
Telling Evolutionary Stories with Complicity

Master’s Thesis submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Sylvie Neu

under the supervision of

Prof. Michele Lanza and Lile Hattori

June 2011





I certify that except where due acknowledgement has been given, the work presented in this thesis
is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify
for any other academic award; and the content of the thesis is the result of work which has been
carried out since the official commencement date of the approved research program.

Sylvie Neu
Lugano, 29 June 2011

i





Nothing great in this world has ever been
accomplished without passion.

Christian Friedrich Hebbel (1813-1863)

iii



iv



Abstract

Software systems change when for example new requirements arise, their environment changes or
bugs are fixed. During this process they grow in size and complexity making their maintenance a
time-consuming and thus costly process. Software evolution analysis, focuses on the changing process
of software systems. Its main goal is to analyze this process to better understand how a system evolves
and to eventually reveal aspects that have an impact on the maintenance tasks.

Traditionally, the target of software evolution research has been single software systems. A number
of approaches were proposed to understand the evolution of a software system, exploiting various
sources of information, e.g., versioning system data, bug databases, and mailing lists. However, during
the last years researchers observed that software systems are often not developed in isolation, but
within a larger context, e.g., company, or open source community. We call this context ecosystem.
Analyzing software evolution at ecosystem level allows a better understanding of the evolution
phenomenon, as the entire development context can be studied. Nonetheless, software ecosystem
analysis is challenging because of the sheer amount of data to be processed and understood.

We present Complicity, a web-based application that supports software ecosystem analysis by
means of interactive visualizations. Complicity breaks down the data by offering two abstraction
levels: ecosystem and project or contributor. To support a thorough exploration and analysis of
ecosystem data, the tool provides a number of fixed views and the possibility of creating new views
with given software metrics. We illustrate in a case study how Complicity can help to understand
the GNOME ecosystem. In a bottom-up approach we start from a single project and contributor and
show their impact on the ecosystem. In a top-down approach, we start our analysis at ecosystem level
before we move to a lower level of abstraction for some selected projects.
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Chapter 1

Introduction

Software systems change, and during this process they grow in size and complexity, and incrementally
move away from their initial design. This phenomenon, known as software evolution [Leh80], makes
it difficult to maintain a software system, which claims a share estimated up to 90% of total software
costs [LS81, Erl00], of which 60% is spent in understanding the system [Cor89].

The high cost of software maintenance results from many factors: Documentation is often not
updated, or not existing [KC98]; because of the continuous turnover of developers, changes to a
software system are often performed by developers with a limited knowledge of the system. Reverse
engineering deals with these problems and its aim is to ease software maintenance. Chikofsky and
Cross [CC90] defined reverse engineering as:

“The process of analyzing a subject system to (1) identify the system’s components and their
interrelationships, and to (2) create representations of the system in another form or at a higher level
of abstraction.”

Most reverse engineering research is mainly concerned with satisfying these goals using different
abstraction levels (e.g., code level [ESS92], and design level [LDGP05, WL07]). The problem with
following the above definition is that it takes into account a single software system focusing on either
the project or its contributors. However, software systems are rarely developed in isolation, but in so
called ecosystems. Lungu [Lun09] defines a software ecosystem as:

“A collection of software projects, which are developed and co-evolve together in the same envi-
ronment.”

In this context, the environment is a company, a research group, or an open source community.
The data about the changes executed on projects from a same ecosystem are often kept together in one
same location, called super-repository. Lungu [LLGR10] defines a super-repository as:

“A collection of version control repositories of the projects of an ecosystem.”

To analyze software ecosystems at any abstraction level, techniques are required to cope with the
huge amount of data available. Two analysis techniques have been effectively used to convey the results
to the end user: metrics [CK94, LFRGBH06, LDGP05], and visualization [ESS92, GKSD05, WL07].
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4 1.1 Contributions

The advantage of software visualization over pure metrics is that it uses the brain’s ability of remem-
bering images [Die07] and extracting patterns and anomalies from the data that are unlikely when data
or numbers are presented in tables or text [PSB92]. Diehl [Die07] defines software visualization as:

“The visualization of artifacts related to software and its development process [...] including for
example program code, requirements and design documentation, changes to source code, and bug
reports.”

In order to support the analysts in their tasks to better understand the evolution of software
systems within their ecosystem a framework can be beneficial. We present Complicity, a web-based
interactive application that visualizes –at different abstraction levels– the data extracted from the Git
web interface of super-repositories. Complicity makes use of metrics and visualization to analyze
software ecosystems in a top-down or bottom-up approach. The user can start at ecosystem level
and move down to the entity level or vice versa, start analyzing a project or a contributor, and go
to the ecosystem level to give a higher level context for the individual analysis. Using the GNOME
super-repository as a case study, we demonstrate the use of Complicity to better understand the
ecosystem and its entities. For this purpose, we show how an individual project affects the events at
ecosystem level, and follow a contributor’s involvement in different projects.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

• Provide a super-repository independent meta model for software ecosystems.

• Make this work available to others as an interactive web-based application where the users can
explore and follow up the software systems they are interested in.

• Provide a catalogue of visualizations illustrating different views of software systems and
contributors at entity and ecosystem level, which are beneficial for understanding the evolution
of software systems on their own and within their ecosystem.

• Supply a methodology of how to use the different views to understand the evolution of the
software systems and their ecosystem.

1.2 Structure of the Document

This document is structured into three main parts as shortly described in the following.

Part I: Prologue is the introductory section that gives an overview of the subject research field,
introducing the main terminology, the problem at hand and some examples depicted from the state of
the art.

• Chapter 1 (p.3) introduces the research field and the main terminology, which will be used
in the remaining chapters. It describes the goals we want to reach and outlines the document
structure.

• Chapter 2 (p.7) describes the related work and how it distinguishes from or leads us to our
work.



5 1.2 Structure of the Document

Part II: Understanding Software Ecosystems is the central part of the thesis. It provides the main
contributions of this work, describing the process and tool support for software evolution analysis at
ecosystem level.

• Chapter 3 (p.13) introduces Complicity, a web-based and interactive tool that we developed
in order to support the user in his task to analyze and understand software projects and its
contributors within a software ecosystem. We explain the interface with its available features
and most importantly the meta model behind it.

• Chapter 4 (p.29) describes our main contributions to this research field, a catalogue of different
views, which have been integrated into Complicity, and which can be interactively explored.
We explain how they are constructed, what data they provide, for whom they are useful, and
how they can be interpreted.

• Chapter 5 (p.55) we evaluate the views implemented within Complicity by providing scenarios
in how they can support the user in its analysis and learning tasks.

Part III: Epilogue is the closing part of the work, in which we take a step back to review and conclude
our work.

• Chapter 6 (p.79) reviews and concludes the work. We discuss what has been done so far and
evaluate our work by introducing what could be done in the future.
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Chapter 2

State of the Art

Software visualization is mainly concerned with three different aspects of software systems [Die07]:

1. Behavior, which refers to the execution of the program, i.e. how the program state or its output
changes when executing instructions;

2. Structure, which is about the static parts and relations of the system. It can be computed without
running the program;

3. Evolution, which involves the changes that have been done on a software system over time
whereas this information is generally extracted from other sources than the code.

Visual analysis of the evolution of software ecosystems is a rather underexplored area of research.
Thus, we place our work in a broader context and relate it to (1) software evolution visualization, and
(2) software ecosystems analysis.

2.1 Software Evolution Visualization

Visualization is “the process of transforming information into a visual form, enabling users to observe
the information” [Ger94]. Software evolution visualization specifically deals with the abstract data
available from different sources that keep track of the changing process of software systems. It enables
the analysts to visually perceive features, which are hidden in the data but are necessary for the data
exploration and analysis.

Much of the research work in software evolution visualization has been targeting single software
systems. They either focus their analysis on the subject system itself at different abstraction levels (see
Section 2.1.1), or on social structures and how they influence the evolution process (see Section 2.1.2).

2.1.1 Single Software Systems

According to Lungu [Lun09] static visualization tools work at three different abstraction levels:

• Code-level, which refers solely to the text.

• Design-level, which uses classes or files.

• Architecture-level, which considers modules and their relationships.

7
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We present some examples that make use of software visualization to analyze the evolution of a single
software system at code or design level.

One of the first tools to visualize software evolution was Seesoft [ESS92]. It visualizes the change
history of files by mapping a single line of code to a pixel line, where the color of the pixel line is an
indication of interest: red, most recently changed versus blue, least recently changed. Seesoft enables
a comparison of multiple files with up to 50 KLOC at the same time.

The Evolution Matrix [Lan01] displays the evolution of a software system at class and system
level. Within this matrix a class is represented as a two dimensional box with number of methods as
width and number of instance variables as height. Every row of the matrix represents the evolution of
a different class of the subject system and every column a different version of the system. This matrix
makes it easy to extract information about the size of a system, the addition, removal and changes of
classes, and thus to identify different evolution stages of a system.

The Evolution Radar [DLL06] visualizes logically coupled files and modules. The subject module
to be analyzed is placed in the middle of a pie chart, all remaining modules are placed in sectors
around the center. A file is represented by a colored disk placed according to its logical coupling:
the more coupled two files are, the closer they are placed to the center. The higher the value of
the logical coupling the more the color of the file changes from blue to red. The goal is to identify
entities that have often changed together in the past and are thus likely to change together in the
future. Furthermore, misplaced entities can be detected if files are often changed together but placed
in different modules.

By means of a three dimensional approach, Wettel et al. [WL07] uses the city metaphor to
visualize the current state of an object-oriented software system and its evolution over different
versions. Mapping software metrics like number of methods (NOM) on the height and number of
attributes (NOA) on the base size of a building, they could depict different types of classes, e.g., brain
classes, god classes, brain & god classes, and data classes.

2.1.2 Social Network Analysis

Software does not evolve without external impact. Humans are those who make a software system
change. As a consequence, the analysis of social aspects (e.g., activity, communication structure, and
knowledge flow) becomes a valuable source to better understand the evolution of software systems or
of those who develop them. We illustrate on some examples what information can be extracted from
different data sources using different visualization techniques.

The Ownership Map [GKSD05] identifies the owner of every single file within a software system.
Every file is represented with a pixel line, a disc defines a file change, and the color of the line and the
disc defines the owner and the committer, respectively. The owner of a file is the developer who made
most changes to a file in terms of number of lines.

Ogawa et al. use discrete sankey diagram to show the flow of people between clusters, which
are generated using the Markov-Cluster (MCL) algorithm1. Clusters represent people that are highly
connected based on a high amount of email exchange among them: large clusters represent core con-
versations and small clusters represent side conversations [OlMB+07]. A single person is represented
by a disk placed on a horizontal line grouped together by their cluster. Every horizontal line represents
the email list conversation state at one time step. Time flows downwards in monthly stages and edges
are drawn between two stages if people continue to participate in the mailing list. The width of an
edge is proportional to the number of people staying within the two clusters. The exiting rate can be

1http://micans.org/mcl/
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depicted from the graph by subtracting the number of people of the next stage from the current stage.
Applying this approach on large data sets increases the number of clusters and edge crossings, which
might decrease the readability of the visualization.

In Maispion [SMG09], the authors analyze the activity within the mailing lists and versioning
systems of a single software system in order to reveal communication behavior within a project. They
answer questions such as “Is there a main driver?” and “When are the developers most active?”.
The tool has been evaluated on three different well-known open-source projects: Moose –project
developed at the University of Bern–, Drupal and Phyton. With the help of Maispion, they found out
that most developers are likely to communicate only with a small number of other developers. This
phenomenon is called clique and is an “indication of redundancy of communication links around a
developer” [LFRGBH06].

Oezbek et al. [OPT10] check whether the onion communication model is applicable to open-
source software systems using mailing lists as data source. They find out that the core developers
(active since more than eight months) are highly interactive and tightly connected to each other. The
co-developers are mostly core-oriented and only few connections exist between them. The periphery
is either connected to the core or not connected at all. They name the model resulting from their work
earth-moon-stars with earth representing the core, moon the co-developers and the periphery as stars.

2.2 Software Ecosystems Analysis

The second main research field we are considering in our work is the analysis of software ecosystems.
To the best of our knowledge, little has been devoted to this topic. In the following we present some
works that are directly or indirectly related to software ecosystem but which do not necessarily use
visualization techniques.

FLOSSMole [CHC05] is a project that aims at mining free, libre, and open-source software
(FLOSS) super-repositories (e.g., sourceforge, github, and google code) and making general informa-
tion about these projects, e.g., project name, description and developers available for researchers and
anyone who is interested in it. The data from the version control systems or any other data source is
not mined.

López-Fernández et al. apply social network analysis techniques to community-driven libre soft-
ware projects, such as Apache, GNOME and KDE. What the authors call large projects, we define as
software ecosystems [LFRGBH06]. Their goal is to gain knowledge about the coordination structures
prior to understand how large open-source projects can function without formalized organizational
structures. Using different metrics (e.g., weighted clustering coefficient, distance centrality, and
betweenness centrality) they found out that committers within the GNOME and KDE are more tightly
connected than the ones of the Apache ecosystem because of the GNOME’s and KDE’s projects
technical proximity. They also discovered that these ecosystems have a good structure for knowledge
flow and the absence of centers of power.

