
INTERACTIVE AND COOPERATIVE

VISUAL DATA MINING OF

EVOLVING SOFTWARE

Master Thesis in Algorithmic and Information Modeling.

Thèse de Master, Algorithmique et Modélisation de l’Information.

CÉDRIC MESNAGE

Département d’informatique

Université de Caen, France

Under the direction of

PROF. MICHELE LANZA

Faculty of Informatics

University of Lugano, Switzerland

September, 2005

”If the doors of perception were cleansed, every thing would appear to man as it is, infi-
nite.”

William Blake

Acknowledgments

• First of all I would like to thank my adviser, Michele Lanza, who gave me the opportu-
nity to perform this work at the Faculty of Informatics of Lugano. He offered me both
freedom and strong guidelines on my work.

• I thank all the members of the Faculty of Informatics of Lugano.

• My teachers from the University of Caen where I did my studies.

• My girlfriend, Elodie, who followed me to Switzerland and who supported me all that
time.

• My parents, who have always given me the best and whom I love.

• All my friends in France and elsewhere, they are too many to cite them here.

Abstract

The maintenance, reegineering, and evolution of software systems has become a vital matter
in today’s software industry. With time systems tend to decay in quality. Such legacy software
systems need to be reverse engineered in order to keep their value. One important source of
information that is seldom used is the history of the system, i.e., the life-cycle it went through
until its current state.

In this master thesis we propose a visual data mining approach to reverse engineer
systems using the history data provided by versioning systems. We extract software entities
from CVS (Concurrent Versioning System) and maintain these in a data warehouse.

Our visualizations are based on the polymetric views principle that we extend in 3D and
enrich with data mining techniques.

We implemented these visualizations in WHITECOATS , an interactive and cooperative
tool working as a web-service, which we use to validate our approach in a case-study.

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Thesis Outline . 2
1.3 A Short State of the Art . 2

2 Software Evolution 4
2.1 Versioning Systems . 4
2.2 The Problem . 4
2.3 Our Approach . 5

3 WhiteCoats, a Visualization Tool on the Web 6
3.1 The Principles . 6
3.2 WHITECOATS Architecture . 8
3.3 A Collaborative Tool . 10
3.4 Examples . 11

4 Handling and Visualizing CVS Data 13
4.1 WHITECOATS CVS Architecture . 13
4.2 The Data Warehouse . 14
4.3 Examples . 18

5 Improving Visualization with Data Mining 20
5.1 Definitions . 20
5.2 Correlations between Subsets . 21
5.3 Computing Similarity . 22
5.4 Algorithms and Complexity . 23
5.5 Example . 24

6 Visual Data Mining 25
6.1 Outlier Detection . 25
6.2 Evolution Mining . 28

6

CONTENTS 7

7 A Case Study 29
7.1 Methodology . 30
7.2 In the large . 31

7.2.1 Authors . 31
7.2.2 Directories . 34
7.2.3 Files . 35

7.3 In the small . 37
7.3.1 Authors . 37
7.3.2 Files . 40

8 Conclusion 41
8.1 Future work . 41

Bibliography 43

Appendices 45

A White Coats User Interface 46
A.1 3d facilities . 47

A.1.1 Reference Cube. 47
A.1.2 Horizon. 47

A.2 Query engine . 47
A.2.1 Restriction on the metrics . 48
A.2.2 Associate actions to constraints . 48

A.3 Interaction . 49
A.4 Configuration . 50

A.4.1 Configuring the view . 50
A.4.2 Configuring the metrics . 51

A.5 Collaborative facilities . 52
A.5.1 Saved views . 52
A.5.2 Comments . 52

Chapter 1

Introduction

Reverse engineering existing software has become an important problem that needs to be
tackled. Software systems evolve. Therefore, software system analyses must consider soft-
ware evolution. New requirements, bug fixes and refactorings are part of a software’s history.
New developers and managers examine this history to understand the current state of a sys-
tem. From the point of view of the software manager, introducing new functionalities in an
existing software raise many questions such as ”How much time will it take for the system to
be stable again?” or ”Who should I contact to do that?”.

By studying the software evolution, we are able to answer clues on these questions. In-
deed if a similar functionality has been introduced before, analyzing the past of the system
tells us what happened after this modification and who did it. Legacy software systems have
years of history and consequently manually analyze these becomes impossible. Visualization
techniques eases the understanding of such history.

1.1 Scope

Our work extends over many research areas.

Software Visualization is defined as ”the use of crafts of typography, graphic design, ani-
mation, and cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effective use of
computer software. [16]”

Information Visualization is defined as ”the use of computer-supported, interactive, visual
representation of abstract data to amplify cognition. [2]” The goal of information visu-
alization is to visualize any kind of data.

Data Mining has been defined as ”The nontrivial extraction of implicit, previously unknown,
and potentially useful information from data” [7] and ”The science of extracting useful
information from large data sets or databases” [4].

1

2 CHAPTER 1. INTRODUCTION

Visual Data Mining is the use of visualization to understand large amounts of data and ex-
tract useful and new information. Visual data mining is used to elaborate classifications
of data or to find outliers.

We define a model to visualize software information. These visualizations help visual
data mining of software entities. Our model is generic and may be applied on other kinds of
data. We offer some improvements on our visualizations using data mining techniques.

1.2 Thesis Outline
This document is organized as follow:

• In Chapter 2 we introduce the software evolution research field and describe our ap-
proach.

• In Chapter 3 we describe the principles of the WHITECOATS tool [13] and its user
interface.

• In Chapter 4 we present the CVS module of WHITECOATS which is able to retrieve
data from a CVS repository, structures and computes metrics.

• In Chapter 5 we explain how we use data mining techniques to facilitate visual data
mining by arranging the subsets threads.

• In Chapter 6 we present how to make use of WHITECOATS visualizations to mine large
sets of data.

• In Chapter 7 we present a case study based on the well-known open-source software,
Azureus.

• In Chapter 8 we conclude by giving an outlook on future work.

1.3 A Short State of the Art
Software evolution has established itself as a research field in the past few years, leading to
many publications in this area.

Jazayeri et al. analyzed the stability of the architecture [9] by using colors to depict the
changes.

Taylor and Munro [17] visualized CVS data with a technique called revision towers. Ball
and Eick [1] developed visualizations for showing changes that appear in the source code.

Gulla [8] proposes multiple visualizations of C code, but to our knowledge there was
no implementation. Collberg et al. used graph-based visualizations to display the changes
authors make to class hierarchies. However, they do not give any representation of the di-
mension of the effort and of the removals of entities.

Rysselberghe and Demeyer [15] propose a simple visualization of a system’s history from
a CVS repository by creating a matrix where the columns represent files ordered by names
and lines represent the time. Wu, Holt and Hassan [18] introduce a spectrograph visualization

1.3. A SHORT STATE OF THE ART 3

to render software evolution. These approaches offer visualizations of software repositories,
but no interaction with the visualizations are possible.

Lanza’s Evolution Matrix [11] visualizes the system’s history in a matrix in which each
row is the history of a class. A cell in the Evolution Matrix represents a class and the dimen-
sions of the cell are given by evolutionary measurements computed on subsequent versions.
However, the Evolution Matrix has been implemented in a stand-alone tool (CodeCrawler)
and uses only two-dimensional visualizations.

Chapter 2

Software Evolution

Versioning systems help developers to work together by storing their work at each step of the
evolution of the software system. We recover software systems’ history by extracting data
from versioning systems. Using this history, we analyze and visualize the software evolution.

We see in this chapter which versioning systems are available and how we use it.

