
Supporting Collaboration Awareness in
Multi-developer Projects

Master’s Thesis submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Anja Guzzi

under the supervision of

Prof. Dr. Michele Lanza and Lile Hattori

June 2009

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Anja Guzzi
Lugano, June 2009

i

“Qualunque cosa tu possa fare, o
sognare di fare, incominciala.
L’audacia ha in sé genio, potere e
magia. Incomincia adesso.”

Johann Wolfgang Goethe

iii

iv

Abstract

Teamwork is necessary to produce large software systems in a reasonable amount
of time. A team of developers working on the same project must deal with con-
current development. Collaboration among team members assumes a funda-
mental role during the whole development process of systems.

Failing to appropriately take care of collaboration aspects, such as awareness,
communication and synchronization, can result in the delay of a whole project.
However, the negative consequences of uncoordinated concurrent development
can be reduced with tool support for collaborative software development.

We developed Scamp, an Eclipse Plug-in conceived to support collaboration
awareness through visualization. Scamp is built on top of Syde, which provides
an environment for synchronous development. Relying on the underlying struc-
ture, Scamp visualizes changes in a system as they happen in three different
ways: a distinctive mark on changed entities, a Tag Cloud and a “Buckets view”.

v

vi

Acknowledgements

Thanks to..

• Professor Lanza, for his passionate way of teaching and for saying “cool!”.

• Lile Hattori, for her assistance through the development of Scamp and for
her constructive comments.

• My parents and Bea, for always being there for me.

• ...all who believe in me. In particular to Dada, for her amazingly constant
support (Grazie!), and to the “Dutch crew”, for being so close despite the
physical distance (Dank je!).

I am really grateful to all of you.

vii

viii

Contents

Contents x

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Related Work . 2
1.2 Structure of the Document . 4

2 Multi-developer Projects 5
2.1 Collaboration Awareness . 5
2.2 State of the Art . 7

2.2.1 Software Repositories . 7
2.2.2 Awareness Support . 9

2.3 Syde . 9
2.3.1 Synchronous Development . 9
2.3.2 Design & Implementation . 10
2.3.3 Validation & Results . 12

2.4 Thesis Motivation . 15

3 Scamp 17
3.1 Data Visualization . 17
3.2 Scamp Plug-in . 19

3.2.1 “User Manual” . 22
3.3 Visualizations . 24

3.3.1 TagCloud View . 24
3.3.2 Buckets View . 28
3.3.3 Decoration . 32
3.3.4 Developers View . 35

ix

x Contents

4 Validation 37
4.1 PF II Projects . 37

4.1.1 Questionnaire . 37
4.1.2 PF II Project - Group 1 . 38
4.1.3 PF II Project - Group 2 . 40
4.1.4 Conclusions on the PF II Projects experience 42

4.2 Scamp itself . 43

5 Conclusions 47
5.1 Summary . 47
5.2 Discussion . 48
5.3 Future Work . 49

5.3.1 Features to enhance usability 49
5.3.2 Improvement for the Buckets visualization 50
5.3.3 Additional views . 51
5.3.4 Stability and performance . 52

Bibliography 55

Figures

2.1 Collaboration. 6
2.2 Syde Architecture . 10
2.3 Syde . 11
2.4 Recorded changes, categorized by successfulness of compilation. . 12

3.1 Visualization potpourri. 17
3.2 Example of preattentive attributes of visual perception. 18
3.3 Scamp’s visualizations in a nutshell. 20
3.4 Eclipse menu. 22
3.5 Scamp initial empty view, with zoom on the toolbar. 22
3.6 Scamp toolbar. 23
3.7 A Tag Cloud on Scamp’s vocabulary (by TAGete). 25
3.8 A Tag Cloud by Scamp on Scamp itself. 25
3.9 Another example of Tag Cloud on Scamp itself. 27
3.10 Buckets showing a month of activities in a two-developers project. 28
3.11 Buckets view “in action” on Scamp itself. 29
3.12 Example of patterns in buckets. 30
3.13 Decoration added by Scamp to modified file. 32
3.14 Decoration and Tag Cloud showing the same information (on

Scamp). 34
3.15 Decoration in Eclipse’s Outline view. 34

4.1 jArk’s Tag Cloud in April. 39
4.2 jArk’s Buckets in April. 39
4.3 jArk’s Buckets in May. 39
4.4 Pacman’s Tag Cloud (last month). 41
4.5 Pacman’s Buckets (last month). 42
4.6 Pacman’s Buckets (last month). 42
4.7 Scamp’s Buckets in March. 44
4.8 Scamp’s Buckets in April. 44
4.9 Scamp’s Buckets in May. 44

xi

xii Figures

4.10 Contributions by developers: Tag Cloud vs. Buckets. 45
4.11 Scamp’s Tag Cloud in March. 45
4.12 Scamp’s Tag Cloud in April. 46
4.13 Scamp’s Tag Cloud in May. 46

