
Web-Based Collaborative Software Modeling

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Haidar Osman

under the supervision of

Prof. Michele Lanza

co-supervised by

Fernando Olivero

January 2013

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Haidar Osman
Lugano, 30 January 2013

i

To Dima, my friend, my partner, my love, my life, the woman who
knows how to make her man reach beyond limits . . .

To Rima, the joy of my life . . .

To my father, mother, and sister for their unconditional love and
unlimited support . . .

iii

iv

A clever person solves a problem.
A wise person avoids it.

Einstein

v

vi

Abstract

Software modeling is a fundamental process in any software development methodology. This
process aims at identifying the core elements in the system and the relations among those
elements. It is also the phase where many important design decisions are made and those
decisions will affect the quality of that software system through all the rest of the development
phases. Software development is a social activity and includes extensive collaboration through-
out the software lifecycle including the modeling phase. In modern software industry, many
development teams are geographically spread out, making collaboration an important issue.
In this thesis, we present a new approach to support development teams carry on modeling
sessions even when the members are far away from each other. Our approach is based on real-
time change-based collaboration that makes team members work together on the same model
at the same time taking into consideration the importance of awareness among team members.
To demonstrate our ideas, we built a tool, Sawa, a web-based collaborative software modeling
tool that allows team members to work together on the same model at the same time. Sawa
also increases team awareness by its highlighting system that makes all team members know
who is doing or has done what. It also allows users to replay the building process of a model
to get the full picture of how a model has reached its current state.
We ran an evaluation experiment on Sawa and gathered qualitative feedback that supports our
belief that our approach increases the productivity of modelers and helps them solve conflicts
as they happen to avoid future complications, thus leading to better design decisions and better
models in general.

vii

viii

Acknowledgements

First of all, I’d like to thank is my advisor, Prof. Michele Lanza for the brilliant ideas and
unlimited support. He was not only my scientific advisor, but also my mentor.
Also I want to thank Fernando Olivero for his valuable advices and guidance throughout this
thesis work.

I want to thank my friends Bisrat and Michel. You guys were like brothers to me and we
really shared a lot during this master program.
I have to thank also my friends Luca, Remo, and Roberto for the great advices and help they
sincerely offered.

Finally I want to express my gratitude to the whole REVEAL group. You are an amazing
team and working with you was an unforgettable experience.

ix

x

Contents

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Contributions . 1
1.2 Structure Of The Document . 2

2 Related Work 3
2.1 Modeling Techniques . 3

2.1.1 Informal Techniques . 3
2.1.2 Formal Techniques . 5
2.1.3 Model-Oriented Programming . 7
2.1.4 Source Code Based Modeling . 7

2.2 Collaborative Engineering and Modeling . 9
2.3 Summary . 10

3 Web-Based Collaborative Software Modeling 13
3.1 Problem Formulation . 13
3.2 Our Approach . 13

3.2.1 Modeling Technique . 14
3.2.2 Collaboration . 14
3.2.3 Awareness . 14

3.3 Sawa in a Nutshell . 15
3.4 User Interface Design . 16
3.5 Architecture . 18

3.5.1 Implementation-Level Decisions . 18
3.5.2 Overall Architecture . 19
3.5.3 Server-Side Implementation . 21
3.5.4 Client-Side Implementation . 25
3.5.5 Network Problems . 29

xi

xii Contents

4 Evaluation 31
4.1 Experiment Design . 31

4.1.1 Pre-experiment questionnaire . 31
4.1.2 Modeling Tasks . 31
4.1.3 Post-Experiment Questionnaire . 33
4.1.4 Threats to Validity . 33

4.2 The Outcome . 34
4.2.1 Questionnaire Results . 35
4.2.2 User Feedback . 37
4.2.3 Observations . 38

4.3 Reflections . 39

5 Conclusions 41
5.1 Contributions . 41
5.2 Future Work . 42
5.3 Epilogue . 43

A Experiment Handout 45

B Experiment Raw Results 57

C Sawa Quick Manual 63

Bibliography 65

Figures

2.1 CRC model example . 4
2.2 Using new tools to facilitate the modeling sessions with lightweight techniques . 5

(a) CREWW Environment . 5
(b) CALICO Environment . 5

2.3 Various UML editing environments . 6
(a) ArgoUML is a stand-alone UML editor . 6
(b) UMLLab is an Eclipse plug-in for UML editing 6
(c) Gliffy is a browser-based UML editor . 6

2.4 IDEs that support better comprehension of source code by visual notations . . . 8
(a) Code Canvas: An IDE that supports the semantic zooming principle 8
(b) Code Bubbles IDE: Modeling by grouping . 8
(c) Gaucho: An IDE based on direct manipulation of objects in a dynamic OOP

system . 8
2.5 Different tools to support collaborative software engineering 10

(a) FASTDash: a tool for visualizing team members’ current activities on the
shared code base . 10

(b) CollabVS: A Visual Studio extension for collaborative and distributed de-
velopment . 10

(c) Syde: An Eclipse plug-in for increasing awareness in collaborative software
development . 10

3.1 Sawa login page: It has login form, register button, and textual explanation
about the tool. 16

3.2 Sawa user interface . 17
3.3 Highlighted objects to increase user awareness of what happened in his/her

absence . 18
3.4 The overall architecture of Sawa . 20
3.5 The implementation of TeaTime in Sawa . 21
3.6 The overall functionality of Sawa explaining the three phases the client goes throw 22
3.7 The process of routing the commands in Sawa . 23
3.8 The architecture and the main components of the server in Sawa 24
3.9 The sub-components of the web server component 24
3.10 The detailed process of handling the HTTP requests showing the component

responsible for each step . 25

xiii

xiv Figures

3.11 The type of requests and the corresponding triggered events in the router com-
ponent . 26

3.12 The main components of the client . 26
3.13 The main user interface of Sawa. One can see the HTML elements that change

frequently as the coming commands are executed 27
3.14 The types of messages received by the Communication Manager and the corre-

sponding events . 28
3.15 Explanation of the disconnect/reconnect scenario 29
3.16 The client knows the right order of the commands and will execute them only

in the right order . 30

4.1 Comparison between ArgoUML and Sawa in many usability aspects where par-
ticipants ranked these aspects on a scale from 1 to 5. 35

4.2 Comparison between ArgoUML and Sawa regarding conflicts, the need to talk,
and awareness. Participants ranked the frequency of those events occurrences
on a scale from 1 to 5 according to their experience during the experiment. . . . 36

4.3 Comparison between Sawa and ArgoUML regarding task completion 37

Tables

4.1 Pre-Experiment Questionnaire Personal Data Results 32
4.2 Pre-Experiment Questionnaire Results showing the number of participants in

each skill level in the fields we are working in. 32
4.3 Pre-Experiment Questionnaire Results showing the number of participants in

each experience level (measured in years) in the fields we are working in. 32

xv

xvi Tables

Chapter 1

Introduction

A Model is a simplified representation of the reality. Engineers model systems or phenomena
to understand how a system will behave by identifying the concepts, entities, and dynamics
of that system. The level of detail included in a model is strongly related to the goals of the
modeling process. Models aim at finding flaws and defects, determining the cost of building
the real thing, or serving as a plan. In computer science, software models usually serve as
blueprints of software systems by determining their core elements, their relations, and their
behavior at runtime. Omitting the modeling phase and going directly to implementation often
results in a failure or an unmaintainable software system.
Software development is a social activity. It involves social interactions among team members
who collaboratively make decisions, discuss problems, and solve conflicts. Since software mod-
eling is a fundamental phase in software development, it inherently involves team work and
collective decision making.
When software modelers are working in the same place, they can easily communicate and
openly discuss their models. With the rise of global software engineering (GSE), collaboration
among team members is an issue. When team members are geographically spread out, the ex-
isting techniques in software modeling include the use of communication channels, like instant
messaging or emails, and file sharing mechanisms, like Dropbox or email attachments. This
negatively affects the productivity of the modelers because they waste time in context switch-
ing, solving conflicts, merging models, and understanding what the others have done and how.
We present Sawa, a web-based collaborative software modeling tool that support geographi-
cally spread team members allowing them to work concurrently together and build software
models. Our approach in Sawa provides real-time collaboration and an awareness system to
facilitate the modeling process.

1.1 Contributions

The contributions of this work can be summarized as follows:

• A real-time change-based approach in collaborative software modeling to support soft-
ware modelers when they are geographically far from each others.

• New ways to increase team members awareness by providing them with the necessary
information about who is doing what, and how models reached a certain state.

1

2 1.2 Structure Of The Document

• A web-based tool, Sawa, that implements our collaborative approach in software model-
ing.

• A qualitative experiment on Sawa to gather real users feedback regarding our approach.

1.2 Structure Of The Document

The rest of this document is organized as follows:

• Chapter 2 we present the work related to our research in two main directions. The
first direction is concerned with formal techniques, informal techniques, model-oriented
programing, and source code based modeling. This part talks about the advantages,
disadvantages, and opportunities provided by each technique. The second direction is
concerned with collaboration in software development in general by demonstrating many
tools and approaches that support team work and increase team awareness.

• In Chapter 3 we formulate the research problem we are tackling and illustrate our ap-
proach justifying all our design and implementation decisions. We also describe our tool,
Sawa, and detail its architecture including its design principles and patterns. We also
talk about how Sawa supports collaboration and increases team awareness.

• In Chapter 4 we detail the experiment we ran to qualitatively evaluate Sawa. We also
explain our methodology to gather information and feedback and how we coped with
the threats to validity.

• In Chapter 5 we review and conclude this thesis discussing the work that has been done
so far and the possible future research directions.

• In Appendix A we provide the handout that was used during the evaluation experiment.

• In Appendix B we list the raw results of the questionnaires conducted during the exper-
iment.

• In Appendix C we explain how to use Sawa for building models.

Chapter 2

Related Work

Modeling is an important phase in the software development lifecycle. It includes brainstorm-
ing, drawing, communicating, and teamwork. During this phase, very important design deci-
sions are made that affect the quality and maintainability of software. Most software devel-
opment methodologies (like Waterfall [Roy87], Spiral [Boe86], and Scrum [RJ00]) include
software modeling either as a separate phase or as an ongoing activity. There have been many
research activities concerning better, easier, and more efficient ways and tools to model soft-
ware. Because software development is actually a group work that involves many teammates,
collaboration has been in the focus for many years now. Researchers are looking for better
ways to integrate collaboration in all phases of the software development cycle.
In the subsequent sections, we go through the existing approaches in modeling techniques and
collaboration styles showing their advantages, disadvantages, opportunities, and challenges.

2.1 Modeling Techniques

There are many techniques to model a software system. Some of those techniques are separated
from the coding process and some of them are integrated with the code. Each technique has
its advantages and drawbacks. In the following subsections, we go through these techniques
semonstrating the state-of-the-art research in the context of software modeling.

2.1.1 Informal Techniques

Modeling, in general, serves as a way to visualize, abstract, and solve problems with a low cost.
It is common that a group of developers gather for a discussion to discover new approaches
to solve problems they face during the software lifecycle. The common aiding tools they use
are papers, pens, and whiteboards [CVDK07]. These tools help the developers to sketch and
formulate their problems and opinions in a free way. There are also CRC cards [Wil95] [BS97]
where the modelers use small cards to write their views of the necessary information about
classes in the system, as in Figure 2.1.
These methods are informal or lightweight. The main advantage of these techniques is that
they allow the designers to draw sketches in a free and natural way without any strict rules to
follow and without any prior knowledge of certain notations. The modelers can explore the
problem space freely moving from one abstract view of the system to a more or less concrete

3

4 2.1 Modeling Techniques

Figure 2.1. CRC model example

one [Goe91]. It is up to the modelers to decide how many details to put and also to use some
formal notations if needed. Furthermore, the modelers can create new notations on-the-fly
if necessary [DH07]. All these advantages support the creativity and the think-out-of-the-box
mentality of the modelers which is highly sought after in any problem solving area in general
and in software engineering in specific [Pet09].
Despite all the advantages of the lightweight techniques, there are a lot of drawbacks and dis-
advantages. First of all, the artifacts produced during the modeling sessions are not digitalized
making them hard to store and almost impossible to manipulate and update. This is a major
cause for the drift between documentation and models on one hand, and the real implemen-
tation on the other hand. Those artifacts are useful only at the time of the modeling sessions
[SSR03]. Also it is hard for a person who was not present during these sessions to understand
those sketches or the design decisions behind them. That makes those artifacts even harder to
share and useless to maintain. That is why designers want to be able to manipulate and work
with those sketches in a more complex way.
Because of those weaknesses, there has been research about how to overcome the lightweight
modeling techniques drawbacks and many tools were introduced to aid those techniques.
CREWW [BDL11], as in Figure 2.2a, is a tool that strengthens the CRC modeling process by
digitizing it using software tools, a projector, and Wii remotes. What CREWW tries to do is to
make it possible to record the modeling sessions and maintain the CRC cards in a digitalized

5 2.1 Modeling Techniques

(a) CREWW Environment (b) CALICO Environment

Figure 2.2. Using new tools to facilitate the modeling sessions with lightweight techniques

form.
Another tool, Calico [MBD+10], tries to benefit from the electronic whiteboard, as in Figure
2.2b, to keep all the advantages of modeling with whiteboards and to add the possibility to
maintain, store, manipulate, and switch between the sketches.

