
Automated Approaches for Bug Triaging

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Intelligent Systems

presented by

Igor Kovacevic

under the supervision of

Prof. Dr. Michele Lanza

June 2013





I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Igor Kovacevic
Lugano, Yesterday June 2013

i





The real voyage of discovery consists not
in seeking new landscapes, but having
new eyes

Marcel Proust

iii



iv



Abstract

In software engineering, when bugs are reported through bug tracking systems, human inter-
vention is needed to assign to developers the bugs to be fixed. This activity is known as bug
triaging, which also includes the detection of duplicate or incomplete bug reports.

Bug triaging is still largely a manual and therefore error-prone process: When a bug is wrong-
fully assigned to a developer, this leads to the phenomenon of bug tossing, the re-assignment
of a bug to another developer, which in turn leads to a loss of time and wasted resources.

We present an approach, based on an extended model of bug tossing and a set of machine
learning techniques, to automatically suggest the developers most competent to tackle the fix-
ing of given bugs, thus reducing the bug tossing phenomenon.

We implemented a toolset which mines bug tracking system repositories, models and analy-
ses the mined data, and recommends developers best suited to fix specific bugs. We validated
our approach and toolset on a custom made extensive and publicly available dataset.

v



vi



Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. Michele Lanza for his support and his
kind and patient supervision. I’m very grateful for giving me the opportunity to pursuit a mas-
ter thesis in an elegant and structured manner.

I also want to thank all the members from the REVEAL research group that were there when I
was wandering in their office in search of inspiration. Thanks to all the people that I have the
opportunity to met at USI, specially to my colleagues, I learned a lot from you. To my family,
dad and mom, thanks for the support, and for the unconditional love, thanks for everything,
I’m the way I am thank to you.

Thanks to my girlfriend Nadja, for his love and patience and to have not thrown at me any
dangerous object when I was spending all of my time in front of my desk, I know that was not
easy, Thank you darling!

Last but not least, thanks to all my friends that continued to ask for me despite the fact that in
the last month the probability of seeing me was nearly the same as seeing an UFO.

vii



viii



Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Software Evolution and Bug Tracking Systems . . . . . . . . . . . . . . . . . . . . . 5
2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Bug-tracking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Bugzilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Jira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Problems and improvements in bug-tracking systems . . . . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Intermezzo:Machine Learning 13
3.1 Linear Models: Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Decision Trees: C4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Probabilistic models: Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Evaluation in machine learning systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Accuracy, recall and F-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Classifier comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Automated Approaches for Bug Triaging 21
4.1 Bug Tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Labeling bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Email aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Knowledge discovery in bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Case 1: a bug’s life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Case 2: misbehaviors in a bug’s report . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



x Contents

4.5 Projects selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6.2 Bug report Meta-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.3 Machine Learning toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results 37
5.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Bugzilla and Jira workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Bug status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Bug tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.4 Developers activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Expert Recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Feature vs text categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Classifier algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Developer activity filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Top-k accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.5 Cross validation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.6 Tossing graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions 53
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Mining Bug-tracking systems: Jira and Bugzilla 55
A.1 Bugzilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Jira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2.1 Jira jql language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Parsing JSON data with GSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3.1 Common issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59



Figures

2.1 Mozilla Foundation Bugzilla main page . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Bugzilla issue submission form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Jira main page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Jira issue details JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Jira issue create page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The ML Learning problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Example illustrating support vector machine models . . . . . . . . . . . . . . . . . 15
3.3 Decision Tree that tries to predict if is appropriate to play golf with the actual

weather conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 State machine that models bug tossing events . . . . . . . . . . . . . . . . . . . . . 22
4.2 Jira Issue history of the project CAMEL,issue 3240 . . . . . . . . . . . . . . . . . . . 24
4.3 Jira Issue history of the project CAMEL, issue 276 . . . . . . . . . . . . . . . . . . . 25
4.4 JSON response that indicates email aliasing in issue report CAMEL-276 . . . . . . 25
4.5 Research framework overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Bug report meta-model that enable us to treat Jira Issues and Bugzilla bugs equally 28
4.7 Bug Life graph: All transition probabilities between bug states . . . . . . . . . . . 30
4.8 Bug status graph: this kind of graph ease the interpretation of the report history 30
4.9 Data preprocessing: Steps in the dataset filtering, from the raw dataset to the

final filtered dataset used to do machine learning classification . . . . . . . . . . . 31
4.10 Example of a Top3 classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.11 K-Fold cross validation, in this example K=11 . . . . . . . . . . . . . . . . . . . . . . 33
4.12 Inter folding cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.13 Intra folding cross validation, aka incremental learning . . . . . . . . . . . . . . . . 34
4.14 Tossing graph for developer D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Bugzilla workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Jira workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Firefox workflow, state transition probabilities . . . . . . . . . . . . . . . . . . . . . 38
5.4 Hadoop workflow, state transition probabilities . . . . . . . . . . . . . . . . . . . . . 39
5.5 Projects bug status statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Bug-tracking system bug tossing statistics . . . . . . . . . . . . . . . . . . . . . . . . 41
5.7 Contributors in Bugzilla projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Contributors in Jira projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.9 Comparison using unstructured information or structured information . . . . . . 45

xi



xii Figures

5.10 Accuracy increment with J48 with different k-classification . . . . . . . . . . . . . 48
5.11 Accuracy with different folding techniques . . . . . . . . . . . . . . . . . . . . . . . 49
5.12 Training time with different folding techniques . . . . . . . . . . . . . . . . . . . . . 49
5.13 Screenshot of the Bug Tossing Explorer tool . . . . . . . . . . . . . . . . . . . . . . . 50
5.14 Screenshot of the Bug Tossing Explorer main settings . . . . . . . . . . . . . . . . . 51
5.15 Screenshot of the Bug Tossing Explorer dataset filtering settings . . . . . . . . . . 51
5.16 Screenshot of the Bug Tossing Explorer tool tossing graph settings . . . . . . . . . 51
5.17 Bug tossing with our expert recommender system . . . . . . . . . . . . . . . . . . . 52

A.1 Bugzilla changelog wepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Tables

2.1 Bugzilla webservice operation support . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Zα/2 at different confidence levels 1−α . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Project selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Bug tossing events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Projects bug status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Projects bug tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Contributors statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Structured information vs unstructured information comparizion with respect to

traing time and accuracy of the classifier . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Classification algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 F-score with J48 and Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Accuracy with bug fix filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Developers population size with bug fix filtering . . . . . . . . . . . . . . . . . . . . 47
5.9 Accuracy with J48 with different k-classification . . . . . . . . . . . . . . . . . . . . 47
5.10 Accuracy with J48 with different folding techniques . . . . . . . . . . . . . . . . . . 48

xiii



xiv Tables



Chapter 1

Introduction

In World War I doctors had to face tough questions treating the wounded, who to help first,
which patients could wait and which could not. Time and resources were limited and good
decisions saved people. The process of prioritizing intervention based on the gravity of the
injuries is called "Triaging" and happens everyday in medical emergencies and disasters. The
term Triaging originates from the French verb ’trier’, meaning ’to sort’.

Likewise, in software engineering, resources are limited and the triaging decisions are also
important. They are present in the context of the management and tracking of issue reports or
feature requests.

Large projects often have facilities to track and manage the work to be done. Most of the
time this is done trough a bug-tracking system. Users and Developers can use those systems to
report a faulty behavior of the software product they use or submit a request for a new feature.
However, there must be someone that does the triaging. The person who triages the reports or
bugs have two primary goals:

1. Reduce the number of reports to the most complete ones. To achieve this goal there
are two subproblems that must be resolved. Dealing with duplicate reports and filtering
reports that are badly described. In large software projects several people may submit
a report describing the same bug. These duplicate reports must be gathered together so
that the developers effort is not wasted by having several people fixing the same problem.
Bugs that have too little information need to be excluded or reprocessed to include im-
portant information, so that developers can focus on solving the actual problem, instead
of wasting time trying to reproduce a badly described bug.

2. Find the person that will tackle the problem. This activity is called expert finding. This is
not trivial: good triagers must have a knowledge of the entire system (modules, compo-
nents,et cetera) and also of the people that are involved. This is difficult in open source
projects since the assessment of the activities and expertise of people that are globally
distributed is difficult.

Sometimes the triager is not able to analyze the report, and the help of experienced developers
or triagers is needed. In this case the triager assigns the report to an expert, giving it the role
of a triager for that issue, and that person is responsible for the decision on how to deal with
the problem.

1



2

Jeong et al. [2009] have shown that the assignment of a bug in Eclipse is made in 40 days on
average and that if the developer cannot find a solution the re-assignment is made in 100 days.
These numbers suggest that a wrong triaging decision can have important consequences and
can lead to a waste of resources and time.

The re-assignment of a bug to another developer is known as Bug Tossing. Various studies
have shown that in open source projects between 30% and 60% of the bugs are tossed. This
means that often wrong decisions are made.

Bug Tracking Systems were introduced to improve the development process but the rise of
global software development combined with the ubiquitousness of the Internet brought an in-
crement of the triaging cost that is not negligible. Every day in the Mozilla Project Foundation
the number of submitted bugs are around 30 and if we suppose that for every bug the time to
evaluate it and assign it to a developer is 5 minutes, they spend 2.5man/hour on the triaging
activity that could be spent on actual coding and product improvement.

Bug Triaging is largely dominated by manual processes, and we know that human involve-
ment is error prone. To assist bug triagers we need to find an automatic approach to boost
the productivity and reduce errors of a single triager. Several studies indicate an approach
to automate the bug triaging, from finding duplicates, to recommenders that produce a list
of potential developers using several machine learning techniques. The ultimate goal behind
the research in this area is to lower the cost of triaging activities by automating most of the
processes and reducing human involvement.

In this thesis we perform an exhaustive review of the research field. We investigate the prepro-
cessing of the data, mining two different bug-tracking systems, Bugzilla and Jira. We analyze
different machine learning algorithms in detail and augment the classifiers with tossing graphs.
A tossing graph represents the bug tossing event for every developer in the project. This can
lead to insights on the behavior of single developers and reveal internal team structure. We
propose different meta-models to deal with bug repositories and bug tossing events and we
discuss the limitations of the approach and possible solutions.

The outcome of this work is a tool that mines Bugzilla and Jira, produces a recommender
to assist bug triagers and permits to investigate the use of tossing graphs and ranking algo-
rithms on bug triaging tasks. Our approach achieves an accuracy of up to 70% in 5 open
source project that use Bugzilla and 5 that use Jira.



3 1.1 Contributions

1.1 Contributions

In this thesis we make the following contributions:

• A generalized bug report meta-model: To investigate different techniques on a gen-
eral dataset, we must fetch the data from two different bug-tracking systems, Jira and
Bugzilla. Since they represent bug reports in different ways, we propose a meta-model
that generalizes the information need and allows to cope with both systems.

• A novel model for bug tossing: Until now, nobody has proposed a model that can be
used in practice to establish effectively if a bug is tossed or not. Present models illustrate
the phenomena of bug tossing only from a theoretical point of view without any practical
implications. To fill the gap between theory and practice we present a model for bug
tossing that is directly applicable to real bug-tracking system (Jira and Bugzilla).