5.1 Hypothetical Sparkline visualization: unit changed by three de-
velopers. 52

5.2 Hypothetical Sparkline visualization: unit changed by one devel-
oper. 52

Tables

2.1 Comparison between ownership assigned by different techniques. 14

4.1 Changes made on Scamp as a whole and on three central units. . 46
4.2 Number of changes vs. number of CVS commits for the three most

changed units of Scamp. 46

xiii

xiv Tables

Chapter 1

Introduction

A software system, other than being intrinsically complex, is the result of a work
“of multiple hands”. There are many technologies which support and enable
teamwork. As a consequence, a scenario where a team of developers physically
de-located is cooperating to produce the same software system, is nowadays an
ordinary experience. We call this process of building software systems in teams:
collaborative software development.

The ability to widen the environment in which developers work (from a sin-
gle room, to potentially the whole world) brings on some fundamental problems
along with the many advantages. One of the issues concerns collaboration.
There are three aspects of collaboration in which we are interested: awareness,
communication and synchronization.

• With awareness we mean an understanding of the activities of others to
provide a context for one’s activities [DB92]. Knowing other’s activities
can prevent uncoordinated changes that could cause unwanted (side)effects
and/or merging problems. The thesis is mostly focused on this aspect.

• Cooperation willingness can be highly compromised in absence of face-
to-face communication. Moreover, e-mails and mailing lists can hardly
fully compensate the lack of a direct verbal communication. On the other
hand, phone calls, instant messaging and video conferences can overload
developers, interfering with and slowing their work.

• Code synchronization is probably one of the most tangible aspects in a
multi-developer context, which gets commonly translated into the homony-
mous feature provided by software repositories. However, despite the ex-
istence of such repositories, synchronization is still a bottleneck for collab-
orative software development. In fact, the traditional and most popular

1

2 1.1 Related Work

repositories (such as CVS and SVN) employ the check in/check out model,
which inevitably introduces delays in code synchronization.

Finding a way to ease collaboration between members of development teams
is an issue of central importance. Providing means to improve collaboration
awareness, communication and synchronization improves the quality of devel-
opment and reduces project delays, in particular when the developers are geo-
graphically distributed.

We propose to support collaboration awareness through visualization. Scamp1,
the Eclipse plug-in we implemented, provides different views that inform users
about ongoing changes in a software system.

1.1 Related Work
A number of academic efforts have been made in the past years toward collabo-
rative software development.

COAST2 [SKSH96; SSS99] is a toolkit conceived in 1996 to enhance the us-
ability and simplify the development of synchronous groupware (a groupware is
a software designed to facilitate team work). As regards awareness, COAST em-
phasizes the importance for users to receive up-to-date information about others’
activities, identifying three main goal to achieve: data consistency, availability
of WYSIWIS3 views and support for different teamwork situations. The toolkit,
written in Smalltalk, is based on shared documents and provides a framework
for views development. The COAST views concept is to be automatically up-
dated at any shared data object change.

In the area of web collaborative applications, another object-oriented plat-
form has been developed to facilitate coordination. The TOP4 groupware [GPF99]
manages notifications such as users arrival and departure to a work session, mes-
sages exchange and objects sent to repositories by users. TOP does not explicitly
provide any particular assistance to awareness.

Schneider et al. [SGPP04] developed ProjectWatcher with the aim to sup-
port group awareness by monitoring changes in and usage of API. Changes
made during development are recorded into shadow repository, which is then
mined. Information gathered from local snapshots has a finer granularity and
is more complete than what can be mined from the more common shared soft-
ware repositories (such as CVS/SVN), therefore has to be preferred in regard to

1Supporting Collaboration Awareness in Multi-developer Projects
2COoperative Application System Toolkit
3What You See Is What I See
4Ten Objects Platform

3 1.1 Related Work

awareness support. ProjectWatcher is an Ecliplse5 plug-in which mines and vi-
sually present information from local interaction histories in two views: activity
awareness (“What is each developer doing?”) and proximity awareness (“Who is
working near me?”).

CollabVS [Heg09] by Microsoft Research is a collaborative development en-
vironment in Visual Studio. The aim is to enhance the Visual Studio IDE in order
to reduce the collaboration problems given by a multi-developer context (either
if teams geographically distributed or not).