2.1.2 Formal Techniques

Formal modeling means the production of diagrams and sketches that comply with formal
visual languages. UML is a widely-used representative of those modeling techniques. UML
(Unified Modeling Language) is a visual notation for software modeling that is used as a way
to visualize systems and also to serve as a clear communication standard among the design-
ers themselves, between designers and management, and between companies and customers.
UML is heavily used in industry and is recognized as a standard. UML artifacts are usually cre-
ated using UML editors that are used to manipulate, save, and edit the models. These editors
also ensure the consistency among different models to avoid conflicting design decisions.
UML and UML editors solve most of the problems introduced by lightweight techniques as de-
scribed in Section 2.1.1. The models are digitalized and printable which makes them easy to
maintain and keep updated. Also, since UML is a strict standard notation, it can easily serve
as documentation and means of communication because it is easy to share the model files.
Another advantage is that most UML editors can export code skeletons.
However, the formal techniques have their own drawbacks. The main drawback is the strict
rules and the formalism of the standard notation. It affects the freedom and consequently
the creativity of the modelers. With these techniques, the modelers focus on the right way of
producing correct and clear diagrams which keeps them from putting more effort on discover-
ing the solution space freely and examine more alternatives. Also modelers need background
knowledge before starting to work with these techniques. Different UML editors have differ-
ent file formats making it very hard to share model files among different platforms. There
are many examples of UML editors. ArgoUML1 as in figure 2.3a, Rational Rose2, and Altova
UModel3 are among many of the UML tools out there. They provide all UML standard models

1http://argouml.tigris.org/
2http://www-01.ibm.com/software/awdtools/developer/rose/
3http://www.altova.com/umodel.html

http://argouml.tigris.org
http://www-01.ibm.com/software/awdtools/developer/rose/
http://www.altova.com/umodel.html

6 2.1 Modeling Techniques

like Class Diagrams, Use Case Diagrams, Sequence Diagrams, and State Chart Diagrams. They
also provide the possibility to generate code skeletons in many languages like Java, C#, and
C++. These tools are model-oriented and not code-oriented. Meaning that the main focus of
these tools is model creation and manipulation whereas there are many other tools that focus
more on the code also like UMLLab4 , as in figure 2.3b , which is an Eclipse plugin that inte-
grates the code with the model. Any editing on the code will be reflected on the model using
reverse engineering. All previous tools are desktop programs. They need to be installed on the
local machine.

(a) ArgoUML is a stand-alone UML editor (b) UMLLab is an Eclipse plug-in for UML editing

(c) Gliffy is a browser-based UML editor

Figure 2.3. Various UML editing environments

There are few browser-based UML editing tools that allow clients to create and edit UML

4http://marketplace.eclipse.org/content/uml-lab#.ULpB7COYXH0

http://marketplace.eclipse.org/content/uml-lab#.ULpB7COYXH0

7 2.1 Modeling Techniques

diagrams from within the browser environment. yUML5, web sequence diagrams6, and gliffy7,
shown in Figure 2.3c, are good examples of the online UML editors. Although they are very
simple and easy to use, they do not really take advantage of the online environment. They only
allow you to share the models in a static way without any real-time collaboration support.

2.1.3 Model-Oriented Programming

A drawback of formal modeling is the unavoidable drift between the model and the actual im-
plementation of the system. There is a trend in research toward model-oriented programming
(MOP). Model-oriented programming aims at adding modeling concepts to programming lan-
guages. With MOP, programmers can take a model-first approach or can incrementally reengi-
neer an existing program to add modeling concepts. A MOP program is inherently human-
readable text like any other programming language but it can also be represented in diagrams.
With appropriate editors, changes can be made to texts and diagrams as well. This is called
text-diagram duality. Because of that, there is no round-trip between codes and models. A
compiler for a MOP language acts like a compiler for any other language. Programmers do not
need to look at or edit the generated code.
Model-oriented programming can increase program comprehension because it raises the ab-
straction levels of common object-oriented programming languages [BFL12] and reduces the
volume of code [FLB09]. MOP also allows users to quickly generate a fully functional proto-
type that exposes modeling implications on the user interface, and allows stakeholders to get
a feeling of how the full system will behave [FBLS12]. Another side-advantage is the facili-
tations MOP provides in teaching software engineering courses regarding UML and Modeling
[LMFB11].
A good representative of a model-oriented programming language is Umple [Bad10]. Umple
enhances languages like Java and PHP with textual modeling abstractions. It was designed
to bridge the gap between textual and graphical modeling. It adds abstractions such as as-
sociations, attributes and state machines derived from UML to object-oriented programming
languages such as Java, PHP and Ruby. One write Umple code to generate the diagrams or
draws the diagrams to generate the Umple code. Umple can be used to generate complete sys-
tems (not only code skeletons) in many languages like Java, PHP, or Ruby. There is no need to
add or edit the generated code because all the needed algorithms and methods can be included
in the Umple code. There is a nice and easy browser-based Umple editor8 where the user can
write code, draw diagrams, and generate complete programs in many other programming lan-
guages.

2.1.4 Source Code Based Modeling

Most of the modern IDEs, like Eclipse9, Visual Studio10, and XCode11, are file-based. They
focus on the manipulation of source code and provide tools to support the process. The main
disadvantage of those IDEs is the lack of support for code comprehension. This is a drawback

5http://yuml.me/
6http://www.websequencediagrams.com/
7http://www.gliffy.com/uses/uml-software/
8http://cruise.site.uottawa.ca/umple/
9http://www.eclipse.org/

10http://www.microsoft.com/visualstudio/
11https://developer.apple.com/xcode/

http://yuml.me/
http://www.websequencediagrams.com/
http://www.gliffy.com/uses/uml-software/
http://cruise.site.uottawa.ca/umple/
http://www.eclipse.org/
http://www.microsoft.com/visualstudio/
https://developer.apple.com/xcode/

8 2.1 Modeling Techniques

since we know from previous researches that software maintenance takes 90% of the total
software cost [Erl00], 60% of which is spent on understanding the software [Cor89]. Research
has been carried out to integrate software comprehension in the IDE by radically changing the
IDE file-based style to new metaphors.

(a) Code Canvas: An IDE that supports the semantic
zooming principle

(b) Code Bubbles IDE: Modeling by grouping

(c) Gaucho: An IDE based on direct manipulation of objects in a dynamic OOP system

Figure 2.4. IDEs that support better comprehension of source code by visual notations

With Gaucho [OLL10], researchers have developed a simple yet effective IDE based on the
direct manipulation of graphical shapes representing the software objects in dynamic OOP
languages, as shown in figure 2.4c. Those graphical objects actually represent also a model of
the system making use of the concept "The Code Is The Model" by the direct manipulation of
live objects in that dynamic OOP system. Gaucho has been proven helpful and effective with
respect to software understanding [OLDR11].
The same concerns were addressed in Code Bubbles [BRZ+10]. With Code Bubbles, the source
code is fragmented into small segments, Bubbles, and arranged and grouped according to the
relations among these bubbles, as shown in figure 2.4b.

9 2.2 Collaborative Engineering and Modeling

Code Canvas [DR10] which provides infinite zoomable canvas that shows the content of a
software project with the necessary related information the developer needs. It allows multiple
layers of visualization of the project’s documents and each layer shows a certain level of details
about the project. This is called semantic zooming, as shown in figure 2.4a. So when you zoom
out one level you get a more abstract view and when you zoom in you get a more concrete
view of the system in hand.

2.2 Collaborative Engineering and Modeling

Team collaboration is essential for the success of a software project. Informal interactions and
communications among team members in the workspace environment plays an important role
for team coordination and awareness. Coordination can be seen as the process of managing
dependencies among activities [MC94]. It is becoming an important topic in software engi-
neering [DISK07]. Awareness is defined as an understanding of the activities of others to give
a context for one’s activities [DB92]. These two are the main aspects of team collaboration.
When team members are located in the same workplace, they can collaborate easily and effec-
tively using the informal communication techniques, and in the context of software modeling,
they can use the lightweight modeling techniques as described in section 2.1.1. But awareness
becomes a big issue in global software engineering, especially team members are geographi-
cally distributed [SvdH06].
The current software configuration management (SCM) systems provide a very structured and
organized environment for team collaboration. But they suffer from a major drawback with
respect to awareness because of the strategy of change propagation: Only when a team mem-
ber checks in his changes, his/her teammates can access those changes and only when the
synchronize the project with the repository they can actually see those changes.
Tools were developed to address awareness problems. FASTDash [BCSR07] is an interactive
visualization that seeks to improve team activity awareness using a spatial representation of
the shared code base that highlights team members’ current activities, shown in figure 2.5a .
A richer and more complex tool is CollabVS [HD08]. It is a Visual Studio extension that aug-
ments the user experience with functionality aimed at collaborative, distributed development,
shown in figure 2.5b. It allows developers to work together whether in an intentional or an
ad-hoc manner. It allows the user to know what the other team members are doing, facilitates
finding relevant information and people, and provides support for collaborative software con-
struction. CollabVS even provides different communication channels like instant messaging
and video conferencing.
Another tool is Lighthouse [dSCVdW+06], an Eclipse plug-in that focuses on detecting conflicts
as they occur by using a conflict avoidance approach to alert developers of potentially conflict-
ing implementation changes as they occur, indicating where the changes have been made and
by whom.
The aforementioned tools capture the changes at the file level, meaning that they capture
added and deleted lines and propagate these changes to the team members whereas in Syde
[HL10], the researchers have tackled the problem of providing awareness information by
adopting a change-centric approach [RL07]. In Syde, which is an Eclipse plug-in as shown in
figure 2.5c, the object-oriented systems are dealt with as abstract syntax trees and the changes
are tree operations making the approach effective in solving the trade-off between providing
relevant information about the activities of the team members, and avoiding overloading de-

10 2.3 Summary

(a) FASTDash: a tool for visualizing team members’ cur-
rent activities on the shared code base

(b) CollabVS: A Visual Studio extension for collaborative
and distributed development

(c) Syde: An Eclipse plug-in for increasing awareness in collaborative software development

Figure 2.5. Different tools to support collaborative software engineering

velopers with irrelevant information.
At this point, all the coordination and awareness features mentioned previously were added
features and functionalities to already existing IDEs that were designed without collaboration
in mind. This is the main source of limitations regarding those tools. Whereas in Ronda
[OLD12]. the researchers have developed a novel IDE from ground up to fully embrace the
collaborative nature of software development. Ronda is built up on Gaucho and it is a change
centric environment based on the canvas metaphor [OLDR11].

2.3 Summary

In the previous sections we have described the work related directly and indirectly to our re-
search. We analyzed the state of the art in the context of software modeling and collaboration
that influences our approach. One can see that collaboration among software modelers, when

11 2.3 Summary

they are apart from each other, is currently not investigated. The goal of our research is to find
a new approach for facilitating collaboration among software modelers by combining the mod-
eling techniques advantages, exploiting the work done in collaborative software development,
and taking advantages of the new web technologies. In Chapter 3, we present a new approach
that allows software modelers to build models together in a real-time collaboration manner.
We also demonstrate a new web-based tool, Sawa, that implements that approach.

12 2.3 Summary

Chapter 3

Web-Based Collaborative Software
Modeling

3.1 Problem Formulation

The problem we are tackling is how to make modeling collaborative with geographically
spread out teams. To illustrate this problem best, we look at two scenarios: modelers are in
the same place and modelers are far from each other.
When team members are having modeling sessions within the same room, collaboration is not
an issue since they can easily communicate, discuss, solve conflicts, and make decisions to-
gether. They can use the whiteboard, CRC cards, pens & Papers, or even UML.
But when modelers are away from each others, modeling sessions will involve the use of some
standalone software modeling tool, communication channels, like Skype or emails, and file
sharing mechanisms, like Dropbox or email attachments. That will negatively affect their pro-
ductivity because of the frequent break of flow they are forced to handle. Also every modeler
will not be able to see the changes the others have done until they share them, Leading to
many conflicts and inconsistent changes that need to be resolved.
Our approach tries to address these problems by supporting team members work together on
the same model in real-time, and by providing mechanisms to increase their awareness of each
other’s activities.

3.2 Our Approach

Our approach aims at making software modeling easier, faster, and more natural by allowing
multiple geographically spread-out teammates to work on the same sketch of class diagrams
together at the same time in a way that improves each designer awareness of what the other
designers are doing and who did what in the past, leading to less conflicts and to a more
consistent model.

