvas is empty but our

history-resistant layout already pre-allocated the space needed to contain the whole evolution of JETUML.
On the left part of the visualization, there is a densely populated district: By hovering on the visualiza-
tion, we learn that this is the complete source code of the VIOLET2 project contained in a package called
com.horstmann.violet.

Figure 4.4B shows the 28th [68] revision of the system. Its commit message says “#8 moved to dedicated
package.” In this revision, half of the classes contained in the package com.horstmann.violet are moved
into a newly created package named ca.mcgill.cs.stg.violetta.graph giving birth to the VIOLETTA

project.
In the snapshot depicted in Figure 4.4C [69], all the classes of VIOLET and VIOLETTA are moved into

a new package called ca.mcgill.cs.stg.jetuml, giving officially birth to the JETUML project. From this
snapshot up to version 654 [70] a few changes happen inside the main package.

Figure 4.4D is the result of a move refactoring where all the classes dedicated to edges and nodes
are moved into dedicated packages. A major change happens at version 710 [71], depicted in Figure 4.4E:
packages were renamed by removing the acronym “stg” from their names (e.g., ca.mcgill.cs.stg.jetuml
became ca.mcgill.cs.jetuml), leading to a new placement of the classes. While this looks like a simple
renaming, which would not be displayed as a relocation, in fact it is a restructuring and M3TRICITY displays
it as an explicit movement of classes. The last structural change we depict in Figure 4.4F is at revision 1005
[72] when numerous classes are affected by a package renaming where the word “graph” was substituted
by “diagram.”

After spotting these interesting stages in the development of JetUML, we were interested in the opinion
of its developers and asked its creator to visualize it, who commented:

“ The perspective I see is consistent with my recollection of the evolution of the system. The
visualization is helpful to identify some of the events that impacted the maturity of the sys-
tem. Examples include the emergence of the test suite and its gradual increase in importance
and the refactoring of God classes. This information is not directly available from the release
notes, because in JetUML releases tend to be aligned with user-facing changes more than code
restructuring.

Martin P. Robillard – creator of JetUML ”

1See https://github.com/prmr/JetUML
2See https://horstmann.com/violet

https://github.com/prmr/JetUML
https://horstmann.com/violet
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FIGURE 4.4: JetUML evolution.
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4.3 cwa-server

CORONA-WARN-APP SERVER3 is Germany’s official backend application for coronavirus contact tracing.
Developed by SAP SE in a short amount of time (2 months), it consists of 419 commits and has 193 Java
files.

Figure 4.6A shows the project setup [73]. As before, space is pre-allocated by taking into consideration
the whole evolution of CWA-SERVER. Since the beginning of the development, the layout consisted of three
main areas: on the bottom left tools, on the top left services and bottom-right common. Accessing this
information can be done by hovering over the canvas (see Figure 4.5).

FIGURE 4.5: M3TRICITY with hover tooltip.

Figure 4.6B shows the 8th [74] revision of the
system, in which a large building appears. It is
a class responsible for the risk score. Figure 4.6C
[75], shows the real start of the application develop-
ment. The newly created district contains the first
version of the API while also added a mock-server.

Figure 4.6D depicts the moment in which all
modules containing svc are renamed [76]. Around
the same time, the developers renamed the appli-
cation from ena to cwa. Another major change hap-
pens at version 40 [77], depicted in Figure 4.6E: the
commit message says “Update distribution mock server #64”, in which the latest version of the API is made
public. As we can see, it does not consist anymore of a copy-paste as happened in Figure 4.6D, but either
completely new files [78]. This information is derived from the fact that no arcs appear in the visualization.
Figure 4.6F depicts one of the final revisions of the software system [78].

3See https://github.com/corona-warn-app/cwa-server

https://github.com/corona-warn-app/cwa-server
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FIGURE 4.6: Cwa server evolution.
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4.4 jib

JIB4 is an open-source project by GoogleContainerTools. In its latest version, consists of 512 Java files and
1,552 commits. The project itself aims to create a library for building optimized Docker images without
knowledge about Docker best-practices.

FIGURE 4.7: Jib latest revision.