An interesting approach to model information mined from local history of
software developers is implemented in NavTracks [SES05]. The goal is to pro-
vide an high-level conceptual understanding of the code, providing file-to-file
relationships and allowing navigation into the software information space. Nav-
Tracks does not provide support for collaborative development, in that the in-
formation remains local, however the tool’s concept of interaction tracks has a
potential (i.e. using a client/server model) to be useful in a collaborative envi-
ronment.

Noteworthy in the mining, modeling and visualization of information gath-
ered from a single developer’s development is SpyWare [RL08] by Robbes. Spy-
Ware, implemented in Smalltalk, is an IDE plugin (it works for Squeak Smalltalk)
based on a new concept of model of software evolution, at which core there is
the “change” (and not the “version”). It records semantic transformations as they
happen, without requiring the developer to manually “commit” anything. Moni-
toring all the changes, provides a very fine-grained view on the evolution of the
program. On top of SpyWare model, Robbes implemented several tools. The un-
derlying model can also be and has been exploited by other researcher to build
their own tools. The different view implemented so far aim to: visualize all the
coding sessions of the system (as sparklines), follow the evolution of one or more
structural metrics, show the list of all the changes (with possibility of querying
it), replying changes occurred in a development session, browsing the code at a
specific date (allowing comparison between multiple version of the system), let
us “grasp” the evolution of the design at a glance (with the possibility to detect
design flaws), etc.

Syde [HL09a; HL09b] by Hattori, is an Eclipse plug-in which takes SpyWare
change-centric approach and translates it into a collaborative context. Syde pro-
vides an environment for synchronous development. Information gathered by
Syde can be represented in different views, to underline and support different
aspects of collaboration.

Scamp, our prototype, is built on top of Syde.

5http://www.eclipse.org/

4 1.2 Structure of the Document

1.2 Structure of the Document
In Chapter 2 we present the problems affecting multi-developer projects, which
is collaboration, and the importance of awareness. We present Syde as a possi-
bility to enhance collaboration awareness and we motivate our thesis.

In Chapter 3 we introduce Scamp, a visualization plug-in we implemented
to support collaboration awareness in multi-developer projects. We explain the
concept behind Scamp, showing and explaining the offered visualizations.

In Chapter 4 we validate Scamp, by presenting its applications. We present
a few multi-developer projects that have been developed with the assistance of
Scamp.

We discuss the advantages and the limitations of Scamp and we propose
some possibile future work in Chapter 5.

Chapter 2

Multi-developer Projects

In a multi-developer project, the team composition can have an impact on the
overall development of projects. Nevertheless, dependencies among people work-
ing on the same project are unavoidable in any context [SNvdH03].

Collaborative software development is characterized by two or more people
working on the same artifact. When working in teams, cooperation and commu-
nication assume a fundamental role: team members need to be aware of each
other’s work, in order to avoid undesired situations (changes with side-effect,
code duplications, and other potentially harmfull activities).

2.1 Collaboration Awareness

Collaboration awareness is the comprehension of others’ activities, followed by
their contextualization with respect to ours. More clearly, it is the understand-
ing of who is working with you, what they are doing, and how your own actions
interact with theirs [GG02]. As already mentioned, awareness is an important
aspect when developing software systems in teams. Lack of group awareness
can bring a number of troubles, whereas increasing awareness of others’ activi-
ties can greatly improve the effectiveness of developers and their development
experience in general.

A situation where developers are informed of other’s activities has many ben-
efit at multiple levels. At low level (code), it can avoid concurrent modification
in the same piece of code (and the consequent tedious merging task) and it can
prevent circumstances where multiple developers are unaware of performing
the same task (wasting working time and effort). At high level (information),
knowing “who is doing what”, can give us a good understanding of how the
work is distributed among the team and who are the domain experts for the vari-
ous software components. Being able to identify who has been working the most

5

6 2.1 Collaboration Awareness

Figure 2.1: Collaboration.

(recently and/or frequently) on a particular file, can give a good indication of
whom to ask for explanations or assistance [SGPP04].

On the other hand, an awareness deficit can hinder development: if people
do not know what others are doing, they might be afraid of modifying part of the
system for which they are not the only responsible, with the purpose of avoiding
conflicts and or incompatibilities [HL09b].

For those reasons, we believe that developers should be informed of other’s
actions. Team member shall be “monitored” and notified as soon as something
relevant happens. For example: if two developers are working on the same file,
they should know it as soon as possible (instead of “discovering” it at check-in
time). This can be done with tool support for collaborative software develop-
ment, specifically, with tools that both monitor and notify users during develop-
ment sessions.