2.1 Versioning Systems
In [14], Robbes compares different kinds of versioning systems from the point of view of
a software evolution researcher. File-based versioning systems such as CVS, SubVersion,
and SourceSafe store revisions and changes on a file granularity. CVS has no refactoring
support, such as renaming of files or function signature changes. Subversion has changeset
support where the developer can set a collection of files. If files are in the same changeset,
then changes on these files are associated to the changeset instead of the file. Changesets
help refactoring support. Subversion versions directories as well. From a refactoring point of
view, it detects if a file is moved or renamed.

Entity-based systems, such as StORE, version changes on a different granularity. Pack-
ages, modules, classes, and methods are versioned. It has refactoring support. The renaming
of a class does not create a new entity, but instead adds a new event on the existing entity.
The whole history of a class can be recovered even if it changed or moved several times in
the history of the system.

2.2 The Problem
To analyze a software system, one possibility is to reverse engineer this system using the
data provided by the versioning system.Versioning systems store the evolution of software
systems, but to extract the history of the system we need to parse some data. CVS offers only
log files which are text files containing a list of events. Reverse engineering is defined by
Chikofsky and Cross as ”the process of analyzing a subject system to identify the system’s
components and their relationships, and to create representations of the system in another
form or at a higher level of abstraction [3].”

4

2.3. OUR APPROACH 5

Most current reverse engineering tools are standalone programs. They ease the under-
standing of the structure and the evolution of a software system, but making a cooperative
analysis is difficult. Different human resources around a project have distinct point of views
on the same system. Therefore the analysis can not be done by only one person. Doing a
collaborative analysis enhance the results.

Some tools are available on the Internet in the form of web-sites (ViewCVS 1, Maven 2).
They offer simples visualizations without interaction.

2.3 Our Approach
We propose a visual data mining approach based on polymetric views to tackle the problem
of extracting information from software evolution data. The concept of polymetric views
was introduced by Lanza in [12]. The main idea is to create visual figures from software
entities. These figures are positioned and shaped according to the software metrics of the
entities. In three dimensions we are able to display up to 7 metrics on the same figure to
create visualizations of many entities.

Our software entities are extracted from reverse-engineering of CVS data. It is the most
used versioning system. It gives us more projects to analyze. Our approach being based on
modules, it is easy to adapt a new data source based on other versioning systems.

We introduce the concept of subsets threads which represents entities structurally related
and sequentially ordered (i.e., revisions of a file) on polylines. These polylines are sorted by
similitude in order to visually compare them.

The previous concepts have been implemented in a tool, WHITECOATS , which displays
visualizations within a web-site.

1ViewCVS is a browser interface for CVS and Subversion version control repositories,
http://viewcvs.sourceforge.net/

2http://maven.apache.org/

Chapter 3

WhiteCoats, a Visualization Tool
on the Web

We present in this chapter the main principles regarding visualization. WHITECOATS is the
tool we developed to visualize software evolution data.

3.1 The Principles
We display both 3D and 2D visualizations. These are based on the concept of polymetric
views [12]. A view is a combination of figures which is the result of a mapping of entities’
metrics on the visual properties of the figures.

y

x

width

height

position(x,y)

color

Figure 3.1. 2D Polymetric view principles.

The 2D polymetric view principle [12] permits visualization of large sets of entities. Fig-
ures’ positions depends on their associated entities’ metrics. Up to five visual properties can

6

3.1. THE PRINCIPLES 7

be mapped from metrics - the x and y position, the width and height, and the color (see
Figure 3.1).

Extending the concept of polymetric views to 3D, the user can set a number of metrics
which influence the position and shape of the visualized entities (see Figure 3.2). We map up
to seven metrics (three for the position, three for the shape and one for the color). The point
is not to display as much information as possible, but to discover views whose combinations
of metrics convey certain types of information to the viewer.

X

Y

Z

width

height

depth

Position (x,y,z)

Figure 3.2. 3D Polymetric view principles.

In order to be transformed into figures, entities must follow the model presented as UML
class diagram in Figure 3.3. An entity has an unbounded number of metrics which are defined
by a name and a value. An entity has a type and a name. The entities are related by an asso-
ciation parent/children. The children of an entity are the entities related to it (i.e., revisions
and authors of a file).

Entity
type
entityName

Metric
metricName
value

1 *

children
1 *

Figure 3.3. The data model of WhiteCoats.

This model may be generic enough to handle other kinds of data, but at the time of the
writing of this document, we focus on software evolution information.

8 CHAPTER 3. WHITECOATS, A VISUALIZATION TOOL ON THE WEB

3.2 WHITECOATS Architecture
To display 3D visualizations in web-sites, we chose to use VRML1. VRML gives us the
ability to easily create files defining the 3D scene and the plugin in the web-browser takes
care of the rendering process. In the following, renderer mean creation of a file.

WhiteCoats

WhiteCoats Model

2d
renderer

3d
renderer

VRML
generator

WhiteCoats
DataSource

Entity
Entity

Entity
Entity

Web
interfaceSeaside

FrameWork

Figure
Figure

Figure
Figure

Metric
Metric

Metric

Figure 3.4. The overall architecture of WHITECOATS .

WHITECOATS is composed of different modules:

• The web user interface module which uses the Seaside framework 2 and gives the user
the ability to visualize, browse or configure his visualizations.

• The data sources which contain the entities to be processed during visualizations and
which will be transformed into figures after the configuration.

• The 2D and 3D renderer create visualizations from the figures.

• The VRML generator which is used by the 3D renderer to create VRML visualizations.

In Figure 3.4 we see the relationships between these modules.

1Virtual Reality Markup Language
2Seaside is a web-framework designed in smalltalk, http://seaside.st/

3.2. WHITECOATS ARCHITECTURE 9

Entity

Figure
x,y,z
width,height,depth
color

Metric

1

*

1 1

Configuration

Dimension : Metric
1

*
Views
*

1

1 1

Figure 3.5. Creation of figures from entities.

The visualizations display figures. The visual properties of these figures are mapped from
metrics. In Figure 3.5, we present the configuration process.

1. The user sets a configuration mapping software metrics to visual properties.

2. From the application of the configuration on the entities, we create visual figures.

3. The figures are rendered in a view (2D picture or 3D VRML file) which is conformant
to the configuration.

10 CHAPTER 3. WHITECOATS, A VISUALIZATION TOOL ON THE WEB

3.3 A Collaborative Tool
Making our tool a web-application eases collaboration. Users are able to add comments on
each entity. Seeing the comments of other people in interaction with the software system
facilitates the process of understanding and may result in a production of more useful infor-
mation. WHITECOATS can be seen as a web-forum in which the interaction and navigation
are based on visualizations.

Project
Manager

Developer

 User

New
developer

WhiteCoats

<check> <ask>

<understand><explains>

Figure 3.6. Different users and their relation to WHITECOATS .

Many different kinds of users (Figure 3.6) can use the same WHITECOATS application ,
such as the project manager, to the user of the software, the developer. The analysis comes
from different points of view, and thus is enhanced.

3.4. EXAMPLES 11

3.4 Examples

The following selected examples come from Azureus 3, a bittorrent4 client. Azureus was, at
the time of writing of this thesis, the most active project on Sourceforge5 . Sourceforge is
also the most used repository for open-source software systems.

Entities X Y Width Height Color
Directories Depth Parent ID Number of files Number of subdirectories Number of files

Figure 3.7. A 2-dimensional polymetric view, Directories of Azureus.