13

14 3.2 Our Approach

3.2.1 Modeling Technique

As we discussed in chapter 2, there are different modeling techniques, environments, and
collaboration styles that we have to decide upon. Regarding the modeling techniques, we
decided to go for a point in the middle between formal and informal techniques. We need
some formality because when geographically spread-out users want to collaboratively work on
the same model, sharing some standard notations is helpful so everybody can agree on the same
meanings and principles behind the visual notations. Also we need some informality to support
creativity and not to overwhelm modelers with rules they have to follow and details they have
to provide. Our tool, Sawa, supports diagrams that are very similar to class diagrams in UML
(formal) but without the constraining rules about types and class and method signatures. The
diagrams represents entities (class shapes) with attributes and methods, and also association
and generalization relations among these entities.

3.2.2 Collaboration

We want our tool to work inside a bowser making it platform-independent. This was particu-
larly desired because we need the tool to support collaborative modeling. In this way there is
no need for every team member to have the same platform or install any programs.
Regarding the collaboration style, our approach allows multiple accesses of the same model
by different users. The changes made on the models are captured at the level of entities
(model, view, class, attribute, method, relation), treated as entity operations (add, delete, up-
date, move), then broadcasted to all clients. So now whenever a modeler makes a change to a
model, this change will take effect in a real-time manner and all other modelers will see it im-
mediately. We believe that real-time change-based collaboration is the best way for teamwork.
It is more natural and helps solve problems the moment they arise. Also to support coordina-
tion, we want to provide a chat communication channel for each model to allow teammates to
discuss problems, solve conflicts, and coordinate tasks on the fly.

3.2.3 Awareness

Since increasing awareness in the team is an important part of collaboration, we proposed the
concept of client intention. Whenever a client double-clicks an item in the model, he/she is
expressing the intention to do something with that specific item. So we catch this intention and
broadcast it to all the other clients. The color of that item will be changed and the user name
of the client working on that item will be displayed for everybody to know that this person
is working on that item. This will naturally prevent people from working on the same item
leading to less conflicts.
Also we provided the concept of views. One can have as many views as one wants in the same
model. Views are basically different arrangements of the model objects. Each view can have
part of the model or the model as a whole with the possibility to have objects appearing in any
number of views and the tool will take care of keeping everything consistent. These views help
modelers focus on different parts of the system and also see the model from different angles.
A client can work on one view at a time. In that case he/she will miss the changes made to
other views of the same model. We added the change highlighting feature so all the changes
that happened in the not-in-focus views will be highlighted along with the names of clients
responsible for the changes. In this case, the client can miss the happening of a change, but

15 3.3 Sawa in a Nutshell

will always tell what happened and who did what.
Another interesting scenario is when a client goes away for some time and gets back later
to continue working on the model. The model might be changed dramatically to the extent
that the aforementioned client can’t recognize it anymore. For that problem we propose the
playback feature that allows the client to replay step by step all the changes that have happened
since that last time he/she was online. In this case, that client can understand the evolution of
the model and know exactly how the model reached the current state. The playback feature
can even replay the building process of a model from the very beginning to support modelers
who join the modeling sessions later after the process has already started.

3.3 Sawa in a Nutshell

To demonstrate our approach, we developed a new tool, SAWA1, which is a web-based collab-
orative software modeling tool. Sawa has the following features:

Real-Time Collaboration

Sawa supports real-time collaboration where multiple users can work together on the same
model at the same time. Whenever a user makes a change to the model, this change will be
propagated to all online users, making them feel they are drawing on a shared whiteboard.

Highlighting System

Sawa support the concept of intention display. Whenever a client double-clicks on any item in
the canvas, this means that he/she is showing the intention to change that item. This intention
is propagated to all other clients by highlighting that specific item. The highlighting is made
visible by changing the color of that item and displaying the name of the user working on it.
This notifies all other users that this item is under editing by this specific user.
Sawa supports the concept of views where any model can have different views. A view is a
different arrangement of the model classes. It can be a subset of the whole set of classes. A
user can work only on one view at a time and cannot see the changes made to the other views.
So to cope with this fact, whenever a change is made to a view other than the one in focus, this
change is also highlighted with the name of the user responsible for that change.

Replay

When a user logs in to a model, he/she has the ability to replay step-by-step the building
process of that model either from the beginning or from the last time time that user was online.
In this way, the user can know how that model reached the current state.

Browser-Based

Sawa is a web-based tool that works inside the browser environment. In this way, we can
relieve ourselves from making assumptions about the platforms or operating systems the team
members are working on.

1Sawa page: che.inf.usi.ch:2128/

che.inf.usi.ch:2128/

16 3.4 User Interface Design

Complementary Services

Sawa has a textual console that logs every change made to the model along with the user
responsible for that change. Also Sawa has an embedded chat service where users can discuss
problems and resolve their modeling issues.

3.4 User Interface Design

The main principle behind our design of the user interface is "KISS: Keep It Simple & Stupid".
The user interface is simple and straightforward to the extent that new users open the tool and
start using it immediately without any instructions.

Figure 3.1. Sawa login page: It has login form, register button, and textual explanation
about the tool.

When the user first opens the tool, he/she will be forwarded to the login page, as in figure 3.1.
In this page, there is a textual description about the tool and its goals and features so the user
gets some hints about what he/she is going to see and do. There is also a "register" button that
allows new users to register themselves. It also contains the login form where the user enters
the user name and password to move to the main page. One can see, in Figure 3.2, the user
interface is basically divided into three sections: Two columns in the left and the right, and the
canvas area in the middle. The left column contains the list of classes and the list of views.
The user can switch from one view to another by clicking on the view names. Each class in
the class list can be right-clicked and a menu will appear with two options: Add to the view or

17 3.4 User Interface Design

delete. This is the only menu in the tool and every other action is preformed by manipulating
the graphical drawings directly.

Figure 3.2. Sawa user interface

The right column contains the chat box, where users working on the same model can have
discussions, and the textual console that explains everything going on on a model by text. The
size of the text refers to the tree level of the change. In other words we have a tree of four
levels. Each model has many views, each view has many classes. Each class has attributes,
methods, and relations. So the smaller the text the lower the level of the change. Also there
is a color indication of the nature of the change where green means addition, orange means
update or edit, and red means deletion.
The middle area is the canvas area where users draw and manipulate the graphical objects.
The user can double-click on any empty area in the canvas to create a new class. This class
is added to the model and to the current active view. This class shape can be dragged and
dropped anywhere in the canvas area. There are three sections in the class shape exactly like
the UML notation: The class name, attributes, and methods. Each section can be double-clicked
to be edited or deleted. There one empty attribute and one empty method areas that can be
used to add new attributes and methods. When the user puts the mouse over a class shape,
too side hooks and one top hook will appear. These hooks are used to draw relations among
classes where the side hooks are for association relations and the top hook is for generalization
relations. The relation is drawn by clicking on a hook then clicking again on another class.
Each relation has a title and cardinality texts. They can be altered the same way the attributes
and methods are. The relation is deleted when the title is deleted.
One can see in figure 3.2 that there are four buttons above the canvas area. The leftmost three
buttons are used in replay mode where the user can replay the building process of a model as
also described in figure 3.6. The right button is to unhighlight the current view. Unhighlighting

18 3.5 Architecture

the view means removing the highlights of changes that happened while the current view was
not in the focus of attention of the user, as explained in section 3.2.3. The highlights the user

Figure 3.3. Highlighted objects to increase user awareness of what happened in his/her
absence

might encounter are explained in figure 3.3. These highlights tells the user what was deleted,
what was changed and which user did the change. The red highlight indicated that the object
was deleted while the orange indicates that the object was altered. The orange highlights might
occur even when the view in the user focus of attention but it then indicates that another user
is working on that specific highlighted object. We believe that the highlighting system, the real-
time change effect, the chat box, and the textual console increase user awareness and enhance
the overall collaborative user experience.

3.5 Architecture

3.5.1 Implementation-Level Decisions

Framework

In Sawa, we need to draw shapes and to be able to manipulate them, so we need a canvas with
user interactions events. We are inside the browser environment and we want it to work on
all platforms, so we need a scripting language. We want to establish communication channels
between the client and the server, so we need some kind of sockets. All these requirements
lead us to decide first between two choices: HTML5 or Flash.
To decide between the two, we have to consider that Flash2, in spite of its success, is still not
regarded as a standard because it is a proprietary technology provided by Adobe3. Whereas
HTML54 is going to be the replacing standard of HTML45 and XHTML6 and it is being devel-
oped by World Wide Web Consortium (W3C)7. So we argue the future of web development
should not be in the hands of an independent supplier and we are in favor of HTML5.

2http://www.adobe.com/products/flash.html
3http://www.adobe.com/
4http://www.w3.org/html/wg/drafts/html/master/single-page.html
5http://www.w3.org/TR/REC-html40/
6http://www.w3.org/TR/xhtml1/
7http://www.w3.org/

http://www.adobe.com/products/flash.html
http://www.adobe.com/
http://www.w3.org/html/wg/drafts/html/master/single-page.html
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/

19 3.5 Architecture

Client-Side

Since we decided on HTML5, we need a scripting language. We chose JavaScript which is an
ECMAScript standard8. It is very powerful and has a lot of support by the open-source com-
munity. There are thousands of excellent free libraries that can be used easily and effectively.
We know that JavaScript suffers from weaknesses and drawbacks but we believe that these
drawbacks are shared among all the web scripting languages because they share the source of
problems which is the Document Object Model (DOM)9.
For canvas and drawings we decided to use the Kinetic library10 which is a well-known frame-
work that enables high performance animations, transitions, node nesting, layering, filtering,
caching, and event handling of the HTML5 canvas.

Server-Side

On the server side we decided to go with NodeJS11 which is a platform built on Chrome’s
JavaScript runtime for building fast, scalable network applications. We chose NodeJS because
it uses an event-driven, non-blocking I/O model that makes it lightweight, efficient, and perfect
for data-intensive real-time applications that run across distributed devices. Also it makes sense
to use the same language and libraries in both client and server machines because that saves
time and troubles developing consistent ways of communicating data.
We know that there is no problem sending data and requests from the client to the web server
but the opposite is not true. HTTP is a connectionless protocol making it impossible for web
servers to initiate the connection. Connection must be initiated by clients. For that reason, we
chose the Socket.io12 library that takes advantages of the WebSocket13 standard (part of the
HTML5 initiative) to make it possible to establish a communication channel between the server
and the client. Socket.io not only uses WebSockets, but also can decide among alternative
protocols in case the browser doesn’t support WebSocket without affecting the API.

3.5.2 Overall Architecture

Sawa follows the client-server architecture style, as shown in figure 3.4. The client-server ar-
chitectural style describes distributed systems that involve a separate client and server system,
and a connecting network. The simplest form of client/server system involves a server appli-
cation that is accessed directly by multiple clients. We combined the client-server style with
the 3-tier style. The project is separated into segments of functionalities with each segment
being a tier that can be located on a physically separate host. We chose this combination of
styles because Sawa is working inside the browser environment making it inherently a client-
server application. Also the server will not be a performance bottleneck because it has only to
do routing and saving. All the functionality of drawing and manipulating the models will be
handled in the client-side.
We also followed the command design pattern. In object-oriented programming, the command

8http://www.ecmascript.org/
9http://www.w3.org/DOM/

10http://kineticjs.com/
11http://nodejs.org/
12http://socket.io/
13http://www.websocket.org/

http://www.ecmascript.org/
http://www.w3.org/DOM/
http://kineticjs.com/
http://nodejs.org/
http://socket.io/
http://www.websocket.org/

20 3.5 Architecture

Figure 3.4. The overall architecture of Sawa

pattern is a behavioral design pattern where we can encapsulate, in an object, all the infor-
mation needed to call a method at some point during runtime. This information includes the
method name, the objects that owns the method, and the values of the method parameters.
In other words, One encapsulates a request as an object, thereby letting him/her parameter-
ize clients with different requests, queue or log requests, and support undoable operations
[GHJV95]. In Sawa all user interactions with the user interface are captured and encapsulated
in command objects to execute them only in the right time.
The collaboration style in Sawa is inspired by Croquet [SKRR03]. Croquet is a computer soft-
ware architecture built from the ground up with a focus on deep collaboration among teams
of users. In Croquet, a new collaboration architecture/protocol called TeaTime has been devel-
oped to enable this functionality. In Sawa, we implemented TeaTime tailored to our needs, as
shown in Figure 3.5.
The steps of the algorithm is as follows:

a. Every user interaction with Sawa is encapsulated in a command and sent to the server.

b. The server adds a timestamp and a sequence number to the command.

c. The server stores the command in the database.

d. The server broadcasts the command to all clients (including the command issuer client).

e. The clients then executes the command.