A few main requirements can be identified for monitoring and notification
processes. First of all, neither the gathering nor the display of data should be
disruptive and performance must not be affected. Secondly, to “point out” other’s
activity in an effective way, the delay between collection of the data and the rela-
tive notification, has to be as close as possible to real-time (considering network
latency). Additionally, the collection of data has to be transparent to the user
(no extra effort must be needed), yet does not have to be invasive (the user does
not have to feel “spied”, otherwise he/she will neglect the use of the tool). In-
formation collected should possibly be fine-grained both in term of temporality
(where capturing every action made is more precise than grouping them) and
granularity of entities (where “method x has changed” is more precise than “file
y has changed”). On the notification point of view, we believe that users should
be informed in a natural way: not disturbing, but noticeable and clear. Views
should display other’s activity in an efficient way and only relevant information
should be presented.

7 2.2 State of the Art

2.2 State of the Art

Collaboration support is mainly furnished by SCM1 systems, which principally
offer synchronization features. Little effort has however been put in awareness
and communication assistance.

SCM repositories contain historical data about software systems, since they
hold both source code and information on who committed which change. Such
systems are indeed a source of information to determine aspects such as code
ownership. Nevertheless their granularity is insufficient (due to the check-in/check-
out protocol) to track back what happened inside a development session. More-
over a large majority of repositories are file-based (for the purpose of being
language independent), reducing further the granularity of information. SCM
are therefore a poor source of information for group awareness.

Change-based approaches are being studied and developed. Repositories
based on single changes would suit best to a collaborative environment (beside
keeping historical information as it is, rather than merged into “arbitrary snap-
shots”).

2.2.1 Software Repositories

Versioning systems (repositories) store snapshots of projects in order to recover
past version at any time and easily share projects.

There are two current free mainstream versioning systems, CVS and Sub-
version, both of which are file-based. CVS has been the favorite one for years,
however we are experiencing a shift toward Subversion. This because it has a
better underlying structure which uses a database rather than RCS files. Sub-
version also comes along with support for changesets and for refactoring (i.e.: it
recognize if a file is moved/renamed). This kind of repositories have two great
advantages: they are language-independent (i.e. one can store whatever he
likes: code, documents, pictures,..) and they are open-source (their availability
is thus very high and with a large community behind). Drawbacks of such ap-
proaches are however various, mainly because of their asynchronous nature. In a
collaborative context, where team members are working at the same moment on
the artifact, developers would have to commit changes to the system as they are
made and to frequently update the system with new versions from others. Actu-
ally, “Developers tend to spend quite a lot of time between commits, because they are
not comfortable if they commit their changes every 5 minutes, fearing having too
much revisions or committing code in an imperfect state (which is not a problem, if
the changes committed are tagged appropriately)” [RL05]. Moreover such a prac-

1software configuration management

8 2.2 State of the Art

tice (i.e. committing and updating code with hight frequency) is quite invasive
and would disturb the programming session. From an evolution analysis point
of view, snapshot-based repositories lead to information losses in the history of
software systems. In fact, due to their nature of “commits”, we see a snapshot as
a single big change to the system, losing information about all that happened in-
between one snapshot and another (for example it is not possibile to reconstruct
the chronological order in which changes have been performed). Concluding, a
file-based repository gives information about who committed what (which files/
lines) and at what time. Changes can be measured in number of lines (although
changing a single line is seen as removing the old line and then adding a new
one). Any further information needs to be mined.

Another kind of versioning system is entity-based, where history is kept with
a finer granularity (not “files&lines”, but “classes&methods”). In order to ver-
sion entities at the program level, entity-based repositories are consequentially
specific to a programming language.An example of such repository based on en-
tities is the StORE repository, which is the versioning system currently in use by
Cincom VisualWork Smalltalk2. StORE has the advantage that, while it is spe-
cific to its “language implementation”, every application developed with Visual-
Work Smalltalk can be “committed” to StORE (creating a quite large eco-system).
Same as file-based versioning systems, the current entity-based repositories are
snapshot based, meaning the changes to the entities will be recorded only when
the developer commits. In order to enforce frequent commits, StORE provides
a number of tags (such as “broken”, “integration-ready” and “release”); one of
which has to be chosen at each commit. In this way the developer feel less
frightened to commit “work in progress” versions. (Of course the tags are useful
also in order to reconstruct the evolution the project, providing additional infor-
mation about the snapshots.) The direct advantage of entity-based repositories
is the information about the software system and the support for refactoring,
merging and branching entities; nevertheless to analyze the evolution of the
system, further information must be extracted.