• An exhaustive review of the techniques used in research to automate bug triaging:
We illustrates the main techniques used in the research area to deal with bug triaging.
We provide the results of those methods and discuss their limitations.

1.2 Structure of the Document

The rest of the document is structured in different chapters, described below.

• Chapter 2 describes the work related to our research. A brief history of software engi-
neering from the first software configuration management systems to the introduction of
a research field called Mining Software Repositories (MSR). Then we describe the state
of the art of bug triaging and we give a brief overview of the two bug-tracking systems,
Jira and Bugzilla.

• Chapter 3 introduces machine learning discussing some basic algorithms and the main
evaluation methods.

• Chapter 4 illustrates the theoretical foundation for the application of all techniques in the
context of bug triaging. Moreover, we present the dataset and our research framework
that we developed and used in this thesis.

• Chapter 5 presents the evaluation of our methods.

• Chapter 6 concludes this thesis and discusses future work.

• Appendix A shows how to deal with technical issues regarding the mining of Jira and
Bugzilla.



4 1.2 Structure of the Document



Chapter 2

Related Work

2.1 Software Evolution and Bug Tracking Systems

The first software configuration management (SCM) system, SCCS, was developed by Rochkind
[1975]. This marked the moment when software systems started to be perceived as evolving
constructs. The term software evolution was coined by Lehmann ( Lehman [1980]) who es-
tablished a set of laws that govern this phenomenon. Lehman remarked that "software must
change to adapt to a changing world".

One of the laws introduced by Lehman says that the functional content of a software system
must be continually increased to maintain user satisfaction. This mean that software systems
are in continuous growth, thus leading to more errors in the code. An error in a software sys-
tem is called bug. For each software system there is an ad-hoc approach to deal with errors in
the system.

During the nineties the first systematic approach to do management of bugs was created, a
bug-tracking system (BTS). The first bug-tracking systems, GNATS 1 and Debuggs2 were very
simple from a user interface point of view and they were superseded by Mozilla’s Bugzilla3

in 1998. Bugzilla was the first web-based bug-tracking system that incorporated numerous
functionalities such as test planning, documentation integration/generation, multiple projects
support, and so on. After that SourceForge4 offered a sorce code repository service with bug
managing capabilities and many others proposed their own solution, including Jira5 in 2002
and Google6 with their own custom bug-tracker in 2007.

In the same years in the International Conference on Software Engineering a workshop shed
some light on a promising new field, Mining Software Repositories. MSR focuses on two key
points:

1GNATS: http://www.gnu.org/software/gnats/
2Debuggs: http://www.debian.org/Bugs/
3Bugzilla: http://www.bugzilla.org/
4SourceForge: http://sourceforge.net/
5Jira: http://www.atlassian.com/software/jira
6GoogleCode: https://code.google.com/

5



6 2.2 State of the Art

1. Discovery of novel approaches to mine information from software repositories

2. Techniques of extraction of information from these repositories

Typical mined software repositories are source control repositories, bug trackers, archived com-
munications (mailing lists, IRC chats, instant messaging), code repositories, and so on.
In the last years many studies have been made using mined informations from repositories.
Mockus et al. [2002] compared open source development with closed source development
mining emails, CVS and bug-trackers. Canfora and Cerulo [2006] came up with the notion
that unstructured communication between developers like emails can be a valuable source of
information to help understanding the code. Tichelaar et al. [2000] proposed the Release His-
tory Database that combines bug and version report data into a relational database. D’Ambros
and Lanza [2006] used the concept of RHDB in their tool, BugCrawler, that visualize the re-
lationship between the evolution of software artifacts and how they are affected by bugs. A
meta-model called FAMIX is proposed to model source code and is extended to support several
metrics. Another research done by D’Ambros et al. [2012] is to compare several approaches
for predicting software defects combining source code model FAMIX, source code history data,
bug-tracker and source code metrics.
As we can see, software repositories are mined to extract useful information for various pur-
poses. In this thesis we mine bug-tracking systems to assist one of the principal activities of
bug triaging, expert finding.

2.2 State of the Art

Anvik et al. [2005] analyzed open bug repositories and described their relative difficulty to
mine them. The main reason is that in open source projects bug repositories do not have
access restrictions and almost anyone can create or update bug reports. In these conditions,
many bugs need to be triaged requiring a vast amount of resources and time. The main goals
of bug triaging are:

Finding duplicates. Often, the same bug is reported by different people. This leads to several
similar reports describing the same bug. Anvik et al. [2006] showed that the number
of duplicate bug reports is substantial, ranging from 20% to 30% in systems such as
Mozilla and Eclipse. Very often a common technique for finding duplicates is to use
natural language text procedures to find similarities between bugs. Once the duplicates
are found, triagers have two ways to proceed, exclude duplicates from the reports, or
use duplicates to enrich the information about the main "sibling issue" 7. Bettenburg
et al. [2008b] suggested that the second alternative is preferable. They have shown that
incorporating duplicate bugs in the training of a classifier for assisting expert finding
improves the performance compared to a classifier trained without duplicates.

Finding experts. When a bug is submitted, the triager needs to assign it to a suitable person
that can solve the issue. In this context Cubranic and Murphy [2004] proposed to use
machine learning and text categorization to assist the search of experts using the infor-
mations from the bug description. The accuracy achieved with this approach is around
30% on a collection of 15,859 bugs from a large open source project. Anvik et al. [2006]

7the main sibling issue is the duplicate report considered valid, the only report that will contain all the information
about the issue gathering all the data from all the duplicates in respect to the same issue



7 2.3 Bug-tracking Systems

outlined some difficulties in tracing information between bug and source code reposi-
tories and expanded the work of Cubranic proposing a semi-automatic approach that
suggests the most top three suitable developers reaching accuracy values of 57% to 64%.
Bettenburg et al. [2008a] made a survey on how bug reports are used and propose a
tool, CUEZILLA, that measures the quality of bug reports. Jeong et al. [2009] proposed
a way to improving the accuracy of expert predictors based on tossing graphs, a Markov
model that outline the bug tossing event for each bug and each developer. Bhattacharya
and Neamtiu [2010] extended the work of Jeong et al. augmenting the classifier with
tossing graphs and incremental learning, reaching high accuracy values.

All of these approaches use unstructured information to train the ML classifiers such
as bug description and bug title combined with text categorization methods, In our ap-
proach we use only structured information and show that the training time spent on
training the classifiers is too large compared to the gain in accuracy obtained using un-
structured informations.

2.3 Bug-tracking Systems

In this section we present two of the most common bug-tracking systems, Bugzilla and Jira.

2.3.1 Bugzilla

Figure 2.1. Mozilla Foundation Bugzilla main page

Born in 1996, Bugzilla is a free bug-tracking system developed by the Mozilla Foundation.It
is under used in thousand of organization worldwide. It is written in Perl and uses MySQL or
PostgreSQL as relational database. It is flexible enough to support multi projects environment.
For each project (in Bugzilla called product) one can create several components to distribuite
the reports into categories and ease the interaction and the management of each project.



8 2.3 Bug-tracking Systems

Since Bugzilla can contain an enormous amount of bugs, it provide simple and advanced search
features.

Some interesting features are:

1. Communicate with teammates

2. Manage quality assurance

3. Submit and review patches

When we open Bugzilla at the main page (see Figure 2.1) we can create an account and
submit an issue or search for a related problem. To submit a bug we need to set the project and
fill the Bug form. We can see in Figure 2.2 that the required fields are product, component,
version, and the summary. Most of the times when a user sets a wrong field such as compo-
nent, other project members change this field to the correct one, but this delays the process
of fixing the issue. Bugzilla offers an XML-RPC or a JSON-RPC webservice to interact with it.

Figure 2.2. Bugzilla bug submission form

The problem is that a lot of methods are instable or experimental. When we had to mine it,
we decide to crawl the web page using the advanced search features that fetches the results in
csv format. In the table 2.1 we outline some features of the API8 of bugzilla. We can see in the
table 2.1 that most of the needed features are INSTABLE or EXPERIMENTAL.

8API : Application Programming Interface



9 2.3 Bug-tracking Systems

Package Type Operations Description Stability
Bug Utility Functions fields Get informations about

valid bug fields, including
the lists of legal values for
each field.

UNSTABLE

Bug Bug Information search Allows you to search for
bugs based on particular
criteria.

UNSTABLE

Bug Bug Information attachments It allows you to get data
about attachments, given a
list of bugs and/or attach-
ment ids.

EXPERIMENTAL

Bug Bug Information comments Get data about comments,
given a list of bugs and/or
comment ids.

STABLE

Bug Bug Information get Gets informations about
particular bugs in the
database.

STABLE

Bug Bug Information history Gets the history of changes
for particular bugs in the
database.

EXPERIMENTAL

Product List Products get Returns a list of informa-
tions about the products
passed to it.

EXPERIMENTAL

User User Information get Gets informations about
user accounts in Bugzilla.

Table 2.1. Bugzilla webservice operation support

Bugzilla is free, supports large projects and its features are sufficient for most organizations.
Moreover it is tested and maintained since a long time now. The downside is that it is old and
the user interface it is not modern and user friendly.

2.3.2 Jira

Jira is a popular issue tracker launched in 2003. Developed by Atlassian, Jira is a commercial
product. It is used for issue, feature, task and project management.It offers a better user inter-
face than Bugzilla and it is highly expansible and customizable. One of the main reasons for its
diffusion is that Atlassian offers free licenses to open source projects.

It is implemented in Java and support several databases: PostgreSQL, MySQL, Oracle, DB2,
and so on. Jira is provided with the Tomcat web server in the "installation bundle package"
that contains all software necessary to install and use the product.

We can see in Figure 2.3 that the simple user interface gives all the necessary information
about the product:



10 2.3 Bug-tracking Systems

Figure 2.3. Jira main page of the product Apache Maven

• Project status

• Issues list

• Issues assigned to you

• In-progress issues

• Open issues and so on

Jira is well suited for large projects. It also supports multiple projects and categories like
Bugzilla. The search features are powerful and provide a language similar to SQL9, the Jira
Query Language (JQL), to manage data in the repository. Moreover, it offers a RESTful10 API
webservice for querying the repository. The results are fetched in JSON 11 format. In Figure
2.4 we can see a JSON response for a query to fetch bug information for the issue LUCENE-1.
In figure 2.5 we see the web form offered by Jira to create a bug report. The overall support
for common operations on repository are a lot better compared to Bugzilla webservice.

9SQL: Structured Query Language is a special-purpose programming language designed for managing data held in
a relational database management system

10RESTful API: is a web API implemented using HTTP and REST principles
11JSON : JavaScript Object Notation, is a text-based open standard designed for human-readable data interchange.



11 2.3 Bug-tracking Systems

Figure 2.4. Example of an issue detail request on the Jira RESTful webservice

Figure 2.5. Jira issue creation page.



12 2.4 Summary

2.3.3 Problems and improvements in bug-tracking systems

Bug-tracking systems were created with the goal of managing bugs in a project. Looking at
Bugzilla and Jira it is clear that these systems were developed with developers in mind as the
only clients. Many operations to fill a good bug report need expertise on the project. This
is a clear sign that the "naive user" was not considered as a potential client, but nowadays
this is the case. To list one clear sign of this vision we can think of the field component.
This field represent the software component which probably contains the defect, and setting
it correctly requires knowledge of the system. To improve bug-tracking systems, this kind of
fields must be automated and suggested to the user by the system. Another aspect that is
missing and that can be improved, is the validation procedure. Both systems we analyzed do
not provide a validation of the bug reports. There must be a validation procedure that avoids
bad descriptions or missing fields using some Information Retrieval techniques to assess the
quality of the reports.