When a client tries to do something, his/her interaction will not take effect until the command
is sent to the server and received again with a timestamp and a sequence number. With this
implementation we guarantee that all clients reach the same state.
The overall functionality of Sawa is explained in Figure 3.6. One can see that the client has
three phases. The first phase includes login, establishing a session, and send a request to ask
for the commands. The second phase is between getting the commands from the server and
executing them. The client has three options in this phase. They are step-by-step execution
of commands, go to the last known command, and execute all. The third phase is the actual
collaborative modeling. This is where our Teatime implementation is in effect.

21 3.5 Architecture

Figure 3.5. The implementation of TeaTime in Sawa

3.5.3 Server-Side Implementation

The server mainly consists of two components: The web server component and the router
component, as shown in Figure 3.8. The web server component is responsible of accepting the
HTTP requests and sending back the proper responses. The client can ask for the web pages,
CSS files, images, and JavaScript source files. This component is also responsible for creating
the web sessions and authenticating users. The router component is responsible for receiving
the commands from the clients, adding the timestamps and sequence numbers to them, saving
the commands in the database, and broadcasting the commands to all online clients as shown
in figure 3.7.
As we said earlier, the server is implemented in JavaScript using NodeJS14. And to make things
more organized and well-maintained, we used the Express15 framework to build the web server
component. Express is a minimal and flexible NodeJS web application framework, providing
a robust set of features for building single and multi-page, and hybrid web applications. With
Express, we can define routes for web requests and handle each rout independently and asyn-
chronously.
For the router component, we used the Socket.io16 library that handles the initiation and main-
taining of persistent connections between the server and the clients that will be used to ex-
change messages (commands). There are many communication protocols implemented in

14http://nodejs.org/
15http://expressjs.com/
16http://socket.io/

http://nodejs.org/
http://expressjs.com/
http://socket.io/

22 3.5 Architecture

Figure 3.6. The overall functionality of Sawa explaining the three phases the client goes
throw

Socket.io. The best protocol the client browser supports will be chosen. The protocols are
chosen in this order:

a. WebSocket.

b. Adobe Flash Socket.

c. AJAX long polling.

d. AJAX multipart streaming.

e. Forever Iframe

f. JSONP Polling.

So whatever browser the client has, Socket.io will manage to establish the needed connection.
This makes Sawa a highly platform-independent tool. The only necessary thing needed is the
browser support of HTML5 canvas. This is something that cannot be replaced or altered.

23 3.5 Architecture

Figure 3.7. The process of routing the commands in Sawa

The two main components of the server expose two interfaces. The first one is HTTP and
the other one is the Socket.io protocols. These two interfaces can be viewed as connectors as
shown in figure 3.8.
All the commands that are created and sent by the client are JSON objects. It is an easy way
to formulate, communicate, and execute commands. That was the main reason to use Mon-
goDB17 as the database system. MongoDB is a scalable, high-performance, open source NoSQL
database that features Document-Oriented Storage. It stores JSON-style documents with dy-
namic schemas resulting in simplicity and power. This document-based database is the most
suitable for our tool because we are able to store the commands JSON files as they are without
considering any kind of translation or transformation. Besides, there is no sacrifice made in
choosing the document-based database over the normal ordinary SQL databases. Document-
oriented databases in general and MongoDB in specific offer all the needed features like full
index support, replication, and querying.
The web server component is responsible for handling client HTTP requests. It consists mainly
of three sub-components: The request handler, the user manager and the route manager as
shown in figure 3.9. The request handler receives the request and pass it to the right compo-
nent. Basically the request handler represents a facade of the web server component. The user
manager handles user registration and authentication. It creates new user credentials, saves
them in the database, and verifies user login information. The route manager takes requests
from the request handler and sends the client the appropriate responses (files). When a request
comes, the request handler decides which component is responsible for carrying it out based
on the type of the request. Then it forwards it to the right component in an asynchronous,
callback manner then returns to listen to requests. Then the specified component carry out the
request and sends back the response itself, as shown in figure 3.10. For each client, the use of
the web server component ends when the user is at the index page (the canvas) because after
that, the router component will be the one responsible for listening to clients.

17http://www.mongodb.org/

http://www.mongodb.org/

24 3.5 Architecture

Figure 3.8. The architecture and the main components of the server in Sawa

Figure 3.9. The sub-components of the web server component

The router component is is responsible for many functionalities. The first functionality is to lis-
ten to requests coming from the clients. These requests are not HTTP but they belong to one of
the protocols of Socket.io mentioned in 3.5.3. The design of the router follows an event-driven
architecture. Each request triggers an event based on the type of the request, as described in
figure 3.11. The "getCommands" request is initiated by clients in two cases: when first the
client logs in and when the client disconnects and reconnects again. The router sends back the
list of commands and the client should handle them in the proper way. The "intent" request is
sent from the client when the client shows an intent to do something, meaning that whenever
the client double-click on something in the canvas, that means he/she wants to either delete it
or edit it. This is perceived as an "intent" of action and is sent to the router that broadcasts it
to the other clients to warn them that this particular item is about to be changed by this par-
ticular client. This increases team awareness of who is doing what and decreases the chance
of conflicts happening. The "command" request is sent by the client when he/she actually does
something. This command is then broadcasted to all clients, including the initiator, who ex-
ecutes it. After a client executes a command, he/she sends back a confirmation to the router
in the form of "setLastExecutedCommand" request. The router then saves it in the database.
This piece of information is helpful to track if the users are on sync and also helps in the replay

25 3.5 Architecture

Figure 3.10. The detailed process of handling the HTTP requests showing the component
responsible for each step

mode and the disconnect/reconnect scenario.
There are four kinds of connectors in the server. The first one is the regular HTTP requests
where the exposed interface of the web server component is a listener to HTTP on a specific
port. This called the "Web" connector. In the same way, the exposed interface of the router
component is a listener for incoming connections on one of the supported Socket.io protocols.
This type of connector is called the "Stream" connector. The other connector is between the
router and the web server, and the database. It is written using "mongoose" which is a Mon-
goDB driver that is suitable to the asynchronous callback nature of the NodeJS. This is basically
a simple "Procedure Call" connector.

3.5.4 Client-Side Implementation

Since we decided on the client-server architecture, it makes sense to put as much functionality
as possible on the client-side. This prevents the server from becoming a performance bottle-
neck. The client mainly consists of four components, as shown in figure 3.12.
The Communication Manager component is responsible for sending requests and receiving re-
sponses from the server. These requests and responses are in JSON format. The Model Manager
component handles the binary representation of the models, views, classes, and relations. It
also initiate the requests to the Communication Manager when necessary and gets back the
commands from it and executes them with the help of the UI Updater and the Canvas. The UI

26 3.5 Architecture

Figure 3.11. The type of requests and the corresponding triggered events in the router
component

Figure 3.12. The main components of the client

Updater changes the HTML elements of the client web page. It is implemented using JQuery18,
DynaTree19, and Flexbox20 libraries. These elements are the models dropbox, the class tree,
the view tree, the textual console, and the chat box. Figure 3.13 shows the main user interface
of Sawa. The Canvas component is responsible for the drawing functionality. It is implemented
using the Kinetic21 library. This component handles the HTML5 canvas element and allows
users to draw the classes, attributes, methods, and relations, and to move objects around.

18http://jquery.com/
19http://code.google.com/p/dynatree/
20http://code.google.com/p/dynatree/
21http://kineticjs.com/

http://jquery.com/
http://code.google.com/p/dynatree/
http://code.google.com/p/dynatree/
http://kineticjs.com/

27 3.5 Architecture

All these interactions are encapsulated into commands that are passed to the Communication
Manager through the Model manager, and sent to the server commands requests. When the
command is received, the Canvas component is responsible of making the appropriate changes
to the drawings.
The server accepts requests as HTTP or as one of the Socket.io protocols. The Communication
Manager is implemented using the Socket.io library and sends requests of its protocols. There
is no specific component in the client-side that initiates HTTP requests because this is the task
of the client web browser.

Figure 3.13. The main user interface of Sawa. One can see the HTML elements that change
frequently as the coming commands are executed

The communication manager component is implemented using Socket.io in the same way as
the Router component is implemented in the server-side. it is responsible for sending the re-
quests explained in figure 3.11. In the same way, it is implemented using an event-driven
approach. Whenever a message comes, it triggers the corresponding event, as explained in
figure 3.14.
There are four possible types of messages that can be received by the Communication Manager.
The "connect" message is sent from the server when the client first connects to the server. This
message confirms that a connection has been established. The "intent" is sent from the server
when it receives an "intent" itself from an another client and broadcasts it to other clients. In
the same way, the client receives a command when the server broadcasts a command with a
sequence number and a timestamp to all clients. The "commands" message is sent from the
server whenever the clients asks for it. The clients asks for the "commands" message in two
cases. The first case is when the client first connects to the server which is the normal case. The
second case is when the clients faces a problem, disconnects from the server, and reconnects
again. Each case is handled differently by the client as you see in figure 3.14.

28 3.5 Architecture

Figure 3.14. The types of messages received by the Communication Manager and the
corresponding events

The Model Manager has some kind of hierarchical structure. It has many models, each model
has many views, each view is a Canvas component. Also each model has the representation of
all the relations among its classes. The Model Manager is responsible for keeping everything
consistent and handling user input mistakes like adding al already existing class for example.
It also gets the messages from the Communication Manager, formulates the commands, and
process them in the right way. And whenever a user interaction is captured, the Model Man-
ager will encapsulate it as a command message and gives it to the Communication Manager to
be sent to the server.
This component decides whether the user is in replay mode and how the buffered commands
are executed. It also decides how the incoming commands should be executed. When com-
mand execution effect is not in the user focus of attention (different model or different view),
then the Model Manager highlights the resulting effect making it easier for the user to recog-
nize when he/she switches to the place where the change took effect.
The Canvas and UI Updater components are the ones the user interacts with. They are responsi-
ble for capturing user interaction and passing it over to the Model Manager. They also execute

29 3.5 Architecture

the commands and transform them into real changes that the user can recognize. So draw-
ing, coloring, editing , adding, deleting, highlighting, and unhighlighting are all functionalities
provided by the Canvas and the UI Updater components.

3.5.5 Network Problems

Since we are dealing with the web, there is always a chance for unintended disconnect. Our
tool handles the rebuilding of the connection by itself but it is not enough since the client
application needs to rebuild also the graphical representations of the models. In the case of
connect/reconnect, the client application asks again for the list of commands and executes
them from the last known executed command. Thanks to the sequence numbers attached
to each command message and to the confirmation messages of the last executed commands
explained in figure 3.14 , the client will know for sure where exactly to carry on the execution
as explained in figure 3.15.

Figure 3.15. Explanation of the disconnect/reconnect scenario

Another problem originating from the internet network is that there is no guarantee that
messages sent from the server will arrive in the same order to the client especially when there
are many clients and they are all generating commands at high rates. Sequence numbers are
again used. When the client application receives a message, it will know if this message is in the
right order so it either executes it or waits till the other missing messages arrive as explained
in figure 3.16.

Another important problem when dealing with distributed systems like ours is keeping
all peers consistent and preventing them from diverging states. Our implementation of the
TeaTime algorithm [SKRR03] guarantees that all clients will eventually reach the same state
as explained in section 3.5.2. One can ask: what if two clients generates two commands at the
same time and these two commands change the name of a class for example, which order will
the commands be executed in? How to determine which command to execute first? The answer
is that the order is determined by the router component in the server as the first command
received is the first command to be executed. So in the situation of conflicting commands,
the first one will take effect and the other one will fail to be executed. It makes sense if you
consider the router as the timeline of clients’ events. Even in life, the sense of "after" and

30 3.5 Architecture

Figure 3.16. The client knows the right order of the commands and will execute them only
in the right order

"before" of events cannot be determined unless all those events are measured against a central
shared coordinate. In our case, this shared coordinate is the router component receive time.

Chapter 4

Evaluation

In chapter 3, we presented Sawa, our modeling tool and explained its architecture, design
principles, and goals. We built Sawa believing that it is a helpful tool for software modelers
when they are geographically separated. To support our claims and ensure that we are on the
right path, we conducted an evaluation experiment to gather data, feedback, and suggestions
we can use to spot the weaknesses and strengths of our approach to improve it and lead the
future work in this specific area. Although the experiment results are not statistically significant
because we had only eight participants, we can still use the results as a qualitative indication
of the quality of Sawa’s features and design decisions.

4.1 Experiment Design

The experiment was designed to get feedback from the participants regarding collaborative
modeling and to test our new approach against existing tools and techniques. Our experiment
is divided into three phases: Pre-experiment questionnaire, modeling tasks, and debriefing
questionnaire.

4.1.1 Pre-experiment questionnaire

We conducted a small questionnaire before starting the experiment. The aim of this phase was
to gather miscellaneous information about the participant like personal information, favorite
modeling technique, and skills and experience in the fields we are working on. The results of
this questionnaire are listed in tables 4.1 , 4.2 , and 4.3. We had eight participants and one
can see from the results that those participants were mostly experienced modelers. Our aim is
to evaluate the collaborative side of our tool and not to evaluate a new modeling technique or
method.