2d Directories view. Figure 3.7 is useful to analyze the partition of directories in a
system. In this view we compare directories according to their size (number of subdirectories,

3See http://azureus.sourceforge.net/
4http://bittorrent.org
5http://sourceforge.org

12 CHAPTER 3. WHITECOATS, A VISUALIZATION TOOL ON THE WEB

number of files), when we structure it using the depth metric (which is the depth in the
directory hierarchy).

x

z

y

X Y Z Width Height Depth Color
First revision Depth Last revision Number of authors Number of revisions Added lines Removed lines

Figure 3.8. The Files Activity view of the Azureus project.

Files Activity view. In Figure 3.8, we show all the files of the Azureus project (over
3500 files). Using this view we compare files by their position on both evolution oriented
metrics (First revision, Last revision, Number of revisions) and structural metrics (Depth,
Added/Removed lines).

Chapter 4

Handling and Visualizing CVS
Data

WHITECOATS is a visualization tool which can handle any kind of data, as long as it is
conformant to our model previously defined. We developed a module to handle software
evolution data. Currently this module extract its data from CVS repositories, but it can be
easily adapted to other versioning systems. The architecture of this module can be reproduced
to handle other versioning systems, but will need to be re-written as many other information
can be available. The data warehouse manage a Postgres database, we describe here its
populating processus.

4.1 WHITECOATS CVS Architecture

Postgres
Database

log file
parser
script

CVS server

CVS server

CVS server

populating/
updating
scripts

computing
metrics
script

White Coats CVS Module

postgres
bridge

WhiteCoats
Visualization

Figure 4.1. The overall Architecture of the White Coats CVS Module.

In Figure 4.1 we present the architecture of the module interacting with CVS. In order to
use CVS data we need to fetch and then analyze them ; we store the results of the parsing in
a database. This processus is composed of three main parts:

1. Retrieving/Parsing information from the CVS repository.

13

14 CHAPTER 4. HANDLING AND VISUALIZING CVS DATA

2. Populating or updating the Postgres database with the new data.

3. Computing metrics and associate them to entities in the database.

CVS stores a revision each time a file is changed. When retrieving the log informations
we get information on each revision. From all these informations we populate a Postgres1

database using a set of scripts written in python2. These scripts take care of fetching new data
from the CVS repository and parsing log files to extract entities from it. Other scripts take
care of populating the database and computing metrics from these newly created entities.

The postgres Bridge is an interface between the WHITECOATS visualization engine and
the database. It creates entities conformant to the WHITECOATS model from the entities in
the data warehouse.

4.2 The Data Warehouse

Project
name
address
mainModule
user
password
status

Directory
depth

Revision
number
date

File
depth
content

1*1*
Author

0..1*

Metric
name
type
value
relativeValue*

1

1*

Entity
name

1

*

1*

Figure 4.2. The WHITECOATS Database model.

The database model (Figure 4.2) is inspired from the RHDB (Release History Database)
[6] [5]. The main difference between the RHDB and our model is that we store metrics in the
database.

Some of the metrics (see Table 4.1) are computed from SQL queries . WHITECOATS al-
lows metrics to be pre-computed or computed on the fly, but considering the time to compute

1http://www.postgresql.org/
2http://www.python.org

4.2. THE DATA WAREHOUSE 15

metrics of tens of thousands of entities, the resulting latency would decrease the usability of
WhiteCoats.

Directories, files, revisions and authors are subclasses of Entity. Entities have metrics.
The database can be seen as a tree. The root is a project which corresponds to the CVS
repository. A project contains directories which are arranged in a tree. Directories can contain
files. CVS revisions are stored as an association between a file and an author.

This model facilitates the recovery of other informations that are not extracted from
CVS such as directory versioning or author history. The data warehouse is composed of
the database and the scripts to manage it. The addition of a new project in the data warehouse
is done in three steps. We describe them below:

1. Populating the Database.

To process evolution information, we use a set of scripts to populate a database which
is then the source of information for the visualizations. The populating process (Fig-
ure 4.1) is done as follows:

(a) The user indicates the URL of a CVS repository.

(b) A set of scripts is executed that connect to the repository and download all log
files which contain information about every revision of every file. The log files are
parsed and a database is populated with the retrieved information (see Figure 4.2
for the DB schema we use). A set of directly retrievable metrics (e.g., number of
added lines) and other information (e.g., id of the author) is also stored into the
DB.

(c) A second set of scripts computes information that cannot be retrieved directly
(see Table 4.1) and stores them into the DB too.

===

RCS file: /cvsroot/mozilla/README.txt,v
Working file: mozilla/README.txt
head: 1.7
branch:
locks: strict
access list:
symbolic names:

MOZILLA_1_7_11_RELEASE: 1.7
...
MOZILLA_0_9_9_BRANCH: 1.1.0.2

keyword substitution: kv
total revisions: 12; selected revisions: 12
description:

revision 1.7
date: 2004/03/13 06:25:28; author: asa%mozilla.org; state: Exp; lines: +34 -34
update to point to ftp.mozilla.org/pub/mozilla.org/mozilla/nightly r=bryner

revision 1.6
date: 2003/09/18 04:31:38; author: imajes%php.net; state: Exp; lines: +0 -1
updating

Figure 4.3. Extract of a CVS log file of Mozilla.

16 CHAPTER 4. HANDLING AND VISUALIZING CVS DATA

We store in the database the date when the checkout of the CVS project has been
done last time. Using this date, we can get the CVS log file for only the revisions
which appeared between that date and now. Our update script finds entities which have
already been inserted in the database, updates their data, and creates new entities for
files, directories, and authors.

2. Parsing the Log File.

Working file: mozilla/README.txt

revision 1.7
date: 2004/03/13 06:25:28; author: asa%mozilla.org; state: Exp; lines: +34 -34
update to point to ftp.mozilla.org/pub/mozilla.org/mozilla/nightly r=bryner

Author Added
lines

Removed
lines

DateRevision
numberComment

File Name

Figure 4.4. Information that can be retrieved from a CVS log.

A CVS log file is a text file (see Figure 4.3) which contains informations on revisions
of each file. It contains as well informations on branches and releases, but we do not
use them. We present in Figure 4.4 a revision in a log file and all information that we
retrieve from it.

From the file name we create many entities, directories of the path of the file, and the
file itself (i.e., ”mozilla/src/main.c” will result in two directories, ”mozilla” and ”mozilla/src”, and a
file ”mozilla/src/main.c”). For each revision of the file we create a revision entity with a time
and date stamp. We set its number of added/removed lines. The author is created too
from his name if he is not already present and the revision is associated to this author.
The comment is stored in the revision entity. The date and added/removed lines will
later be used as metrics.

Once the parsing is done, we look in the database for entities already inserted for that
project. Then the entities which are not already in the database are inserted and linked
to the old or new ones if needed (i.e., a directory of a new file may already exists, so
we look in the database for it).

When all data are inserted, we can compute the metrics for each entity.

3. Computing Metrics.
Some metrics are retrieved from the CVS logs (such as the number added or removed
lines), while others are computed in a second phase. In Table 4.1, we list some of the
metrics. The metrics are computed in a preprocessing step.

SQL Queries like the ones in Figure 4.6 and Figure 4.5 are executed by a python script
in the Postgres database.

In Figure 4.5 the query creates new metrics for directories setting the name of the
metric with ’Number of files in directory’ and the value to the number of files with the
same directory id. This is done by the use of a count(file.id) and a Group By clause.

4.2. THE DATA WAREHOUSE 17

Property Name Entity types
Retrieved from CVS Log Files

Added/Removed lines Revision
Author Revision
File Revision
Revision Date Revision
Simultaneous Revisions Revision

Computed
Depth File, Directory
First/Last Revision File, Directory, Author
Added/Removed lines File, Author
Active period File, Author
Number of Authors File, Directory
Number of Revisions File, Directory, Author
Number of Files Directory, Author
Parent Directory Directory

Table 4.1. Entity Properties.