2.4 Summary

We have shown a brief history of software engineering from the birth of the first SCM to MSR.
We have given an overview of bug triaging and the related issues. We analyzed the state of
the art procedures to assist people in bug triaging and to introduce bug-tracking systems, we
discussed Bugzilla and Jira, two common solutions for bug-tracking. In the next chapter we
lay the theoretical foundations of our work, from machine learning to bug report information
extraction.



Chapter 3

Intermezzo:Machine Learning

Machine Learning (ML), a branch of Artificial intelligence, was defined in 1959 by Arthur
Samuel as the "Field of study that gives computers the ability to learn without being explicity
programmed". Tom M. Mitchel gives a more formal definition: "A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with experience E". Since then many
things have changed, and we encounter, without knowing, many machine learning applica-
tions, from search engine ranking systems that find relevant document in order by relevance
given a specific query, to collaborative filtering system that recommend similar books to buy
given our buying history or preferences. In security applications we can encounter face recogni-
tion that given a photo or video can establish who the person is. In medical treatment there are
software systems that predict diseases given the symptoms. In other words, machine learning
is ubiquitous.

Machine learning can be organized in algorithms types 1:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

To understand better these types we illustrates the problem of ML learning with Figure 3.1.

We see that the learning problem is concerned with finding the right model that outputs de-
sired data, given a certain input. In general, the model is found by having a dataset called
training data (often a subset of the real data) and some computation by one of the many ma-
chine learning algorithms with that data. In general we say that the Training Set is used to train
the model or classifier to perform the task we seek. The training data is made of instances that
represent some situations or cases. The single instance is a case of the phenomena we want to
model, for example if we try to predict weather today, a single instance can be the yesterdays
pressure, temperature and other weather conditions.
The features are properties of the system we want to model, for example if we want to model
the face of a person, features may be the distance between the eyes, the color of the eyes, the

1There exist more types, but in this thesis we focus only on the main one.

13



14

Figure 3.1. The ML Learning problem

geometric proprieties of the nose, and so forth. An important aspect that is not present in this
picture is the validation dataset, is used to validate the model or classifier with some input data.
The validation is important since it is the only way we can measure how our model performs
with new data. To summarize, we have a classifier that learns a model using a training set made
of instances that contain features representing the phenomena.

Now that we have an idea of the main purpose of machine learning we can discuss tree algo-
rithm types. We begin with supervised learning (SL). SL is a set of algorithms and techniques
that produce a model or a classifier using training data that are labeled. This means that for
each instance we know the output (label).

The unsupervised learning approach instead tries to model the data without knowing the
output of the provided instances. One example of this classification can be clustering of similar
news, where the goal is to gather all similar stories (news aggregator) without knowing in
advance the category of each article.

Reinforcement learning is based on finding the right actions for an agent in a environment
that maximize some reward function. We can think of a practical example, an autonomous
Helicopter flight. In this application we have the helicopter (the agent) that tries to find the
best rotor actions (the actions) to remain balanced and fly correctly. The reward function in
this case is a function which represents the goodness of actions with respect to the helicopter
balancing and flying.

In this work we focus on supervised learning. Algorithms that belong to the class of supervised
learning are subdivided into more categories: linear models, decision tree and probabilistic
models.



15 3.1 Linear Models: Support Vector Machines

3.1 Linear Models: Support Vector Machines

A linear model or classifier is used to identify a class of an object with certain characteristics.
This classification is made using the values of a linear combination of the different character-
istics of object (or instance). The characteristics are called features, and are represented as a
feature vector ~X . The classification is made by mapping all values above a certain threshold to
a class and the others to the second class. In this case the classifier is said to be binary.

In a more formal fashion the linear model tries to find a hyperplane H : Hyperplane H.
where 〈, 〉 is the dot product, and w ∈ H and b ∈ R. Such a hyperplane naturally divides H into
two half-spaces, and therefore can be used as the decision boundary of a binary classifier.

{x ∈ H|〈w, x〉+ b = 0} (3.1)

In Support Vector Machines the algorithms try to maximize the distance between the closest
point ~X to the hyperplane H.

Figure 3.2. Example illustrating support vector machine models

The name support vector machine is derived from the vector that "supports" the plane as a
pillar.

Multi-class classification To learn models that are able to classify into more than two classes,
like in the case of expert recommender, where we want to find the expert in a population of n
people, we need a multi-class classification algorithm. In SVM this is done by finding multiple
Hyperplanes. In the case depicted in Figure 3.2 we see 3 different hyperplanes. In this config-
uration we are able to identify 7 different classes. This is achieved with a classification called
one-vs-all. With this technique the algorithm tries to identify one class among the rest, then
the same for the following classes, one at the time.

3.2 Decision Trees: C4.5

C4.5 is an algorithm belonging to the decision trees family developed by Ross Quintlan. A
decision tree is a tree-structured classification model known for its simple interpretation, even



16 3.2 Decision Trees: C4.5

by nonexpert users. In Figure 3.3 we see a decision tree induced from a sample dataset that
represent the possibility of playing golf for each possible weather scenarios. The Classification
start from the top node until we reach a leaf, passing through the node that has the attribute
corresponding to the instance we want to classify.

Figure 3.3. Decision Tree that tries to predict if is appropriate to play golf with the actual
weather conditions

The algorithm used for building trees works in a top-down fashion, the algorithm begins
with the root node, then splits the root node into different disjoint sets selecting the best at-
tribute for the split. There are different splitting criteria, but the one used in the C4.5 is the
entropy measure :

Entropy H(s). where S is a set of training example for which entropy is being calculated,
and Si is the set of training examples that belong to class ci

H(s) =−
c
∑

i=1

|S|
�

�Si

�

�

log2

|S|
�

�Si

�

�

. (3.2)

This measure is highest at the point where the classes are equally distributed and lowest where
one Si contains all examples (Si = S) and all other S j , j 6= i are empty. Then the best split is
found by searching the Highest information Gain among the splits.

Information Gain IG(S,A), where IG(S, A) measures the difference in entropy from before the
split H(S) and after the split H(St).

Gain(S, A) = H(S)−
∑

t

�

�St

�

�

|S|
H(St) (3.3)



17 3.3 Probabilistic models: Naive Bayes

3.3 Probabilistic models: Naive Bayes

A probabilistic classifier try to determine the probability that an instance belongs to certain
class. The Naive Bayes classifier estimate this probability applying Baye’s theorem and making
a strong (naive) independence assumption. In simple words a Naive Bayes classifier assumes
that features does not affect each others. The posterior probability for a given class is given by:

P(C |F1, .., Fn) =
P(C)P(F1, .., Fn|C)

P(F1, ..., Fn)
(3.4)

This probability express the intuition that if something occurred frequently in the past, then
it is more likely to occur in the future. The equation 3.4 states that the probability that an
instance is of class C given that the instance has the features values F1, .., Fn, is equal to the
probability that the instance is of class C times the probability that the features values will have
these values if the class is C, divided by the probability that the features will have the values
F1, .., Fn.
Taking into account the strong independent assumption the formula refeq:posterior probability
reduces to:

P(C |F1, .., Fn) =
1

Z
P(C)

n
∏

i=1

P(Fi |C) (3.5)

Where Z is a scaling factor dependent on F1, ...Fn. Despite the fact that this assumption is
false in a lot of real-world applications, Domingos and Pazzani [1996] found that in prac-
tice classifiers based on Naive Bayes perform surprisingly well and it has been found to be a
mathematically reasonable assumption.

3.4 Evaluation in machine learning systems

In this section we illustrate concepts and techniques to evaluate machine learning classifiers.

3.4.1 Accuracy, recall and F-score

To evaluate classification performance, a general approach is to use accuracy computed as:

Accurac y =
Correct Predic t ion

Number o f instances
(3.6)

The problem of using accuracy is when the class distribution if skewed. For example if we are
trying to predict if a produced item will fail after 10 years and the probability of failing is 5%.
A bad classifier can predict all the instances as non failing and the accuracy will be 95%, but
this information will be misleading.

A better measure to assess the quality of a classification is to use precision and recall. To
discuss easely the computations of the following formulas we assume that we are evaluating a
binary classifier. An example could be a classifier that receive as input a picture and predict if
the photo contains cats or dogs.
Precision and recall are defined as follows:

Precision=
True Posi t ive

True Posi t ive+ False Posi t ive
(3.7)



18 3.4 Evaluation in machine learning systems

Precision measures how many instances that were predicted as dogs were actually dogs.

Recal l =
True Posi t ive

True Posi t ive+ False Negative
(3.8)

Recall measures of all the instances that actually are dogs, what fraction did we correctly
predict as dogs.
To understand the computation for precision and recall we need to understand the confusion
matrix depicted in the table 3.1.

Actual class
DOG CAT

Predicted DOG true positive false positive
CAT false negative true negative

Table 3.1. Confusion Matrix

In this table we have the values of the classification outcome (predicted) and the real value of
the instance classified (actual class). The true positive and true negative are when we classify
correctly an instance while the false positive and the false negative are when we made an error
in the classification.

With those measures we can establish the quality of a classifier, but now instead of having
a row number to judge the classifier we have two measures. Ideally we want to have a classi-
fier that has high precision and high recall, but the measure are inversely proportional, if we
have a very high precision classifier we will have a low recall. The balance between the two is
the goal of a good classifier. To combine the two measures we can use the F-score measure. This
measure incorporates both types of information and gives us a number to judge the quality of
the classification. Higher the F-score, the better the classifier will perform.F-score is defined in
the formula 3.9 where P and R are precision and recall

Fscore = 2
PR

P + R
(3.9)

3.4.2 Classifier comparison

Using F-score we have a way of establish the quality of a classification. If we want to compare
two algorithms or two classifiers we need a test to assess which is the best. To address this
problem there are numerous statistical tests. We decided to use the Z-statistic.

Z-statistic

Z =
pa − pb
q

2p(1−p)
N

(3.10)

Where pa and pb are the quality measure of each classifier (Accuracy,F-score,and so on), p is the
difference between pa and pb and N is size of the dataset used in the classification



19 3.5 Summary

The classifier A is assumed to be better than classifier B if Z > Zα/2 where Zα/2 is the up-
per/lower bound obtained from a standard normal distribution at confidence level 1-α.

Here we have some values for Zα/2 with different confidence level

1−α 0.99 0.98 0.95 0.9 0.8 0.7 0.5
Zα/2 2.58 2.33 1.96 1.65 1.28 1.04 0.67

Table 3.2. Zα/2 at different confidence levels 1−α

3.5 Summary

In this chapter we have introduced machine learning and presented the necessary theoreti-
cal foundations for applying ML to a general problem. We showed various types of learning
paradigms and the principal algorithms. We discussed how to evaluate classifiers and how to
compare classification algorithms.

In the next chapter we show how to extract the necessary information from bug-trackers in
order to apply the machine learning techniques we discussed to bug triaging and build an
expert recommender.