Ohloh2 is an online directory of free and open source software (FOSS) projects and its developers.
It retrieves data from version control repositories (e.g., CVS, SVN, Git, etc.) and provides a minimal
number of visualizations showing the evolution of language usage, number of commits, number of
committers, and number of lines of code versus number of lines of comments versus number of empty
lines. Ohloh focuses mainly on supplying the necessary information for its users to find the best
OSS projects, which they are looking for and, which best fits with the tools they are currently using.

2See http://www.ohloh.net/

http://www.ohloh.net/
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In a short summary they list the most crucial information about a single project: (1) project’s main
language, (2) project’s team size, (3) how well the code is documented, (4) how active a project is
in terms of commits, and (5) how well the code base is established based on its lifetime. The most
significant difference between ohloh and other tools or approaches is the underlying information
exchange platform with discussion forums; the possibility to mark, save and follow up only the
projects and people you are actually interested in; rating and reviewing functionality for project and
committers; and facilities to read and write journal entries about projects even from some messenger
outside the ohloh platform.

Lungu focused his work on reverse engineering software ecosystems [Lun09]. He created the
Small Project Observatory (SPO), a tool in which analysts, developers and managers can interactively
analyze the evolution of software ecosystems. SPO mainly differentiates between two aspects, project
and developer, and for which the ecosystem can play one of two different roles: focus –to better
understand the ecosystem– or context –to understand a single entity of the ecosystem [LL10].

Seichter et al. introduced a new approach of knowledge management by developing a social
network of software artifacts in which the knowledge is attached to a software artifact rather than
an actor (contributor) [SDPH10]. This has the advantage that if a developer leaves an open-source
software project, the knowledge remains within the project. This form of network allows new forms
of interactions: actor to actor (collaboration), artifact to actor (ownership), actor to artifact (interest),
and artifact to artifact (dependency).

Goeminne and Mens provide a framework to mine version control systems, mailing lists and bug
tracking databases, to analyze and to visualize mainly the mailing and commit activity of open-source
software ecosystems [GM10]. Contrary to us, they define an ecosystem as “the source code together
with the user and developer communities surrounding the software”.

2.3 Conclusion

We introduced some of the existing work devoted to either software evolution visualization and/or
software ecosystem analysis. In these example multiple data sources (e.g., source code, email lists,
version control systems etc.) have been consulted. The extracted data has been applied in different
approaches using distinct visualization techniques and metrics to support the comprehension of the
evolution process.

In our work, we consider the data available in the Git web interface of super-repositories. We
combine software visualization with software metrics, by focusing not only on a single project or
contributor, or only on the ecosystem level, but enabling the analysts to switch between the ecosystem
and project or contributor level, and between projects and contributors. We provide different views,
in which we use some of the presented visualization techniques (e.g., two dimensional boxes to
encode different metrics and visualizes contributors’ activity) to support the understanding of software
ecosystems. We combined all this in a single tool called Complicity, which is introduced next.
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Understanding Software Ecosystems
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Chapter 3

Complicity

Our goal is to support those who are interested in analyzing and understanding the evolution of
software ecosystems. However, as software ecosystems consists of many projects, the amount of data
available is huge. Even though we focus on a single data source, the web interface of Git version
control systems, we have to handle a large data collection. Therefore, we use visualization of software
metrics, as visualizations can cope with large data sets and make it possible to extract patterns and
anomalies from them that would not be possible otherwise. Furthermore, we break down the data
into different high levels of abstraction, ecosystem and entity, so that only a limited amount of data is
visible at a time.

In order to share our work with others, and allow them to interactively explore, analyze and
understand the evolution of super-repositories, we developed a tool called Complicity 1. The term
complicity is defined as “the fact or condition of being an accomplice, especially in a criminal act”2.
In this work, we are not interested in any criminal act but instead our aim is to identify collaboration,
dependencies and relationships between projects, between contributors and between projects and
contributors. For this reason, the tool is highly interactive allowing a smooth transition from one
abstraction level to another and from project to contributor or vice versa.

Complicity is web-based to make it easier for the analysts to use it, as no installation is required
and they have direct access to the newest version of the tool without the necessity of an update. In
addition, it supports collaboration as everybody accesses the same data set. The advantage of this
approach to us is that we have full control over who sees what and when. Furthermore, we are able to
gather usage data.

In this chapter, we define different stakeholders (see Section 3.1 (p.14)), who might have interest
in the analysis of software ecosystems. We present Complicity by giving a short overview of its user
interface in Section 3.2 (p.15) before explaining the architecture of complicity and its backend in
Section 3.3 (p.17). We introduce the underlying data model in Section 3.4 (p.19) and the metrics that
could be extracted from the data in Section 3.5 (p.21). Based on these metrics we generate different
views. In Section 3.6 (p.22) we present how the different views are constructed and what interaction
they allow. In Section 3.7 (p.26) we present the super-repositories, from which the data has been
extracted.

1See http://complicity.inf.usi.ch
2See http://www.thefreedictionary.com/complicity
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3.1 Stakeholders

The evolution of software ecosystems is of interest to different stakeholders. In the following we
introduce some stakeholders and describe their role, needs and responsibility, which eventually lead to
their interest in software evolution.

Project Managers’ (PM) main responsibility lays on developing project plans and managing project
schedules, stakeholders, teams, as well as project risks, budget, and conflicts.

For a project manager to do these tasks, he needs information about the evolution of each single
project as well as their current status. This enables him to keep the stakeholders informed about the
advancements in the development. This also reveals possible delays based on which the schedules
and project risks can be recalculated and updated. In case of delays and conflicts, a project manager
must be able to react fast and allocate resources with adequate expertise to avoid further delays and
minimize risks and conflicts in order to stay on budget.

In critical situations, project managers need the information about contributors’ expertise and the
relationships among them to adequately allocate resources to projects. Knowledge about relationships
of contributors within single projects but also in software ecosystem is crucial in managing projects as
they can give information about the information flow within a single project [LFRGBH06].

Software Quality Assessment Teams (QA) aim to ensure the quality of a single software system or
a software ecosystem throughout the software development life cycle.

As members of the software quality assessment team also do change management, they are highly
interested in the past changes of single projects but also how they evolve in an ecosystem. The
information available about ecosystem can reveal critical projects of which they have to keep track
more consciously than others and in consequence they can allocate resources accordingly. Information
at software ecosystem level could also reveal relationships between projects which were not obvious
or known beforehand.

Beside metrics, statistics and general facts about the projects, software quality teams might also
be interested in information about the contributors, their expertise in the software ecosystem (on
which project they have worked in the past for how long and executing what kind of tasks) and since
when they are working on a specific project. This information is crucial for the quality analysis,
as new contributors might be more critical in introducing new errors because of shortcomings in
understanding the system at hand or because of missing expertise.

Contributors especially in the open source environment are always looking for interesting projects
they can contribute to.

When searching for new projects, developers require information like which projects are available
in a super-repository and which among them are still alive. Generally developers want to contribute
to projects but also ecosystems or super-repositories which are relatively active compared to others
because they have a higher relevance and are probably better supported.

Once they have selected a project, they need further information about the past of the projects (e.g.
find the critical parts and the best entry point) but also about their past or current contributors. The
latter can be beneficial for developers, especially newcomers, as they run into trouble or as questions
come up, but also to get basic help about the best entry point.

Researchers and other Explorers are interested in exploring super-repositories, ecosystems and
single projects to reveal new insights, facts, and patterns of which no one has thought before, and
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which might be useful and crucial for the software evolution process or software engineering field.
Researchers and explorers do not always follow given paths or have a predefined goal but instead

they usually try to find something new. In this context, their focus is either on the analysis of projects,
contributors, relationships between projects, between contributors or between both, revealing some
patterns or behaviors. They might follow a predefined methodology or just explore the data at random.
For this purpose providing an interactive tool that allows exploration of undefined views is necessary.

To best support the need of these stakeholders, we developed Complicity. In the following we shortly
describe how the information and facilities are organized in the user interface.

3.2 User Interface

The user interface is kept simple to avoid distracting the user from the analysis tasks, whereas the
shapes in the visualizations are colored to attract their attention.

Figure 3.1. Main View of Complicity visualizing the GNOME projects at ecosystem level, and the details
of the Gimp project

The main page (see Figure 3.1) is divided into three main parts:

1. The control panel on the left,

2. The main panel in the center of the page with the graphs of the ecosystem and the table view,

3. The quick view panel of a project’s or contributor’s details on the right, which appears by
clicking on a shape in the graph.
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Control Panel
It gives the user the possibility to (a) analyze different super-repositories, (b) choose between two
entity types (project and committer) for the visualization at ecosystem level and filter out projects or
committers that have not been marked, (c) navigate through predefined views or change their settings,
and (d) search for projects or contributors of interest by project type, project name or contributor name.

Main Panel
Graphical View visualizes the available data for the selected super-repository and the selected entity
type as scatter plots. Every box represents either a single project or contributor, depending on the
entity type selected, and reflects up to five different metrics: position on x and y axis, width, height
and color. By clicking on a shape a detail panel on the right appears.
Table View lists marked projects and contributors in form of a table. It gives the analysts the opportu-
nity to compare these projects and contributors against each other based on some metrics, e.g., number
of commits, number of projects or contributors, etc. Projects and contributors can be marked from the
detail panel.

Entity Detail Panel
It provides general information about the selected entity, which goes from name and date of the first
and last commit, up to number of commits, number of contributors or projects, etc. From this panel
the user has the possibility to get more details and further analyze the selected project or contributor
at the detail page.

a

b

c

d

e

Figure 3.2. Project Detail Page (here: Activity per day over the entire lifetime of the Nautilus project (a.
number of commits, b. number of contributors, c. number of lines added (green) vs. number of lines
removed (red), d. difference between number of lines added and removed, e. number of files changed))
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The detail page of a project or contributor (see Figure 3.2) has a similar layout as the main page, with
the exception that the control panel on the left is replaced with an overview of the selected project’s or
contributor’s details.

In the center of the page, the user can choose between two views: (a) activity diagrams and (b)
projects/contributors involvement distribution. The Activity Diagrams View allows the user to compare
the activity of the selected entity in terms of number of commits, number of contributors/projects
(depending on the selected entity type), number of lines added versus number of lines removed, and
number of files changed. In the Involvement Distribution View, the analyst gets an idea about how
many contributors have been involved, when, and for how long, or –in case of a selected contributor–
how many projects he worked on and what his speciality is.

3.3 Architecture

Complicity is a web-based tool that allows analysts to visually explore and understand different
software ecosystems. In the following section we introduce the architecture of Complicity and its
backend as illustrated in Figure 3.3.

Database 
Migration

Data 
Acquisition

Git web 
interface 
crawler

Git web 
interface 
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Metrics 
Calculator

DB

DB

Complicity

JSON 
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scripts
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interface

Git web 
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Git web 
interface

JavaScript/
jQuery HTML/CSS

Internet

Figure 3.3. Architecture of Complicity and the backend

Data Acquisition
The data required for the visualization of the ecosystem is extracted from super-repositories that
support the Git web interface. To fetch the relevant data from the Git web interface into our database,
we developed a number of Java programs. The Git web interface crawler stores a copy of the web
pages from the web interface of the Git super-repositories locally. To make sure that the web pages
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are well-formed when stored we use HTMLCleaner3. It is an open source parser written in Java that
cleans up web pages for example by reordering tags or closing missing tags.

The Git web interface scraper extracts the data from the stored web pages, and stores it in a
database. For the data extraction we use the XML Path Language (XPath)4, a language that allows an
easy navigation through elements and attributes in XML or HTML files. This framework makes it
easy to select only the attributes we are interested in. However, XPath is only applicable if the web
pages are well-formed, which explains the usage of the HTMLCleaner when crawling the web pages.

In the Appendix A we describe our experience in crawling and scraping the data using two slightly
different approaches from two different super-repositories.

Database Migration
The Metrics Calculator takes the extracted data, prepares and stores it in such a way that Complicity
can easily retrieve the data necessary for the visualization without having to calculate the metrics on
the fly. The dates of the first and last commit of a project and contributor have to be identified as
their creation and death dates. The metrics that are pre-calculated are the lifetime of a project or a
contributor, the total number of files a projects contains, how many commits have been done, how
many and which contributors have executed at least one commit to a project and vice versa, on how
many and which projects has a contributor worked on. How the data is stored is explained in more
detail in Section 3.4.

During this step of the process, we also analyze the contributors in order to find redundant people
based on their email address or names. Different approaches have been applied in the literature,
such as the fuzzy string similarity [BGD+06], or the levenshtein distance [GKSD05]. We discuss the
approach we have chosen in more detail in Section 3.8.

Complicity
We define Complicity as the web-based visualization tool with the underlying data model. The layout
of the user interface of Complicity is solely written in the web standards HTML 5 and CSS 3. The
main interactions of Complicity are implemented in JavaScript using jQuery5 for some user interface
components (e.g., slider, and tabs) and interactions (e.g., asynchronous calls of the PHP scripts). PHP
scripts retrieve the data from the database and convert it into JSON objects, the format required for
the visualizations with Protovis.

The graphical visualization of the data is done using an external toolkit, called Protovis6. Protovis
is a free and open source graphical visualization toolkit written in JavaScript. It has a good browser
support as it renders the visualizations into Scalable Vector Graphics (SVG). In addition, Protovis
provides many visual features and basic interaction facilities, which make it easy to develop different
types of visualizations that are aesthetically appealing at the same time. Any graph developed with
Protovis is written using the underlying declarative language, which allows to write short code
compared to other visualization toolkits [BH09].