Analyzing software evolution based on the data provided by main-
stream versioning systems corresponds to watching a movie where many
frames are missing. - Robbes [RL07]

Current research, regarding versioning systems, is going toward the develop-
ment of a new kind of software repository, which would overcome the mentioned
drawbacks implied by the current approaches based on concepts such as file and

2http://www.cincomsmalltalk.com/

9 2.3 Syde

or snapshot. An example of research toward change-based approach is the one
implemented in SpyWare by Robbes, which records all the semantic changes
(seen as first-class entities) on a system, directly from the IDE (developers do
not have to perform any commit operation). [RL06]

2.2.2 Awareness Support

If we consider the previously stated requirements for collaboration support in
the area of awareness, little or no specific effort has been made. Schneider et
al. record developers’ actions and changes to software artifacts in a shadow
CVS repository. “Facts” (about processes, packages, classes and metods) are
then mined from the shadow repository and awareness information are visually
presented to the users. ProjectWatcher, the Eclipse plug-in implementing this
approach, proposes two different views: one focusing on activity awareness and
one on proximity awareness. The first view visualizes team members and their
current activities in a “project overview” space, where a project artifact is or-
ganized in packages, files, classes and methods that gets overlaid by awareness
information. The second view allows instead to answer the question “who is
working with me”, by mapping awareness information on a dependency graph
[SGPP04]. Even if edits can be auto-committed at a different time intervals, the
approach still follow the check-in/check-out protocol, thus lacking of precious
interaction information.

2.3 Syde

2.3.1 Synchronous Development

Hattori proposes a different approach to tackle the collaboration
problem, named synchronous development [HL09a]. The idea is to
provide a complete environment to teams, in order to assist them
into their collaborative development.

Syde, the research prototype implemented by Hattori, translates SpyWare’s
change-centric approach into a multi-developers context: it automatically records
every change by every developer, with the result of a detailed project repository
from which fine-grained information can be mined. Data gets collected in a
transparent way at every change and notified to a central server (Syde is a client-
server application). Then, for each change that compiles successfully, notifica-
tions about what, when and by whom has been modified, is immediately broad-
casted to clients. Hattori’s approach aims to overcome the loss of information

10 2.3 Syde

unavoidable in a file-based check-in/check-out management systems. However,
for now, Syde does not aim to fully replace SCM systems.

The immediate propagation of changes can have a series of positive effects on
collaboration, specifically in the awareness area. Developers tend to be afraid
of performing modification potentially concurrent (that is, for example, on a
set of files that could be modified by others). Moreover, physical distance be-
tween team members aggravates this situation, because communication is com-
promised. Syde can reduce the negative distance effects on collaboration. In
an environment specifically addressed to synchronous development, developers
might feel more free to apply changes, because they know that they will be in-
formed in case of potential conflicts. In the same way, changes with possible side
effects can be early spotted and tedious conflict prevented.

2.3.2 Design & Implementation

Syde is implemented in Java and it is an Eclipse plug-in. Its architecture is
composed of the following main components: the Inspector, the Viewer and the
Requestor at client side and the Collector, the Notifier and the Distributor at server
side. Those six are linked in pairs, as shown in Figure 2.2.

Eclipse

Syde (client) Syde (server)

Collector

Notifier

Distributor

...

Viewer

Inspector

 Requestor

...

Co
nfl

ict
M

an
ag

er

Li
st

en
er

s

Figure 2.2: Syde Architecture

• First of all, the Inspector and the Collector are responsible for the capture
of changes by developers. To do so, the inspector implements listeners
on the Eclipse’s workbench to collect metadata containing author’s name,
timestamp (of the change at client side) and status (successfully compiled
or not) of the changes, along with the changes themselves. The collector

11 2.3 Syde

component is whereas responsible of receiving changes (sent by the in-
spector) and storing them into central repository.
From a software evolution point of view, the data stored on Syde’s server is
worthy and can be used to perform precise analysis on the various projects.

• Secondly, once changes have been recorded, the Notifier is responsible for
the broadcast propagation of the changes (that successfully compiled) and
relative metadata to all registered client (the notifier has a list of all the
team members interested in receiving notification about whatever project).
On the other side (the client), the Viewer receives the information and dis-
play them within an Eclipse view. Syde’s viewer is the component that,
at the end, provides awareness to the users by displaying the changes re-
ceived from the notifier. Different ways of displaying information from the
notifier can be implemented by Syde or by tools built on top of it. An ex-
ample is Scamp, that we will describe in the next section (see Section 3).
Scamp features additional views, in order to enhance awareness. Other
tools could be build to cope with additional specific problems.

• Finally there are the Requestor and the Distributor, which furnishes the
classical feature given by SCM systems. Once users get to know (via
viewer) that a part of the system changed, if they are interested, they
can ask for an update through the requestor. The requested part is then
returned back by the distributor, which will take care3 of updating the
client’s sources. It is worth to underline that the updated code is available
despite the fact that it has been committed to the traditional SCM in use,
if any. In fact, Syde is totally independent from any SCM repository.