20 3.5 Summary



Chapter 4

Automated Approaches for Bug
Triaging

4.1 Bug Tossing

In software development when a bug is assigned to a developer and subsequently reassigned to
another developer the phenomenon is called bug tossing. Numerous studies present discussions
and statistics on bug tossing but nobody has presented a formal way to mine this phenomenon
from a bug-tracking system. In this section we model and formalize this concept.

In Bugzilla, to establish if a bug is tossed or not, if we simply count the changes in the as-
signment field, sometimes we make a mistake. Unfortunately, most bug-tracking systems treat
the "assigned to" field in different ways. Sometimes a bug is assigned to a team of developers,
then reassigned to the right developer inside those teams. From time to time the same field is
used to assign the bug to a default value (in Bugzilla nobody@bugzilla.org) that corresponds to
setting a label equal to "to be assigned". Some times the same field remains unchanged despite
the fact that several people are trying to fix the same bug proposing solutions and submitting
patches. To overcome these unstructured ways of handling the assignment we propose a model
or heuristic to establish if bug is tossed or not.

Two important pieces of information are the assignee-to field and the names or identifica-
tion numbers of the patch submitters. They can reveal the true fixer of a bug and the tossed
status. The typical cases that we encounter in bug-trackers are:

1. Bug is assigned to someone and the same person fixes the bug.

2. Bug is assigned to someone, then the bug is re-assigned to another developer who actu-
ally fixes the bug.

3. Bug is assigned to someone, but another person provides a patch that leads to the reso-
lution of the issue.

4. Bug is assigned to someone, the same person provides several patches before actually
fixing the bug.

21



22 4.2 Labeling bug reports

5. Bug is assigned to someone, the same person decides to reassign the bug to the value
nobody@bugzilla.org and then after a while regains access to the same bug to fix it.

Figure 4.1. State machine that models bug tossing events

Figure 4.1 represent our tossing model; The set {A} is a set containing all the developers
that were assigned to the bug. A self loop represent a developer that decides to drop the
responsibility for the bug and then regains it after a while. If the size of the set {A} is more
than 1, the bug is considered as tossed. In the case of project that uses the value nobody: if the
last node of the graph in the set {A} is a nobody value the size is considered as the size − 1.
This is due to the fact that the node nobody is sometimes used to close the bug without giving
any indication about which quality assurance user needs to do the last piece of work. If the
size of the set {A} is less than 2, but there are several different submitters in the set {S}, the
bug is also considered tossed, since the actual contribution is done by some of the submitters,
ideally the last one.

4.2 Labeling bug reports

To do supervised learning it is necessary to have a dataset that has instances with known class
labels. For bug triaging recommenders this means that every bug report needs to be labeled to
the name or id of the developer who fixed the bug. It seems a trivial task: we can use just the
assigned-to field or the fixed field. In reality those fields are used in different ways for every
project. Sometimes the fixed field is set to the last person who worked on the report, but not
necessarily the real solver of the issue. In some cases the assigned-to field does not change
despite the fact that the bug has been solved from someone different from the first assignee.
To address this problem, Anvik and Murphy [2011] and others have proposed a set of project-
specific heuristics to label the reports. Those heuristics derive from manual inspections of the
bug reports for each project. Some example could be:

• If a report is resolved as FIXED, label it with whoever submitted the last approved patch.

• If a report is resolved as FIXED, label it with whoever marked the report as resolved.



23 4.3 Knowledge discovery in bug reports

4.2.1 Heuristics

In our approach we also used heuristics to label the bug reports. In this section we outline the
rules we used:

• Label the report with whoever submitted the last approved patch.

• If there is not any patch submission in the activity history, label the report using the
assigned-to field:

– If the last assigned-to field does not correspond to nobody (i.e null in jira or no-
body@mozilla.org), label the report with the last assigned-to field

– If in the history of the assignments is empty, the report is considered invalid.

4.2.2 Email aliasing

In open source bug-tracking systems it is allowed to have aliases for an account. This means
that the same person can have multiple names in the activity history, thus leading to confusion
in the interpretation of an assignment.

We have tried to tackle this problem with similarity metrics between aliases like Levenshtein
distance 1 and more complicated ones but without success.

4.3 Knowledge discovery in bug reports

In this chapter we tell a story of a Jira bug to explain the problem of establishing the tossing
status and extracting the real bug fixer. This is done by means of a graph generated from our
tool.

4.3.1 Case 1: a bug’s life

We begin by illustrating a story of the bug CAMEL-3240, see figure 4.2.
This issue, is in fact a feature request that says "Graceful shutdown will force shutting down

routes if timeout triggeres. We should add option to let end user control this. So Camel instead
just gives up. Then end user can take action, such as trying to shutdown again or whatever.".

The first action is the triager that assigns the bug to njiang on 14 jannuary 2011 at time 01:06.
The same day , approximatevely one hour later, njiang set the report as Resolved (2011-01-
14T02:29).
After 15hours circa, the issue is then reopened and assigned to boday by himself (2011-
01-14T15:50). Boday then dispatches the issue to nobody (unassigned) at time 2011-01-
14T17:52.
After a couple of minutes the issue passes to hadrian who works on the issue for two days until
davsclaus, an external person, changes the status to Resolved, and assigns it again to boday.
Dkulp (another external person) in the end closes the bug marking it as Closed.

1Levenshtein distance is a string metric for measuring the difference between two sequences.



24 4.3 Knowledge discovery in bug reports

Figure 4.2. Jira Issue history of the project CAMEL,issue 3240

Looking at this situation the real fixer could be hadrian or boday. In the end boday submitted
the last patch when the bug was assigned to hadrian. This is an example of submitters who
work on the issue despite the issue not being assigned to them.

4.3.2 Case 2: misbehaviors in a bug’s report

The second example, figure 4.3, include two misbehaviors or difficulties to extract informa-
tions.

1. External submitter who fixes the bug

2. Username/email aliasing

Without explaining all the story we can see that the issue was resolved or treated by two
people, njiang and hzbarcea. A naive approach is to assign the role of fixer to hadrian, since
he is the last assignee. With a more detailed inspection we discover that the real fixer is not
present in the history of the assignee-to field.



25 4.3 Knowledge discovery in bug reports

Figure 4.3. Jira Issue history of the project CAMEL, issue 276

In fact the issue was resolved by an external developer who submitted a patch, solving the
problem. Moreover the last change in assignment is an evidence of username aliasing, in fact
hzbarcea and hadrian are the same person.

Figure 4.4. JSON response that indicates email aliasing in issue report CAMEL-276

Figure 4.4 shows that the values fromString and toString are the same, in fact represent the
name of the user, but the from and to are different, which indicates the usernames. In Jira it is
easy to find aliases using this kind of data, but for Bugzilla this is not possible since it has only
one field related to the developer, a this field correspond to from and to field of Jira described
earlier.



26 4.4 Summing up

4.4 Summing up

In the previous sections we showd how the unstructured practices of bug-tracking systems
make difficult the process of data extraction. To overcome some problems we proposed a bug
tossing model and a labeling heuristic. The problem of email aliasyng remain and can lead to
wrong results in our work, however we think that the number of users that uses aliases are not
high and we decided to ignore this issue.

4.5 Projects selection

To generalize our approach and to expect statistically significant results we decided to select
open source projects that meet certain criteria. The requirements are composed of three cri-
teria. The first one is that we want to discuss two bug-tracking systems, Jira and Bugzilla,
therefore our projects must use one of the two bug-tracker. The second criteria is the years
of development. To have enough history to do machine learning and to be able to use the
approach on a test set that is big enough we decided to set the threshold to (≥5). The last
requirement is the number of report that have the status set to fixed. This requirement is a
cause of our approach. Since we measures bug tossing using only fixed reports it is critical to
have a dataset big enough, therefore we setted this value to >4000.

To find projects that meet those criteria we chose to search the Mozilla Foundation and Apache
Software Foundation code base. These are two big non-profit corporations that produce soft-
ware that satisfies our requirements. Mozilla uses Bugzilla as bug-tracking system, while
Apache uses both Jira and Bugzilla. In table 4.1 we show the projects that we have chosen
to build our dataset.

Project name Bug Tracking system First bug in the dataset Fixed bugs
Thunderbird Bugzilla 2000 5,298
Toolkit Bugzilla 1999 7,457
Bugzilla Bugzilla 1994 7,800
MailNews Core Bugzilla 1997 8,254
Firefox Bugzilla 2001 15,586
SeaMonkey Bugzilla 1998 18,479
CXF Jira 2006 3,997
CAMEL Jira 2007 5,162
HADOOP Jira 2005 4,793
HBASE Jira 2007 5,020
LUCENE Jira 2001 3,209

Table 4.1. Project selection

In the following lines we describe the two groups of projects we have chosen.



27 4.6 Research Framework

Bugzilla

1. Thunderbird : Email client

2. Mozilla Toolkit : The Mozilla Toolkit is a set of APIs, built on top of Gecko, which pro-
vide advanced services to XUL applications. These services include Profile Management,
Chrome Registration, Browsing History, Extension and Theme Management, Application
Update Service, and Safe Mode.

3. Bugzilla : Bug-tracking system

4. MailNews Core : Mail and news components common to Thunderbird and SeaMonkey

5. Firefox Desktop: Mozilla’s Web browser.

6. SeaMonkey : An all-in-one internet application suite, including web browser, e-mail and
newsgroup client, and HTML composer.

Jira

1. CFX: Services framework. CXF helps you build and develop services using front-end pro-
gramming APIs, like JAX-WS and JAX-RS. These services can speak a variety of protocols
such as SOAP, XML/HTTP, RESTful HTTP, or CORBA and work over a variety of transports
such as HTTP, JMS or JBI.

2. Camel: Integration framework based on known Enterprise Integration Patterns.

3. Hadoop (common): Software for reliable, scalable, distributed computing. The project
includes three modules and we have used the Hadoop Common modules that contains
common utilities that support the other Hadoop modules.

4. HBase: is the Hadoop database, a distributed, scalable, big data store.

5. Lucene: is a high-performance, full-featured text search engine library written entirely
in Java.

4.6 Research Framework

4.6.1 Overview

To perform our study on how to deal with Bug triaging we employed a research framework.
This framework is used to conduct the statistical analysis on the dataset and build and evaluate
a recommender for bug assignments. The high-level architecture is shown in Figure 4.5. First
we describe the data extraction then we discuss the data preprocessing and the machine learn-
ing toolset. The datasets consists of two group of projects where each group uses a different
system for managing and tracking issue reports. The Mozilla Foundation projects use Bugzilla,
while the projects we selected from the Apache Foundation use Jira.
To get the data from the first group we asked the Mozilla Foundation to give us a sanitized2

copy of the entire history of the Mozilla projects. This copy is stored as a SQL Dump, this means
that we needed a tool for extracting the data from a SQL Database and storing it in our format.

2A sanitized copy means a copy of the DB that does not contain sensitive information to avoid security risks



28 4.6 Research Framework

Figure 4.5. Research framework overview

In the case of the Apache Foundation we decided to extract the informations getting the data
from the web service provided by Jira. This service delivers the information of the bug reports
in JSON format.

4.6.2 Bug report Meta-Model

Figure 4.6. Bug report meta-model that enable us to treat Jira Issues and Bugzilla bugs
equally

The Bug meta-model depicted in Figure 4.6 illustrates the structure of an issue or feature
request in a Bug Tracking System. It contains five types of informations:



29 4.6 Research Framework

1. Description of the problem contains a unique identifier, the date of creation, resolu-
tion and last update, a short description (generally represented by the title) and a long
description, the project and the component that belongs to and the history (changelog).