3See http://htmlcleaner.sourceforge.net/
4See http://www.w3.org/TR/xpath/
5See http://jquery.com
6See http://vis.stanford.edu/protovis/.

http://htmlcleaner.sourceforge.net/
http://www.w3.org/TR/xpath/
http://jquery.com
http://vis.stanford.edu/protovis/
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3.4 Data Model

Our goal is to develop a data model that is simple and generic, which leads to the following require-
ments that have to be met:

• Adaptability: As our goal is to model and analyze software ecosystems, the data model should
applicable to different super-repositories.

• Flexibility: The data has to be stored in such a way that can serve different purposes, e.g.,
different visualizations.

• Extensibility: If in the future more data and different visualizations become available that
require more tables, the data model should be easily adaptable to new circumstances.

• Scalability: For its usage in web-based applications, the data has to be stored in such a way that
requests can be served in an acceptable time window.

• Reduce Redundancy: Even though the data should be accessible within a short time, we should
try to avoid the storage of redundant data. The reasons are that it reduced the required storage
capacity and, most importantly, updates of the data can be executed more easily.

The resulting data model, which deals with the identified requirements in order to meet our goals,
is illustrated in Figure 3.4.

id
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Repository
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name

Project Type

id
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description
url
creationDate
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size
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numFiles
numContributors
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numFiles
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project_id
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timestamp
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numFiles
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Figure 3.4. Data model behind the Complicity visualizations
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In the following, the different tables are introduced and their purpose and dependencies among each
other are explained in detail.

• The table Super-Repository contains the names of the super-repositories, for which we provide
the data.

• Project Type lists all the categories into which the projects are grouped within their ecosystem.
This categorization is done by the developers of the projects and does not result from our
analysis.

• Each Project is attached to a super-repository and to at least a project type. For the projects
from the GNOME super-repository each project has exactly one project type. The project table
contains the general information, e.g., name, and description, the date of the first and the last
commit based on which the lifetime is identified, but also the pre-calculated metrics, such as
number of commits (numCommits), number of files (numFiles), and number of contributors
(numContributors). A special field of this table is contributors. It contains all the IDs of the
contributors that committed at least once to the project

• The Contributor table is a central table as it contains the data about the second most important
entity, the contributors. Same as the projects, each contributor is attached to one super-repository.
This allows a fast access to the contributors of the selected ecosystem. Compared to other
version control system, Git differentiates between author and committer7. The author is the
person who originally wrote the work, and the committer is the person who last applied the
work. In our work, we choose the author and stored its data in the Contributor table, ignoring
the committer. This might lead to different conclusions if the committers differ from the authors
most of the time. Beside the general information such as name and email address, this table
also holds the dates of a contributor’s first and last commit as well as pre-calculated metrics
(e.g., number of commits, number of projects and the lifetime, which is calculated based on the
dates of his first and last commit). Same as the Project table it contains a special field, projects,
which contains all the IDs of the projects a contributor committed to during his lifetime in the
ecosystem. In conclusion, a project can have many contributors and a contributor can work on
multiple projects.

• The tables Periodic and Fileiodic contain information about the changes that have been done to
the project by the contributors at any time. The difference is that Periodic contains the general
changes based on pre-calculated metrics (e.g., number of commits, number of files), whereas
Fileiodic contains the data necessary to visualize the expertise of a contributor or project based
on the number of files that have changed with specific extension. These two tables are of main
interest for time-based visualizations, e.g., time series or animations.

7See http://progit.org/book/ch2-3.html
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3.5 Metrics

As previously mentioned we focus on software metrics and visualization. Table 3.1 lists all metrics that
we are used subsequently in the views. These metrics are not all applicable to both abstraction levels,
ecosystem (E) and entity (N), nor can they all be used for both entities, project (P) and contributor (C).
The value of a metric can be a summation over the entire lifetime (L), or at a specific timestamp (T).

Table 3.1. An overview of the metrics used in the views

Metric Shortcut Abstraction Level Entity Period
Number of Commits NOC E, N P, C L, T
Number of Files NOF E, N P T
Number of Projects NOP E, N C L, T
Number of Contributors NOD E, N P L, T
Lifetime LT E P, C L
Date of First Commit FDATE E P, C L
Date of Last Commit LDATE E P, C L
Number of Lines Added NLA N P, C T
Number of Lines Removed NLR N P, C T
Difference between Number DIFFL N P, C T

A metric that can represent the current state but not the entire lifetime is for example number of
files. It counts the files that are currently available for a project and ignores the files that have been
deleted. The same is true for the metric project type. It represents the category a project has been
grouped in at the moment of the data extraction.

All these metrics are used in visualizations. The graph types used for the visualizations are
presented next.
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3.6 Views

In this section we introduce the different graph types that are used for the visualization of the data.
We explain briefly their general construction principles and what interactions they support in our
implementation.

3.6.1 Scatter Plots

All our views at ecosystem level are of type scatter plot. The main difference between each of them is
the data they visualize: different entity type (projects or contributors) and different metrics.

(x,y)

height

width

Figure 3.5. An example of a scatter plot illustrating how the position, width and height of the boxes are
calculated

The coordinates, x and y, as well as the width, height and color of each shape is calculated
based on the selected metrics. The right bottom corner of the shape is positioned at the calculated
coordinates and they are expanded to the right and to the top according to the calculated width and
height, respectively.

On mouse over a shape, a pop-up window appears with the basic data about the underlying entity.
By clicking on the shape a detail panel opens, which provides a summary.
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3.6.2 Stacked Area Charts

Two views at entity level are constructed using a stacked area chart. Each item (e.g., project, contributor,
or file extension) in this graph is displayed with an area stacked over each other and using one of the
predefined colors at random. The sequence in which they are stacked depends on the sequence the
items are retrieved from the database. We do not oppose any fix ordering.

85

5

6

Figure 3.6. An example of a stacked area chart illustrating the difference in number of commits and the
relative size of the labels

The information in the stacked area charts is displayed at monthly basis. For each item (e.g.,
project, contributor, or file extension) we identify the month where most change have been done.
Based on this maximum value (max) the size, position, and color intensity of the label text is calculated.
The size (in pixel) of the label is equal to the rounded value of:

5+
p

max

whereas the alpha value for the font color intensity is calculated as follows:
p

max

7

On mouse over an item, a pop-up window appears with the total number of changes for the selected
item. By clicking on an area, a pop-up window opens that provides a link to the detail page of the
selected entity.
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3.6.3 Area Charts

Area Charts are used to visualize some metrics of a single project or contributor at entity level. They
visualize the change of a metric over time having the date on x axis (see Figure 3.7). Area charts
connect two subsequent points with a line and fill the area between the line and the axis with a color.

Figure 3.7. An example of an area chart illustrating the number of commits over some timestamps

Area charts connect two subsequent points. However, this can cause a problem, if no data is
available for each timestamp. If we assume, as illustrated in Figure 3.8, two commits have been done
on each of the two dates June 20 and June 23, but no one committed on the two days in between. The
area chart connects the point of June 20 with June 23 instead of assuming a zero value for June 21 and
22. Examining the resulting graph, the analysts might take wrong conclusions by assuming that two
commits have also been executed on the 21. and 22. June. One solution for this problem is to add
zero values for the days, on which no commits have been executed. The problem with this approach is
the enormous data overhead that results from adding zero values for every day no commit has been
executed by any contributor to any project. For this reason we decided to stay with the initial data set
and accept the just explain drawback.
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Figure 3.8. An example illustrating a general problem of area charts

We do not provide any direct interaction for this type of chart. Instead we provide a context chart
that allows the modification of the time period that is displayed.



25 3.6 Views

3.6.4 Line Charts

Line Charts are used at project and contributor entity level. The data is visualized by a line, which
connects two subsequent points. We use the line chart to visualize the change of a single metric, the
difference between number of lines added and number of lines removed, over time having the date on
x axis. The user is free to choose between the time unit of day and month, respectively.

Figure 3.9. An example of a line chart illustrating the difference between number of lines added versus
number of lines removed over some timestamps

Same as the area chart, no interaction is implemented directly in the area chart. Instead they make
use of the context chart to define the time period for which to display the data.

Note that the last three chart types (stacked area, area and line chart) require data for at least two
different timestamps (which have to be two different months for the stacked area chart) in order to be
able to show any visualization.
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3.7 Case Studies

Two different ecosystems are considered for the validation of our work. They have been chosen
according to the following criteria:

• Availability: Both ecosytems contain open source and free software systems and so the required
information is freely available.

• Git Web Interface: This work focuses on the data available in the Git web interface. In
consequence, only projects that use this interface are considered.

• Size: One of the ecosystem is of smaller size, which allows a fast investigation due to a smaller
crawl and scrape time. The second ecosystem’s size is one order of magnitude larger and makes
it possible to countercheck whether the observations made for a small super-repository can be
generalized for larger ecosystems.

The following Table 3.2 provides an overview of the two ecosystem case studies with its key
numbers:

Table 3.2. An overview of the two ecosystem case studies

Repository Projects Contributors Active Since Version Control
Gnome 1,292 > 4,800 1997 Git
SourceForge > 260,000 > 2,700,000 1999 CVS, SVN, Git

The two super-repositories, which we are considering for our investigation are the following:

• GNOME is a desktop environment for GNU/Linux and Unix computer. It contains exclusively
free software that integrates smoothly into the rest of the Unix or GNU/Linux desktop. GNOME
allows contributions in different programming languages (C, C++, Python, Java, etc.) and
fields (usability, QA teams, etc.). GNOME 3, has been launched in April 2011. The numbers
presented in the above table are based on the data we scraped from the Git web interface. We
stopped the scraping process in February 2011.

• SourceForge is one of the largest open-source applications and software directory currently
available. It also contains exclusively free and open-source software systems of which the
data, including code, software details, and version control information is freely available. We
consider only the projects that make use of the Git version control system and make the data
available via the Git web interface. Due to the limited time, only a subset of the projects is
considered in this work.

In the subsequent chapters we only make use of the data from the GNOME ecosystem as at the
time of writing this document only that data was available.
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3.8 Aggregation of Contributors

The data collection of open source software ecosystems available on the internet is huge but also dirty
(see Appendix B) in the sense that fields are likely to be misused, e.g., a contributor’s field. In addition,
contributors are often active using different email addresses and names, i.e., they may contain typos,
special characters, shortcuts, etc., to commit to a repository.

This is a common problem, known as aliasing [BGD+06].This problem might be especially bad
in an open source environment where people do not care or no common guidelines exist. Different
solutions have been proposed to tackle this problem, such as using the Levenshtein distance [SMG09]
or fuzzy string similarity, domain name matching, clustering, and heuristics [BGD+06].

We tried to reduce the number of redundant committers of the GNOME ecosystem focusing
mainly on the fuzzy string similarity distance.

3.8.1 Email address

Committers within a project or super-repository can be identified by their name and/or email address.
Email address have the advantage over names that they are unique, and contain only few special
characters, e.g., @._- Therefore, we consider two contributors to be the same if they use the same
email address independent of their names.

3.8.2 Contributor names

Names compared to email addresses are not limited in special characters and can be displayed using
different character sets. In addition, people tend to sometimes write there names in different forms:
with special character or without; with middle name(s) or without; with abbreviations or without; with
typos or without. This makes it hard to identify a same contributors solely based on their name.

The main disadvantage of names over email addresses is that they are not unique. Two contributors
with exactly the same name independent of their email address can be two different people in reality.
However, we consider two people to be the same person if they have the same name.

We go even further in applying the fuzzing string similarity algorithm to our collection of contribu-
tors to find a same person based on similar names.

3.8.3 Simple Fuzzy String Similarity (SFSS)

To identify whether two strings are the same, the simple fuzzy string similarity algorithm first converts
each string into a collection of bigrams. Then, it compares the two collections, counting the total
number of bigrams that are equal in both collections (NbrOfMatches). Based on the resulting sum of
matching bigrams the simple fuzzy string similarity index is calculated as follows:

N brO f Matches
N brO f BigramsInCollec t ion1+N brO f BigramsInCollec t ion2

For this index we get a value between 0 (no bigram in common) and 1 (two equal bigram collections).
Using a SFSS index of strictly larger than 0.8 we managed to reduce the total number of contrib-

utors by 1,227 from initial 6,064 to 4,837 contributors. Surprising was that approximately 71% of
eliminated contributors had the same name but different email addresses (876 out of 1,227). 26 out
of 351 (approx. 7.4%) duplicates without error could be successfully identified for an index strictly
larger than 0.95. For the remaining 325 contributors we found that 29 misclassifications (error of
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8.9%). Most misclassified contributors (25 out of 29) could be identified for an SFSS index between
[0.9 ; 0.8[. All classification results have been checked manually.

3.9 Conclusion

This chapter, we identified different stakeholders (e.g., project managers, software quality assessment
teams, developers, and researchers/explorers) for which Complicity but also the analysis of software
ecosystems in general is of interest.

We introduced Complicity a web-based tool that supports analysts in understanding the evolution
of software ecosystems. We presented its user interface and how the data is distributed within it
to facilitate the usage of the tool. Furthermore, we explained the architecture of Complicity and
its backend and how it supports the process from the data acquisition to the data visualization. We
showed the underlying data model, which illustrates how the data used within the visualizations is
stored in such a way that it is applicable to different super-repositories and can be accessed easily.