""" INSERT INTO Metric (project_id, entity_directory_id, type, name, value)
SELECT %s, directory_id, ’nofD’ ,’Number of files in directory’ , count(file.id)
from file where file.project_id=%s GROUP BY directory_id;
"""%(project_id, project_id)

Figure 4.5. SQL query to compute and insert the number of files within
each directory.

In Figure 4.6 the query computes the total of added lines by each author and creates a
new metric assigned to each author and named ’Added lines’.

""" INSERT INTO Metric (project_id, entity_author_id, type, name, value)
select %s, author.id, ’aLA’, ’Added lines’, sum(metric.value)
from author,revision, metric
where revision.project_id = author.project_id and author.project_id = %s
and author.id=revision.author_id and revision.id=metric.entity_revision_id
and metric.name=’Added lines’ GROUP BY author.id;"""%(project_id,project_id)

Figure 4.6. SQL query to compute and insert the total number of added
lines for each author.

18 CHAPTER 4. HANDLING AND VISUALIZING CVS DATA

4.3 Examples
Using the data extracted with our module in WHITECOATS , we are able to create new visu-
alizations of evolution data.

x

z

y

parg
gouss

X Y Z Width Height Depth Color
Number of revision First revision Number of files Number of revisions Activity Period Number of files Added lines

Figure 4.7. The Author’s activity of the Azureus project.

Authors view. In Figure 4.7 The authors are positioned and shaped according to their
importance in the project (Number of files, Number of revision, Added lines). The Y axis
represent the date of the first revision, which is the entry of the author in the project, and the
height attribute is mapped to the metric activity period, which is the difference between the
date of the last revision and the date of the first revision. This view tells us who is working
on the project, when they started and how much did their work last.

4.3. EXAMPLES 19

x

z

y

Entities X Y Z Color
Revisions Date Author ID File ID Number of revisions at the same time

Figure 4.8. The 3D Evolution matrix of the Azureus project.

3D Evolution Matrix view. In Figure 4.8 we show the Evolution Matrix ([10]) of the
project Azureus which represents over 15’000 revisions. We added a query which highlights
in blue the revisions of more than 300 added lines. This example shows also the limits of the
paper media to explain the possibilities of White Coats: the user would now navigate (”fly
through” or ”rotate”) to this file history and have a closer look.

Chapter 5

Improving Visualization with Data
Mining

Data mining has been defined as ”The nontrivial extraction of implicit, previously unknown,
and potentially useful information from data” [7] and ”The science of extracting useful infor-
mation from large data sets or databases” [4].

In the previous chapter we have seen what kind of visualizations we can do to visualize
evolution data (Figure 4.8). In the evolution matrix, each cube is a revision which happened
on a file. When the number of entities displayed is large (over 16’000 in Figure 4.8) it
becomes difficult to differentiate each file’s revisions.

In order to improve these visualizations, we introduce the concept of subset threads.
Instead of having many entities in a visualization, we have polylines joining children of the
same product (in our case joining every revision of the same file). This way instead of having
over 16’000 cubes, we get 3’000 polylines. In addition to the subset threads, we propose an
algorithm to sort these threads by similitude. Once sorted the threads can be compared by
the user.

5.1 Definitions

In this section we define subset threads. A subset thread is what we represent as a polyline in
visualizations, it is a set of children of an entity of the same type (i.e., revisions of a file). Each
entity of a subset corresponds to one point of the polyline according to the metrics values of
the entity (i.e., in the evolution threads, the x axis is the date of the revision, the y axis the
number of added lines).

• A subset of an entity e of type t is a set of entities e1..en of type t2 where for 0 < i <=
n the entity of type t related to ei is e.

• A figure of an entity e is, given a metric mx and a metric my, the point (x, y) where
x = the metric mx of e and y = the metric my of e.

20

5.2. CORRELATIONS BETWEEN SUBSETS 21

• A subset thread of an entity e is, given is subset e1..en, the polyline formed by the
figures (x1, y1)..(xn, yn) where x1 < x2 < .. < xn.

5.2 Correlations between Subsets

entities entities with subsets threads

sorted subsets threads

Figure 5.1. An example of sorted subsets threads.

In Figure 5.1 the entities displayed are revisions, the x axis representing the date of the
revision and the y axis the number of added lines. The z axis is associated to the file Id in the
top figures.

From the entities displayed in the top left in Figure 5.1, we can extract many subsets as
defined in the previous section each corresponding to the revisions of a file. If we display the
polylines corresponding to the subsets, we obtain the top right figure, each entity in the same
subset are connected with a line (each revision on the same file).

22 CHAPTER 5. IMPROVING VISUALIZATION WITH DATA MINING

The subsets help the visualization of large sets of entities. In the top left figure, it is hard
to find revisions of the same file, even if they are on the same z axis. In the top right figure,
we just have to follow a line to find the next revision of a file.

The bottom screen capture represents the same subsets but the polylines are sorted by
similitude and the entities are not displayed. We can compare the lines and find files which
evolved the same way.

5.3 Computing Similarity
The aim is to sort a set of subsets threads according to their correlation. Given a first line, we
look for the line which is the more similar to this one and position it, then we do the same
process for the new line.

When comparing two polylines, we combine the two lines and then compute the perimeter
of the new line formed by the two lines. This gives us the possibility to sort the subsets and
then positioned them according to their similitude.

Figure 5.2. The first polyline. Figure 5.3. A polyline to com-
pare with the first one.

Let a and b be two polylines (Figure 5.2 and Figure 5.3) composed by points a1..an and
b1..bm.

Figure 5.4. The two polylines. Figure 5.5. The polyline
formed by the combination of
the two polylines (in green).

The composed polyline c (in green in Figure 5.5) of points c1..cm+n ∈ a1..an ∪ b1..bm

and x1 < x2 < .. < xm+n.
The perimeter of the polyline c is smaller when the two lines are close to each other. We

use this metric to sort the subsets threads as we see in the next section.

5.4. ALGORITHMS AND COMPLEXITY 23

5.4 Algorithms and Complexity
In the algorithm 1, let S be the size of subsets then the complexity of the loop is in O(S),
lines 2 and 3 are constant. To find the complexity of line 4, we must analyze the algorithm 2.

In the algorithm 2, if we assume that the computation of the perimeter in line 6 is in
O(N) where N is the number of points of a line, and the main loop (line 3) is in O(S) then
the complexity of the algorithm 2 is in O(S ∗N).

The complexity of the algorithm 1 is then in O(S2 ∗N). Considering that the number of
subsets is generally small, this algorithm is efficient.

Algorithm 1 Sort subsets threads Algorithm.

• Entry : l, the first line to be insert and subsets, the list of polylines.

• Result : sortedsubsets, the lines sorted and positioned

1: while subsets not empty do
2: remove l from subsets
3: add l to sortedsubsets
4: l← most similar line to l within subsets
5: end while
6: Return sortedsubsets

Algorithm 2 Most similar thread Algorithm.

• Entry : l, a polyline and subsets, the list of polylines not yet sorted.

• Result : the closest line to l and a distance.

1: minp← bigint
2: closest← l
3: for all l2 ∈ subsets do
4: combine l and l2 in l3
5: sort the points of l3 on the x axis
6: p← perimeterofl3
7: if p < minp then
8: closest← l3
9: minp← p

10: end if
11: end for
12: set z coordinate of closest to minp
13: Return res

24 CHAPTER 5. IMPROVING VISUALIZATION WITH DATA MINING

5.5 Example

peaks which appeared
on different files which

follow the same evolution

Entities X Y Color
Files Date of revision Added lines Random

Figure 5.6. Evolution Subset Threads.