2. Status is composed of two fields, status and resolution, where each can have multiple
values. The status field indicates the state in which the bug is currently in. Thus can
be NEW, UNCONFIRMED, ASSIGNED, RESOLVED, CLOSED, VERIFIED. The resolution
indicates how the problem was solved. It can be FIXED, DUPLICATE, INVALID, WORKS
FOR ME, WON’T FIX. Those values clearly depend on the type of convention used in the
bug tracking system, but generally are similar to each other.

3. Condition represent the specific conditions in which the issue came up, version of the
software and platform.

4. Criticality is indicated by severity and priority field, where the values are system depen-
dent.

5. People involved in are all the people that have worked on the issue. The reporter is the
person who announces the bug, the assignee is the person who is assigned to the bug,
the fixer is the person who fixes the bug.

ChangeLog

The changelog represents the activity history of the issue. Those are all activities related to the
issue during its life. The activity can be of several types:

• Attachment (submit a patch or information about the bug)

• Status change, both status and resolution

• Assignee change

• General Field change (component, project, and so on)

The changelog is an important piece of information for mining a bug tracking system. In our
approach we extract:

1. Patch submitters

2. Bug fixer

3. Tossing path

Analyzing manually the data from Bugzilla and Jira we realized that sometimes the field are
erroneously changed and do not represent the truth about the issue. One of the fields that can
be misused is the assignee field. This field is used to indicate the person who will tackle the
problem but sometimes it is assigned to the name of a team, or sometimes assigned to a value
that represent nobody like "nobody@bugzilla.org". In this setting it is difficult to extract the
real bug fixer and the people that have worked on the problem so we used a heuristic based
approach.

To perform all statistical analyses we implemented all statistical methods in a class named



30 4.6 Research Framework

Analyzer and different issue report graph methods.
The descriptive statistics methods contains developers statistics, triagers statistics and bug
statistics. The graph methods provide a way to investigate visually the bug activity history
with two kind of graphs.

1. Bug Life graph: the graph in Figure 4.7 illustrates all the percentages of bug status
transitions used in the history of the project.

Figure 4.7. Bug Life graph: All transition probabilities between bug states

2. Bug status graph: the graph in Figure 4.8 can reveal the bug tossing event and all the
transitions between the creation and closing of a single bug. With this graph it is easy to
see if a bug has been tossed, who are the people involved in the bug fixing process, and
the time between one transition and the other.

Figure 4.8. Bug status graph: this kind of graph ease the interpretation of the report
history



31 4.6 Research Framework

4.6.3 Machine Learning toolset

The machine learning toolset is composed of two parts:

1. Data handling and preprocessing

2. Classification and evaluation algorithms

Data handling and data preprocessing

Figure 4.9. Data preprocessing: Steps in the dataset filtering, from the raw dataset to the
final filtered dataset used to do machine learning classification

In every project, to do machine learning effectively, there is a need for a phase where the
data is being preprocessed and filtered to meet certain criteria. Without that phase the classifi-
cation part can lead to bad results.

In this part dedicated to data preprocessing we perform the filtering in more steps as depicted
in Figure 4.9. To explain more accurately each step we separated each part in a separate subset
of the dataset.

1. The first set is the complete issue report dataset extracted from the Database or from the
web service. It contains all the activity history and data for each issues in the history of
the project.

2. The second set (Set {I1}) contains all the issues that has the resolution set to FIXED. This
is due to the fact that for our purpose, building a recommender, the issues that have the
resolution set to a value different from FIXED are only contributing to generate noise in
the dataset. In fact Jeong et al. [2009] have shown that considering the issues with the
resolution set to VERIFIED generate noisy tossing graph and worse result.

3. In the set {I2} there are all the bugs that have a lifespan more than a certain threshold k.
This filtering is to prevent having fake bugs in the dataset. The fake bugs are those that
were introduced by mistake from a person and closed after a couple of minutes.



32 4.6 Research Framework

4. {I3} contains all the issues that have the activity history not corrupted, e.g missing as-
signee field, or ambiguous activity history.

5. To do the next steps of the filtering we generate a developer population from the set {I3}.
This dataset contains people extracted from the set {I3} considering all the persons that
have fixed at least one issues. This set is different from all the set I* in content type, the
sets D* contains list of developers and the respective fixed issues idendification numbers,
while the sets I* contains only issue reports.

6. {I4}: we sort the developer population with respect to the count of fixed issue per devel-
oper and filter out all the developers that does not reach a threshold of k bugs.

7. The final step is to gather all the issues that are present in the activity of the developers
in the set {I4}, simply by removing all the issues that are not present in the set {I4} from
the set {I3}.

Classification and evaluation algorithms

The classification algorithms are implemented using the Weka Data Mining libraries. There
are all the algorithms mentioned in the machine learning introduction, Naive Bayes classifier,
C4.5, and Support Vector Machine. In our toolset we implemented also:

• Top-k classification

• cross validation techniques

– Inter-folding technique

– incremental technique (Intra-folding)

• Tossing graphs augmented Classifier

Top-k classification

Figure 4.10. Example of a Top3 classification



33 4.6 Research Framework

To compare our results with previous studies we needed to implement top-k classification.
Top-k classification is extending the prediction of the classifier with the k most probable out-
comes of the model. Instead of considering just one possible outcome we extract the classes
with the highest probability. Since all classifiers used in this work produce a probability distri-
bution it is straightforward to compute the top-k classification.

Cross validation techniques

Cross validation is a model validation method for estimating the quality of a statistical model.
Generally the procedure is divided in n rounds. In each round the dataset is divided into into
complementary subsets, one subset is used for training and the others for testing.

K-fold cross-validation

The most popular cross validation technique is the K-fold cross-validation shown in Figure

Figure 4.11. K-Fold cross validation, in this example K=11

4.11. In this type of validation the dataset is splited into k equal size subsets performing K
rounds. In each round the subset K is used for validation and the rest of k−1 subsets are used
for training. In this manner each instance in the original dataset is used once in validations
and multiple times in the trainings.

Interfolding

In this technique depicted in Figure 4.12 the dataset is ordered in chronological order and
is divided into k subsets. There are k rounds and in each rounds the subset of previous round
is added to the training dataset and the testing subset is the kth subset.



34 4.6 Research Framework

Figure 4.12. Inter folding cross validation

Incremental learning

One way to prevent the classifier to be outdated is the incremental learning or intra-folding
technique shown in Figure 4.13. Like in the inter-folding cross validation, the dataset is parti-
tioned into k subsets, but for each instance test, the classifier is updated with all the previous
instances of the kth fold ( e.g when the evaluation of the k instance from the fold 3 is per-
formed, all the instances from 0 to k-1 from the fold 3 are present in the training dataset
together with all the previous folds, fold 1, fold 2).

Figure 4.13. Intra folding cross validation, aka incremental learning



35 4.6 Research Framework

Tossing graphs augmented Classifier

Jeong et al. [2009] introduced the concept of Tossing graphs to improve the knowledge about
the system. With this information they were able to extract development team structure and
improve a bit the assignment recommendation. In few words they have implemented a Markov
Model that incorporate the tossing events of bugs for each developer. Consider the scenario
depicted in the table 4.2.

Tossing paths
C −→ B −→ A
B −→ E −→ F −→ A
D −→ C −→ B −→ A
A −→ D −→ C −→ E
E −→ C −→ A −→ B
F −→ D −→ B −→ A

Table 4.2. Bug tossing events

We have 6 bugs that has been tossed several times. Since we are trying to find the most
suitable developer, we are interested in the most probable fixer of the bug, in this case devel-
oper A, shown in Figure 4.14. To find that developer, we need to compute the probability of
tossing the bug to the set of fixers (in this case the developers that have fixed the bugs are A, B
and E) using the formula 4.1, where D −→ Di is a tossing event from D that reaches the fixer
Di .

Pr(D −→ D j) =
#(D −→ Di)
∑n

i=1 D −→ Di
(4.1)

Figure 4.14. Tossing graph for developer D

Multi-feature tossing graph

Beside tossing probability, Bhattacharya and Neamtiu [2010] have tried to incorporate more
information in the graph. Product, component and last know activity of the developers were
added to the tossing graph creating a Multi-feature tossing graph.



36 4.7 Summary

They have shown that augmenting the classification set (from a machine learning classifier)
using a multi-feature tossing graph and a ranking metric they were able to increase prediction
accuracy by an average of 10%.

Bhattacharya and Neamtiu [2010] use a machine learning classifier (NB,SVM) to predict the
set of possible developers removing all the people that were inactive in the past 100 days ob-
taining a set CP D1, D2, D3, ..., D j . This set then is augmented computing for each Di the most
probable developer Ti based on the ranking metrics 4.2. In the end they have a modified set
CP D1, T1, D2, T2, ..., D− j, T j that are used for predicting the real fixer.

R(Dk) =Pr(Di −→ Dk)

+MatchedProduct(Dk)

+MatchedComponent(Dk)

+ LastAct ivi t y(Dk)

(4.2)

Pr(Di −→ Dk) is the tossing probability as we computed in 4.1, MatchedProduct and Matched-
Component are equal to 1, if the developer have received a toss from more than one bugs with
the same component or product, otherwise 0. Last Activity is equal to 1 only if the developer
Dk has been active in the last 100 days, otherwise 0.

4.7 Summary

In this chapter we have shown a practical model for bug tossing to explain the information
extraction process for our research. We discussed the main issues related to data preparation
showing that in deed bug-tracking system practices make the process of mining informations
more difficult.
The last part was dedicated to our research framework, we gave a high level architecture view
and we presented the dataset used in the thesis. Now we discuss the results of those approaches
on our dataset beginning with project insights that gave us a more detailed view on the projects
we have chosen.



Chapter 5

Results

In this chapter we report the results of each phase of the approach on each group of projects,
Jira and Bugzilla projects. During the discussion of the results, the reader should gain more
detailed knowledge on each project, and on each of the steps of the approach.

5.1 Descriptive statistics

5.1.1 Bugzilla and Jira workflow

Bugs move through numerous states in their lifetime, sometimes states are similar in different
bug-tracking systems. The commonality is that the ideal workflow model is almost never re-
spected. In those model a bug is suppose to step through a series of states where only certain
transitions are permitted. For example ideally a bug that reach the status "verified" shouldn’t
move to "new" but in reality this happens.

In figure 5.1 and in figure 5.2 we can see the ideal workflow for both systems, Jira and
Bugzilla, while in figure 5.3 and in figure 5.4 the real workflow extracted from the repositories
of the project Firefox that uses Bugzilla and Hadoop that uses Jira.

Figure 5.1. Bugzilla workflow

37



38 5.1 Descriptive statistics

Figure 5.2. Jira workflow

Figure 5.3. Firefox workflow, state transition probabilities

As we can see in the workflows extracted from Firefox (Fig 5.3) and Hadoop (Fig 5.4) the
ideal path is not always respected.



39 5.1 Descriptive statistics

Figure 5.4. Hadoop workflow, state transition probabilities

Bugzilla and Jira Workflow statuses

The main status values used in Bugzilla and Jira are defined as follows:

• Bugzilla

– unconfirmed: This is the starting point when a Bug is created and the user who
submit the bug have not enough privilege.