As already mentioned several times, our focus lays on visualizing the evolution of software
ecosystem. We introduced the metrics that have been extracted from the collected data. We explained
what type of graphs (e.g., scatter plot, stacked area chart, area chart and line chart) are used within
Complicity, how they are generally constructed, and how we can interact with them.

We ended up with the introduction of the ecosystems, from which we extracted the data for the
visualizations and analyses, and which are available within Complicity. We also showed on the
GNOME ecosystem how we eliminate duplicate contributors by applying the fuzzy string similarity
distance to contributor’s names. We were able to reduce our collection of contributors by almost 80%.
This aggregation process is especially important as with the elimination of duplicates we reduce the
number of elements, which in consequence increases the performance in generating the visualizations.
In addition, if the aggregation is applied correctly we gain data of higher quality, which results in
more accurate analyses and visualizations, and eventually in better understanding.

In the next chapter we introduce different views. We explain how they are constructed, which
metrics and graph type they use and what data can be extracted from them.



Chapter 4

A Catalogue of Views

Using basic metrics extracted from the data scraped from the web pages of the Git web interface,
different views have been constructed. These views make use of some or all metrics available for a
single entity or for all entities at ecosystem level. In the following, we describe the different views,
the metrics they consider, how they are constructed and the general idea about them, illustrating it
on one or more examples. The views are grouped by their abstraction level and are introduced in the
following order:

Ecosystem Level Views

• Lifetime View

• Affectional Bond View

• Popularity View

• Activity Fire View

• Extremes View

Entity Level Views

• Activity Diagrams View

• Involvement Distribution View

• Expertise View

29
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4.1 Views Map

The map in Figure 4.1 provides an overview of the available views. Each of them is either a view at
ecosystem or entity level, but can be available for either project or contributor, or for both. Those
views that exist for both are placed on the line separating the project from contributor views.

Project Contributor

Extremes View

Activity Fire

Activity Diagrams

Involvement View

Expertise View

Lifetime View

Popularity View

Affectional Bond

What is the contributor's 
or project's speciality? 

On which/how many projects
 has a contributor worked? 

Which/How many contributors 
worked on a project?

Which projects are 
most critical?

Find active and dead, 
prototypes and pass-by,

starter and youngest 
projects and contributors

What is the 
contributors' 
affiliation?

Which project/ project types 
are the most popular? Which projects/contributors 

are the most active 
relative to their age?

How active is a specific 
project/contributor?

Ecosystem

Entity

Figure 4.1. Views Map gives an overview of the predefined views and provides information about which
view is interesting for which groups

Independent of the group of concerns, anybody should start with the Lifetime View of the projects
or contributors of the subject ecosystem (top center of Figure 4.1) as they provide information about
the projects or contributors that are still alive and active, respectively. The steps that will follow
depends on the interest of every single person.

The analysts can move from any view to another independent of the abstraction level or underlying
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entity type. In other words, from any view at ecosystem level, we can go to the entity detail page and
analyze a single project or contributor. From the entity detail page we have again the possibility to
move back to the ecosystem level. This results in an highly interactive tool without restricting the
users to any fixed path.

Selecting some projects at ecosystem level and then changing to the contributors at ecosystem
level illustrates only the contributors that worked on at least one of the selected projects. The same is
true the other way around, selecting some contributors and then moving to the projects’ ecosystem
level, shows only the projects, on which any of the selected contributors worked in the past.

4.2 View Description Template

In the following section we introduce our template of the views. Each of them is described by the
following properties:

• Name: The name of the view is specified as the title of the respective subsection.

• Goal: A short goal will be defined for each view, which makes it easy for the reader to find out
whether that view is of interest for him/her.

• Abstraction Level: It states the level of abstraction of the data that is visualized: project(s) or
contributor(s) at ecosystem or entity level.

• Stakeholder(s): Not every view is relevant for each interest group. Here we will specify for
whom it might be beneficial.

• Metrics: It will be listed which metrics could be applied in this view. To state that any numerical
metric could be applied, we write: num*. PT is standing for project type. The metrics are
abbreviated as listed in Table 3.1.

• General Idea: In this part we describe what information we expect to extract from the visual-
izations and for which of the stakeholders this might be of interest.

• Construction: For each view we will demonstrate how they are constructed: type of graph and
metrics.

• Examples: For each view at least one example is taken from our case studies using Complicity.
They are discussed in details including our observations.

• Discussion: At the end we make some statements about the strengths and weaknesses of the
graphs.
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4.3 Ecosystem Level Views

4.3.1 Lifetime View

Goal Get an idea about the overall lifetime of the projects and contributors in
the ecosystem and about how many of them are still active.

Abstraction Level Projects’ or Contributors’ Ecosystem
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis FDATE
y-axis LDATE
width num*
height num*
color PT, num*

General Idea

This first view provides a general picture of the overall projects’ or contributors’ lifetime in the ecosys-
tem. In addition, we can reveal the projects or contributors which are dead and active, respectively, but
also prototypical projects or pass-by contributors. In case, the number of active projects or contributors
decreases continuously, it is likely that the subject ecosystem is about to die. Vice versa, if the number
of projects and contributors is continuously increasing, it is an indicator for a growing and active
ecosystem. These are important information for any stakeholder especially when they are about to
decide whether or not to contribute to a specific ecosystem.

V Y
A

P

D

Figure 4.2. Projects’ Lifetime View of the Gnome Super-Repository (height: NOC, width: NOF, color: PT)
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Construction

The following view is drawn as a scatter plot with each box representing a project or contributor. The
boxes are placed on the x and y axes according to their first and last activity dates at a monthly basis.
Depending on the settings of width, height and color, different groups of projects or contributors can
be identified that are likely to die or contrary to survive.

Examples

GNOME. Figure 4.2 shows an example of the projects’ Lifetime View. The x and y axes are set as
explained above. Each box represents a project and the width is equal to the total number of files and
the height is equal to the total number of commits. Each color symbolizes a different project type.

The shapes on the top horizontal line represent the projects that are still active (marked as A).
We define a project as active if at least one change has been done within the last year. The projects
positioned on the most left vertical line of the triangle area are the projects that were created with the
ecosystem in 1997 (marked as V) whereas those on the top right corner illustrate the newly created
once (marked as Y). Generally, it is observable that many projects of GNOME are dead (marked as D)
and either of color green (project type: Z_Archived) or orange (project type: Other). Many projects
die within a year, which we classify as prototypes (marked as P). They are positioned on the diagonal
line closing the triangular area.

In the example of the contributors’ Lifetime View (see Figure 4.3), every entity represents a single
contributor. For the width and height of each box we used the total number of commits. The number
of projects a person contributed to is illustrated by the color gradient from orange (few projects) to
purple (many projects).

V Y
A
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D

Figure 4.3. Contributors’ Lifetime View of the Gnome Super-Repository (height/width: NOC, color: NOP)

In 1997 the first contributors started the GNOME project (marked as V), positioned on the left
most vertical line, of which few people are still active today. Only around 1998 new people joined
the starting group (boxes positioned on the vertical line around 1998). Same as for the projects, the
contributors on the top most horizontal line are still active (marked as A). Contributors that have not
committed during the last year are considered dead (marked as D). We can observe that some potential
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experts, who either did a lot of commits (large box) or worked on many different projects (purple
box), are dead and their knowledge might be lost. On the other side, many contributors are pass-by
committers (marked as P) staying only for a short time (less than a year), positioned on the diagonal
line of the triangular shape, and doing only a few commits (orange colored). The contributors in the
top right corner are the youngest who joined within the last year (marked as Y).

Discussion

From this view we can extract many different and relevant information about the projects’ and
contributors’ lifetime in the ecosystem. For both entity types, we can identify the dead, the still
active as well as the veterans and youngsters. At the project ecosystem level, we can also identify the
prototypes and the project types with the majority of dead projects. At contributors’ ecosystem level,
we can specify the pass-by committers and the possibly lost experts.

A visual shortcoming of this view is that due to its triangular shape, we end up with a lot of unused
white space. From this view we can extract a contributor’s or project’s lifetime based on the first and
last commit but we do not know how active a single contributor has been between these two dates
or how often and how much a single project has been changed during this time. For this purpose we
introduce the Activity Diagrams View at entity level in Section 4.4.1. Additionally, we have seen that
many contributors have a short lifetime within the ecosystem. Some of them have a relatively high
number of projects (purple colored box) and become an expert within a short time. From the Lifetime
View, we cannot say what type of expert we lost, if he was a developer or a translator. The Affectional
Bond View, introduced in Section 4.3.2, analyzes this shortcoming.
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4.3.2 Affectional Bond View

Goal Find a contributors’ affectional bond to either development or translation
work.

Abstraction Level Contributors’ Ecosystem
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis NOC
y-axis NOP
width LT
height LT
color NOP

General Idea

It depicts the affectional bond of a contributor to either development or translation work, or both,
based the total number of commits a person has done or the total number of projects a person has
contributed to over his lifetime in the ecosystem. Our assumption is that a contributor is likely to be a
developer if he committed many times to only a few projects. Contrary, we think that a contributor is
likely to be a translator, if he worked on many different projects but has executed a relatively small
number of commits to the ecosystem.

Construction

The Affectional Bond View is visualized as a scatter plot with each box representing a single contribu-
tor. They are distributed based on their total number of commits or total number of projects. The size
of the shapes is defined by their lifetime in number of days.

Examples

GNOME. The shapes in the Affectional Bond View are distributed according to the total number of
commits on the x-axis, and the total number of projects on the y-axis and for the color of the shapes.
The width and height are defined by the contributor’s lifetime.

By looking at Figure 4.4 we can observe a highly intense left bottom corner, where the shapes
cannot be clearly differentiated any more (marked as N). The remaining shapes tend to split into two
groups: one with contributors who have a high number of projects (marked as T) and one with the
contributors who have a high a number of commits (marked as D). Furthermore, we notice that the
boxes in T are of different sizes whereas the one in D tend to be relatively large compared to most
others. By interactively checking the nodes, we found out that the boxes in T are likely to be translator
and that the boxes in D are likely to be developers that have possibly also done some translations in
the past.

Discussion

From this view we get an overview of the contributors affection to either translation or development
work. We get a feeling for the distribution of the contributors within a single project or at ecosystem,
if there are more translators than developers and allrounders or vice versa.
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Figure 4.4. Affectional Bond View of the contributors within the GNOME ecosystem (x-axis: NOC, y-axis:
NOP, height/width: LT, color: NOP)(T: translators, D: developers, N: no-mans land, O: outlier)

The main drawback is that people who started more recently but contributed a lot relative to
others are getting lost in this visualization. For this purpose, we introduce the Activity Fire View in
Section 4.3.4.
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4.3.3 Popularity View

Goal Find the most popular projects based on the total number of commits or
number of people that contributed to it over its entire lifetime

Abstraction Level Projects’ Ecosystem
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis NOC
y-axis NOD
width LT
height LT
color PT, num*

General Idea

It Identifies the most active and popular projects in the ecosystem based on the number of commits and
number of contributors, respectively. The more people contributed to a project or the more changes
has been done to a project, the higher its popularity degree but also the higher the risk of introducing
new bugs into the system.

Construction

The Popularity View is a scatter plot with each shape representing a single project within the ecosystem.
It is constructed the same way as the Affectional Bond View in Section 4.3.2 with the boxes spread
according to their total number of commits on the horizontal axis and the lifetime defining the width
and height. Contrary to the Affectional Bond View it has the total number of contributors on the
vertical axis.

Examples

GNOME. In Figure 4.5 we can observe that most projects tend to have less than 200 contributors
and less than 5000 commits in their entire lifetime (marked as G). The remaining projects follow a
logarithmic distribution (marked as L), which means that they need a large number of contributors in
order to produce many changes. There are only few outliers, that follow an almost linear line (marked
as O).

Discussion

The view depicts the projects that are popular according to their number of commits and/or number of
contributors. We observed that a project in the GNOME ecosystem needs at least 200 contributors or
more than 5,000 commits to become popular.

But the main drawback is that even if we used the lifetime as width/height of the boxes, the
projects with a short lifetime are likely to disappear in the crowd, even though they might be quite
active or popular relative to their age. For this purpose we have the Activity Fire View presented in
Section 4.3.4.
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Figure 4.5. Popularity View of the projects within the GNOME ecosystem (x-axis: NOC, y-axis: NOD,
height/width: LT, color: NOD)
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4.3.4 Activity Fire View

Goal Detect outstanding projects or contributors based on a high activity rate
(e.g., many commits, many projects, etc..)

Abstraction Level Projects’ or Contributors’ Ecosystem
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis LT
y-axis num*
width num*
height num*
color num*

General Idea

Depending on the numerical metric chosen on the y-axis, outstanding projects and contributors relative
to their age can be identified that would not be possible otherwise. The metrics chosen for width,
height and color can further classify the outstandings into different categories.

Figure 4.6. Activity Fire View of the contributors within the GNOME ecosystem (x-axis: LT, y-axis: NOC,
height/width/color: NOP)
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Construction

The Activity Fire View is drawn as a scatter plot distributing the shapes according to their lifetime in
days (x-axis) and the defined metric for the y-axis. Width, height and color of the shapes can be freely
chosen.

Examples

GNOME. In Figure 4.6 we show the Activity Fire View for the contributors at ecosystem level. The
width, height and color of the shapes is defined by the number of projects and distributed according to
the lifetime (x-axis) and the number of commits (y-axis).