Figure 2.3 shows a screenshot of Syde “in action”. Changes are chronolog-
ically notified to team members, with the indication of who performed it, at
what time and of course on which entity. Through this view, it is also possible to
request for updates.

Figure 2. Screenshot of Syde.

developer tends to save (and automatically compile) changes
frequently enough for differencing algorithms, such as the
one proposed by Fluri et al. [22], to be able to precisely
find all changes from two subsequent versions. If the project
does not use the Java Builder, the Inspector listens to
POST_CHANGE events, and is therefore unable to check for
compilation errors in the file.

On the server side, the Collector (1) receives the file,
(2) versions and saves it, (3) saves the metadata, and (4)
preempts the Notifier.

The Notifier manages which developers are connected to
Syde for a given project by keeping a set of projects and,
for each project, a set of developers. Immediately after a
new version of a file is available on the server, it broadcasts
an alert to all developers. To show the alerts in the plug-in,
the Viewer makes a contribution to Eclipse’s workbench by
creating a new ViewPart, as shown in Figure 2. Finally,
the Requestor adds the action “Get last version” to Syde’s
view, which requests from the Distributor the last version
of the selected file in the view.

3.3. Data

The history log of mainstream SCM systems usually
describes which files have been checked in, when and by
whom. For example, CVS history log shows: file name,
revision, author, timestamp, author’s comment, and number
of lines of code added and removed. Subversion gives the
same information, except for the number of lines of code
added and removed.

Syde’s history log offers the same kind of information,
but for every change performed by a developer. It shows:
file name, revision, author, timestamp, and whether the file
has compilation errors or not.

4. Case Study

We have collected data from the development of a number
of projects, including Syde itself. Table 1 shows the projects,
the number of developers working in each project, the period
of usage of Syde, and the number of changes collected so far.
The first three projects are the components of Syde, Scamp
is a master’s project, X-model, X-ray, and X-porter are com-
ponents of a bachelor’s project. Speed and SpeedPersistence
are two components of an industrial system2.

Project Dev. Period Changes
Syde server 1 Aug 04 2008 - present 11,512
Syde plug-in 1 Aug 04 2008 - present 1,641
Syde interface 1 Aug 26 2008 - present 1,437
Scamp 1 Mar 02 2009 - present 976
X-model 1 Aug 16 2008 - Sep 11 2008 4.478
X-porter 1 Aug 04 2008 - Aug 28 2008 951
X-ray 1 Aug 04 2008 - Aug 28 2008 2,679
Speed 4 Jan 22 2009 - Feb 06 2009 2,429
SpeedPersistence 4 Jan 22 2009 - Feb 06 2009 208

Table 1. Projects that have been using Syde.

In [12] we showed an initial analysis of the history of
projects developed by a single developer. In the context of
this paper we use the data provided by Syde to tackle the
following research question: How can Syde’s history log help
to characterize code ownership?

To discuss this question we analyze Syde’s history log
of Speed, together with two the corresponding CVS history
log.

Speed is a commercial project that is under development
at the software factory of CPMBraxis 3. This software
factory was chosen because of its professional character-
istics: it has a well defined production process certified by
CMMI-DEV 5 and ISO 9001:2000 standards; its projects
adopt metrics, software reuse and new technologies for
delivering high quality products; and it has highly qualified
professionals.

To collect the data from Speed, Syde was embedded into
the production environment of the software factory, and the
project’s team was instructed, but not forced to use it for a
period of 15 days. Speed has a total of 185 Java files, from
which 94 had new versions checked into the CVS repository,
and 50 had changes captured by Syde. During a period
of 15 days, Syde collected a total of 2,429 changes. The
number of new versions checked into the CVS repository
that corresponds to these changes was 187.

Figure 3 shows the timeline of changes that Speed under-
went during the 15-days period. Each line corresponds to
a file that was versioned by Syde (The names of the files

2. For these two projects, pseudonyms were used to meet privacy
agreements.

3. See http://www.cpmbraxis.com

Figure 2.3: Syde

3A conflict manager has not yet been implemented.

12 2.3 Syde

For further information about Syde’s concept and implementation we recom-
mend to read [HL09b].

2.3.3 Validation & Results

A first Syde prototype has been used to get an insight into programmers’ behav-
ior while developing. Two (single-developer) projects with different character-
istics have been monitored: one (X-Porter) was in development phase, while the
second one (Syde itself) was under maintenance (bug fixing). Changes made to
the projects, categorized into “successful compilation” and “unsuccessful compi-
lation”, were compared (see Figure 2.4). An analysis of the results shown that
during a development phase the ratio of unsuccessful compilations is higher than
in a project being maintained [HL09a]. This first investigation has mainly been
made as a proof-of-concept.