– new (confirmed): Is the next step, when a bug is confirmed to be a real issue. If the
submitter is a empowered user, the bug start at new.

– assigned: When the triager assign the issue to a developer the bug is set to assigned.

– resolved: The bug reaches the state resolved when there is a possible solution.

– verified: The QA verified the solution, if is good the bug have reach the end, if the
solution is not satisfying the bug proceed to the status reopened.

– reopened: The solution doesn’t fix the problem therefore the bug is reopened, and
will probably reach again the status new.

• Jira

– open: Is the first status of a bug report, correspond to the new status of Bugzilla. In
Jira there is no unconfirmed state therefore all the issues starts directly in the new
state.

– in progress: this is the status when the bug is assigned to someone and the work is
in progress.

– patch available: there is a patch available and need to be checked.

– resolved: The bug reaches the state resolved when there is a possible solution.

– closed: The bug has been processed and fixed.

– reopened: The solution doesn’t fix the problem therefore the bug is reopened, and
will probably reach again the status new.



40 5.1 Descriptive statistics

5.1.2 Bug status

The proportion of fixed bugs and duplicate bugs vary a lot between the project with Jira and
the Projects with Bugzilla.

Figure 5.5. Projects bug status statistics

Project Bugs invalid duplicate Fixed Bugs
SeaMonkey 90,877 37,012 35,386 18,479
MailNews Core 29,092 12,916 7,922 8,254
CXF 4,948 888 63 3,997
Thunderbird 37,253 19,926 12,029 5,298
Firefox 120,468 71,547 33,335 15,586
Bugzilla 17,666 6,390 3,476 7,800
Toolkit 25,588 12,118 6,013 7,457
CAMEL 6,361 1,080 119 5,162
LUCENE 4,991 1,612 170 3,209
HADOOP 7,693 2,223 677 4,793
HBASE 8,565 3,084 461 5,020

Table 5.1. Projects bug status

At a first look at the figure 5.5 or in the table 5.1 seems that with Jira it is easier manage
the work and to avoid duplicate bugs.

• The percentage of fixed bugs for Bugzilla is 24.8% while for Jira is 69.4%.

• The percentage of duplicate bugs for Bugzilla is 28.2% while for Jira is 4.1%.

A reason could be that the projects chosen with Jira are too specific and that the contributors
have more expertise than the projects with Bugzilla.
If we take Hadoop for example, is a framework for distributed computing and the users of this



41 5.1 Descriptive statistics

project are more likely to be developers than the users of Firefox.
In fact if we compare only the Bugzilla projects with each other we can see that the proportion
of bug fixes decrease with the product specificity (i.e Thunderbird vs Toolkit).

An interesting fact is that the proportion of fixed bugs decrease with the increment of peo-
ple. The more people are involved in the project, the less bugs are fixed.

5.1.3 Bug tossing

Figure 5.6. Bug-tracking system bug tossing statistics

In figure 5.6 we can see that around 65% of the Bugs in Mozilla projects are being tossed
and 17% for Jira projects.
This number is quite high, compared to 44% found by Jeong et al. [2009]. For both Jira and
Bugzilla we used the same Tossing model, and this could be the reason for this difference.
Jeong et al. [2009] used a model of tossing different from ours. They consider a tossing event
when a developer passes a bug to another developer. In our model we increment the tossing
count when a developer not assigned to the bug submits a correct patch.
To explain the difference between the two systems shown in figure 5.6 or in table 5.1 we have
tried to find a correlation between bug tossing and some other phenomena.

• Expertise measured as fixer/reporter ratio: Using the ratio of how many bugs were fixed
by the same person who report the bug as a measure for contributors population expertise
we haven’t found any correlation with the bug tossing.

• Project size: There is some correlation with the project size, intuitively big project are
more difficult to manage than smaller one.

• Number of contributors: Also in this case there is a correlation with the number of con-
tributors, fewer people work better. In a large open source project more people come and
leave. The knowledge on the entire project population is difficult and thus more prone
to bad decisions that can lead to bug tossing events.



42 5.1 Descriptive statistics

Projects valid bugs tossed bugs tossed bugs [%]
SeaMonkey 18,479 9,889 54%
MailNews Core 7,767 4,407 57%
Thunderbird 4,704 2,993 64%
Firefox 12,796 9,634 75%
Bugzilla 7,228 5,205 72%
Toolkit 6,600 4,732 72%
CXF 3,132 175 6%
CAMEL 3,955 329 8%
LUCENE 2,446 614 25%
HADOOP 4,355 990 23%
HBASE 3,761 952 25%

Table 5.2. Projects bug tossing

We have not found a measurable evidence to explain the difference between the two systems.
Our conjecture is that the better user interface and the simpler workflow of Jira decrease error
possibilities thus leading to a decrease of the phenomena of bug tossing.

5.1.4 Developers activity

Project developers fixers reporters Fixer/Reporter proportions
Thunderbird 367 175 1,455 0.356
Toolkit 679 338 1,363 0.490
Bugzilla 432 178 1,198 0.446
MailNews Core 581 260 1,769 0.319
Firefox 907 482 2,950 0.387
SeaMonkey 969 461 3,274 0.267
CXF 467 37 962 0.328
CAMEL 419 40 677 0.508
HADOOP 356 208 372 0.630
HBASE 330 169 368 0.703
LUCENE 290 40 462 0.531

Table 5.3. Contributors statistics

As shown in figure 5.8 In Jira projects only 30% of contributors have actually fixed at least one
bug. The situation in Bugzilla projects is worse, only 11% (figure 5.7). Those numbers indicate
that a major fraction of people does not contribute directly to the project improvement. The
large percentage of people are reporters in both groups, Jira and Bugzilla.
This measure can show the expertise of the contributors population. This ratio express how
many people that submits and fix a bug report. In fact this practice is a sign that indicate that
the person who have submitted the bug knows and how to fix it have expertise. In the table 5.3
we can see the projects specialization in more detail represented by the ratio Fixer/Reporter.
In fact we can see a significant difference between Jira projects and Bugzilla. The mean of the
ratio for Bugzilla is 0.37 while the mean in Jira is 0.54.



43 5.2 Expert Recommender

Figure 5.7. Contributors in Bugzilla projects

Figure 5.8. Contributors in Jira projects

5.2 Expert Recommender

In this section we discuss all the steps taken to build the expert recommender. We present the
result and discuss the differences. In detail we discuss the pros and cons of using structured
informations versus unstructured informations. We consider which is the best algorithm for
classification and what filtering parameters and cross-validation perform best. In the last part
of the chapter we show the tossing graphs application in our dataset and we show how they
perform.



44 5.2 Expert Recommender

Unstructured info Structured info
Projects Accuracy Time [s] Accuracy Time [s]
Thunderbird 42.58% 0.9 27.05% 138.4
Toolkit 36.14% 3.4 23.23% 746.8
Bugzilla 39.12% 1.7 33.83% 404.7
MailNews Core 40.67% 3.5 30.69% 604.5
Firefox 37.38% 24.1 22.78% 3,777.7
SeaMonkey 51.88% 44.5 35.41% 6,399.9
CXF 63.52% 0.5 62.00% 55.7
CAMEL 60.59% 0.5 49.62% 65.9
HADOOP 43.16% 1.5 25.46% 198.9
HBASE 58.28% 1.2 22.45% 188.5
LUCENE 65.83% 0.1 40.21% 50.0

Table 5.4. Structured information vs unstructured information comparizion with respect
to traing time and accuracy of the classifier

5.2.1 Feature vs text categorization

In all the approaches we discussed in the state of the art section there is a common pattern. The
use of text categorization or some Information Retrieval technique to incorporate bug descrip-
tion or title in the feature vector of the classifiers. In our experiment we show that using this
information does not increment the quality of the classification and results in a large increment
in classifier training time.

To compare the two techniques we used the following settings:

1. Text Categorization with unstructured information

• Features: Component, Bug Creation Date, Priority, Severity, Platform and title and
description converted with String to Vector.

• String to Vector (WEKA) settings: IDF transform and Stop list enabled

• Classifier Naive Bayes

2. Only structured information

• Features: Component, Bug Creation Date, Priority, Severity, Platform

• Classifier Naive Bayes

All the comparisons were made using 9/10 dataset split, 90% of the data for training and
10% for testing.

In figure 5.9 we see that there is no gain in accuracy using unstructured information with
respect to the classifier with only structured information.
If we observe the training time column in table 5.4 we see that the time increases up to 18
times. This suggests that the approach of using only unstructured information for our dataset
is better.



45 5.2 Expert Recommender

Figure 5.9. Comparison using unstructured information or structured information

5.2.2 Classifier algorithms

In our experiment we used three classifiers, Naive Bayes, C4.5 and Support Vector Machines.
The difference reported from others Bhattacharya and Neamtiu [2010] were not significant.
In our case (table 5.5) Naive Bayes and C4.5 outperformed SVM. This probably due to the
features selected. In any case the Support Vector Machines were slow to train compared to the
other so we discarded them.

To compare the algorithms we used the following settings:

1. Features: Component, Bug Creation Date, Priority, Severity, Platform

2. Cross-validation: inter-folding

Accuracy
Project Dataset size Naive Bayes C4.5 SVM(RBF)
Thunderbird 4,202 71.66% 67.69% 58.89%
Toolkit 5,751 60.69% 56.22% 23.50%
Bugzilla 6,738 69.07% 58.32% 47.82%
MailNews Core 7,011 67.05% 61.35% 46.61%
Firefox 11,470 49.99% 41.23% 16.37%
SeaMonkey 16,393 54.90% 47.77% 16.32%
CXF 3,074 87.28% 77.98% 71.23%
CAMEL 3,920 87.81% 85.98% 63.06%
HADOOP 3,811 54.28% 60.75% 21.68%
HBASE 3,308 60.93% 69.21% 34.98%
LUCENE 2,371 81.48% 73.95% 53.32%

Table 5.5. Classification algorithm comparison

Looking at the table 5.6 the difference between C4.5 and Naive Bayes is significant. Overall
Naive Bayes performs better than C4.5 and the overhead in training time is not too much.



46 5.2 Expert Recommender

C.45 Naive Bayes
Project Dataset size F-score training time F-score training time

Thunderbird 4,202 0.63 3.5 0.66 7.7
Toolkit 5,751 0.54 4.2 0.53 54.3

Bugzilla 6,738 0.56 4.5 0.63 23.7
MailNews Core 7,011 0.59 6.5 0.60 39.3

Firefox 11,470 0.42 31.7 0.43 276.4
SeaMonkey 16,393 0.46 52.3 0.49 492.7

CXF 3,074 0.75 0.7 0.85 1.5
CAMEL 3,920 0.83 1.1 0.84 2.9

HADOOP 3,811 0.59 1.5 0.48 16.5
HBASE 3,308 0.65 1.0 0.53 8.9

LUCENE 2,371 0.72 0.4 0.78 1.0

Table 5.6. F-score with J48 and Naive Bayes

5.2.3 Developer activity filter

The first refinement in our steps to the final recommender is the Developer Activity filter. We
filter all the bugs that does not belongs to the set of active developers. Active developers are
those who have fixed at least k bugs. In this experiment we measured the accuracy of the
classifier C4.5 with different k (1,5,10,15).In this dataset the right balance between number
of developers(that have fixed bugs) and threshold is 10, where we have enough developers to
train the classifier and good accuracy.