Using number of commits on the x axis allows us to find the most active people according to their
lifetime. We can spot that the density of the shapes is higher for lower lifetime values, which can
either mean that the subject ecosystem has many youngsters, or alternatively, that many contributors
have a short life in the ecosystem.

Discussion

This view allows us to identify the most active people based on selected metric for the y axis and their
lifetime. In other words, we have the possibility to spot contributors that are highly active relative to
other peers of the same age.

Using lifetime on the x axis may end up in confusion because analysts might think that there are
many newcomers (with a small lifetime) whereas they forget that not all contributors with a short
lifetime are still active. In other words, this graphs shows all people that contributed to the ecosystem
at least once in their lifetime. The same problem occurs at projects’ ecosystem level. Consulting the
Lifetime View, which we introduced in Section 4.3.1 can clarify the situation.
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4.3.5 Extremes View

Goal Identify extreme projects that have either a high number of commits or a
high number of files.

Abstraction Level Projects’ Ecosystem
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis NOC
y-axis NOF
width num*
height num*
color num*

General Idea

It detects different categories of projects based on a high number of commits or a high number of
files or a high number for both metrics. Especially projects with a high number of commits can be an
indicator for critical projects as it means that they change often and so new errors can be introduced.

Construction

The boxes in the scatter plot of the Extremes View are spread according to their number of commits
(x-axis) and number of files (y-axis). Each shape represents a single project of the ecosystem. Any
numerical metric can be chosen for the width, height and color of the shapes.

Examples

GNOME. In Figure 4.7 we illustrate the Extremes View of the GNOME super-repository with
the lifetime defining the width and height of the shapes and the color representing the number of
contributors.

We can observe that most projects have less than 1,000 files and less or equal to 10,000 commits
(marked as N). Those projects that have a high number of files are marked with F whereas those with
a high number of commits are marked with C. We can observe that projects need a longer lifetime
(large boxes) in order to enter group C compared to group F, which contains also little boxes (short
lifetime). In addition, it becomes visible that projects with more than 5,000 commits tend to have a
higher number of contributors (purple color) than projects of group F. With this view we can also spot
extreme outliers (marked as O) having both a large number of commits and files, and also a quite long
lifetime (large box) and a relative large number of contributors (light purple).

Discussion

We can spot different groups of extreme projects with either a high number of files or high number of
commits whereas only few (in our case a single one) projects fit in both categories.
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Figure 4.7. Extremes View of the Gnome Super-Repository (x-axis: NOF, y-axis: NOC, height/width: LT,
color: NOD)



43 4.4 Entity Level Views

4.4 Entity Level Views

4.4.1 Activity Diagrams View

Goal Identify the vitality of a project or contributor based on their changing
or activity rates.

Abstraction Level Project or Contributor Entity Level
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis Date
y-axis NOC, NOD/NOP, NLA, NLR, DIFFL & NOF
width -
height -
color NLA (green), NLR (red), otherwise (gray)

General Idea

With the activity diagram, one can get an idea about the vitality of a project or the activity degree of a
contributor based on the number of commits, number of lines added versus number of lines removed,
and number of files changes. Based on the different metrics we can identify whether a person is a
regular contributor or not, whether he tends to add more lines, then he removes, whether he is working
on many projects in parallel or concentrates on one project at a time, etc. The vitality of a project
can be similar analyzed: the project under continuous change can be an indicator for continuous
development, expansion, maintenance or bug fixing. Alternatively we can identify whether a project
is about to die if no changes or only few changes are done very rarely.

Construction

The Activity Diagrams View consist of five diagrams that show the project’s or contributor’s activity
at daily or monthly basis. Four of them are illustrated as area charts whereas the metrics number of
lines added (green) and number of lines removed (red) are drawn in the same diagrams for better
comparison. Only the metric of the difference between lines added and lines removed is drawn as a
line chart. A sixth diagram at the bottom allows the user to interact and change the period for which
he wants to analyze the changing or activity rate.

Examples

GNOME. In Figure 4.8 we show the Activity Diagrams View of the Nautilus project. We can
identify different phases of the software development life cycle, e.g., the birth of the project (1997-
2000), the first major release (2000-2001), maintenance phase (2001-2010), and another major release
(2010-2011).

In Figure 4.9 we illustrate the Activity Diagrams View of Christian Rose. We can observe that he
is continuously highly active since end of 2000. Only by 2006 Christian Rose diminishes his activity
in the GNOME ecosystem.
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Birth First Release Maintenance Major Release

Figure 4.8. Activity Diagrams View of the Nautilus project within the GNOME ecosystem (x-axis: Date at
daily basis, y-axis: NOC, NOD, NLA, NLR, DIFFL, and NOF)

Figure 4.9. Activity Diagrams View of Christian Rose within the GNOME ecosystem (x-axis: Date at daily
basis, y-axis: NOC, NOP, NLA, NLR, DIFFL, and NOF)
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Discussion

Using the Activity Diagrams View we can observe the activity of a single project and contributor and
detect extreme activity peaks or long activity lows in the changing rates at both entity levels. They
also allow us to depict development stages of a single project.

The activity diagrams may lead to wrong conclusions depending on the affiliation of the contributor
or the changes that have been executed on a project. A contributor committing or deleting graphical
files (e.g., icons, images, etc.) to or from the repositories results in many lines being changed. So,
by analyzing only the activity diagrams, we might come up with a wrong conclusion. To act to the
contrary, and reduce the risk of misinterpreting this data, we added the Expertise View introduced in
Section 4.4.3.

Another drawback of this view are the general limitations of the area charts and missing data
values for some timestamps as described in section Section 3.6.3.
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4.4.2 Involvement Distribution View

Goal Identify the projects a contributor worked on over his entire lifetime or
the contributors that worked on a project over its lifetime.

Abstraction Level Project or Contributor Entity Level
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis Date
y-axis NOC
width -
height -
color Project, Contributor

General Idea

Depending of the entity type, project or contributor, different information can be extracted. If the
entity at hand is a contributor, we can identify the projects he worked on over his entire lifetime in
the ecosystem. We know whether he worked on many different projects or whether he focused his
work on some few projects. Eventually, we could get a feeling whether the person is a translator or
not depending on the involvement graph.

If the subject entity is of type project, we get an overview of the contributors that worked on it
over time. In this view, we can also spot outstanding contributors, that committed more to the project
than others over a short period or the entire lifetime. Eventually, we could identify whether a project
has a good knowledge flow or not.

Construction

The Involvement Distribution View is drawn as a stacked area chart with the dates at monthly basis on
the horizontal line and the number of commits on the vertical line. Every stack represents a different
project or contributor and has one of the eleven specified colors at random.

Examples

GNOME. John is a contributor of the GNOME ecosystem since 1997 when he started working on
the librep project (see Figure 4.10). In 1999 he started working on the rep-gtk project and shortly after
on sawfish. During his three years at GNOME, he mostly focused his work on librep and sawfish
before he quit the ecosystem.

Compared to John, Daniel Nylander worked on many different projects during his five years’
lifetime at GNOME (see Figure 4.11). Most of the time the commit rate per month is more or less
constant between the projects, as most project names are barely readable because of their small size
and low color intensity. The topology of this graph is often an indicator for a translator as it is almost
impossible for a single person to do development work on so many different projects at a time.

As a first example of the Involvement Distribution View at project level, we choose the F-Spot
project. In Figure 4.12 we can spot four main actors: Ettore Perazzoli, Larry Ewing, Stephane
Delcroix, and Ruben Vermeersch. Ettore is the main initiator lauching the project end of 2004.
Directly after, he left the project and Larry Ewing takes over. Stephane Delcroix enter the scene in
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Figure 4.10. Involvement Distribution View of John a contributor of the GNOME ecosystem (y-axis: NOC,
x-axis: Date at monthly basis, color: project)

Figure 4.11. Involvement Distribution View of Daniel Nylander a contributor of the GNOME ecosystem
(y-axis: NOC, x-axis: Date at monthly basis, color: project)
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Figure 4.12. Involvement Distribution View of the F-Spot project within the GNOME ecosystem (y-axis:
NOC, x-axis: Date at monthly basis, color: project)

2006 and slowly becomes the main contributor within this project until he left beginning of 2010
and Ruben Vermeersch takes over. We can observe smooth takes overs between the last three main
contributors, which is an indicator for a good knowledge flow within F-Spot. It also shows that
there are periods when only a single person is contributing, which might be an indicator for a center
of power. In other words, if the central person within a single period would leave the project, the
knowledge would get lost.

Figure 4.13. Involvement Distribution View of the Pessulus project within the GNOME ecosystem (y-axis:
NOC, x-axis: Date at monthly basis, color: project)

A project, for which the contributors are more tightly connected, is illustrated by the Pessulus
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project in Figure 4.13. This graphs shows no period where only one person is the center of power,
which is an indicator for a safe communication structure as knowledge is less likely to get loss, after a
single person leaves the project.

Discussion

This view provides an overview of the contributors involved in a project or the projects a contributors
has committed to. But it also reveals the knowledge flow within a project and eventually whether a
contributor tends to translation work or not. The analysis of a single user’s affection to translation or
development work, or both, is supported by the Expertise View in Section 4.4.3.

This view makes it is easy to spot “outliers” that have a high number of commits compared to
the others. The main drawback is the limitation of the stacked area chart: If a project has many
contributors or alternatively a contributor worked on many projects, the single items illustrated in
the stacked area chart cannot be clearly differentiated. To weaken this limitation we added a select
interaction, that enables to focus on a single project by clicking on it, or by searching for an entity by
entering its name in the search panel. In addition, we provide a slider to enlarge the graph, so that it is
possible to spot details which would not have been possible otherwise.
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4.4.3 Expertise View

Goal Illustrate the contributor’s expertise or a project’s main language basis.
Abstraction Level Project or Contributor Entity Level
Stakeholder(s) Project Manager, Contributors, Quality Assessment Team, and Re-

searchers & Explorers
Metrics Metric Name Metric(s) Used

x-axis Date
y-axis NOF
width -
height -
color File extension

General Idea

Extract a contributor’s expertise based on the number of files he changed with a specific extension.
This way, we can conclude whether he is a developer with an affiliation to a specific language (e.g., C,
Python, etc.), whether he is a translator, or whether he is both, or whether he changed the interest field
over time, or whether he is a designer.

If the entity at hand is a project, we can identify the project’s basic nature: manual/documentation,
tool, or a graphical project based on the file extensions that have been changed more often. A graphical
project provides for example the icons and themes of the software systems.

Figure 4.14. Expertise View of Lapo Calamandrei a Designer of the GNOME ecosystem (x-axis: NOF,
x-axis: Date at monthly basis, color: file extension)
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Construction

Same as the Involvement Distribution View, the Expertise View is drawn as a stacked area chart with
the dates at monthly basis on the horizontal line and the number of file changes on the vertical line.
Every stack represents a different file extension and has one of the eleven specified colors at random.

Examples

GNOME. Figure 4.14 shows the expertise graph of Lapo Calamandrei, a contributor of the GNOME
ecosystem. During his lifetime in the ecosystem he mostly added, changed, or deleted .png (pink)
or .svg (purple) files. In other words, we can conclude from this view that he is a designer within
GNOME.

Figure 4.15 shows the extensions of the files that Daniel Nylander changed during his lifetime. We
can observe that he mainly changed .po files (blue). As .po is the extension for translation files within
the GNOME ecosystem, we can conclude that Daniel is a translator, which supports our expectation
based on Figure 4.11.

Figure 4.15. Expertise View of Daniel Nylander a Translator of the GNOME ecosystem (x-axis: NOF,
x-axis: Date at monthly basis, color: file extension)

Michael Natterer, is a developer in the GNOME ecosystem. We come to this conclusion by looking
at his Expertise View in Figure 4.16. He mainly changed .c (green) or .h (light gray) files.

Not all contributors can be classified in a single category. There are contributors who do different
types of work, e.g., translation and development. Matthias Clasen in Figure 4.17 is such a candidate.
He was initially a C programmer (blue) in 2001 before he started doing translation work (lightgreen)
in 2004.
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Figure 4.16. Expertise View of Michael Natterer a Developer of the GNOME ecosystem (x-axis: NOF,
x-axis: Date at monthly basis, color: file extension)

Figure 4.17. Expertise View of Matthias Clasen an Allrounder of the GNOME ecosystem (x-axis: NOF,
x-axis: Date at monthly basis, color: file extension)

Discussion

This view allows us to depict the affiliation and expertise of a contributor in more detail based on
the number of times he has changed a certain file type. We can differentiate between translators,
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developers, allrounders or designers.
For projects, we can identify the project types: documentation, software system, and projects

providing graphics and themes.
A problem which this view shares with the Involvement Distribution View in Section 4.4.2 is the

problem of stacked area charts, that if many files with different extensions have been changed, it might
be difficult to differentiate. The same facilities as for the involvement view (e.g., slider, select event
and search by file extension) are also provided for this view to overcome this problem.

4.5 Conclusion

In this chapter we introduced a catalogue of different predefined views. We described how they are
constructed, for whom they might be of interest and what information can be revealed with them.
Even though we used basic metrics we were able to depict different circumstances at ecosystem level:

• Identifying starters, youngsters, active and death projects and contributors, as well as project
prototypes or pass-by contributors

• Spotting the most active projects or contributors relative to their age

• Pointing out the most popular and extreme projects

• Differentiating between contributors that have an affinity to translation work or alternatively are
developers or allrounders

At entity level we could depict:

• contributors of project and, vice versa, the projects of a contributor at monthly basis, which can
be an indication about the contributors’ profession within the ecosystem

• the contributor’s expertise (e.g., developer, translator, designer or allrounder) or the project’s
language or file basis.