Eclipse

Syde (client) Syde (server)

Collector

Notifier

Distributor

...

Viewer

Inspector

 Requestor

...

L
is

te
n
e
rs

C
o
n
fl
ic

t
M

a
n
a
g
e
r

Figure 1. Syde Architecture

is being used by the notifier, but it can also be used to
perform software evolution analysis.

• The Notifier and the Viewer. Syde’s notifier maintains
a list of client instances that need to be notified of any
change, and is responsible for broadcasting the meta-
data to all members of the team. Syde’s client fea-
tures different ways to display information about the
changing system within Eclipse itself, thus providing
awareness of changes to all developers. In the future
Syde should offer to developers additional means of
augment awareness. One possibility is to allow devel-
opers to broadcast messages, e.g., if someone is having
difficulties with a specific part of the code and does not
know who to ask, he could broadcast for help.

• The Distributor and the Requestor. Once a developer
has become aware that certain parts of the system have
changed, he can preempt the underlying classical ver-
sioning system and request from the Syde server an up-
date of specific parts of the code, which are then sent
by Syde’s distributor, and updated in the client’s source
base. In case there is a merging conflict between local
and newer versions, the requestor module offers a con-
flict manager (not yet implemented), based on Fluri’s
ChangeDistiller algorithm [2].

Syde will provide extra information without disrupting
or distracting developer from his work. Change alerts
should be displayed as minimum markers beside each
changed element, and in a view that the developer can sim-
ply close or minimize. Information about who is viewing
what should only appear if and when the developer requests.
Furthermore, Syde should be easily enabled and disabled.

4. Preliminary Results

We have started to use Syde to monitor and record de-
velopers’ activities with the goal to understand how they

behave when programming. This initial analysis will help
us to adjust the granularity of change information that Syde
will supply for teams of developers. Up to now, we are
monitoring two Java projects, each with one developer in-
volved: our Syde plug-in; and X-Porter, which is the model
of a student’s bachelor project, called X-Ray [8].

X-Porter

Syde

Successful Compilation Unsuccessful Compilation

Figure 2. Preliminary results

We analyzed a total of 2,690 changes from X-Porter and
457 from Syde plug-in within a time span of 14 days. Fig-
ure 2 shows the results. During this period X-Porter was un-
der development, while the main activity for Syde plug-in
was bug fixing, a maintenance activity. In the graphs each
mark corresponds to a file that a developer tried to com-
pile at a certain time. The blue circles are files successfully
compiled and the orange diamonds are files that contained
compilation errors and were not saved as new versions.

While we collect more change information that what
would be possible with a conventional versioning system,
a valid counter-argument is that we also collect “noise”, for
example information about changes that would correspond
more to a trial-and-error development style, and which are
therefore not important for other developers. In the future
we plan to implement a series of mechanisms to process the
collected information. This first experiment we performed
is to be considered as a proof-of-concept.

By comparing the two graphs, we see that when the
main activity is development unsuccessful compilations oc-
cur much more often than during maintenance. A possible
interpretation is that Java developers implement by trying,
breaking and fixing their code. On the other hand, when fix-
ing specific parts of the code, they tend to circumvent com-
pilation errors. For future analysis, we plan to investigate

Eclipse

Syde (client) Syde (server)

Collector

Notifier

Distributor

...

Viewer

Inspector

 Requestor

...

L
is

te
n
e
rs

C
o
n
fl
ic

t
M

a
n
a
g
e
r

Figure 1. Syde Architecture

is being used by the notifier, but it can also be used to
perform software evolution analysis.

• The Notifier and the Viewer. Syde’s notifier maintains
a list of client instances that need to be notified of any
change, and is responsible for broadcasting the meta-
data to all members of the team. Syde’s client fea-
tures different ways to display information about the
changing system within Eclipse itself, thus providing
awareness of changes to all developers. In the future
Syde should offer to developers additional means of
augment awareness. One possibility is to allow devel-
opers to broadcast messages, e.g., if someone is having
difficulties with a specific part of the code and does not
know who to ask, he could broadcast for help.

• The Distributor and the Requestor. Once a developer
has become aware that certain parts of the system have
changed, he can preempt the underlying classical ver-
sioning system and request from the Syde server an up-
date of specific parts of the code, which are then sent
by Syde’s distributor, and updated in the client’s source
base. In case there is a merging conflict between local
and newer versions, the requestor module offers a con-
flict manager (not yet implemented), based on Fluri’s
ChangeDistiller algorithm [2].