To compare the filtering impact we used the following settings:

1. Features: Component, Bug Creation Date, Priority, Severity, Platform

2. Cross-validation: inter-folding

Project no filter 5 fixes 10 fixes 15 fixes
Thunderbird 60.760% 65.254% 67.795% 69.930%
Toolkit 51.207% 56.076% 56.994% 60.965%
Bugzilla 56.884% 58.758% 59.567% 60.707%
MailNews Core 55.091% 59.028% 60.923% 63.352%
Firefox 38.420% 41.229% 42.784% 42.598%
SeaMonkey 44.978% 47.054% 48.010% 49.510%
CXF 77.395% 78.041% 78.847% 78.642%
CAMEL 85.707% 86.131% 86.307% 87.363%
HADOOP 55.762% 59.821% 62.221% 62.287%
HBASE 63.536% 66.817% 71.082% 73.533%
LUCENE 72.933% 74.305% 75.119% 76.358%

Table 5.7. Accuracy with bug fix filtering

As we see in the table 5.7, increasing the threshold of fixed bugs per developer, increases
the accuracy of the classifier. This is due to the fact that increasing this number we remove



47 5.2 Expert Recommender

Project no filter 5 fixes 10 fixes 15 fixes
Thunderbird 174 76 46 35

Toolkit 332 147 107 77
Bugzilla 178 91 60 51

MailNews Core 257 131 80 57
Firefox 475 238 161 131

SeaMonkey 458 246 179 150
CXF 32 25 21 18

CAMEL 38 30 28 22
HADOOP 206 115 78 54

HBASE 169 85 58 49
LUCENE 36 27 21 19

Table 5.8. Developers population size with bug fix filtering

all the developers that does not have sufficient data to be a valid candidate in the prediction
of the recommender. The downside of filtering is that we reduce the population of developers
that we use to train the classifier, see table 5.8.

5.2.4 Top-k accuracy

As presented in Anvik et al. [2006], it is possible to propose a list of developers to assist the
triager in the decision. The triager insted of having to look all the population of developers
can focus on the list provided by the recommender. In this way the time to process a bug it
is reduced a lot. Comparing the results in the table 5.9 or looking at the figure 5.10 we can
see that the accuracy of the classifiers increase by around 8% from the top-1 to the top-10
classification technique.

Those results are consistent with the previous research papers that indicate an increment of
approximatively 10%.

Project k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Thunderbird 41.78% 54.92% 60.52% 63.63% 67.69% 69.17% 70.00% 71.43% 72.46% 73.29%
Toolkit 37.30% 48.65% 52.36% 54.18% 56.22% 57.58% 58.81% 59.25% 60.19% 60.62%
Bugzilla 44.64% 51.77% 54.30% 56.49% 58.32% 59.92% 60.92% 61.58% 62.38% 62.66%
MailNews Core 39.66% 48.25% 53.40% 59.04% 61.35% 63.73% 65.71% 67.10% 68.72% 69.22%
Firefox 33.09% 36.93% 39.21% 40.45% 41.23% 42.49% 43.24% 43.52% 44.38% 44.83%
SeaMonkey 30.54% 38.46% 43.39% 45.26% 47.77% 49.46% 51.10% 52.01% 53.02% 54.02%
CXF 61.31% 66.07% 70.99% 73.57% 77.98% 78.53% 79.11% 80.24% 81.26% 82.12%
CAMEL 67.58% 80.01% 83.96% 85.18% 85.98% 86.78% 87.08% 87.57% 87.69% 88.15%
HADOO 52.41% 55.87% 57.88% 59.30% 60.75% 61.75% 62.51% 62.98% 63.73% 64.55%
HBASE 59.75% 64.75% 65.51% 67.51% 69.21% 70.51% 70.91% 71.20% 71.56% 73.05%
LUCENE 55.08% 64.08% 68.53% 71.78% 73.95% 76.43% 78.50% 79.15% 80.37% 80.72%

Table 5.9. Accuracy with J48 with different k-classification



48 5.2 Expert Recommender

Figure 5.10. Accuracy increment with J48 with different k-classification

5.2.5 Cross validation techniques

In the table 5.10 or in figure 5.11 we present the results of the classification with two different
folding techniques, inter-folding and intra-folding. Looking at the data the increment of accu-
racy with the intra-folding approach is significant. Around 8% of increment but the downside
of this approach is the increment of training time that grows enormously, shown in figure 5.12.
If the time is not the issue it is the way to proceed, since with intra-folding the situation it
is close to reality where whenever a new bugs comes in, the classifier is updated with all the
previously resolved bugs.

Project Accuracy with
inter-folding [%]

Training time with
inter-folding [s]

Accuracy with
intra-folding [%]

Training time with
intra-folding [s]

Thunderbird 67.69% 31.00 72.55% 297.54
Toolkit 56.22% 4.12 68.22% 2089.44
Bugzilla 58.32% 4.34 68.77% 1280.05
MailNews Core 61.35% 6.01 69.65% 3173.20
Firefox 41.23% 31.03 54.41% 11217.11
SeaMonkey 47.77% 47.06 57.87% 5372.22
CXF 77.98% 2.08 81.89% 109.56
CAMEL 85.98% 1.08 86.47% 177.24
HADOOP 60.75% 1.58 70.22% 204.34
HBASE 69.21% 1.03 78.75% 101.87
LUCENE 73.95% 0.40 81.54% 37.94

Table 5.10. Accuracy with J48 with different folding techniques



49 5.2 Expert Recommender

Figure 5.11. Accuracy with different folding techniques

Figure 5.12. Training time with different folding techniques

5.2.6 Tossing graphs

As indicated in the studies of Bhattacharya and Neamtiu [2010] and Jeong et al. [2009] the use
of tossing graph can improve the accuracy of the recommender. In our experiment this was not
the case. The use of tossing graph have not added any extra information to our recommender.



50 5.2 Expert Recommender

The possible reasons are:

• Filtered dataset: With a filtered dataset the tossing graph are to small and too sparse to
give extra informations. Reducing the dataset to achieve high accuracy with the classifier
have brought a problem in the extraction of tossing graphs

• The ranking function presented in Bhattacharya and Neamtiu [2010] could be unbal-
anced in our dataset.

To investigate better we developed a tool to explore the tossing graph and to fine tune the
ranking function. In this tool it is possible to filter and classify bug instances and see all the
tossing graphs for each developers in the predicted set.

Figure 5.13. Screenshot of the Bug Tossing Explorer tool

In figure 5.13 is shown the main view of the application. In the upper left corner is possible
to load a list of bugs in JSON format or crawl a Jira repository saving it to a JSON file.

The application is dived into two parts:

1. A graph viewer where are represented the tossing graphs of the developers selected

2. A list of settings to filter and classify the dataset loaded.

The main settings (Figure 5.14) present some informations about the data and two checkboxes
to select the machine learning algorithm used in the classification step. The two algorithm
are Naive Bayes, a probabilistic algorithm and C4.5 a decision tree. The second section is the
filtering settings. In this part is possible to filter the data and classify the dataset (Figure 5.15).

The last settings present in the tool is the Tossing Graph Ranking Settings (Figure 5.16). In
this are is possible to set the threshold of the formula 5.2.

R(Dk) =Pr(Di −→ Dk) + newMatchedComponent(Dk)
(5.1)



51 5.3 Summary

Figure 5.14. Screenshot of the Bug Tossing Explorer main settings

Figure 5.15. Screenshot of the Bug Tossing Explorer dataset filtering settings

Figure 5.16. Screenshot of the Bug Tossing Explorer tool tossing graph settings

newMatchedComponent(Dk) =MatchedComponent(Dk) ∗
log(lastAct ivi t y)

log(k) + 1 (5.2)

The last part is composed by two list. The first list on the left, are the instances of the
test dataset. The right part are the prediction on the instance selected. This prediction shows
all the developers that have a tossing event, and when a developer of that list is selected, the
application present his tossing graph.

The tossing graph is shown as a connected graph with the nodes in three color:

• blue: The origin developer, who own the tossing graph

• black: all the developers who are the target of a tossing event from the origin

• green: the developer who is the target of the tossing event and that is the fixer of the
selected issue (left list).

Every node is selectable and shows a popup window with the main informations; name, tossing
probability, is the fixer (yes/no) and the ranking value.

5.3 Summary

In this chapter we saw how we can build an expert recommender. We have shown all the
intermediate steps to achieve a good prediction accuracy. The part regarding the tossing graph
unfortunately was not as we expected. Other studies have shown that augmenting the rec-
ommender with tossing graph can improve the accuracy, but this was not the case. We think
that if we can fine tune the parameters of the tossing graph we can improve the results so we



52 5.3 Summary

developed the tool presented earlier to explore those kind of abstractions.

We reached an accuracy of 63% to 70% for a top five recommendation, and we think that
these values are high enough to lower the effort of a triager. Without the assistance of a recom-
mender the triager should look all the developers in the project to find the actual expert. With
this approach, the triager have a restricted list that contains most of the time the real bug fixer.

Looking at the bug tossing data presented earlier, we see that in the projects we analysed
the error rate is high, in fact the 65% of bug tossing in Mozilla projects means that 6 of 10
times the trigger make a mistake. If we use a recommender with an accuracy of 63%, this
means that the bug tossing rate should reach approximatively a value of 37% and this traduce
to a reduction of tossed bugs by more than 50%. We see the bug tossing using our approach
in figure 5.17. For projects that uses Jira our approach does not lead to a bug tossing reduc-
tion. This is due to a low bug tossing rate of the projects and to reduce this number the expert
recommender need to reach an accuracy of approximatively 90%.

Figure 5.17. Bug tossing with our expert recommender system



Chapter 6

Conclusions

In this chapter we conclude our work summarising the overall thesis and indicating some
pointers for future work.

6.1 Summary

Resource and time are limited in Software Engineering. When an issue is found in a software
product Bug Triaging is used to assess the work and address the most suitable person to resolve
the bug. Nowadays bug are being submitted at a fast pace and human and manual triaging
become more and more difficult. Every time a bug is submitted the work to analyze it and find
a valid developer require a lot of time. The research effort to solve this problem is to find a
way to automatize the process of bug triaging.

Our goal was to explore the possible solutions available and try to improve it. To achieve
our intent we developed a framework. Whit this framework we were able to test all the algo-
rithms and techniques proposed by different researchers. In our framework we have developed
three parts : A Bugzilla/Jira repository mining tool, a machine learning toolset and a bug toss-
ing graph explorer.

During our analysis we constructed a dataset that is publicly available and that we investi-
gate using descriptive statistics and visualization. This dataset is comprised of two groups of
projects one group for each bug-tracking system, Jira and Bugzilla. We wanted to generalize
the techniques without depending on a single bug-traking system.

To summarize our contributions:

• Bug meta-model : We described a Bug meta-model used to mine more generally Bug-
Tracking system in the chapter 3. This model is used in our framework to mine software
repositories (Jira and Bugzilla).

• Bug Tossing formal model: We created a more formal model to measure Bug Tossing
events, since in the research field wasn’t present any model to extract Bug Tossing effec-
tively and precisely.