Every visualization contains only a limited number of information. Combining the different views,
allows us to reveal information that would not be visible by looking at a single one. In the following
chapter, we illustrate, on different examples, how we can make use of these predefined views to reveal
valuable information about the evolution process and about the position of a single or a group of
entities within the ecosystem.
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Chapter 5

Telling Stories of the GNOME Project
with Complicity

Visualization plays a central role in the analysis of software ecosystems. We have introduced
Complicity as a tool support, which implements the catalogue of different views explained in depth in
the previous chapter.

Every depicted view focuses on a single problem and so visualizes only a limited amount of
information. Combining the different views on the other hand, makes them a valuable source to
analyze the evolution of ecosystems.

In the following, we evaluate the different views, by combining them in stories about the GNOME
super-repository with the aim to reveal insights into the changing process of this ecosystem, its projects
and contributors. GNOME is a desktop environment for GNU/Linux/Unix composed of many free
and open-source software systems. It was created in 1997 by two students, and since then it has grown
in popularity. We show how Complicity can support software analysis at ecosystem level.

55
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5.1 Bottom-up Approach

Using a bottom-up approach, we first analyze a single project regarding its activity and community
support before moving to the ecosystem level and trying to reveal some patterns in the contributors’
affection to either translation or development work. In a second example, we analyze a contributor’s
activity and expertise before examining at ecosystem level how he affected the GNOME project. In a
first example we focus on Nautilus, GNOME’s default file manager.

5.1.1 The Nautilus project and its impact on the ecosystem

Project Activity Diagrams View are a good starting point to get a first idea of Nautilus’ evolution
beyond the basic information available in the project’s details. They illustrate the project’s daily
activity comparing six different metrics: number of commits, number of contributors, number of lines
added and removed, difference between number of lines added and removed, and number of files
changed. We use an area chart for all activity metrics, except the line-difference metric, which is
drawn as a line chart. All of them have the time on the x-axis and one of the six metrics on the y-axis.
The number of lines added (in green) and removed (in red) are drawn in a same diagram for better
comparison. These diagrams allow us to identify different phases of a project. In Figure 4.8 we observe
that Nautilus was created in 1997 (birth), when also GNOME was created. Between 2000/2001 its
popularity increased in terms of contributors, in number of commits per day and in number of lines
added/removed (first major release). Afterwards the number of commits and contributors decreased
and stabilized. Also the number of lines added/removed equalized (maintenance). In 2010, the number
of commits increased again until Feb. 2011 (new major release).

Beside the different phases, we observe that there is continuous development taking place almost
every day, which is an indicator for an active development team. The next step is to get familiar with
its contributors: Who worked, when, and for how long on the project? This information is presented
by the contributors’ Involvement Distribution View in Figure 5.1.

Contributors’ Involvement Distribution View. This view gives information about the number of
commits, but it does not allow a comparison of different metrics at the same time. Instead, it provides
a more detailed view on the people who contributed to the project over time, so that the drivers of the
different phases can be identified. This information is crucial to understand the flow of knowledge
(Is there a center of power? Are there smooth take overs?), which is a good basis for a project to
evolve well and have a long lifetime. For this visualization, we use a stacked area chart using colors to
identify different contributors. The size, the density and the position of the contributor’s name is based
on the maximum number of commits a person has done at once. Clicking on a single contributor hides
all the others, so that the contribution timeline of a single person can be better analyzed. This view
shows the evolution on a monthly basis. In Nautilus’ first major release phase (see Figure 5.1), Ramiro
Estrugo (light pink), as well as Andy Heitzfeld (yellow), Darin Adler (red), and John Sullivan (purple)
are the main initiators of the project. Darin Adler remains the main driver at the beginning of the
maintenance phase until the beginning of 2002, when Alex Larsson (blue) takes over. He remained the
driver for almost the whole maintenance period. Only by 2008 a new actor enters the scene, Cosimo
Cecchi (gray), who takes over the project. The above diagrams contain information about a single
project, how it and its community evolve over time. As Nautilus is only one software system of the
GNOME project, it is important to analyze how it impacts the ecosystem.

Affectional Bond View - Ecosystem Diagram. This view shows the contributor distribution at



57 5.1 Bottom-up Approach

Figure 5.1. Contributors’ Involvement Distribution View of the Nautilus project
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ecosystem level, with number of commits on the x-axis, and number of project on the y-axis and as
color metric. The width and height of each shape is defined by a contributor’s lifetime in days. This
view can be used to visualize all contributors of the entire ecosystem or filters can be applied to show
only the contributors of a specific project.

This visualization presents a piece of information that cannot be revealed at project level from any
of the two views described above: the contributors’ general affectional bond to either development or
translation work. In this graph the contributors are split into these two groups under the assumption
that people who contributed a lot but only to a relatively small number of projects are likely to
be developers. Conversely, people who committed less often but to more projects are likely to be
translators. This results into the following distribution: people located under a logarithmic-like curve
are defined as developers and the ones placed above an exponential-like curve are considered to be
translators.
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Figure 5.2. Affectional Bond View at ecosystem level. Each square represents a committer, where the x
position maps the number of commits, the y position and the color the number of projects, and the size
the lifetime in number of days (T: translators, D: developers, O: outlier, N: no man’s land)
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Figure 5.2 illustrates the contributor distribution of the Nautilus project. It reveals that many people
have been working on the project over time and that the distribution between developers (marked as D)
and translators (marked as T) is roughly equalized. The contributors located within the high density
bottom left part (marked as N) might not be clearly differentiable. It seems that developers need a
longer lifetime (larger boxes) in order to be clearly differentiable from the translators, who have a
more varied lifetime (collection of large and small boxes). The outlier on the top right (marked as O)
did a huge amount of changes (positioned to the right) and contributed to many projects (positioned
to the top) over a long lifetime (relatively large box). O is Kjartan Maraas, both a developer and a
translator within the GNOME project.

Figure 5.3. Activity Diagrams View of Kjartan Maraas

5.1.2 Impact of the contributor Kjartan Maraas on the ecosystem

As a second example we have chosen Kjartan Maraas as the contributor for the bottom-up analysis.
Since 1998 he has been working on 499 different projects, having done more than 15,000 changes by
February 2011. During 4,689 days (ca. 13 years) he had an average rate of three commits per day.

We know when a contributor did his first and last commit and we can calculate his average commit
rate. However it is not possible to know whether he has been active all the time or there have been
some gaps of inactivity during his lifetime. This information can be extracted from the developer
Activity Diagrams View.
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Developer Activity Diagrams View gives an overview of the contributor’s daily activity within
an ecosystem. It is constructed the same way as the Activity Diagrams View at project level with
the only difference that the metric number of contributors is replaced by number of projects. In
Figure 5.3 we observe that Kjartan Maraas has been continuously active with only one exception of
few months. Particularly interesting in his past activities is a period of time in 2001, during which he
added or removed up to almost 800,000 lines, performed only few commits and changed up to 700
files. Another interesting short period (one day), can be spot in 2006, where he did more than 100
commits on more than 100 projects changing more than 600,000 lines on 300 different files. A piece
of information missing in this view is on which projects Kjartan Maraas did these changes. To this
aim, we have introduced the project Involvement Distribution View, presented next.

Project Involvement Distribution View. This view shows the projects to which a person committed
monthly. As for the contributors’ Involvement Distribution View, we use a stacked area chart with
number of commits on the y-axis and time on the x-axis. Figure 5.4 shows that Kjartan Maraas has
been active in many different projects.

The number of projects he worked on increased after the first few years, which can be revealed by
the fact that the colors representing the projects in this view become less differentiable towards the
right part of the visualization. Also the color intensity and size of the labels become more similar,
which means that he committed with similar rate to these projects. At this point of our analysis it
might be interesting to understand how it is possible for a single person to do so many commits and
changes while working on so many projects. To answer this question we devised the Expertise View.

Expertise View. This visualization yields information about a contributor’s expertise based on file
extensions. It is drawn as a stacked area chart, counting the number of files that has been changed
within a month aggregated by their file extension.

Figure 5.5 shows the Expertise View applied to Kjartan Maraas. He is a translator and C developer,
as he changed a large number of .po files (gray) as well as many .c files (green).

The combination of the three previous visualizations explains how Kjartan Maraas does so many
changes in so many projects: He regularly worked on the GNOME ecosystem over a very long period.
Exploring the projects’ Involvement Distribution View, we see that he commits to most of the projects
more than once but with a low monthly commit rate.

Knowing that beside being a translator, which makes it possible to work on many projects
simultaneously, he is also a developer, we can conclude that he is likely to be a maintainer trying to
fix bugs on different projects. Indeed, by checking his profile on LinkedIn1 we found out that he has
been member of the Bugquads at GNOME for almost ten years beside being a member of the release
team and of the GNOME foundation.

The views at contributor level provide details about a single person’s activity level and expertise.
However, to better understand how a contributor affects the GNOME ecosystem, we need visualiza-
tions at ecosystem level.

The Activity Fire View - Ecosystem Graph is constructed with number of commits on the y-axis,
lifetime on the x-axis, and number of projects as width, height and color of the boxes. It illustrates the
distribution of the contributors according to their activity over their lifetime in the GNOME project.

Kjartan Maraas is an outlier compared to the contributors of Nautilus (see Figure 5.2) and within
the GNOME ecosystem (marked by an arrow in Figure 5.6). He performed by far most commits

1http://www.linkedin.com/in/kjartanmaraas
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Figure 5.4. Projects’ Involvement Distribution View of the Kjartan Maraas
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Figure 5.5. Expertise View of Kjartan Maraas
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(positioned to the top) and worked on more projects than anybody else (large box) in the ecosystem.
This might be related to his long lifetime (positioned to the right) at GNOME but also to the fact that
he is both a translator and a developer.
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Figure 5.6. Kjartan Maraas (marked by the arrow) compared to all other contributors of the GNOME
project within the Activity Fire View

Projects do not always have long lifetimes. As consequence, Kjartan Maraas worked on many
projects but probably not on all at the same time. The following view provides clarification by
illustrating the projects’ lifetime.

Projects’ Lifetime View - Ecosystem Graph. This view shows the projects’ life duration. The
width and height of each box are defined by the total number of commits and the total number of
contributors, respectively. The color represents the different project categories.

Figure 5.7 shows that many of the projects Kjartan has contributed to have died (D). Most of them
are colored red (archived), green (others), or orange (desktop). The projects within this area placed
at the diagonal line (P) are likely to be prototypes or projects that have been integrated into other
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projects. They have a very short lifetime and die almost as soon as they are created. Only the projects
on top (A) are still alive, and actively under change. Maraas never worked on all projects at the same
time as some of them died before others were created.
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Figure 5.7. Projects’ Lifetime View showing only the projects Kjartan Maraas contributed to with A: active
projects, P: prototypes, and D: dead projects (Color scheme: projects of category archived (red), others
(green), desktop (orange), bindings (light blue), development tools (pink), and platform (purple))
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5.2 Top-Down Approach

Using a top-down approach, we first analyze projects at ecosystem level. We select at random two
projects with different life expectations, a veteran and a youngster, and compare both projects an their
contributors against each other at ecosystem level. Then we analyze the subject projects’ evolution
and some of its contributors at entity level.

5.2.1 Veteran project Balsa versus youngster project TBO

As a first example of the top-down approach, we have chosen two projects of different age group,
veteran versus youngster.
The Balsa is a mail client. It was created in January 1997 and is one of the first projects created within
the GNOME ecosystem (veteran). It is still active after more than 14 years and counts more than 200
committers so far.
TBO is an easy and fun program to draw comic and make funnier presentations. It was created in
December 2009 (youngster) and is nowadays still active. After slightly more than one year of activity
it counts 21 committers.

Projects’ Lifetime View - Ecosystem Graph. This view shows all projects within the GNOME
ecosystem. They are distributed according to their first and last change. The size of the box is defined
by the number of commits (height) and number of files (width) and the color represents the number of
contributors (orange to purple).

Figure 5.8 supports the above statements. It shows Balsa, as one of the veteran projects in the
top left corner, which is still active and TBO positioned to the top right corner, as a youngster project,
which is still active since end of 2009. We can observe that the veteran projects that survive are likely
to have a large number of contributors (color gradient from red to purple) and a large number of
commits and/or files (large boxes). This phenomenon is likely due to their long lifetime.

Unfortunately, we cannot clearly spot the subject projects as they are overlapping with others. For
this purpose, we use the Activity Fire View, which allows us to spot outstanding projects compared to
others of the same age.

Activity Fire View - Ecosystem Graph. The view illustrates the outstanding projects according to
their number of contributors (y axis and color of boxes). The width and height of the boxes is defined
by the number of files and number of commits, respectively.

Generally Figure 5.9 shows that the number of contributors of a project is likely to increase linearly
the older they get. Many projects have a quite short lifetime (intense color in the bottom left corner.
This is due to the fact this area illustrates prototypes as well as new projects.