4.1.2 Modeling Tasks

The pre-experiment questionnaire was conducted and the results were collected before running
the experiment because we needed those results for the modeling tasks. The modeling tasks
are two examples of software systems taken from the course "Software Architecture & Design"1

1Software Architecture & Design Course: http://www.master.inf.usi.ch/msd-course-detail?id=2289

31

 http://www.master.inf.usi.ch/msd-course-detail?id=2289

32 4.1 Experiment Design

Table 4.1. Pre-Experiment Questionnaire Personal Data Results

ID Gender Age Position Favorite Modeling Mean

P1 Male 21 Bachelor Student UML Editors
P2 Male 24 Master Student Whiteboard
P3 Female 28 Master Student Whiteboard
P4 Male 28 Teacher Assistant Whiteboard
P5 Male 27 Teacher Assistant No Modeling
P6 Male 30 Teacher Assistant UML Editors
P7 Male 28 Teacher Assistant Whiteboard
P8 Male 29 Teacher Assistant Whiteboard

Table 4.2. Pre-Experiment Questionnaire Results showing the number of participants in
each skill level in the fields we are working in.

None Beginner Intermediate Advanced Expert

OOP 3 5
Software Modeling 1 2 1 4
Using ArgoUML 2 1 2 3
Team Work 1 2 4 1
Using Skype 8

Table 4.3. Pre-Experiment Questionnaire Results showing the number of participants in
each experience level (measured in years) in the fields we are working in.

<1 1 to 2 3 to 5 6 to 9 10 Years or
Year Years Years Years More

OOP 4 4
Software Modeling 1 1 3 2 1
Using ArgoUML 3 1 4
Teamwork 2 3 3
Using Skype 3 5

33 4.1 Experiment Design

which is taught by Prof. Cesare Pautasso2 at the master level at the University of Lugano3.
The participants were divided into two groups taking into consideration that both groups are
similar regarding experience level, age, position, and favorite modeling mean. So the first
group G1 has the participants P1, P3, P7, P8 and the second group G2 contains P2, P4, P5,
P6. We let group members know each other’s emails and Skype accounts to use them in the
experiment.
The first task was about building a software model of a chess game with specific requirements.
Both groups were handed the same task description and requirements. G1 was allowed to
use only Sawa, whereas G2 was allowed to use ArgoUML, emails, Dropbox4, and Skype. No
participant was allowed to talk to anybody during the modeling session.
Both teams were given one hour to finish the models. To simulate the real world, we pulled P3
and P4 from the modeling session after 15 minutes from the kick off. Then we returned them
back to their groups after five minutes. Then we pulled P1 and P2 and returned them back
after five minutes. We continued pulling participants out of the session in the same way until
every participant had his/her turn to be out of the modeling session for a little while. After
that, all participant continued working together till the end of that task.
After finishing the first task, the two teams switched places for the second task. Both teams
were asked to model a travel agency system with the same description and requirements but
with G1 using ArgoUML and G2 using Sawa. We followed the same procedure again regarding
pulling participants out and returning them back. Both teams worked on the second task also
for one hour and the experiment was over.
In this experiment all participants went through the same circumstances, experienced the same
tools, and worked on the same problems. This was helpful in gathering objective feedback with
minimal biases. This feedback was collected by means of a post-experiment questionnaire.

4.1.3 Post-Experiment Questionnaire

All participants were asked to revisit their experience in the modeling tasks phase and fill out
the post-experiment questionnaire. This questionnaire aimed at getting qualitative feedback
on Sawa against ArgoUML. Some general questions were asked regarding usability, model
manipulation, and teamwork modeling experience. Some other specific questions were asked
regarding conflicts, awareness, and models completion percentages. After that, we asked some
questions where participants all answer with free text about positive and negative aspects of
Sawa, required and recommended features, suggestions, and ideas.

4.1.4 Threats to Validity

There are many factors that might influence the effectiveness and generalizability of this ex-
periment. In this section, we address the threats of validity to our experiment and we explain
how we tried to neutralize them.

2http://www.pautasso.info/
3http://www.usi.ch/
4https://www.dropbox.com/

http://www.pautasso.info/
http://www.usi.ch/
https://www.dropbox.com/

34 4.2 The Outcome

Subjects

We had the pre-experiment questionnaire to gather information about the participants back-
ground in the field of interest regarding the modeling tasks to reduce the threat of having sub-
jects with no competence who will influence the experiment results. We found that we have
five subjects with skill level above intermediate (advanced and expert) in all fields and only one
participant with no experience at all in teamwork. To mitigate the influence of that particular
participant, we put him in the group that includes the expert participant in teamwork. Other
than that, there was no particular under-skilled subjects that might have influenced the results.
In our experiment, we wanted to evaluate the effectiveness of our collaborative approach in
software modeling. This is the reason why most of the subjects were above intermediate and
they all at least knew the basics of UML.

Baseline

We have chosen ArgoUML as the contender of our tool Sawa because it is a well-known UML
editor with good reputation among UML fans. We made that choice because if the subjects do
not like the chosen base tool, they might unconsciously favor Sawa ignoring its defects and
over-emphasizing its features.

Training

We had only two participants with no prior experience in ArgoUML and all the other partici-
pants had worked with ArgoUML before. The threat of that situation affecting the results was
eliminated by providing enough quick instructions on how to use both tools and we didn’t start
the experiment until we were sure that all participants had the necessary knowledge about
both tools on order to work on the provided tasks.

Experimenter Effect

Since the experimenter is one of the authors of the approach and the developer of Sawa, there
is a risk of being unfair and biased during the evaluation of the results. To mitigate this threat,
we did not evaluate the created models but rather let the participants themselves evaluate
their work regarding model completion percentage. Also the experimenter did not interfere in
any phase during the experiment and was playing the role of a neutral observer and did not
engage in any private interviews. The data was collected only by means of questionnaires and
observations.

4.2 The Outcome

The outcome of the experiment we did comes from three sources. The first source is the
post-experiment questionnaire where participants described their experience with Sawa and
ArgoUML during the modeling sessions. The second source is the participants’ opinions and
suggestions in a free text manner. And the third source is our observation notes during the
modeling sessions.

35 4.2 The Outcome

4.2.1 Questionnaire Results

Although our experiment aimed at getting a qualitative evaluation of our approach, we can
summarize the results using numerical means. The results are not statically significant but
they can serve as a good starting point for more experiments.
We asked the participants to rank Sawa and ArgoUML with respect to usability aspects in-
cluding usability in general, model navigation, entities manipulation, model recognition, and
collaborative teamwork. The participants chose the difficulty level for each of those aspects
among "very difficult, difficult, intermediate, easy, and very easy". Those choices correspond to
a scale from 1 to 5.

Figure 4.1. Comparison between ArgoUML and Sawa in many usability aspects where
participants ranked these aspects on a scale from 1 to 5.

One can see from diagram 4.1 that ArgoUML is better than Sawa in the overall usability, model
recognition, and entities manipulation. This is because ArgoUML has been under development
and maintenance for many years while Sawa was developed in only four months. Another rea-
son is that ArgoUML has many more features regarding UML design, coloring, themes, editing,
and it has a huge canvas with a zoomable user interface (ZUI) making it more convenient and
natural for users. But regarding model recognition and collaborative teamwork, Sawa showed
better results.
Also the participants were asked some questions regarding collaboration and awareness like:

a. How often did you feel the need to talk to your teammates?

b. How often did you encounter conflicts?

c. How often were you aware of what your teammates are doing?

36 4.2 The Outcome

Figure 4.2. Comparison between ArgoUML and Sawa regarding conflicts, the need to talk,
and awareness. Participants ranked the frequency of those events occurrences on a scale
from 1 to 5 according to their experience during the experiment.

The answers to those questions were on a scale from 1 to 5 where 1 means never and 5 means
always. Diagram 4.2 shows an advantage of Sawa over ArgoUML. Participants stated that they
encountered less conflicts and had almost full awareness of what the others are doing. Also
with Sawa, they showed less needs to talk to their teammates. These results are due to the
highlighting system, the real-time change effect, and the replay feature included in Sawa.
Another question the participant were asked is about how complete their models were in both
Sawa and ArgoUML. We allowed each team to evaluate their own models and the other teams
model and we asked them to be objective and honest in their evaluation. We did not want to
evaluate the models ourselves to avoid the threat of being unfair or subjective in our judgement.
There is a threat that the two teams compete with each other and each team might rank its
own model as more complete than the other team’s model. This threat is eliminated because
both teams worked with both tools on similar tasks. Also the diagram 4.3 shows consistent
results in both tasks meaning that there was no competition in the evaluation. You can see
that in both tasks, models were more complete with Sawa than with ArgoUML. Th reason
is because of the intensive context-switching when working with ArgoUML. ArgoUML team
members needed to chat a lot on Skype, share files on Dropbox or by emails, get back to the
models, and keep the models consistent. This context-switching interrupts the workflow of
people affecting their productivity. Whereas with Sawa, collaboration was easy and did not
need any external communication channels. Again this was because of the real-time change
effect, the textual console, and the chat system in Sawa.

37 4.2 The Outcome

Figure 4.3. Comparison between Sawa and ArgoUML regarding task completion

4.2.2 User Feedback

The users feedback was collected by free text questions about opinions, suggestions, and ideas.
We grouped these feedbacks in three categories.

Collaboration

All participants were enthusiastic about how they make a change to the model and everybody
gets to see it immediately. They all gave positive feedback on how easy collaborative modeling
is with Sawa. Here are some quotes from the participants:

"It’s so easy to work with others on the same models" P1
"I can instantly see the others changings to the model. This saves a lot of time" P5
"It was a very good way to benefit from the collective intelligence of the group" P6
"We wasted a lot of time discussing, when we worked with ArgoUML" P6

All those feedbacks showed that the real-time collaboration in modeling is very well-appreciated
by users when they are not present in one place making this approach the natural alternative
of modeling sessions on a whiteboard.

Awareness

Only one participant stated that the highlighting system was annoying.

"I hated it when i saw the color of some items changing to orange. It was annoying" P2

38 4.2 The Outcome

While all the others appreciated the fact that with the highlighting system, they were totally
aware of what items are under editing and by whom.

"When I saw the orang color, I knew that I should wait to touch that item" P6
"Seeing the name next to the highlighted item made me know who to chat with about the

change when necessary" P6
"When I switch to other views, I can easily see what happened" P8

Regarding the replay feature, everybody said that it was very useful when they had to go
out of the session and get back again after a while during the task modeling phase. We think
that following that procedure equally with the team working with Sawa and the team working
with ArgoUML made people realize how important it is to know how the model reached the
current state in order to catch up with the teammates.

"It was a nightmare when I had to leave the group for a while when I was working with
ArgoUML but it was so easy to catch up when it happened with Sawa" P3

"Actually I used the replay feature once while I was with the group to remember how things got
to be like that" P7

Features

Most participants stated that Sawa needed to have more features that were, in their opinions,
crucial to a modeling tool like Sawa. The most important feature they asked about was to
have a zoomable user interface like the one in ArgoUML. That feature was pointed out by three
participants (P2, P5, P6). Another feature requested by one participant (P6) was to include the
package principle to the model where users can group classes together in different packages
exactly like the package principle in UML. Also one participant (P8) said that it would have
been nice to have a code generation mechanism.

4.2.3 Observations

During the two-hour modeling sessions we were watching, observing, and taking notes of what
people are doing. We found out that when the team G2 was working with ArgoUML, they spent
a noticeable amount of time in managing each member’s task. They also agreed that P6 is the
group leader and he is the one responsible for integrating other people work. The same thing
happened with G1 but around thirty minutes after the start. G1 members agreed on P7 to do
the task of integrating the models and keeping everything consistent. While with Sawa, there
was no need to elect a leader and people were using the chat service to make decisions and
solve conflicts collectively.
We also noticed some frustration on the faces of the teams when they working with ArgoUML,
especially when a member left the team for a while and got back again. While with Sawa, team
members kept excitedly working with full concentration on the tasks.
Another thing we found out is that ArgoUML team used a bigger amount of textual chatting
than Sawa team in both tasks. We think this is basically because of the high level of awareness
in Sawa.

39 4.3 Reflections

4.3 Reflections

The results of our experiment are not statistically significant and we are aware of the fact that
we need many more experiments to asses our approach in collaborative software modeling.
Still, we believe that this experiment serves as a good starting point and gives a good enough
indication about the success of our approach. Also we can benefit from the users feedback and
include some more features and enhancements for further experiments.
Furthermore, the observations taken during the modeling session can help us improve the
experiment itself and include more detailed questions in the post-experiment questionnaire in
future experiment runs.
The evaluation work in this chapter concludes this thesis. In chapter 5, we summarize the work
done so far and point out the possible research directions and future work in this field.

40 4.3 Reflections

Chapter 5

Conclusions

This chapter ends this document by summarizing the work that has been done so far and
describing our contribution with respect to collaborative software modeling. After that we
explore the future work and the possible research points that can be further investigated.