53



54 6.2 Threats to validity

• An exhaustive review of the techniques used in research field to automatize bug triaging:
In this thesis we explored all the possibility proposed in different research paper trying to
achieve the same results implementing all the algorithm and techniques in our research
framework.

• An extension of the state of the art technique: Bug Tossing graph are quite new to the
research field, they where proposed by Jeong et al. [2009] in 2009. We believe that
those graphs can improve the knowledge on the system, and since in our dataset we
failed to replicate the results of Bhattacharya and Neamtiu [2010] we developed a tool to
investigate and explore all the possibility we can achieve with those kind of abstractions.
In this tool it is possible to "navigate" through the tossing graph of the developers tuning
it is parameters to rank better in the case of developer assignment recommender.

6.2 Threats to validity

We identify the following threats to validity

• Labelling the reports. In bug reports, not always it is possible automatically to detect
the actual fixer. To do that, we employ some heuristics similar to Anvik et al. [2006], that
could be inaccurate for some projects. Moreover open source system like Bugzilla allow
user to have aliases for the same account thus making more difficult the identification of
a single developer.

• Systems examined might not be representative. Bug reports of two bug-tracking sys-
tem were examined in this thesis. Since we wanted to compare open source project, we
were able to find more general projects with one system (Bugzilla). Jira is a commercial
product thus most open source project chose to use Bugzilla for that reason. Moreover,
using Apache projects, where most of the product are frameworks or product where the
client is a developer maybe we have introduced a project selection bias.

6.3 Future Work

Bug Triaging it is a rich process that have a lot of delicate parts that could be improved. We
showed how to deal with labeled reports to construct a recommender. But we do not have
explored deeply the process of extracting the data from repositories to label effectively and
accurately the reports. There is email aliasing and wrong use of activity field that worth inves-
tigating more.

Another possible improvement of our work is to develop a more featured web application
based on the Bug Tossing Explorer we developed in our framework. With this kind of tool will
be possible to really explore more graphically and manually all the activity that are present in
a bug tracker and extending Jira or Bugzilla with this kind of visualization could improve the
triage activity.



Appendix A

Mining Bug-tracking systems: Jira and
Bugzilla

In this chapter we show some problems and solutions for mining two bug-tracking systems,
Bugzilla and Jira.

A.1 Bugzilla

Bugzilla is an old bug-tracker and does not provide good API or webservice that can be used
to mine the repository. To tackle this problem is required to crawl the Bugzilla webpages using
the advanced search feature and get the results in CSV format.
In this way we are able to collect all the major information about each issue automatically but
we needed to crawl multiple pages since Bugzilla limit the number of search results.

To overcome this problem we had to filter the search result with bug creation date and
crawl the complete project history by parts. Where each parts was 1 or 2 months of develop-
ing. To extract the list of bug and some major information the url to use is:

https://bugzilla.mozilla.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=2013-03-01&chfieldto=

2013-05-01&product=SeaMonkey&query_format=advanced&resolution=---&ctype=csv

This url is composed of a couple of variables:

• product: Indicate the name of the software product

• component: Is the name of the component, if obmitted the results fetch all bugs

• chfield: This represent the name of the field used for filtering the results, in our case it
was always "Bug Creation" that is the date in which the bug was created.

• chfieldfrom and chfieldto: Those are the values of the filtering field that represent in our
case the starting and ending date.

Unfortunately the information collected was not enough. For our work we needed also the
activity history or change-log for each bug.

55

https://bugzilla.mozilla.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=2013-03-01&chfieldto=2013-05-01&product=SeaMonkey&query_format=advanced&resolution=---&ctype=csv
https://bugzilla.mozilla.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=2013-03-01&chfieldto=2013-05-01&product=SeaMonkey&query_format=advanced&resolution=---&ctype=csv


56 A.2 Jira

To mine this kind of information we needed to parse a Bugzilla webpage result reachable

Figure A.1. Bugzilla changelog wepage

at:
https://bugzilla.mozilla.org/show_activity.cgi?id=147777

Where the number after the id is the identification number of the bug.

A.2 Jira

Since Jira is much newer product than Bugzilla, it offers a comfortable way of mining data the
jira query language and can fetch JSON results.

A.2.1 Jira jql language

The Jira query language, similar to sql, is a language that permit operation on the Jira Bug-
tracker. For our purposes we use only two query:

1. Get list of bugs:
https://issues.apache.org/jira/rest/api/2/search?jql=project=LUCENE+order+

by+created+asc&fields=id,key,resolution,created&startAt=0

The only information we needed to change were the name of the project (e.g LUCENE)
and startAt that is the offset of the results since also jira limit the search result size, but
indicate the max result size at the response.

2. Get a bug extended information :
https://issues.apache.org/jira/rest/api/2/issue/LUCENE-9219/?expand=changelog

https://bugzilla.mozilla.org/show_activity.cgi?id=147777
https://issues.apache.org/jira/rest/api/2/search?jql=project=LUCENE+order+by+created+asc&fields=id,key,resolution,created&startAt=0
https://issues.apache.org/jira/rest/api/2/search?jql=project=LUCENE+order+by+created+asc&fields=id,key,resolution,created&startAt=0
https://issues.apache.org/jira/rest/api/2/issue/LUCENE-9219/?expand=changelog


57 A.3 Parsing JSON data with GSON

A.3 Parsing JSON data with GSON

Gson is a Java library under Apache Lincense that allow to convert Java Object into JSON
representation and in the other way around. The goal of this library are :

• Provide simple toJson() and fromJson() methods to convert Java objects to JSON and
vice-versa

• Allow pre-existing unmodifiable objects to be converted to and from JSON

• Extensive support of Java Generics

• Allow custom representations for objects

• Support arbitrarily complex objects (with deep inheritance hierarchies and extensive use
of generic types)

In our case we were faced with the need to interpret JSON results from the Jira RESTful
webservice. To reach our goal we decided to use GSON. In the following portion of code we
outline the way we can read a JSON string into a Java object.

1 String jsonContent=json.toString();

2 //Reading a json file to a defined class (i.e IssueList)

3 GsonBuilder gson = new GsonBuilder();

4 list=gson.create().fromJson(jsonContent, IssueList.class);

When we are able to model the JSON into a class object we can use the code illustrated above.
But if we do not know the format of the data we can read anyway the data using a generic Map.

1 String jsonContent=json.toString();

2 //Reading a JSON file with undefined class

3 Map<String, Object> map = new Gson().fromJson(jsonContent,

4 new TypeToken<Map<String, Object>>() {}.getType());

To save the Java Object into a JSON format follow the same reasoning. We need to give a Type
object to the method toJson in order to transform correctly the object into a JSON string.

1 Type IssueListType = new TypeToken<IssueList>() {}.getType();

2 String json = new Gson().toJson(object,IssueListType);

A.3.1 Common issues

Reading and saving JSON data is relatively simple with the GSON library, but if we want to do
some generic programming there are some issues. Since Java implement generic programming
with type erasure, GSON does not know the type of the object during the conversion. To tackle
this problem there are some ways.

The common ways is to write a custom serializer and deserializer and a type adapter. In
this way GSON know how to proceed in the case encounter a special type of object and does
not know how to pars it.



58 A.3 Parsing JSON data with GSON

More information about this kind of practice on the GSON page:

https://sites.google.com/site/gson/gson-user-guide#TOC-Collections-Examples

https://sites.google.com/site/gson/gson-user-guide#TOC-Collections-Examples


Bibliography

John Anvik and Gail C. Murphy. Reducing the effort of bug report triage: Recommenders
for development-oriented decisions. ACM Trans. Softw. Eng. Methodol., 20(3):10:1–10:35,
August 2011.

John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an open bug repository. In Proceed-
ings of the 2005 OOPSLA workshop on Eclipse technology eXchange, eclipse ’05, pages 35–39,
New York, NY, USA, 2005. ACM. ISBN 1-59593-342-5.

John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Proceedings of the
28th international conference on Software engineering, pages 361–370, New York, NY, USA,
2006. ACM. ISBN 1-59593-375-1.

Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas
Zimmermann. What makes a good bug report? In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages
308–318, New York, NY, USA, 2008a. ACM.

Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Duplicate bug
reports considered harmful... really? 2008b.

Pamela Bhattacharya and Iulian Neamtiu. Fine-grained incremental learning and multi-feature
tossing graphs to improve bug triaging. In Proceedings of the 2010 IEEE International Con-
ference on Software Maintenance, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-1-4244-8630-4.

Gerardo Canfora and Luigi Cerulo. Fine grained indexing of software repositories to support
impact analysis. In Proceedings of the 2006 international workshop on Mining software repos-
itories, MSR ’06, pages 105–111, New York, NY, USA, 2006. ACM. ISBN 1-59593-397-2.

Davor Cubranic and Gail C. Murphy. Automatic bug triage using text categorization. In SEKE,
pages 92–97, 2004.

Marco D’Ambros and Michele Lanza. Software bugs and evolution: A visual approach to un-
cover their relationship. In Proceedings of the Conference on Software Maintenance and Reengi-
neering, CSMR ’06, pages 229–238, Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2536-9.

Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating defect prediction approaches:
a benchmark and an extensive comparison. Empirical Softw. Engg., 17(4-5):531–577, August
2012. ISSN 1382-3256.

59



60 Bibliography

Pedro Domingos and Michael Pazzani. Beyond independence: Conditions for the optimality
of the simple bayesian classifier. In Machine Learning, pages 105–112. Morgan Kaufmann,
1996.

Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage with bug tossing
graphs. In Proceedings of the the 7th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of software engineering, pages
111–120. ACM, 2009.

M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
68(9):1060–1076, 1980.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–
346, July 2002. ISSN 1049-331X.

Marc J. Rochkind. The source code control system. IEEE Trans. Softw. Eng., 1(1):364–370,
March 1975. ISSN 0098-5589.

Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. Famix and xmi. In Proceedings of
the Seventh Working Conference on Reverse Engineering (WCRE’00), WCRE ’00, pages 296–,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0881-2.


	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure of the Document

	Related Work
	Software Evolution and Bug Tracking Systems
	State of the Art
	Bug-tracking Systems
	Bugzilla
	Jira
	Problems and improvements in bug-tracking systems

	Summary

	Intermezzo:Machine Learning
	Linear Models: Support Vector Machines
	Decision Trees: C4.5
	Probabilistic models: Naive Bayes
	Evaluation in machine learning systems
	Accuracy, recall and F-score
	Classifier comparison

	Summary

	Automated Approaches for Bug Triaging
	Bug Tossing
	Labeling bug reports
	 Heuristics
	Email aliasing

	Knowledge discovery in bug reports
	Case 1: a bug's life
	Case 2: misbehaviors in a bug's report

	Summing up
	Projects selection
	Research Framework
	Overview
	Bug report Meta-Model
	Machine Learning toolset

	Summary

	Results
	Descriptive statistics
	Bugzilla and Jira workflow
	Bug status
	Bug tossing
	Developers activity

	Expert Recommender
	Feature vs text categorization
	Classifier algorithms
	Developer activity filter
	Top-k accuracy
	Cross validation techniques
	Tossing graphs

	Summary

	Conclusions
	Summary
	Threats to validity
	Future Work

	Mining Bug-tracking systems: Jira and Bugzilla
	Bugzilla
	Jira
	Jira jql language

	Parsing JSON data with GSON
	Common issues


	Bibliography