Being developed by a large company, we selected this project due to its size. As compared with the
previous projects, in Figure 4.7 we can see that the sizes of the buildings are more balanced during all
revisions of the project despite the large amount of classes.

For this project, we selected two evolution changes during the first iterations of developments of this
project. Figure 4.6A shows revision 57 [79]. The comment says “Deletes minikube-related content. #1” and
even if no comments are accessible for this merge requests, we can see that the internal structure of the sys-
tem changes by splitting it into multiple smaller ones. Another major change happens later at revision 61
[80], in this case, the content of the whole system gets moved from package core to the package jib-core.

4See https://github.com/GoogleContainerTools/jib

https://github.com/GoogleContainerTools/jib
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FIGURE 4.8: Jib evolution.
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4.5 Analysis Summary

To illustrate the validity of our approach for visualizing software system evolution, we analyzed four
different software systems.

The first case consisted of M3TRICITY itself, the tool that computes and generates the evolution-resistant
layout used for displaying software systems as cities. We used this case to verify that the visualization
resulting from the analysis was represented at best compared to what we had developed in the previous
months.

The second case consisted in analyzing the evolution of JetUML, a desktop application for interactively
creating and editing diagrams in the Unified Modeling Language. In this case, the analysis was more in-
depth than the others. Using our visualization, we looked for the changes that happened over its evolution,
discovering exciting insights such as the various name changes that happened. In addition, we contacted
the author asking him if what he was seeing was respecting the development of the system.

In the end, we analyzed two other projects, cwa-server and jib. The first is the official coronavirus
tracking application in Germany and was selected to understand how an application that needs to be
developed very quickly evolves. The result was a quickly changing city. Jib, on the other hand, showed us
how large software systems evolve.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize our work, discuss key lessons learned throughout the development of
M3TRICITY and present directions for future work. Section 5.1 recaps of what has been done. Section 5.2
reflects on what has been learned during the development of M3TRICITY, giving some insights into what
could have been done differently. Concluding, in Section 5.3 discuss possible changes and extensions for
the future.

5.1 Summary

The main goal of this thesis is to visualize software systems evolution using the city metaphor and an
evolution-resistant layout. We wanted to show that creating a resistant layout would, therefore, make the
visualization more understandable to the user who studies the evolution of a system.

We believe that visualizing software systems evolution is an excellent way to discover and understand
how a system was created since the beginning of its development. With M3TRICITY, a web application
that we developed for this thesis, we implemented a layout that leverages the evolution model to create a
history-resistant layout. In addition to this, we rethought Hismo evolution model, to make it more accessi-
ble and explorable, by simplifying its internal structure. We examined the best way to store the evolution of
software systems, given the information that the versioning system was providing us. In the end, we found
out that visualizing software systems in a resistant way involves many individual cases, such as class and
package renames but also package split. Nevertheless, in the end, our solution is capable of handling many
of these cases and visualizing the development of a system in an evolution-resistant way.

When we reached a stable development of the evolution model, the history-builder and layout algo-
rithm, we decided it was time to add functionalities to the visualization.

We used M3TRICITY to see how real software systems developed over time. We discovered that none
of the applications we decided to analyze was stale. All of them developed uniquely, with some common
visual patterns. For example, large refactorings happened but also many renames.

5.2 Reflections

In this section, we to recap what we learned and what could be done differently. We summarize these
in four categories: reflections on the evolution model, reflections about extracting metrics efficiently and
reflections on web-based visualizations.

5.2.1 Reflections on the Evolution Model

We saw that evolution models had been developed in the past, with the idea of creating a generic model
that fits all possible cases. In this thesis, we decided to focus on the model proposed by Tudor Gîrba [6].
We tried to simplify the model to make it more consistent with the structure itself proposed by the author.
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The absence of a RepositoryHistory and RepositoryVersion reduced the logic built in the evolution model
itself, making it less understandable.

The model proposed a concept of Snapshot to understand where and when something was stored.
However, at the underlying levels, the hierarchy was well defined, while at Snapshot level, it was not.
With the use of RepositoryHistory and RepositoryVersion, we had added a responsible layer to understand
where and when something was seen, without however changing the hierarchy of the underlying levels.
Moreover, the original model was developed for Subversion and not for Git, with different concepts for a
version control system. Adapting it to Git required keeping ftrack of every change in the name of a source
file over the complete evolution of a software system.