In Figure 5.6, we present the Evolution Subset Threads view. This view show sequential
data of different products (in our example files). The threads are sorted by similitude using
the algorithm presented in this chapter.

Comparing the evolution of files is a problem that still need to be tackled. Our visualiza-
tion eases the visual comparison for we position similar evolutions next to each other. We
are now able to describe groups of similar evolution. Using the color to map another metric
gives the ability to detect flouted evolutions (files which evolves with files reposing in another
directory, see next chapter).

Chapter 6

Visual Data Mining

We have seen in the previous chapters how we create visualizations in WHITECOATS . In
this chapter we see how we can use two dimensional and three dimensional polymetric views
to extract useful information from large data sets.

6.1 Outlier Detection

2

1
3

x

z

y

Entities X Y Z Color
Files First revision Added lines number of revisions Removed lines

Figure 6.1. Azureus files.

25

26 CHAPTER 6. VISUAL DATA MINING

In Figure 6.1 we identify one outlier which is number 2 in the figure. This is a file named
”azureus2/org/gudy/azureus2/internat/MessagesBundle.properties”. It was created at the beginning of the project
and suffered a lot of revisions but with small changes (the number of added lines and removed
lines are small). The sets 1 and 3 are interesting, we will discuss them in the case study.

1

2

3

4

x

z

y

Entities X Y Z Color
Files First revision Added lines number of revisions Removed lines

Figure 6.2. Azureus files, rotated.

If we rotate the view we can identify new outliers as we see in Figure 6.2. The files which
followed a constant evolution are in the clusters 3 and 4 (files of cluster 4 have suffered
stronger changes). The file 2 is the same outlier we already identified in Figure 6.1. The file
number 1 named ”azureus2/org/gudy/azureus2/internat/MessagesBundle es ES.properties”, its number of removed
lines (color) and its number of added lines (y axis) are high but its number of revisions is
small (z axis). What is interesting is that this outlier did not appear in the Figure 6.1.

6.1. OUTLIER DETECTION 27

1

2

Entities X Y Color
Files Number of revisions Added lines First revision

Figure 6.3. 2d polymetric view of files entities of Azureus.

In Figure 6.3, we see that two dimensions polymetric views is also a way to find outliers,
these outliers are the combination of only 3 metrics. But we still find the outliers numbered
1 and 2 in the Figure 6.2.

28 CHAPTER 6. VISUAL DATA MINING

6.2 Evolution Mining
In Chapter 5 we presented the subsets threads. Using these views we find correlated evo-
lutions of files using sequential data. In Figure 6.4 the polylines are files’ evolution. Files
within the same directory results in polylines with the same color. Using this view we deter-
mine directories in which files evolve together (Directory 1 in the figure). The file numbered
3 is also colored in black as all the files within the directory 1, this file is isolated maybe it
does not semantically belong to its directory.

Directory 1

File 3

Directory 2

X
Y

Z

Entities X Y Z Color
Files Date Added lines Sort algorithm File Directory

Figure 6.4. Evolution Subset threads of Azureus files of more than 50
revisions

The files within directory 2 evolves together but are separated by files from other directo-
ries. This could be a tree, directory 2 being the main directory with files and subdirectories.
The files within the subdirectories evolves with the files of the main directory.

Chapter 7

A Case Study

For the case study we had to choose a project which met some requirements:

• The project must be available and open-source, so that we have the right to present its
information.

• The project must use a versioning system. This versioning system must be CVS.

• The number of revisions must be significant. If not, then the project could be manually
analyzed.

Every software which respects these requirements can be analyzed using WhiteCoats.
The methodology presents one way of using WhiteCoats, this can be reproduced on other
projects but users are still free to use it in another way.

Azureus is an open-source peer-to-peer software available on Sourceforge. It is at the
time of the writing of this thesis the most active project on Sourceforge. Sourceforge gives the
opportunity to open-source software to use CVS repositories. Azureus has a CVS repository
as versioning system which is conform to our requirements.

Azureus comports 3494 files in its repository. These files are organized in 988 directories.
A lot of these files and directories are CVS structure components, but still Azureus is big
enough to be analyzed.

The files have been written by 22 authors in 16084 revisions. The revisions have been
made between the 26 april 2004 and the 22 june 2005. The project lasts for more than a year
and evolved enough so we can analyze its evolution.

We first present the methodology we use for this case study. Then an analysis in the large,
followed by an analysis in the small.

29

30 CHAPTER 7. A CASE STUDY

7.1 Methodology
The methodology presented here is a top-down methodology. We start with large views of
the project to go to analysis of small events.

As we can see in Figure 7.1 to analyze a project we must do two analyses. These analyses
are complementary and give us different results.

• An analysis in the large.

• An analysis in the small.

Analysis in
the large

Analysis in
the small

files directories authors evolution of files
within a selected

directory

revisions of
one author

select interesting entities

Figure 7.1. Methodology used for this case study.

The analysis in the large is composed of polymetric views of the whole project. We begin
with these views to have a better understanding of the project structure. Using WHITECOATS
and its CVS module, we can visualize every author of the project, every file and every direc-
tory. The polymetric views are designed to handle such sets of entities.

For the analysis in the small, we will use the dive in functionality of whiteCoats. We will
dive in entities chosen during the analysis in the large and which seems relevant to further
analysis. In this analysis we will still use polymetric views on smaller amounts of entities,
but also subset threads.

7.2. IN THE LARGE 31

7.2 In the large
In this section all the views present entities of the full system. Using these views we have an
overview of the project and identify special entities for further investigation.

7.2.1 Authors
Azureus has been written by 22 authors. New developers or project managers can use these
informations to contact the authors who are able to answer their questions.

Information we want to find:

• Who started the project, and are they still working and available.

• Who are the main developers.

• Who are the new developers.

Date of first revision

Da
te

 o
f l

as
t r

ev
isi

on

Project
creators

Newly
arrived

developers

Main
developers

Entities X Y Color
Authors First revision Last revision Added lines

Figure 7.2. Azureus authors time period.

In Figure 7.2, we extract three groups of authors represented by circles.

32 CHAPTER 7. A CASE STUDY

Main developers in the top-left corner of the view started the project and are still working
on it (small date of first revision and maximum date of last revision). It is interesting to notice
that these authors are also the most active developers. Every author in this group contributed
with at least 20’000 lines of code to 145’000.

Project creators are the main developers plus developers who started the project but
stopped to work on it. These authors didn’t contribute a lot, but they certainly did a lot
to create the structure of the project.

Newly arrived developers are developers who started to work recently on Azureus. As we
see these developers didn’t contribute a lot (between 400 lines to 4’000). This is normal for
they worked for a shorter time than the others.

parg

gouss

nolar

tuxpaper

gudy

crazyalchemist

rele

less active
developers

Removed lines

Ad
de

d
lin

es

Author ID

X Y Z Width Height Depth Color
Removed lines Added lines Author ID Number of files Number of revisions - Added lines

Figure 7.3. Azureus authors work activity.

In Figure 7.3, main developers from Figure 7.2 are here the one more colorful, we detail

7.2. IN THE LARGE 33

their attributes here.
The authors Parg and Gouss contributed with 200’000 lines on the project.

• Parg worked on 1582 files. He did 8959 revisions in which he added 145’912 lines and
removed 65’204 lines. He is the main developer of the project.

• Gouss worked on 55 files, but he is the author who added the most lines after Parg,
66’243. He removed 46’567 lines and did 527 revisions. We can consider he did a very
big job on the files he worked on.