5.1 Contributions

We know from literature that software development is a social activity. Modeling is a funda-
mental phase in any software lifecycle. In this research we tackled the problem of how team
members can collaboratively work on a model when they are geographically far away from
each other. There are many tools, methods, and frameworks that can be used to facilitate the
modeling sessions but they all require the modelers to be present at the same room as explained
in section 2.1.1.
Our tool, Sawa, is a web-based collaborative software modeling tool that enables many mod-
elers to work on the same model at the same time in a real-time manner. It allows many users
to collaboratively build a UML-like class diagram. Sawa comes with many features and design
principles that serve the productivity of teamwork as follows:

• Sawa is web-based: It works inside the browser environment making it platform-independent.
The only requirement the client should have is a modern web browser that supports the
HTML5 canvas element. In this way, a client can go to the tool webpage and start work-
ing with the others immediately without having to install anything or worry about any
kind of configurations.

• Sawa is collaborative: We designed and developed Sawa from the ground up to be col-
laborative. We took into consideration that Sawa should support multiple users working
online at the same time where they can immediately see each others changes as if they
were working together on the whiteboard in the same room. Sawa was designed as a
scalable distributed system by adapting the TeaTime protocol to our needs to make it
faster and more effective.

• Sawa comes with a team awareness support system: Awareness is an important as-
pect of teamwork. Teammates should have the ability to see who is doing what or who
has done what. Sawa supports this through its highlighting system and replay feature.

41

42 5.2 Future Work

Whenever somebody double-clicks on an item in the model, he/she basically shows the
intention to edit it. This intention is captured and broadcasteded to all other online
clients and that specific item is highlighted with the name of that user so everybody sees
who is doing what. Also when a change happens outside the user’s focus of attention
(different view or different model), that change is also highlighted so the user gets to see
later. Another awareness support feature is the replay mode that allows users, when they
first logs in, to replay the building process of that model so they can tell what happened
when they were absent.

• Sawa has supplementary collaboration and awareness gadgets: It has a textual chat-
ting service that allows users to discuss their model problems, conflicts, and decisions
on the fly. Sawa also has a textual console that displays all events in textual manner for
people to read whenever they want.

We ran a preliminary evaluation experiment and got very positive feedback about our approach.
That experiment results served as a good indication that we are on the right path of solving
collaborative software modeling problems and also gave us very valuable information about
what further can be done with Sawa and how to improve the experiment itself for the next
runs.

5.2 Future Work

Adding Features

From the feedback we got from our first evaluation, we have some clues about missing features
in Sawa. First, people seemed to admire the zoomable user interface (ZUI) as a flexible way
to interact with the canvas. We should take into consideration changing our static canvas to
ZUI infinite canvas with full support of zooming, expanding, and object locating mechanisms.
Another feature we should include is the package support since users tend to like the idea of
grouping classes together in different packages or groups although we didn’t think that it was
a necessary detail in software modeling in general but rather an implementation detail. Also
we should add the code generation support to our tool in many programming languages where
users can generate skeleton code derived from the model.

Other Models Support

Sawa support only the UML-like class diagrams but we should explore the possibility to add
support to more important models like component models, state chart diagrams, and sequence
diagrams. We should even examine the possibility to support free-style drawing where users
can freely draw whatever they want on the shared canvas simulating the whiteboard technique.
Or maybe we can add support the lightweight techniques mentioned in chapter 2.1.1 so their
collaborative nature can be preserved and performed on the web.

Enhance Awareness Even More

There are many ways to enhance team awareness. For instance, there should be more teams
organizing mechanisms like there should be a model creator (owner) who invites other mod-
elers, by emails or usernames, to work on his/her model. Also we can display the list of users

43 5.3 Epilogue

working on that model with details regarding their status (online, offline, or away). Also the
design of Sawa user interface should be revisited to display only the necessary information.
Maybe it’s better to display only the canvas and make the other page elements, see figure 3.2,
more controllable with respect to display allowing the user to hide them, show them, pin them,
or make them appear or disappear on certain events like on mouse-over or on status-change. Of
course, we have to take into consideration that increasing the amount of displayed information
doesn’t necessarily mean increasing awareness. As a mater of fact, sometimes increasing the
amount of displayed information can result in overwhelming the user with unnecessary details
that can negatively affect the overall productivity. Awareness is providing the right amount of
information at the right place in the right time.

5.3 Epilogue

Modeling is a fundamental activity in any software development methodology and it is also a
social activity as much as software development is. In this thesis, we provided the necessary
background knowledge regarding modeling and came up with a novel and innovative approach
to support collaborative software modeling taking advantages of the new rising technologies.
This work came from our belief that all software development activities are based on team-
work and modeling is no different and we should provide the necessary support not for single
developers but rather to the whole team as a unit.

44 5.3 Epilogue

Appendix A

Experiment Handout

In this Appendix we present the experiment handout that was given to the eight participant to
fill out. It includes the pre-experiment questionnaire, the modeling tasks descriptions, and the
post-experiment questionnaire. As explained in section 4.1, those are the three phases of the
experiment and they are consecutive in time as their names suggest.

45

SAWA	
 Validation	
 Experiment	

	

Participant:	
 	

	

	

Introduction:	

This	
 experiment	
 aims	
 to	
 evaluate	
 our	
 tool,	
 SAWA.	
 It	
 is	
 a	
 collaborative	
 web-­‐based	

UML	
 designing	
 tool	
 that	
 should	
 make	
 it	
 easy	
 for	
 spread-­‐out	
 team	
 members	
 to	
 build	

designs	
 together	
 in	
 real	
 time.	

The	
 experiment	
 goes	
 as	
 follows:	
 	

There	
 will	
 be	
 two	
 teams.	
 The	
 first	
 one	
 will	
 work	
 on	
 SAWA	
 and	
 the	
 second	
 one	
 will	

work	
 on	
 ArgoUML.	
 Both	
 teams	
 will	
 work	
 on	
 modeling	
 the	
 same	
 problem.	
 One	

person	
 from	
 each	
 team	
 will	
 start	
 working	
 15	
 minutes	
 after	
 the	
 rest	
 of	
 his/her	

teammates	
 start.	
 Then	
 another	
 member	
 will	
 go	
 offline	
 for	
 10	
 minutes	
 then	
 rejoin	
 his	

team	
 and	
 work	
 like	
 this	
 till	
 the	
 end	
 of	
 first	
 task.	
 Then	
 the	
 two	
 teams	
 will	
 switch	
 tools	

for	
 the	
 second	
 task.	
 	

You	
 are	
 kindly	
 asked:	

• Not	
 to	
 talk	
 to	
 anybody	
 during	
 the	
 experiment	

• To	
 work	
 until	
 you	
 are	
 satisfied	
 about	
 the	
 model	
 you	
 built	
 with	
 your	

teammates	

• Don’t	
 return	
 to	
 previous	
 tasks	
 as	
 that	
 will	
 affect	
 the	
 experiment	
 results	

The	
 experiment	
 starts	
 with	
 a	
 pre-­‐experiment	
 questionnaire	
 to	
 collect	
 some	

information	
 about	
 yourself	
 and	
 your	
 expertise	
 in	
 topics	
 relevant	
 to	
 the	
 experiment.	

Then	
 you	
 will	
 go	
 through	
 the	
 tasks	
 and	
 fill	
 in	
 the	
 post-­‐experiment	
 questionnaire	
 and	

have	
 a	
 little	
 talk	
 with	
 the	
 experimenter.	

Thank	
 you	
 very	
 much	
 for	
 your	
 time.	

	

	

Haidar	
 Osman,	
 Michele	
 Lanza,	
 Fernando	
 Olivero	

	

	

	

	

	

	

	

	

	

	

	

	

Pre-­experiment	

questionnaire	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

E-­mail	
 Address:	

Gender:

	
 Male 	
 Female	

	

Age:	
 (for	
 statistical	
 purposes	
 only)	

 Years.	

	

Nationality:	
 (for	
 statistical	
 purposes	
 only)	

Affiliation:	
 (i.e.,	
 University,	
 Company,	
 etc.)	

Job	
 Position:	
 (i.e.,	
 Developer,	
 Project	
 Manager,	
 MSc	
 Student,	
 etc.)	

What	
 is	
 your	
 favorite	
 mean	
 to	
 model	
 software	
 systems?	

	
 Whiteboard	
 /	
 Paper	
 Sketches.

	
 UML	
 Editors.

	
 No	
 modeling,	
 I	
 directly	
 start	
 programming	
 in	
 the	
 IDE.	

	
 None	
 of	
 the	
 above:	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	
 _	

	

	

	

	

Experience	
 level	
 in:	
 (A	
 subjective	
 assessment	
 of	
 your	
 skills)	

	
 None	
 Beginner	
 Intermediate	
 Advanced	
 Expert	

OOP	
 	
 	
 	
 	
 	

Software	

Modeling	

	
 	
 	
 	
 	

Using	

ArgoUML	

	
 	
 	
 	
 	

Team	

Work	

	
 	
 	
 	
 	

Using	

Skype	

	
 	
 	
 	
 	

	

	

Number	
 of	
 years	
 of:	
 (the	
 years	
 you	
 spent	
 in	
 acquiring	
 your	
 experience)	

	
 <	
 1	
 Year	
 1	
 to	
 2	
 3	
 to	
 5	
 6	
 to	
 9	
 >10	

OOP	
 	
 	
 	
 	
 	

Software	

Modeling	

	
 	
 	
 	
 	

Using	

ArgoUML	

	
 	
 	
 	
 	

Team	

Work	

	
 	
 	
 	
 	

Using	

Skype	

	
 	
 	
 	
 	

	

	

	

	

First	
 Task	
 (Chess	
 Game)	

Given	
 the	
 following	
 informal	
 requirements	
 and	
 the	
 usage	
 scenarios,	
 please	
 create	

the	
 software	
 model	
 that	
 you	
 think	
 is	
 the	
 most	
 appropriate.	
 Please	
 do	
 not	
 only	
 model	

the	
 class	
 entities,	
 but	
 for	
 each	
 entity	
 add	
 the	
 details	
 (i.e.,	
 methods,	
 fields	
 and	

relationships)	
 which	
 you	
 find	
 important.	

The	
 requirements:	

You	
 and	
 your	
 Team	
 should	
 collaboratively	
 	

1. The	
 game	
 will	
 be	
 running	
 on	
 a	
 very	
 powerful	
 machine	
 in	
 processing	
 power,	

RAM,	
 and	
 hard	
 disk.	

2. The	
 game	
 should	
 be	
 able	
 to	
 adapt	
 to	
 the	
 configurations	
 and	
 resources	
 of	
 the	

machine.	
 The	
 more	
 powerful	
 the	
 machine,	
 the	
 bigger	
 prospection	
 the	

application	
 can	
 reach.	
 In	
 other	
 words,	
 when	
 a	
 user	
 plays	
 against	
 the	

computer,	
 the	
 computer	
 gets	
 “smarter”	
 as	
 it	
 gets	
 more	
 resources.	

3. The	
 user	
 interface	
 should	
 be	
 separated	
 from	
 the	
 logic	
 allowing	
 us	
 to	
 support	

three	
 different	
 kinds	
 of	
 user	
 interfaces:	
 	

a. Command-­‐line	
 interface.	

b. Regular	
 interface	
 (desktop	
 application).	

c. Web-­‐based	
 interface.	

4. The	
 games	
 can	
 be	
 saved	
 and	
 loaded.	
 And	
 “epic”	
 games	
 can	
 be	
 replayed.	

5. 	
 Inside	
 the	
 game,	
 undo	
 and	
 redo	
 should	
 be	
 supported.	

6. The	
 administrator	
 of	
 the	
 system	
 should	
 be	
 able	
 to	
 set	
 the	
 maximum	
 number	

of	
 concurrent	
 active	
 games.	

The	
 scenarios:	

1. Learning:	
 Each	
 user	
 should	
 be	
 able	
 to	
 study	
 the	
 strategies	
 of	
 other	
 players.	

The	
 user	
 can	
 load	
 the	
 last	
 game	
 of	
 a	
 certain	
 player	
 and	
 replay	
 it	
 move	
 by	

move.	
 Also	
 the	
 user	
 can	
 watch	
 other	
 games	
 online.	

2. Training:	
 Each	
 player	
 can	
 play	
 against	
 the	
 computer	
 with	
 three	
 different	

difficulty	
 levels;	
 medium,	
 hard,	
 and	
 master.	
 Each	
 player	
 also	
 can	
 play	
 against	

other	
 players	
 online.	

3. Tournament:	
 All	
 games	
 are	
 locked.	
 No	
 players	
 are	
 allowed	
 to	
 play	
 online.	
 Only	

the	
 players	
 in	
 the	
 tournament	
 can	
 play	
 with	
 a	
 real	
 world	
 chessboard	
 and	
 the	

jury	
 will	
 enter	
 their	
 moves	
 into	
 the	
 system.	
 Everybody	
 can	
 watch	
 the	

tournament	
 games	
 and	
 switch	
 among	
 games.	