Our model is not perfect. Still, it has reached a point in which is able to store the information that
regards software systems evolutions. Even if PackageHistories will need to be investigated more in-depth,
the model is able to display consistently the evolution of classes, packages and even repositories.

5.2.2 Reflections about Extracting Metrics Efficiently

From the beginning of the implementation, one of the main problems was to figure out the extraction of
metrics from a software system.

Contrary to what we expected, there were not many possibilities to choose from. Most of the libraries
were almost always language-dependent, creating the need to develop specific handlers for each language.
In the end, we decided to use srcML, an infrastructure for the exploration, analysis, and manipulation of
source code that converts the source code into XML. At this point, we were able to compute the metrics
based on the output of the tool.

A generic library capable of parsing and extracting metrics for each language could simplify the work
of analyzing software systems. This library might also be used by developers who need to analyze and
extract additional information. It is also true that languages change quickly and that maintaining such a
library could be a tedious job, but with benefits.

5.2.3 Reflections on Web-GL Visualizations and Babylon.js

One of the core requirement was to create a tool that was accessible from anywhere by anyone. For this
reason, we decided to develop a web application that uses a 3D library called Babylon.js to display software
system as cities.

A large software system often consists of many classes, many packages and many refactoring. This
can lead to scenes with thousands of objects and multiple animations. Resources on web browsers are
much more limited than native software, for this reason in all libraries is suggested to limit the number
of active meshes within the view. Alternative solutions to visualize large amount of objects exist, such
as solid particle systems or mesh instances, but do not always fit the need of the developer. Solid particle
systems consist of objects that can have different materials and different shapes, but at rendering time they
are transformed into a single mesh, removing the possibility to interact with any of those elements. On the
other hand, mesh instances do have the possibility to add control over the single instance, while sharing
some properties with the root mesh, reducing the calls for drawing the meshes. Still, instances will occupy
a larger amount of memory when compared to solid particle systems. In addition, instances always share
the material with the root mesh, making it impossible to change it.

Functionalities to convert particles into meshes when close to the camera or hovered over them are
absent from the library. Operation for this type of problem should be added to add interactivity to the
scene while maintaining an overall good performance.
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5.3 Future Work

In this section, we discuss some future directions for M3TRICITY.

Rebuilding frontend. The logic behind the frontend is quite complicated and should be refactored to
implement different solutions while aiming to increase the number of objects that can be rendered. Knowl-
edge of the web-gl framework has increased over time, and current implementation does not make use of
it. Interaction with the backend and time-scheduling as it is now is over complicated.

It would be interesting to try multiple approaches depending on the user’s devices. In fact, we could
try to use different solutions depending on the specification of the laptop or phone. In addition to this,
dropping some features in favour of alternative solutions such as mesh reuse and partial scene rendering
should be tried.

Moving elements. Elements within the canvas are not moved but rather disposed and rendered into a
new location during a rename operation. Having the possibility to see the objects moving into the new
location could be intriguing. The same logic could apply during packages split, copying and renames.

Learning from history. By analyzing multiple software systems, we could try to learn if common patterns
exist within their evolution. The evolution model provides additional information that we are not using,
and that can be used for different purposes not related to the city metaphor. For example, determine how
classes that have similar names develop over time in different systems, or if given a package name multiple
systems have a specific class in it that can ease the future development of the system.

Exporting RepositoryHistory A requirement of M3TRICITY was to export the evolution history of the
software system under CSV format. By doing so, could export the information provided by the versioning
system to be used by different applications or visualization that is not based on the city metaphor.

5.4 Final Words

During the past four months, we developed M3TRICITY, an application that leverages the 3D city metaphor
with an evolution-resistant layout. We implemented it as a web application available at
http://metricity.si.usi.ch/.

We believe that what we learned should be used to create a better evolution model together with a more
resistant layout.

The ideas and important lessons learned within this thesis about visualizing software systems in an
evolution-resistant layout can serve as a starting point and become a useful reference for future studies.

http://metricity.si.usi.ch/
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