The author who follow are bug correctors, they worked on a lot of files but didn’t add a
lot of lines, so their revisions must be small changes, corrections or refactoring.

• Nolar, added 26168 lines and removed 20652 lines. He did 2644 revisions on 451 files.
Considering the number of files and the number of added lines.

• Tuxpaper worked on 345 files and did 1447 revisions. He added 16905 lines and re-
moved 14845.

• Gudy did 1717 revisions on 430 files. He added 18499 lines and removed 12282.

Smaller developers in the bottom-left corner didn’t contribute as much as the others. We
extracted two developers who still did a significant work.

• CrazyAlchemist added 3970 lines on 92 files. He removed 2063 lines in 204 revisions.

• Rele worked on 80 files in which he added 3101 lines and removed 1596. He did 235
revisions.

We extracted what we expected from these two views on Azureus authors. We now have
groups of developers, we know who started the project, who are the main contributors, the
bug correctors and the smaller and new developers. We will do further investigation on some
of the authors cited here in the small analysis.

34 CHAPTER 7. A CASE STUDY

7.2.2 Directories
Azureus is structured in 988 directories. In Figure 7.4, we see that there are no directories
with both a large number of files and a large number of subdirectories, the project is well
structured.

Number of subdirectories

Nu
m

be
r o

f fi
le

s

azureus2/org/
gudy/azureus2/
core3/util/

too high
number of files

too high
number of
subdirectories

azureus2/org/
gudy/azureus2/
ui/swt/

Entities X Y Color
Directories Number of subdirectories Number of files -

Figure 7.4. Azureus Directory matrix.

Directories with too many subdirectories can be reorganized. It is usually library direc-
tories as ”azureus2/org/gudy/azureus2/ui/swt/” is the graphic library. But its number of subdirectories is
too high (31 subdirectories), and can be reorganized.

Directories with too many files becomes hard to understand for new developers. The
directory ”azureus2/org/gudy/azureus2/core3/util/” has 65 files which can be splitted into subdirectories.
It has only 4 subdirectories.

7.2. IN THE LARGE 35

7.2.3 Files
Azureus is composed of 3494 files. From this analysis, we expect to find too large old files
and new files which are becoming too large.

Main
files

Structure
files

New
important

files

Da
te

 o
f l

as
t r

ev
isi

on

Date of first revision
Entities X Y Color

Files First revision Last revision Added lines

Figure 7.5. Azureus files evolution.

In Figure 7.5, we extract three main groups of files:

• Main files are files which were created at the beginning of the project and are still
modified today. These files are also the bigger files in the system.

• New important files, have been created recently but are growing very fast.

• Structure files are created and never modified since. These are usually files created by
CVS.

36 CHAPTER 7. A CASE STUDY

In Figure 7.6 the x axis is the date of the first revision, the y axis the number of added
lines and the z axis the number of revisions which occurred on the file. The color is the
number of removed lines. As we have seen in Chapter 6, we can extract two clusters from
this view the same two that we found in Figure 7.5. But in this view we clearly see two
phases in the evolution of the system that we call first and second main contributions. We
chose two files from each of these phases for the analysis in the small. From the first con-
tribution we choose ”azureus2/org/gudy/azureus2/internat/MessagesBundle es ES.properties” for further analyze
and ”azureus2/com/aelitis/azureus/core/dht/control/impl/DHTControlImpl.java”, from the second contribution.

Ad
de

d
lin

es

First revision

Number of revisions

First main
contribution

Second main
contribution

azureus2/org/gudy/azureus2/
internat/
MessagesBundle_es_ES.properties

azureus2/org/gudy/azureus2/
internat/
MessagesBundle.properties

azureus2/com/aelitis/
azureus/core/dht/control/
impl/DHTControlImpl.java

Entities X Y Z Color
Files First revision Added lines Number of revision Removed lines

Figure 7.6. Azureus files evolution.

Another file is interesting because it was created at the very beginning of the project and is
the one with the largest number of revisions : ”azureus2/org/gudy/azureus2/internat/MessagesBundle.properties”.

This file may be interesting for further investigation. Its large number of revisions (533)
can be the consequence of a lot of bugs or new requirements.

From these two views, we were able to find two phases in the creation of large files. Files
from the first phase are actually very large we will analyze one of them in the second part of
this analysis. In the second phase some files are becoming too large, we will also analyze one
of them.

7.3. IN THE SMALL 37

7.3 In the small
In this section we will analyze some of the entities selected in the previous section. We will
focus on the evolution information of these entities. To analyze their evolution we will use
the revisions stored by CVS.

7.3.1 Authors

Date of revision

Fi
le

 ID

Major activity
period

Entities X Y Color
Parg’s Revisions Date File ID Added lines

Figure 7.7. Parg evolution matrix.

The author who worked the most on Azureus is named Parg. In Figure 7.7 we can see
the evolution matrix of the files on which Parg worked. As we see Parg did not do a lot of

38 CHAPTER 7. A CASE STUDY

huge revisions as all revisions are white or rose (his bigger revision is of 206 lines). We can
see two periods with more work than the rest of the time. The first one is a condensed set of
revisions on all files he worked on. The second one in the bottom-right corner is a condensed
work on only a module of the system.

TimeAd
de

d
lin

es

First period Second period

Entities X Y Color
Gouss’ Files Date of revision Added lines Random

Figure 7.8. Gouss evolution subsets threads.

In Figure 7.8 We present the subsets threads of the files edited by the author Gouss. The
polylines points represent revisions made by Gouss. We can clearly see that when Gouss was
starting to work on the project his revisions were smaller (in number of added lines) and more
frequent. After that and until now he did bigger revisions with long periods with no revision.

In Figure 7.9 the color of the polylines represents the directory of the associated file. In
this view, we see that gouss worked only on one directory.

Parg and Gouss have two different way of working, they are the two main authors of the
project.

7.3. IN THE SMALL 39

Entities X Y Color
Gouss’ Files Date of revision Added lines Directory

Figure 7.9. Gouss evolution subsets threads with directories.

40 CHAPTER 7. A CASE STUDY

7.3.2 Files
Analyzing files can lead us to know who worked on those files, and how the files have evolve
in the project life. From the large analysis we selected three files which needed further inves-
tigation.

azureus2/org/gudy/azureus2/
internat/MessagesBundle_es_ES.properties

azureus2/com/aelitis/azureus/
core/dht/control/impl/DHTControlImpl.java

azureus2/org/gudy/azureus2/
internat/MessagesBundle.properties

Date of revision

Nu
m

be
r o

f a
dd

ed
 lin

es

Entities X Y Color
Files Date of revision Added lines Author ID

Figure 7.10. Revision Matrix of three files.

In Figure 7.10 we show the same three files, but we compare their evolution. We see that
the first one had many big revisions made by mainly one author and then all the new revisions
are small and by a new author who was not working on this file before. The second file has
constantly been revised by many authors, the changes have always been small. The third one
is a new file all its revisions have been made by the same author. The size of its revisions is
decreasing with time, which means that it is stabilizing.

azureus2/org/gudy/azureus2/
internat/MessagesBundle_es_ES.properties

azureus2/com/aelitis/azureus/
core/dht/control/impl/DHTControlImpl.java

azureus2/org/gudy/azureus2/
internat/MessagesBundle.properties

Number of revisions

Nu
m

be
r o

f a
dd

ed
 lin

es

Crazyalchemist Parg

Entities X Y Color
Authors Number of revisions Added lines Removed lines

Figure 7.11. Authors of three files.

In Figure 7.11 we compare the three files by displaying three views of the authors of each
file. The first and the second files have the same authors except that the author Crazyalchemist
who is a new developer. The third file has been written only by Parg.