Balsa (on the right) has only a moderate number of contributors compared to the projects of a
similar age. Compared to some projects of the same age, it has a moderate to small number of files
and commits. TBO (bottom left) is on a good way to become an outstanding project relative to the
projects of the same age. Two outstanding and quite old projects, evolution and gtk+ can be spotted
on the top right of the figure. Compared to most of the others in the ecosystem, they have a relatively
high number of commits besides the high number of contributors.

This view illustrates that Balsa has many more contributors than TBO, which is most probable due
to the age difference. What we do not know is the distribution of the contributors in each of the two
projects based on their affiliation.
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Figure 5.8. Projects’ Lifetime with TBO marked on the top right and Balsa on the top left corner
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Figure 5.9. Projects’ Activity Fire View with TBO marked on the bottom left and Balsa on the right (x:
lifetime, y/color: NOD, width: NOF, height: NOC)
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Affectional Bond View - Ecosystem Graph. The contributors of the two subject projects are
distributed according to the number of commits on the x axis and the number of projects on the y axis
is also used for the color of the boxes. The size of the box is relative to their lifetime. Figure 5.10
shows the Affectional Bond View of the contributors of TBO on the left and of Balsa on the right.
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Figure 5.10. TBO’s contributors’ affectional bond (left) versus Balsa’s contributors’ affectional bond (right)

Despite the fact that Balsa has more contributors than TBO we can observe that both projects have
a similar distribution of their contributors. In both projects the number of translators is much higher
than the number of developers and all-rounders, respectively. Surprisingly is that the youngster seems
to have no clear defined and experienced developer compared to the veteran project.

To get clarification about this observation, we require information about the nature of the project
and its contributors. For this purpose, we use the contributors’ Involvement Distribution View and the
project’s Expertise View at project level.

Project Expertise View - Project Level. It gives information about the project’s language and file
basis based on the most commonly changed file extensions. The Expertise View is introduced and
described in detail in Section 4.4.3.

According to the Affectional Bond View our expectation would be that TBO’s main activity is
translation work. By analyzing Figure 5.11, we can see that this is not the case. The most occurring
file extensions are .svg, .c and .h. In other words, the basis of TBO is a C program that makes use
of SVG images. Furthermore, we can observe that only recently (end 2010) they became active in
translation work.

In order to find out whether this project has a specialist in development, we need information
about TBO’s contributors. For this purpose we make use of the contributors’ Involvement Distribution
View, which we introduced and described in Section 4.4.2.

Contributors’ Involvement Distribution View - Project Level. The contributors’ Involvement
Distribution View is a stacked area chart with number of commits on the y axis and data at monthly
basis on the x axis. Each stack represents a different contributor.
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Figure 5.11. TBO’s Expertise View

Looking at Figure 5.12 we can observe that with the increase in .po file changes at the end of
2010 (see Figure 5.11) also the number of different contributors increases. Additionally, we can spot a
center of power, danigm, the main contributor over TBO’s entire lifetime.

By interactively checking Figure 5.10 we find danigm in the bottom left corner of the graph,
the area in which developers and translators cannot be clearly differentiated. Comparing the two
graphs, TBO’s Expertise View and TBO’s Involvement Distribution View, we expect danigm to be a
C programmer and also having changed many .svg files in the past. However, to be sure about the
nature of danigm’s work expertise within the TBO project, we consult his Expertise and Involvement
Distribution View at contributor level.

Figure 5.12. TBO’s contributors’ Involvement Distribution View

Projects’ Involvement Distribution View - Contributor Level. Figure 5.13 illustrates clearly that
danigm worked only on the TBO project with the exception of three last commits, which have been
devoted to two other projects, evince and gtk+.
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Figure 5.13. Danigm’s projects’ Involvement Distribution View

Expertise View - Contributor Level. Knowing that danigm only worked on the TBO project (with
the exception of the last three commits) results in an Expertise View that visualizes only the files he
changed on that project. This observation would not be possible otherwise. In other words, by looking
at Figure 5.14 we now know for sure that he is a C programmer and SVG developer and that it is him
who changed most of the files in the TBO project (see Figure 5.11).

Figure 5.14. Danigm’s Expertise View

Now that we analyzed the TBO project in depth, we now focus on the Balsa project and study it in
details.

Expertise View - Project Level. Figure 5.15 shows that Balsa, similar to TBO, is a C program but
different from TBO, it has a higher .po file changing rate. This is likely the reason for the large number
of translators compared to developers in the Affectional Bond View in Figure 5.10.
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Figure 5.15. Balsa’s Expertise View

Contributors’ Involvement Distribution View - Project Level. As identified at ecosystem level,
Balsa has a larger lifetime and a higher number of contributors then TBO. In consequence, the con-
tributors’ Involvement Distribution View is likely to have a more diverse structure. By analyzing
Figure 5.16, we can clearly see that Balsa, different from TBO, does not have a single center of power
over the entire project’s lifetime. Instead, Balsa has a good knowledge flow as it has smooth take overs
from one main contributor to another. The main actors in this view are: Stuart Parmenter, the initiator
of the project in 1997; Peter Williams, a pass-by contributor who ensured a smooth take over from
Stuart to Pawel Salek in 2000. Pawel remains active until today and is one of the main contributors
together with Peter Bloomfield who joined the project in 2003.

From Balsa’s Expertise and Involvement Distribution View we could identify the language basis and
the main drivers of the project but we cannot generalize only by looking at these views that all three
experts are C programmers. For this purpose we make use of the Expertise and project Involvement
Distribution View at contributor level.

Contributor’s Expertise View - Contributor Level. Analyzing the main actors’ expertise in Fig-
ure 5.17 (Stuart Parmenter), Figure 5.18 (Pawel Salek), and Figure 5.19 (Peter Bloomfield), we can
conclude that all of them are mainly C programmers. It should be remembered that the colors in the
stacked area charts are assigned randomly. Consulting the projects’ Involvement Distribution View of
the three in the following allows us to identify the projects, which they contributed to, and ensure that
they also mainly worked on the Balsa project.

Projects’ Involvement Distribution View - Contributor Level. Figure 5.20, Figure 5.21, and Fig-
ure 5.22 illustrate that Parmenter, Salek and Bloomfield are not only the main actors of the Balsa
project but that they also focus their activity around this project.

Taking a look back to the Affectional Bond View, we can interactively spot two of the four main
contributors of the Balsa project. Surprisingly, none of the experts within the GNOME ecosystem is
highly active in the Balsa project, even though the project is quite old and generally popular in terms
of number of contributors (see Figure 5.9).
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Figure 5.16. Balsa’s contributors’ Involvement Distribution View
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Figure 5.17. Stuart Parmenter’s Expertise View

Figure 5.18. Pawel Salek’s Expertise View

Figure 5.19. Peter Bloomfield’s Expertise View
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Figure 5.20. Stuart Parmenter’s projects’ Involvement Distribution View

Figure 5.21. Pawel Salek’s projects’ Involvement Distribution View

Figure 5.22. Peter Bloomfield’s projects’ Involvement Distribution View
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5.3 Conclusion

We illustrated in this chapter how we can make use of the different views in a bottom-up and top-down
approach.

Summarizing, we can say that Kjartan Maraas is a very active person with a long lifetime as
translator and developer with affinity for bug fixing. He is the most important person according to
the number of commits and the number of projects he has been involved over his lifetime. He is an
outstanding person not only compared to the contributors of the Nautilus project but within the entire
GNOME ecosystem.

For the Nautilus project, we can conclude that it is under continuous change with active contribu-
tors, who are equally distributed into number of translators and developers. In addition, it has at least
one main driver in each phase with smooth take-overs, which are essential for a good knowledge flow.

The Balsa project, the selected veteran project, as well as TBO, the selected youngster project,
have different life expectations. Both of them show a similar distribution of their contributors to either
development and translation work in the Affectional Bond View. However, TBO has no contributor
who is a recognized expert developer in the ecosystem but analyzing the data in depth we found out
that it contains one developer, who is the center of power at the same time.

During the evaluation process, we showed that a single view is not sufficient to make conclusions
but combining different views of different abstraction levels make it possible to tell stories about
projects (e.g., Nautilus and TBO) and about contributors (e.g., Kjartan Maraas) within their ecosystem
(e.g., GNOME). These stories extracted from information available within the presented views support
the understanding of the evolution of software ecosystems.



76 5.3 Conclusion



Part III

Epilogue

77





Chapter 6

Conclusion

In this chapter we take a step back to review and discuss the work we have done. Furthermore, we
give some ideas about some open issues or extensions of Complicity and the research field.

6.1 Summary

Software systems are rarely developed in isolation but in the same environment, the ecosystem. The
aim of this work is to model and visualize software ecosystems as the state of the art shows that this
field is rather under-explored and that the ecosystem has often been ignored in the software evolution
analysis. We summarize our contributions in the following.

• Introduction of a tool support for the analysis of software ecosystems. We developed
Complicity, a web-based visualization tool that allows interactive exploration and analysis of
software ecosystems evolution. It provides the facilities to move between different levels of
abstractions. Our case study shows the importance of different abstraction levels – ecosystem
and entity level – and the ability to interactively move from one level to another, as they complete
each other. These abstraction levels allow analysts to identify dependencies between projects,
contributors, and between both. In addition, by integrating both of them in one analysis task, one
can illustrate the impact of a single project or contributor on the entire or part of an ecosystem.
The data used in the analysis has been collected by reverse engineering super-repositories. We
wrote Java programs that allowed us to scrape the data from repositories that are available
through a Git web interface.

• Introduction of an ecosystem meta model. We introduced a super-repository and language
independent meta model. By implementing it in Complicity, we showed that it is practically
applicable.

• Introduction of a catalogue of different views. Furthermore, we presented a catalogue of
different views at different abstraction levels. We described how they are constructed, the
general idea behind them on some examples and discussed their advantages and limitations.
We implemented the different views in Complicity so analysts can make use of them. We
showed that a lot of information can be extracted by applying only basic metrics, e.g., number
of commits, number of projects, etc. but it has to be considered that these metrics might be
misleading and should be considered carefully. For instance, the fact that one person commits
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more than another does not necessarily mean that the former does more work than the latter.
Instead, it depends on the committer’s attitude on performing large or small commits.

• Introduction of a methodology to evaluate the views using a bottom-up and top-down
approach. We analyzed the history of a project and a contributor, and showed their impacts
on the ecosystem using predefined views at two different abstraction levels. We showed
that Complicity is applicable to analyze software ecosystems in a bottom-up approach. We
illustrated the usage of Complicity in a top-down approach, by comparing two projects of
different lifetimes at ecosystem level and moved down to a lower level of abstraction to support
the observations made at ecosystem level. Furthermore, analysts can use Complicity to visually
explore the provided data on their own using other views and approaches.

6.2 Future Work

In this thesis, we devised a meta model and a catalogue of views that have been implemented into
Complicity. In the following we tackle some issues and ideas on how our work can be extended and
improved.

Exploration of more Ecosystems with Complicity. First, we intend to explore other ecosystems
with complicity and compare the results. This is necessary to illustrate that Complicity, its views and
meta model are applicable to other super-repositories.

Supply of an Application Programming Interface (API). So far only a single super-repository has
been explored using Complicity. In order to make Complicity more popular, an API can help. It
facilitates the expansion of the data collection in that everybody can provide data of any ecosystem,
which consequently makes it more interesting to a larger range of people.

Extension of the User-based Queries. In case future super-repositories are larger than GNOME, we
have to consider user-based queries in order to reduce the number of displayable elements. This is
especially important for a good performance of the tool as well as smooth and fast data visualization,
but also for the good user experience and flexible data analysis as the user can easily influence the
data to be visualized and.

Extension of the Metrics List. We aim at incorporating in the analysis other metrics (e.g., number
of files addition versus removal or using other statistical functions) and data from other types of
archives (e.g., email archives, bug tracking tools and forums). Providing more metrics allows the
user to explore into new directions and gain new insights into the evolution process of open source
software ecosystems.

Addition of a Connection between Involvement Distribution View and Expertise View. At entity
level, we provide the Involvement Distribution View and the Expertise View for both entities. In the
current version, these are two independent graphs that support each other in the analysis tasks of
the subject entity. An interesting extension of these graphs would be to connect them. An example
scenario would be: while analyzing a contributor’s details and select a project in the Involvement
Distribution View, we would like to see what contributions he did to that specific project; Did he
mostly changed .po files and so translation work? Or was he part of the development team and changed
mostly .c, .h, .py or similar files. We could think of a similar scenario for the project entity level. In
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consequence, we could identify or filter out the projects on which a contributor did only translation
work.

Supply of an Information Exchange Platform. Another interesting direction would be to provide
an information exchange platform where people can comment their own evolution process within
an ecosystem, or alternatively, analysts can share and discuss some patterns or some anomalies they
discovered during their analysis. This way, users may come up with new insights by combining
their knowledge with their discoveries and the comments from real contributors. The input from real
contributors can furthermore help to clean the data about the contributors, by stating that they actually
worked on the different projects or to reveal that there are more people with the same name.

Exploration of the Contributor Aggregation based on Frequency and Projects. If we do not
have the contributors themselves who give a statement about the correctness of the aggregated people,
we have to come up with other ways to aggregate. We plan to improve our technique to automati-
cally eliminate duplicate contributors. We have focused on aggregating people based on their email
addresses, and names using the Fuzzy String Similarity distance. Identifying people based on their
commit rate and the projects they worked on at a same time could identify and aggregate contributors
with different names and email addresses.