Second	
 Task	
 (Travel	
 Agency)	

Given	
 the	
 following	
 informal	
 requirements	
 and	
 the	
 usage	
 scenarios,	
 please	
 create	

the	
 software	
 model	
 that	
 you	
 think	
 is	
 the	
 most	
 appropriate.	
 Please	
 do	
 not	
 only	
 model	

the	
 class	
 entities,	
 but	
 for	
 each	
 entity	
 add	
 the	
 details	
 (i.e.,	
 methods,	
 fields	
 and	

relationships)	
 which	
 you	
 find	
 important.	

	

System	
 Description	
 	

Your	
 job	
 is	
 to	
 help	
 migrating	
 a	
 set	
 of	
 legacy	
 applications	
 used	
 in	
 a	
 travel	
 agency	
 to	

the	
 web.	
 The	
 system	
 is	
 currently	
 operated	
 by	
 workers	
 answering	
 phone	
 calls	
 from	

clients.	
 Workers	
 would	
 ask	
 for	
 the	
 relevant	
 information	
 to	
 pull	
 the	
 client’s	
 file,	
 ask	

for	
 the	
 destination,	
 and	
 list	
 the	
 choices	
 to	
 the	
 client.	
 The	
 client	
 would	
 then	
 be	
 billed,	

and	
 the	
 tickets	
 sent	
 by	
 traditional	
 mail.	
 To	
 accomplish	
 these	
 tasks,	
 the	
 workers	

would	
 interact	
 with	
 four	
 different	
 applications,	
 sharing	
 a	
 central	
 database	

containing	
 customers’	
 data.	
 Each	
 application	
 runs	
 on	
 mainframe	
 and	
 is	
 accessed	

with	
 a	
 terminal:	

• An	
 account	
 management	
 application,	
 storing	
 and	
 managing	
 information	
 about	

clients	
 and	
 addresses.	
 New	
 client	
 accounts	
 would	
 be	
 created	
 from	
 here.	

• A	
 travel	
 search	
 application,	
 in	
 which	
 the	
 possible	
 ways	
 to	
 reach	
 a	
 destination	

would	
 be	
 listed,	
 along	
 with	
 their	
 dates,	
 duration	
 and	
 price.	

• A	
 billing	
 service,	
 communicating	
 with	
 credit	
 card	
 agencies.	
 It	
 checks	
 if	
 a	
 credit	

card	
 number	
 is	
 valid,	
 and	
 can	
 charge	
 credit	
 cards.	

• A	
 ticketing	
 system	
 that	
 prints	
 and	
 sends	
 the	
 tickets	
 to	
 the	
 client	
 after	
 payment	

validation.	

Design	
 an	
 integrated	
 system	
 in	
 which	
 the	
 applications	
 are	
 accessible	
 via	
 the	
 web,	

enabling	
 the	
 clients	
 to	
 search	
 for	
 their	
 trips	
 and	
 buy	
 the	
 tickets	
 themselves.	

Investigate	
 how	
 much	
 of	
 the	
 existing	
 functionality	
 you	
 can	
 reuse,	
 and	
 how	
 you	
 will	

reuse	
 it.	
 In	
 addition,	
 the	
 following	
 new	
 requirements	
 should	
 be	
 considered:	

• Authentication:	
 Anybody	
 can	
 access	
 the	
 platform	
 now,	
 not	
 only	
 the	
 workers,	

so	
 the	
 security	
 has	
 to	
 be	
 higher.	
 	

• Better	
 communication	
 between	
 the	
 legacy	
 applications:	
 In	
 the	
 new	
 system,	

switching	
 from	
 one	
 application	
 to	
 the	
 next	
 should	
 be	
 transparent:	
 The	
 user	

should	
 feel	
 there	
 is	
 only	
 one	
 application.	
 In	
 particular,	
 each	
 legacy	
 application	

would	
 need	
 the	
 account	
 number	
 of	
 a	
 client	
 to	
 access	
 its	
 information	
 (the	

billing	
 service	
 to	
 access	
 the	
 card	
 number,	
 the	
 printing	
 service	
 to	
 access	
 the	

customer,	
 address,	
 ...).	
 The	
 workers	
 would	
 copy	
 and	
 paste	
 it	
 from	
 one	

application	
 to	
 the	
 next,	
 but	
 the	
 integrated	
 version	
 should	
 provide	
 it	

automatically.	
 	

• A	
 history	
 of	
 the	
 trips	
 of	
 each	
 client	
 should	
 be	
 added,	
 to	
 propose	
 discounts	
 or	

promotions.	
 	

• Electronic	
 tickets	
 should	
 be	
 supported:	
 The	
 client	
 can	
 optionally	
 print	
 the	

tickets	
 on	
 his	
 home	
 printer,	
 instead	
 of	
 having	
 to	
 wait	
 for	
 the	
 tickets	
 to	
 be	
 sent.	
 	

• Clients	
 should	
 be	
 able	
 to	
 cancel	
 their	
 reservations.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Post-­experiment	

questionnaire	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Please	
 revisit	
 your	
 experience	
 with	
 SAWA	
 and	
 ArgoUML	
 and	
 share	
 with	
 us	
 your	

thoughts	
 by	
 completing	
 this	
 questionnaire:	

	

	
 Very	

difficult	

Difficult	
 Intermediate	
 Easy	
 Very	
 Easy	

Overall	

Usability	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 	
 	
 	

	
 	
 	
 ArgoUml	
 	
 	
 	
 	
 	

	

Model	

Navigation	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 	
 	
 	

	
 	
 	
 ArgoUml	
 	
 	
 	
 	
 	

	

Entities	

Manipulation	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 	
 	
 	

	
 	
 	
 ArgoUml	
 	
 	
 	
 	
 	

	

Model	

Recognition	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 	
 	
 	

	
 	
 	
 ArgoUml	
 	
 	
 	
 	
 	

	

Collaborative	

team	
 work	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 	
 	
 	

	
 	
 	
 ArgoUml	
 	
 	
 	
 	
 	

	

How	
 often	
 did	
 you	
 feel	
 you	
 needed	
 to	
 talk	
 to	
 your	
 teammates?	

SAWA:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

ArgoUML:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

	

How	
 often	
 did	
 you	
 encounter	
 conflicts	
 during	
 the	
 design	
 session?	

SAWA:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

ArgoUML:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

	

	

How	
 often	
 were	
 you	
 aware	
 of	
 what	
 other	
 members	
 of	
 your	
 team	
 are	
 doing?	

SAWA:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

ArgoUML:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Never	
 	
 	
 	
 	
 	
 Rarely	
 	
 	
 	
 	
 	
 Regularly	
 	
 	
 Frequently	
 	
 	
 	
 	
 	
 Always	

	

How	
 hard	
 was	
 task	
 1	
 (Chess	
 Game)?	

	
 Very	
 difficult	

	
 Difficult	
 	

	
 Intermediate	

	
 Easy	

	
 Very	
 Easy	

	

How	
 hard	
 was	
 task	
 2	
 (Travel	
 Agency)?	

	
 Very	
 difficult	

	
 Difficult	
 	

	
 Intermediate	

	
 Easy	

	
 Very	
 Easy	

	

On	
 a	
 scale	
 from	
 0	
 to	
 100%,	
 how	
 much	
 do	
 you	
 think	
 your	
 models	
 are	
 complete	
 for	

task1	
 (Chess	
 Game)	
 and	
 task2	
 (Travel	
 Agency)?	

	
 0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Task1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

SAWA	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

ArgoUml	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Task2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

SAWA	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

ArgoUml	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Please	
 answer	
 the	
 following	
 optional	
 questions	
 to	
 help	
 us	
 improve	
 SAWA	

	

What	
 are	
 the	
 positive	
 and	
 negative	
 aspects	
 of	
 SAWA	
 compared	
 to	
 ArgoUML?	

	

	

	

	

	

	

	

What	
 are	
 the	
 improvements	
 or	
 new	
 features	
 that	
 SAWA	
 should	
 provide?	

	

	

	

	

	

	

	

Do	
 you	
 have	
 any	
 other	
 suggestions,	
 ideas,	
 comments	
 or	
 critiques	
 you	
 want	
 to	
 share	

with	
 us?	
 	

	

	

	

	

	

	

	

Appendix B

Experiment Raw Results

In this chapter we present the raw results of the questionnaires in Appendix A. The num-
bers inside the tables "Experience level" and "Number of years", as well as the numbers in the
post-experiment questionnaire mean how many participants gave that specific answer to that
specific question.

57

	

Pre-­Experiment	
 Questionnaire	
 Results	

Statistical	
 Data:	

Id	
 Gender	
 Age	
 Country	
 Affiliation	
 Position	
 Favorite	

mean	

	

P1	
 M	
 21	
 SY	
 Tishreen	

University	

BSc	
 Stud.	
 UML	
 Editors	

P2	
 M	
 24	
 SY	
 Tishreen	

University	

MSc	
 Stud.	
 Whiteboard	

P3	
 F	
 28	
 SY	
 Tishreen	

University	

MSc	
 Stud.	
 Whiteboard	

P4	
 M	
 28	
 SY	
 Tishreen	

University	

T.A.	
 Whiteboard	

P5	
 M	
 27	
 SY	
 Tishreen	

University	

T.A.	
 No	
 Modeling	

P6	
 M	
 30	
 SY	
 Tishreen	

University	

T.A.	
 UML	
 Editors	

P7	
 M	
 28	
 SY	
 Tishreen	

University	

T.A	
 Whiteboard	

P8	
 M	
 29	
 SY	
 Tishreen	

University	

T.A	
 Whiteboard	

	

Experience	
 level	
 in:	
 (A	
 subjective	
 assessment	
 of	
 your	
 skills)	

	
 None	
 Beginner	
 Intermediate	
 Advanced	
 Expert	

OOP	
 	
 	
 	
 3	
 5	

Software	

Modeling	

	
 1	
 2	
 1	
 4	

Using	

ArgoUML	

2	
 	
 1	
 2	
 3	

Team	

Work	

1	
 2	
 	
 4	
 1	

Using	

Skype	
 	
 	
 	
 	
 8	

	

Number	
 of	
 years	
 of:	
 (the	
 years	
 you	
 spent	
 in	
 acquiring	
 your	
 experience)	

	
 <	
 1	
 Year	
 1	
 to	
 2	
 3	
 to	
 5	
 6	
 to	
 9	
 >10	

OOP	
 	
 	
 4	
 4	
 	

Software	

Modeling	
 1	
 1	
 3	
 2	
 1	

Using	

ArgoUML	
 3	
 1	
 4	
 	
 	

Team	

Work	
 2	
 3	
 3	
 	
 	

Using	

Skype	

	
 	
 3	
 5	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Post-­Experiment	
 Questionnaire	
 Results	

	
 Very	

difficult	

Difficult	
 Intermediate	
 Easy	
 Very	
 Easy	

Overall	

Usability	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 1	
 3	
 2	
 2	

	
 	
 	
 ArgoUml	
 1	
 	
 	
 4	
 3	

	

Model	

Navigation	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 1	
 2	
 4	
 1	
 	

	
 	
 	
 ArgoUml	
 	
 1	
 3	
 3	
 1	

	

Entities	

Manipulation	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 3	
 4	
 1	

	
 	
 	
 ArgoUml	
 	
 	
 3	
 2	
 3	

	

Model	

Recognition	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 1	
 2	
 4	
 1	

	
 	
 	
 ArgoUml	
 	
 2	
 5	
 1	
 	

	

Collaborative	

team	
 work	

	
 	
 	
 	
 	

	
 	
 	
 SAWA	
 	
 	
 2	
 3	
 3	

	
 	
 	
 ArgoUml	
 5	
 2	
 1	
 	
 	

	

How	
 often	
 did	
 you	
 feel	
 you	
 needed	
 to	
 talk	
 to	
 your	
 teammates?	

SAWA:	
 [1]	
 Never	
 	
 	
 	
 	
 [5]	
 Rarely	
 	
 	
 	
 	
 [2]	
 Regularly	
 	
 	
 	
 	
 [0]	
 Frequently	
 	
 	
 	
 	
 [0]	
 Always	

ArgoUML:	
 	
 	
 	
 [0]	
 Never	
 	
 	
 	
 	
 [0]	
 Rarely	
 	
 	
 	
 	
 [1]	
 Regularly	
 	
 	
 	
 	
 [4]	
 Frequently	
 	
 	
 	
 	
 [3]	
 Always	

	

How	
 often	
 did	
 you	
 encounter	
 conflicts	
 during	
 the	
 design	
 session?	