Chapter 8

Conclusion

In this thesis we presented a new visualization tool, WHITECOATS which works on the web.
This tool is based on the polymetric views principle that we extend in 3D. We presented how
we handle CVS data. We created and used a data-mining technique to improve visualizations.
We presented WHITECOATS facilities. We pointed on some visual data mining possibilities.
We used a case study to validate our approach.

8.1 Future work
Use flaws. In our model, the relationship between entities is a structural relationship. We

would like to add a flaw relation which can relate two or more entities. These flaws can
have metrics and should be displayed in the visualizations as edges between entities.

Other modules. We would like to implement other modules to handle other versioning sys-
tems information, as SubVersion or StORE.

Improve interaction. Especially with subsets threads we have a lack of interaction, there is
no diving operation as in polymetric views. In the polymetric views we would like to
be able to select multiple entities and then dive into the combination of these entities
(dive in revisions of multiple files, files of multiple directories).

Display information. We would like to be able to display information inside a view. For ex-
ample it will be useful to display the name of selected entities within the visualization.
We are currently working on writing text in VRML without surcharging the visualiza-
tion. Having the same kind of markers we used in the figures of this thesis would be
handful for writing analysis.

Apply on other kind of data. In this thesis we presented how we use WHITECOATS to vi-
sualize software evolution data. WHITECOATS may be useful to tackle other kinds of
research, even more if we implement flaws. We would like to analyze city data, for
example traffic-jam problems. Our Evolution Subset Threads view could be applied
on any sequential data such as evolution of a sickness of a patient or evolution of the
traffic on web-sites in a day.

41

Bibliography

[1] T. Ball and S. Eick. Software visualization in the large. IEEE Computer, pages 33–43,
1996.

[2] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in Information
Visualization — Using Vision to Think. Morgan Kaufmann, 1999.

[3] E. J. Chikofsky and J. H. C. II. Reverse engineering and design recovery: A taxonomy.
IEEE Softw., 7(1):13–17, 1990.

[4] P. S. D. Hand, H. Mannila. Principles of data mining. MIT Press, 2001.

[5] M. D’Ambros. Software archaeology - reconstructing the evolution of software systems.
Master’s thesis, Politecnico Di Milano, 2005.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from ver-
sion control and bug tracking systems. In ICSM ’03: Proceedings of the International
Conference on Software Maintenance, page 23, Washington, DC, USA, 2003. IEEE
Computer Society.

[7] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in databases:
An overview. AI Magazine, pages 213–228, Fall 1992.

[8] B. Gulla. Improved maintenance support by multi-version visualizations. In Proceed-
ings of the 8th International Conference on Software Maintenance (ICSM 1992), pages
376–383. IEEE Computer Society Press, Nov. 1992.

[9] M. Jazayeri. On architectural stability and evolution. In Reliable Software Technlogies-
Ada-Europe 2002, pages 13–23. Springer Verlag, 2002.

[10] M. Lanza. The evolution matrix: Recovering software evolution using software vi-
sualization techniques. In Proceedings of IWPSE 2001 (International Workshop on
Principles of Software Evolution), page to be published, 2001.

[11] M. Lanza and S. Ducasse. Understanding software evolution using a combination of
software visualization and software metrics. In Proceedings of LMO 2002 (Langages et
Modèles à Objets, pages 135–149, 2002.

[12] M. Lanza and S. Ducasse. Polymetric views — a lightweight visual approach to reverse
engineering. IEEE Transactions on Software Engineering, 29(9):782–795, Sept. 2003.

42

BIBLIOGRAPHY 43

[13] C. Mesnage and M. Lanza. White coats: Web-visualization of evolving software in 3d.
In VISSOFT : IEEE International Workshop on Visualizing Software for Understanding
and Analysis. To be published, 2005.

[14] R. Robbes and M. Lanza. Versioning systems for evolution research. In IWPSE ’05 :
International Workshop on Principles of Software Evolution, pages 155–164, 2005.

[15] F. V. Rysselberghe and S. Demeyer. Studying software evolution information by visu-
alizing the change history. In ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance (ICSM’04), pages 328–337, Washington, DC,
USA, 2004. IEEE Computer Society.

[16] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors. Software Visualization
— Programming as a Multimedia Experience. The MIT Press, 1998.

[17] C. M. B. Taylor and M. Munro. Revision towers. In Proceedings of the 1st International
Workshop on Visualizing Software for Understanding and Analysis, pages 43–50. IEEE
Computer Society, 2002.

[18] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software evolution using spectro-
graphs. In 11th Working Conference on Reverse Engineering (WCRE’04), pages 80–89,
November 2004.

List of Figures

3.1 2D Polymetric view principles. 6
3.2 3D Polymetric view principles. 7
3.3 The data model of WhiteCoats. 7
3.4 The overall architecture of WHITECOATS 8
3.5 Creation of figures from entities. 9
3.6 Different users and their relation to WHITECOATS 10
3.7 A 2-dimensional polymetric view, Directories of Azureus. 11
3.8 The Files Activity view of the Azureus project. 12

4.1 The overall Architecture of the White Coats CVS Module. 13
4.2 The WHITECOATS Database model. 14
4.3 Extract of a CVS log file of Mozilla. 15
4.4 Information that can be retrieved from a CVS log. 16
4.5 SQL query to compute and insert the number of files within each directory. . 17
4.6 SQL query to compute and insert the total number of added lines for each

author. 17
4.7 The Author’s activity of the Azureus project. 18
4.8 The 3D Evolution matrix of the Azureus project. 19

5.1 An example of sorted subsets threads. 21
5.2 The first polyline. 22
5.3 A polyline to compare with the first one. 22
5.4 The two polylines. 22
5.5 The polyline formed by the combination of the two polylines (in green). . . . 22
5.6 Evolution Subset Threads. 24

6.1 Azureus files. 25
6.2 Azureus files, rotated. 26
6.3 2d polymetric view of files entities of Azureus. 27
6.4 Evolution Subset threads of Azureus files of more than 50 revisions 28

7.1 Methodology used for this case study. 30
7.2 Azureus authors time period. 31
7.3 Azureus authors work activity. 32

44

LIST OF FIGURES 45

7.4 Azureus Directory matrix. 34
7.5 Azureus files evolution. 35
7.6 Azureus files evolution. 36
7.7 Parg evolution matrix. 37
7.8 Gouss evolution subsets threads. 38
7.9 Gouss evolution subsets threads with directories. 39
7.10 Revision Matrix of three files. 40
7.11 Authors of three files. 40

A.1 The user interface of WhiteCoats. 46
A.2 The importance of the reference cube. 48
A.3 Restricting the view. 48
A.4 Highlighting entities. 49
A.5 2D and 3D example of highlighted entities. 49
A.6 An example of the Dive in operation. 50
A.7 Passing from a 2D view to a 3D view without changing the configuration. . . 50
A.8 Setting the view size from 300 to 600. 51
A.9 By configuring the metrics, we change the view. 51

Appendix A

White Coats User Interface

1
2
3
4

5

6

7

8

9
11

10

12

Figure A.1. The user interface of WhiteCoats.

The user interface of White Coats (see Figure A.1) is composed of one central 3D view-
port (navigable and interactive) and many panels that provide complementary information:

1 Navigation History: This panel gives the user the ability to navigate to previously
visualized entities. Diving into an entity adds that entity to the history list.

2 Entities: When an entity is visualized, the user selects the kind of entities related
to it that he wants to display. For example if a directory is the main entity, the contained
subdirectories or files can be displayed.