Exploration of Time-based Visualizations. Lastly, time-based visualization might be a good tech-
nique to illustrate the evolution of some processes. So far it has only been treated little in literature.
In the affectional bond view for example, this could illustrate how the contributors move from an
affiliation to translation work to an affiliation to development work. In consequence, new trends within
an ecosystem could be revealed. Generally, animations of any kind have to be used with care, as any
kind of movement can easily distract humans from their main analysis tasks.

Further Investigation of Social Network Analysis. In our work, we showed how we can identify
a good knowledge flow and center of power within a single project and how we can identify the
distribution of the contributors at ecosystem level to either translation or development work. This work
can be extended by analyzing how tightly the different contributors of the ecosystem are connected.
This is a challenging job, as with the number of contributors, the number of connections between them
is likely to increase. In consequence, metrics and filters have to be identified that limit the number of
item but provides some new insights.

6.3 Closing words

The software life cycle is a process driven by humans. Thus, the analysis of the social structure behind
a single software system became more and more popular in the last years. Especially with the hype
around open source systems, analysts became curious in understanding how it is possible to develop
popular tools in an unstructured environment.

Most of the past research in software evolution focuses on single software systems. However,
software systems are rarely developed in isolation but in software ecosystems, a valuable source of
information. So far only little has been contributed to the research field of analyzing and visualizing
software ecosystems. Lungu is one of the first initiators who explored this new research direction
during his PhD.
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With this work, we tried to contribute to the research field of software visualization and software
evolution of ecosystems integrating parts of social network analysis. We focused on simple metrics
that can be extracted from the data available in the Git web interface of open source software systems
and we visualized data at a higher level of abstraction (ecosystem and project/contributor level). We
hope that Complicity and the provided views help on the one hand analysts in understanding software
ecosystems and on the other hand attract researchers’ interest in software visualization, evolution and
ecosystems.



Appendix A

Data Collection

This chapter in the appendix is mostly concerned with my experience during the thesis with crawling
and scraping the data from the web pages of super-repositories, which make use of the Git web
interface.

A.1 Technologies Used

For the crawling and scraping of the data I decided to choose the Java programming language as it is
the one I am most comfortable with. Before crawling I analyzed the structure of the super-repositories
so I can scrape only the pages I am interested in without having to mirror the whole super-repository.

For crawling the web pages I used HTML Cleaner1, an open-source HTML parser written in Java,
which cleans the ill-formed and unsuitable web pages in such a way that it can be further processed.
This cleaning is necessary for the use of XML Path Language (XPath), which allows the extraction
of exactly the attributes from a well-formed XML or HTML file that I am interested in.

A.2 Crawling and Scraping GNOME

The first super-repository we have crawled and scraped is GNOME. In the following section, we
describe our approach and the experience we made by collecting the data from the Git web interface.
The crawling and scraping of the web pages of GNOME has been done on a MacBook Pro notebook
with a 2.53 GHz Intel Core 2 Duo Processor and 4 GB RAM.

A.2.1 Procedure

We developed a Git web interface crawler written in Java that uses the HTML Cleaner to make sure
that the pages are well-formed. This Java program enables us to crawl the super-repository in four
separated steps:

1http://htmlcleaner.sourceforge.net/
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1. project list

2. file tree structure of all projects

3. commit list of all projects

4. commit details of all projects

The mirrored pages are saved in the local file system.

Data Acquisition

Git web 
interface 
crawler

Git web 
interface 
parser

DB
GNOME
Git web 
interface

Local File System

Figure A.1. Illustration of the crawling and scraping approach for GNOME

The Git web interface parser loads the well-formed HTML files stored in the local file system,
extracts the relevant information from them using XPath and stores them into the database. Same as
the crawler it scrapes the data in four steps and each of them has to be started separately.

In both processes, crawling and parsing, the sequence of the actions plays a central role. Step 1,
crawling and parsing the project list, has to be carried out before all the other steps as it contains the
data about the projects. This data is necessary for the link construction to access the file tree structure
and commits. Step 2 and 3 (crawling and scraping) has to be executed before Step 4 as they contain
important information to get the url to the detail page and to facilitate the linkage between commits
and files.

A.2.2 Problems

During the crawling and scraping process some problems occurred, which we discuss in the following
subsections.



Data Collection A.2 Crawling and Scraping GNOME

Stable Internet Connection

As we are crawling the data from web pages, a stable internet connection is required in order to be
able to collect the data smoothly. In other words, the location from where we access the internet and
crawl the web pages should be chosen with care.

Access Denied to GNOME Git web interface

By scraping the data from web pages we run the risk of getting banded from the server on which the
Git web interface is running. This is what happened to me shortly before I finished scraping all the
data from the GNOME super-repository. In order to solve this problem, I built a work-around making
use of The Onion Router (TOR)2, which defends against any form of network surveillance. TOR
provides a distributed, anonymous network where the client, which requests a web page is routed
over so called TOR nodes to the destination server instead of building a direct connection to it. This
allows an anonymous connection and allowed me to finish crawling the GNOME super-repository.
TorLib (TOR Java Library)3 is an implementation of this approach in Java. This approach has three
drawbacks. First, you are dependent on external products. Secondly, you have to trust the TOR nodes
that routes you to your destination page. Lastly, it slows down the crawling process.

File Size

A main drawback of using external libraries and toolkits is that we have to be aware of their limitations
and shortcomings. During the crawling process the file size caused problems as HTML Cleaner cannot
process very large files (here: commit detail pages with commits that made changes to over 30,000
lines). I solved this problem in crawling only the commit detail pages with less than 30,000 lines
changes within a single commit. I ended up with a loss of 2,000 to 3,000 out of more than 950,000
web pages that have not been crawled. In consequence, at maximum 0.3% of the commit detail pages
are missing.

Performance

The collection of data from super-repositories is a time-consuming process. The main issue of this first
approach is its performance in speed. The fact that the pages are stored locally before scraping them
improved a little the performance. The performance can be improved by running multiple processes
concurrently or to run the programs on a machine that is faster than a notebook. However, whatever
approach we choose to improve the performance we have to consider the risk of getting banded by the
GNOME server on which the Git web interface is running.

Storage capacity

The fact that we store the web pages locally has the advantage that we can scrape the data from them
over and over again without running the risk of getting banded or without requiring any internet
connection. The main problem with this approach is that it requires a large storage capacity. To
work to the contrary, we changed our crawling and scraping approach to collect the data of a second
super-repository.

2http://www.torproject.org/
3http://web.mit.edu/foley/www/TinFoil/
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A.3 Crawling and Scraping SourceForge

For comparison purposes, we decided to scrape another super-repository and evaluate Complicity on a
different data set. In this section, we share our experience about scraping SourceForge. This second
approach has been executed on another notebook with a 2 GHz Intel Core 2 processor and 2 GB RAM
using Microsoft Windows as operating system.

A.3.1 Procedure

As the first version of the crawler and parser requires too much local space, we developed a new one
to collect a subset of SourceForge projects. Same as for the previous approach, both, the crawler and
the parser are written in Java.

Data Acquisition

Git web 
interface 
crawler

Git web 
interface 
parser

DB
SourceForge

Git web 
interface

Local File System

filefile

Figure A.2. Illustration of the crawling and scraping approach for SourceForge

The Git web interface crawler copies a web page from the SourceForge super-repository using the
HTML Cleaner, and stores it as a well-formed HTML file in the local file system. Then the crawler
triggers the parser, which loads the HTML file, extracts the relevant information using XPath and
stores it in the database. Afterwards, the crawler copies a new web page from SourceForge overwriting
the old HTML file in the local file system before triggering the parser for the data extraction etc.

Instead of mirroring the whole super-repository this approach crawls and parses a single page
before crawling and parsing the next one. As it always overwrites the previous HTML file in the
local file system it requires less storage capacity than the previous version. Furthermore, we added
a method of random waiting time (between 5 seconds and 1 minute) before each page crawl. This
reduces the crawling speed and increases the total time to collect the data but according to James
Howison [HC04] it reduces the risk of getting banded from the SourceForge server.



Data Collection A.4 Conclusion

Same as in the previous approach, we divided the data acquisition in the same four steps. However
this approach requires only a single trigger for each of these steps as the crawling and parsing process
are tightly connected. The different steps have to be executed in the fixed sequence from step 1 to 4
whereas step 3 and 4 are processed at the same time: for each commit that we extract from a project’s
commit list, we scrape the details subsequently before we move on to the next commit in the list.

A.3.2 Problems

In this second approach we tried to solve the storage problem and to avoid getting banded from the
SourceForge server. But some problems remain the same. In the following we share our experience of
this second approach.

Remaining problems

As we use the same technologies for the second than for the first approach, the limitation of the HTML
Cleaner remains. However, for a subset of 88 SourceForge projects only 2 out of 24,629 commits
could not be crawled, which are approximately 0.008% of missing commits. The problem with the
requirement of a stable internet connection continue to exist. In addition, our second crawling process
becomes even slower due to the waiting method.

Access Denied to SourceForge Git web interface

In order to avoid getting banded a second time we introduced a random waiting time of 5 seconds to 1
minute. Due to the limited time available for scraping data from SourceForge, I decided not to add
too much waiting periods. I crawled the projects’ file tree structure with a waiting period between 10
seconds to 1 minute between each project instead of each file crawl. Due to this mistake I got banded
a second time. However, this time they banded me only from accessing the web interface through a
web browser. The Java programs continued running without the need of TOR. For the crawling of the
commits and commit details I added

A.4 Conclusion

We can conclude that the technologies chosen for the data acquisition are not the fastest but still too
fast to get banded twice from the two super-repository servers. We experienced that scraping is a
time-consuming act, especially because of the additional waiting periods between each page crawl.
However, there is no guarantee that this actually protects us from getting banded. Using XPath instead
of Regular Expressions made it easy to extract only the data we wanted.

The main disadvantage of the chosen approach for the data collection is that the Java programs
have to be updated for every super-repository. This makes it inflexible and time-consuming venture.

A possible solution is to mine the Git version control system instead of scraping the data from
the web pages available through the Git web interface. First, it is independent of the super-repository
in that the structure for the data extraction remains the same for every project using a Git version
control system. Secondly, it retrieves the data of a single repository with one single command instead
of crawling many pages and thus reduces the risk of getting banded.
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Data Analysis

Data plays a central role in the analysis of software evolution. With the hype about open source
software systems a huge amount of data becomes available and we are no longer dependent on the
data gathered from industry. But it hides some problems, which we discuss in the following chapter.

B.1 Huge Amount of Data

With the increase in popularity of open-source systems, more and more software systems and data
about their evolution become available. With the introduction of new data sources, new problems have
to be faced.

First, the data analysis becomes more time-consuming, as more data has to be analyzed. In order
to be able to analyze the data, we require techniques for the data collection. This in consequence is
again a time-consuming task the more data becomes available and more different sources and formats
are defined.

Another problem, that occurs is the modeling of the data. As with the development of new data
sources, old data models have to be adapted or new ones have to be generated.

The huge amount of data also influences the the analysis and visualization tasks. For this purpose,
new tools and techniques have to be developed that improve the readability. Text-based is rarely a
good choice for analysis and using a table-based approach is only partly applicable if the goal is to
do quantitative comparisons on a rather small amount of data. Visualizations on the other side can
cope with a large amount of data especially when the goal is to extract patterns or anomalies from the
data set. Unfortunately also visualizations may reach their limits when its comes to visualize a huge
amount of data, as either the graph is becoming unreadable due to too many elements that overlap and
flood the graph.

Lastly, scalability is another factor that comes into play when dealing with a huge amount of data.
Many tools are available that cannot cope with a large data set. For this purpose, new techniques and
filters become necessarily.

B.2 Dirty Data

As already mentioned in the previous chapter Appendix A, one problem that occur when dealing with
data from the internet are ill-formed web pages. The solution we used to solve this problem is the
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HTML Cleaner as it cleans the underlying tree structure by closing missing tags. But as mentioned
before it does not perform so well in terms of speed as other approaches.

Another problem we have to cope with are the different character sets and special characters, in
which the data is provided. This is a well-known problem and no perfect solution is available. We
decided to crawl, scrape and save the data using the utf-8 character set. It is the most commonly used
character set within the web and so covers most special characters.

An issue that might be less common in industry than it is in free and open-source projects is the
misuse of the data fields. For example, many committers used the "author"-field of a commit also as
message or date field. Another problem that arises is the fact that committers use different usernames
or nicknames or some abbreviations of their names or any other combination of their names, which
makes it very hard to match the same users into one single committer.

B.3 Redundant committers

The fact that users misuse the author and committer field but also due to the usage of different names
with and without special characters and nicknames representing the same person makes it difficult
to match the same person. In consequence, being able to combine different committers in the same
person, reduces the number of people and so the complexity. More importantly the elimination of
redundant committers provides a more correct image of the state, communication or the evolution of
the contributors and the involving projects. More about this topic in Appendix 3.8.

B.4 Attic files

In this work, as already mentioned before, we focus on the data available about projects using the Git
web interface. These pages contain general information about the project, its commits and file tree
structure. While they keep track of all changes executed on any file that existed at any point in time
in the commit messages, the file tree structure represents only its current state. In other words, all
information about files that have been deleted or whose names or location changed is only available in
the commit messages. This can cause problems if one wants to illustrate the evolution of the whole
project’s file structure, as only a limited amount of data about these attic files is available within the
commits. For example, we have no information about the attic file size. A work around this problem
is to use the number of lines instead of the file size [GKSD05].
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