SAWA:	
 [2]	
 Never	
 	
 	
 	
 	
 [4]	
 Rarely	
 	
 	
 	
 	
 [1]	
 Regularly	
 	
 	
 	
 	
 [1]	
 Frequently	
 	
 	
 	
 	
 [0]	
 Always	

ArgoUML:	
 	
 	
 	
 [0]	
 Never	
 	
 	
 	
 	
 [0]	
 Rarely	
 	
 	
 	
 	
 [3]	
 Regularly	
 	
 	
 	
 	
 [5]	
 Frequently	
 	
 	
 	
 	
 [0]	
 Always	

	

How	
 often	
 were	
 you	
 aware	
 of	
 what	
 other	
 members	
 of	
 your	
 team	
 are	
 doing?	

SAWA:	
 [0]	
 Never	
 	
 	
 	
 	
 [0]	
 Rarely	
 	
 	
 	
 	
 [1]	
 Regularly	
 	
 	
 	
 	
 [1]	
 Frequently	
 	
 	
 	
 	
 [6]	
 Always	

ArgoUML:	
 	
 	
 	
 [7]	
 Never	
 	
 	
 	
 	
 [1]	
 Rarely	
 	
 	
 	
 	
 [0]	
 Regularly	
 	
 	
 	
 	
 [0]	
 Frequently	
 	
 	
 	
 	
 [0]	
 Always	

	

How	
 hard	
 was	
 task	
 1	
 (Chess	
 Game)?	

[2]	
 Very	
 difficult	

[4]	
 Difficult	
 	

[1]	
 Intermediate	

[1]	
 Easy	

[0]	
 Very	
 Easy	

	

How	
 hard	
 was	
 task	
 2	
 (Travel	
 Agency)?	

[3]	
 Very	
 difficult	

[1]	
 Difficult	
 	

[3]	
 Intermediate	

[1]	
 Easy	

[0]	
 Very	
 Easy	

	

	

On	
 a	
 scale	
 from	
 0	
 to	
 100%,	
 how	
 much	
 do	
 you	
 think	
 your	
 models	
 are	
 complete	
 for	

task1	
 (Chess	
 Game)	
 and	
 task2	
 (Travel	
 Agency)?	

	
 0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Task1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

SAWA	
 	
 	
 	
 	
 	
 	
 	
 1	
 5	
 2	
 	

ArgoUml	
 	
 	
 	
 1	
 5	
 1	
 1	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Task2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

SAWA	
 	
 	
 	
 	
 	
 	
 4	
 3	
 1	
 	
 	

ArgoUml	
 	
 	
 	
 4	
 2	
 1	
 1	
 	
 	
 	
 	

	

62

Appendix C

Sawa Quick Manual

Sawa1 is a very simple easy-to-use tool that can be used without any tutorials. But still, here
are some few instructions to know exactly what to do to build and manipulate models.

1. To create a new model, enter the model name in the text box next to "Add New Model" and
press the button "Add".

2. Now you need to add a view to start drawing diagrams. Enter the name of the new view in
the text box next to "Add New View" and press the button "Add". Of course you can add as
many views as you want.

3. Now you can start building models by selecting a view from the view list on the left and
work inside the canvas area in the middle.

4. Double click on any free spot in the canvas and a new class text box will show up. Enter the
name of the class and press enter and a new class shape will be added to the canvas and its
name will appear in the class list on the left.

5. You can drag and drop class shapes anywhere you want in the canvas area.

6. Every class shape is divided into three main sections: class name, attributes, and meth-
ods exactly like the class notation in UML. You can double-click on the empty attribute or
method and enter some text and press enter to add an attribute or a method. You can also
double-click on any attribute or method, change the text and press enter to alter that spe-
cific attribute or method. Or you can delete the text and press enter to delete that attribute
or method.

7. In the same way, you can change the name of the class or delete it from that view. Remember
that deleting a class from the view will not delete it from the model and that class will
remain in the class list on the left because any class can appear in as many views as you
want.

8. To delete a class entirely from the model you can right-click on its name on the class list and
select delete.

1Sawa page: che.inf.usi.ch:2128/

63

che.inf.usi.ch:2128/

64

9. To add an existing class to another view, switch to that specific view by selecting it from the
view list then right-click on the class name in the class list and select add to view.

10. When you put the mouse over any class shape, you will see three handles appearing on the
right, left, and top sides of that class shape. These handles are for drawing relations. To
create an association relation, click on the left or right handles of the first class then click
again on the second class. To create a generalization relation, click on the top handle of the
first class and click again on the second class and a generalization relation will be added
from the first class to the second class.

11. Each association relation has a title and two cardinality texts from both sides. You can
change the text inside each one the same way you change an attribute or a method. You
can delete a relation by deleting the title of that relation.

12. Remember that you can cancel any kind of operation (changing an attribute, method, rela-
tion title or cardinality, or building a relation) by clicking the escape button.

13. You can always switch between models by selecting the model name from the top drop box
next to "Models".

14. When you first logs in, you first select the model you want to work on, then you have three
possibilities. First you can replay the model building process step by step by clicking the
button "step by step >" or you can go immediately to where you last left the modeling
session by clicking the button "to where I left »" then you can go step by step again. Finally
you can go to the current state of the model by clicking the button "to the end »>".

15. When you are working with a group, you will see many highlighted items as people are also
changing things, especially when you switch among models or views. If you want you can
always remove the highlightings by clicking the button "Unhighlight all".

Bibliography

[Bad10] Omar Badreddin. Umple: a model-oriented programming language. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 2, ICSE ’10, pages 337–338, New York, NY, USA, 2010. ACM.

[BCSR07] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. Fast-
dash: a visual dashboard for fostering awareness in software teams. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’07, pages 1313–1322, New York, NY, USA, 2007. ACM.

[BDL11] Felix Bott, Stephan Diehl, and Rainer Lutz. CREWW: collaborative require-
ments engineering with wii-remotes (NIER track). In ICSE ’11: Proceeding of
the 33rd International Conference on Software Engineering. ACM Request Per-
missions, May 2011.

[BFL12] Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge. Model ori-
ented programming: an empirical study of comprehension. In Proceedings
of the 2012 Conference of the Center for Advanced Studies on Collaborative Re-
search, CASCON ’12, pages 73–86, Riverton, NJ, USA, 2012. IBM Corp.

[Boe86] B Boehm. A spiral model of software development and enhancement. SIGSOFT
Softw. Eng. Notes, 11(4):14–24, August 1986.

[BRZ+10] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. Code bubbles: rethinking the user interface paradigm of integrated
development environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 455–464, New
York, NY, USA, 2010. ACM.

[BS97] David Bellin and Susan Suchman Simone. The CRC Card Book. The Addison-
Wesley series in object-oriented software engineering. Addison Wesley, 1997.

[Cor89] Thomas A Corbi. Program Understanding: Challenge for the 1990s. IBM Sys-
tems Journal (), 28(2):294–306, 1989.

[CVDK07] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J Ko. Let’s go to
the whiteboard: how and why software developers use drawings. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems.
ACM Request Permissions, April 2007.

65

66 Bibliography

[DB92] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, CSCW ’92, pages 107–114, New York, NY, USA, 1992. ACM.

[DH07] Uri Dekel and James D Herbsleb. Notation and representation in collaborative
object-oriented design: an observational study. In OOPSLA ’07: Proceedings
of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications. ACM Request Permissions, October 2007.

[DISK07] Daniela Damian, Luis Izquierdo, Janice Singer, and Irwin Kwan. Awareness in
the wild: Why communication breakdowns occur. In Proceedings of the Inter-
national Conference on Global Software Engineering, ICGSE ’07, pages 81–90,
Washington, DC, USA, 2007. IEEE Computer Society.

[DR10] Robert DeLine and Kael Rowan. Code canvas: zooming towards better de-
velopment environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE ’10, pages 207–210, New
York, NY, USA, 2010. ACM.

[dSCVdW+06] Isabella A. da Silva, Ping H. Chen, Christopher Van der Westhuizen, Roger M.
Ripley, and André van der Hoek. Lighthouse: coordination through emerg-
ing design. In Proceedings of the 2006 OOPSLA workshop on eclipse technology
eXchange, eclipse ’06, pages 11–15, New York, NY, USA, 2006. ACM.

[Erl00] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, May 2000.

[FBLS12] Andrew Forward, Omar Badreddin, Timothy C. Lethbridge, and Julian Solano.
Model-driven rapid prototyping with umple. Softw. Pract. Exper., 42(7):781–
797, July 2012.

[FLB09] A. Forward, T.C. Lethbridge, and D. Brestovansky. Improving program compre-
hension by enhancing program constructs: An analysis of the umple language.
In Program Comprehension, 2009. ICPC ’09. IEEE 17th International Conference
on, pages 311 –312, may 2009.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[Goe91] Vinod Goel. Sketches of thought: a study of the role of sketching in design
problem-solving and its implications for the computational theory of the mind.
PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 1991.

[HD08] R. Hegde and P. Dewan. Connecting programming environments to support
ad-hoc collaboration. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 178–187, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[HL10] Lile Hattori and Michele Lanza. Syde: a tool for collaborative software de-
velopment. In Proceedings of the 32nd ACM/IEEE International Conference on

67 Bibliography

Software Engineering - Volume 2, ICSE ’10, pages 235–238, New York, NY, USA,
2010. ACM.

[LMFB11] T.C. Lethbridge, G. Mussbacher, A. Forward, and O. Badreddin. Teaching uml
using umple: Applying model-oriented programming in the classroom. In Soft-
ware Engineering Education and Training (CSEE T), 2011 24th IEEE-CS Confer-
ence on, pages 421 –428, may 2011.

[MBD+10] Nicolas Mangano, Alex Baker, Mitch Dempsey, Emily Navarro, and André
van der Hoek. Software design sketching with calico. In ASE ’10: Proceedings
of the IEEE/ACM international conference on Automated software engineering.
ACM Request Permissions, September 2010.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordi-
nation. ACM Comput. Surv., 26(1):87–119, March 1994.

[OLD12] Fernando Olivero, Michele Lanza, and Marco DÕambros. Ronda: A fine
grained collaborative development environment. In Yuhua Luo, editor, Co-
operative Design, Visualization, and Engineering, volume 7467 of Lecture Notes
in Computer Science, pages 155–162. Springer Berlin Heidelberg, 2012.

[OLDR11] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes. Enabling program compre-
hension through a visual object-focused development environment. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on,
pages 127 –134, sept. 2011.

[OLL10] Fernando Olivero, Michele Lanza, and Mircea Lungu. Gaucho: From Integrated
Development Environments to Direct Manipulation Environments. In Proceed-
ings of FlexiTools 2010 (1st International Workshop on Flexible Modeling Tools),
2010.

[Pet09] Marian Petre. Insights from expert software design practice. In ESEC/FSE ’09:
Proceedings of the 7th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of software engi-
neering on European software engineering conference and foundations of software
engineering symposium. ACM Request Permissions, August 2009.

[RJ00] L. Rising and N.S. Janoff. The scrum software development process for small
teams. Software, IEEE, 17(4):26 –32, jul/aug 2000.

[RL07] Romain Robbes and Michele Lanza. A change-based approach to software evo-
lution. Electron. Notes Theor. Comput. Sci., 166:93–109, January 2007.

[Roy87] W. W. Royce. Managing the development of large software systems: concepts
and techniques. In Proceedings of the 9th international conference on Software
Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Com-
puter Society Press.

[SKRR03] D.A. Smith, A. Kay, A. Raab, and D.P. Reed. Croquet - a collaboration system
architecture. In Creating, Connecting and Collaborating Through Computing,
2003. C5 2003. Proceedings. First Conference on, pages 2 –9, jan. 2003.

68 Bibliography

[SSR03] Martina Schütze, Pierre Sachse, and Anne Römer. Support value of sketching
in the design process. Research in Engineering Design, 14(2):89–97, 2003.

[SvdH06] Anita Sarma and Andre van der Hoek. Towards awareness in the large. In
Global Software Engineering, 2006. ICGSE ’06. International Conference on,
pages 127 –131, oct. 2006.

[Wil95] Nancy M Wilkinson. Using CRC Cards — An Informal Approach to Object-
Oriented Development. SIGS Publications, Inc., 1995.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure Of The Document

	Related Work
	Modeling Techniques
	Informal Techniques
	Formal Techniques
	Model-Oriented Programming
	Source Code Based Modeling

	Collaborative Engineering and Modeling
	Summary

	Web-Based Collaborative Software Modeling
	Problem Formulation
	Our Approach
	Modeling Technique
	Collaboration
	Awareness

	Sawa in a Nutshell
	User Interface Design
	Architecture
	Implementation-Level Decisions
	Overall Architecture
	Server-Side Implementation
	Client-Side Implementation
	Network Problems

	Evaluation
	Experiment Design
	Pre-experiment questionnaire
	Modeling Tasks
	Post-Experiment Questionnaire
	Threats to Validity

	The Outcome
	Questionnaire Results
	User Feedback
	Observations

	Reflections

	Conclusions
	Contributions
	Future Work
	Epilogue

	Experiment Handout
	Experiment Raw Results
	Sawa Quick Manual
	Bibliography