3 Predefined Visualizations: A set of applicable, predefined visualizations (e.g., ”Evo-
lution Matrix”). When one is selected, the other panels are updated accordingly.

46

A.1. 3D FACILITIES 47

4 Settings: A visualization can be configured by setting the associations between visual
attributes (e.g., width, height, position, etc.) and metrics (e.g., ”Number of files”) or by
changing the size of the reference cube and the transparency of the entities (useful when they
overlap).

5 Load/Save: Saving a view stores its configuration, e.g., entities displayed, metrics
settings, etc.. The saved view is shared with other users exploring the same project. Loading
a view updates all panels.

6 View Details: A summary of the displayed data, such as the name of the visualized
entity, the type of entities displayed, and the number of entities in the visualization.

7 Query Engine: One can add queries to filter the displayed entities. By setting a lower
and upper threshold on a metric entities are selected on which an action is performed (e.g.,
”Do not show” or ”Highlight”).

8 Comments Panel: Users can read and write comments associated to an entity. The
comments are displayed with a date and the comment’s author user name.

9 Selected Entity Details: When a user clicks on an entity, it displays related information,
such as its name, the metrics associations, etc.. A ”Dive in” link makes the selected entity
become the main entity, i.e., the internals of that entity are displayed.

10 A visualized entity: An entity is displayed as a box in the visualization, its position,
size and colors depending on the associated metrics.

11 The reference cube: A transparent wireframe containing all displayed entities. The
reference cube eases 3D navigation. By setting the size of the cube, it scales the contained
boxes.

12 A highlighted entity: When an entity is highlighted because if matches a query it
displays a wireframe box around it. The wireframe color can be set.

A.1 3d facilities

A.1.1 Reference Cube.

The displayed entities are displayed within a surrounding wireframe cube. This reference
cube gives an idea of the orientation to the user. We can also set the size the cube, giving the
user the ability to spread the entities if they overlap. As we see in Figure A.2, if the reference
cube is not displayed (right screenshot), we have no clue on the position of the entities.

A.1.2 Horizon.

As a supplemental navigation aid we also provide a ”sky” and a ”ground” background to let
the viewer know into which direction he is looking.

A.2 Query engine

The query engine is one of the user interface component which allow the user to execute
actions on the entities he selects.

48 APPENDIX A. WHITE COATS USER INTERFACE

With the Refence Cube Without

Figure A.2. The importance of the reference cube.

do not show
when number of authors
is between 50 and 100

Figure A.3. Restricting the view.

A.2.1 Restriction on the metrics
After selecting a metric on which apply the restriction, the user will have to set a minimum
and a maximum. The resulting query is equivalent to :

Given a metric, a minimum and a maximum : ∀ entities to visualize , select entity where
min <value of metric for entity < max.

A.2.2 Associate actions to constraints
Once the entities are selected by a query, an action will be executed on them. For now, two
type of actions are available, the do not show action and the highlight actions.

Do not show If an entity is selected by a query which action is do not show then the selected
entities are removed from the entities to display. Then we have :

entitiesToDisplay = entitiesToDisplay − entitiesSelected

Highlight entities If the action is an highlight action which can be of different colors (blue,

A.3. INTERACTION 49

Highlight in blue
when removed lines
is between 0 and 10

Figure A.4. Highlighting entities.

green or yellow), the selected entities will results into figures with an highlight cube
around it (or highlight square in 2d).

Highlighted
entities

2D 3D

Figure A.5. 2D and 3D example of highlighted entities.

A.3 Interaction

White Coats uses VRML for the visualizations, whereas navigation and interactivity are given
by the used VRML browser plugin 1 we use. This plugin allows to navigate in the view by
rotating around the objects or flying into it. We defined a set of viewpoints (front, back,
bottom, right side, left side) which can be chosen during the navigation.

The visualized entities can be selected using the mouse pointer. When clicked, the user
can dive into the entity, inspect it, etc.. In case of a diving, a new visualization is created, i.e.,
a new VRML document is created on the fly and displayed.

In the Figure A.6 we see how the user can dive into an entity (here a directory). The
configuration stay the same after the diving so the newly displayed entities are subdirectories
of the selected entity.

1In our case, we use the Cortona plugin. Accessible at: http://www.parallelgraphics.com/products/cortona/

50 APPENDIX A. WHITE COATS USER INTERFACE

Directories of the project FileZilla Directories of the directory "source"

Directory :
Source

 Dive in
Directory "source"

Figure A.6. An example of the Dive in operation.

A.4 Configuration
The View settings panel is where all configuration of the view are done. Using different
selection boxes or text entries, the user is able to select what kind of entities he wants to
visualize and how to render it.

A.4.1 Configuring the view
The first choice is to select a 2D or 3D view, this is done with a radio button. Then the user
can select the type of entity he wants to visualize within the entities which are to be displayed.

2d to
3d

Figure A.7. Passing from a 2D view to a 3D view without changing the
configuration.

At any moment the user can pass from a 2D view to a 3D view with the same configuration
and vice-versa. In Figure A.7 the configuration sets the x position of the displayed directories
of Azureus to the ”parent directory id”, the y axis to the ”directory id”. The width and the

A.4. CONFIGURATION 51

height are set to ”Number of subdirectories” and ”Number of files in directory”, the color is
the ”number of subdirectories”. The view size is set to 300.

In Figure A.8, setting the view size will increase the spare space between entities, without
changing their size. This is very useful when entities are positioned close to each other.

increasing
view size

Figure A.8. Setting the view size from 300 to 600.

A set of boolean choices are available. If the visualization is in 3D, we can display the
reference cube or not. The entities can be displayed, or the polylines (subsets threads). And
if the lines are displayed, we can chose to sort them by similitude (using the technology we
have seen in Chapter 5) or not.

A.4.2 Configuring the metrics
To each dimension, the user have to associate a metric which will be used on each entity to
create the resulting figure. An alternative choice is to leave that field blank. Then it means no
metric is associated to the dimension and the minimum value will be used (1 for width height
and depth, 0 for the others).

Setting z axis
and depth metrics

Figure A.9. By configuring the metrics, we change the view.

52 APPENDIX A. WHITE COATS USER INTERFACE

A.5 Collaborative facilities
Analyzing large systems require many people, software engineers and software reengineers.
For their analysis to be successful, they must share their results by writing reports, but they
can also share partial results during the reverse engineering process.

WHITECOATS facilitate the collaborative analysis of large systems by giving the ability
to the users to share the views they create, and to comment the entities they visualize.

A.5.1 Saved views
A saved view stores all the configuration of the view, the entities visualized and the queries
applied on them. Once saved, any other user can automatically load this view and visualize
it.

A.5.2 Comments
When visualizing any entity, the user can add a comment to this entity which will be shared
with other users when they will visualize this entity.

INTERACTIVE AND COOPERATIVE

VISUAL DATA MINING OF

EVOLVING SOFTWARE

CÉDRIC MESNAGE

The maintenance, reegineering, and evolution of software systems
has become a vital matter in today’s software industry. With time systems
tend to decay in quality. Such legacy software systems need to be reverse
engineered in order to keep their value. One important source of informa-
tion that is seldom used is the history of the system, i.e., the life-cycle it
went through until its current state.

In this master thesis we propose a visual data mining approach to
reverse engineer systems using the history data provided by versioning
systems. We extract software entities from CVS (Concurrent Versioning
System) and maintain these in a data warehouse.

Our visualizations are based on the polymetric views principle that
we extend in 3D and enrich with data mining techniques.

We implemented these visualizations in WHITECOATS , an interac-
tive and cooperative tool working as a web-service, which we use to vali-
date our approach in a case-study.