Syde will provide extra information without disrupting
or distracting developer from his work. Change alerts
should be displayed as minimum markers beside each
changed element, and in a view that the developer can sim-
ply close or minimize. Information about who is viewing
what should only appear if and when the developer requests.
Furthermore, Syde should be easily enabled and disabled.

4. Preliminary Results

We have started to use Syde to monitor and record de-
velopers’ activities with the goal to understand how they

behave when programming. This initial analysis will help
us to adjust the granularity of change information that Syde
will supply for teams of developers. Up to now, we are
monitoring two Java projects, each with one developer in-
volved: our Syde plug-in; and X-Porter, which is the model
of a student’s bachelor project, called X-Ray [8].

X-Porter

Syde

Successful Compilation Unsuccessful Compilation

Figure 2. Preliminary results

We analyzed a total of 2,690 changes from X-Porter and
457 from Syde plug-in within a time span of 14 days. Fig-
ure 2 shows the results. During this period X-Porter was un-
der development, while the main activity for Syde plug-in
was bug fixing, a maintenance activity. In the graphs each
mark corresponds to a file that a developer tried to com-
pile at a certain time. The blue circles are files successfully
compiled and the orange diamonds are files that contained
compilation errors and were not saved as new versions.

While we collect more change information that what
would be possible with a conventional versioning system,
a valid counter-argument is that we also collect “noise”, for
example information about changes that would correspond
more to a trial-and-error development style, and which are
therefore not important for other developers. In the future
we plan to implement a series of mechanisms to process the
collected information. This first experiment we performed
is to be considered as a proof-of-concept.

By comparing the two graphs, we see that when the
main activity is development unsuccessful compilations oc-
cur much more often than during maintenance. A possible
interpretation is that Java developers implement by trying,
breaking and fixing their code. On the other hand, when fix-
ing specific parts of the code, they tend to circumvent com-
pilation errors. For future analysis, we plan to investigate

Successful Compilation Unsuccessful Compilation

Figure 2.4: Recorded changes, categorized by successfulness of compilation.

Further analysis on data collected by Syde have been reported in [HL09b].
Several teams have been using Syde while developing their projects. Of par-
ticular interest in this analysis are two components of an industrial project, in
a multi-developer context. Developers’ activities have been monitored through
Syde (which was embedded into the production environment of the relative soft-
ware factory) for a period of 15 days, collecting around 2,500 changes overall.

• As first analysis, changes captured by Syde’s have been compared to check-
ins into a CVS repository, also in use by the team. The number of check-ins
was 187 (7.5% with respect to the number of changes registered by Syde).

• A second analysis on the data, reveals a number of potential merging con-
flicts. Two changes on the same entity were marked as potentially conflict-
ing if they where made by two different developers and within a 2 hours

13 2.3 Syde

span. The comparison between changes recorded by Syde and CVS com-
mits, reveal that the developers tend to not commit changes to CVS after
a development session. The longer a changes remains uncommitted, the
more the chance of merging conflicts arises.

Unfortunately among the team of four developers, only two at a time where
working on the project, due to time constraints and deadlines for other projects
they were involved. Nevertheless, the previous annotations on the granularity
of information and on detection of possibile conflicts, can already give a good
idea of the validity of Syde as environment for synchronous development. In
fact, using Syde, the team members are constantly up-to-date on what is going
on. Conflicts can be therefore preempted or at least spotted early on (instead of
being discovered days or weeks later, at check-in time).

In the same paper, Hattori indicates how it is possible to establish code own-
ership through Syde’s information. For a first definition of code owner, we refer
to Gîrba et al. [GKSD05]: “Based on the number of lines of code added and re-
moved extracted from the CVS log, the owner of a file is the one who owns the
greater percentage of lines over the total number of lines of a file. In this case,
the total number of lines of a file is approximated with information extracted from
CVS.”. In order to apply the metrics by Gîrba, it is important that the frequency
of the commits by team members is about the same. However, developers tend
to commit changes to CVS in different ways (some performs frequent commits,
while others wait longer before committing). If we, instead, use the historical
data provided by Syde, it is possible to compute the above metric with higher
precision, considering every change made on the artifact. Code ownership can
then be redefined as: “The owner of a file f , own f , is the developer who has
performed the greater number of small changes c on it. A developer becomes the
owner of a file at the moment he performs c+1 changes in relation to the previous
owner.”. Validation of this new definition has been done by applying both metrics
to the same project, an then comparing the differences among the results. The
delta between the two approaches is quite significant: following Gîrba’s method,
a considerable number of files (31 out of 50) remain without owner, because
they were never committed within the considered time. Quite remarkable is
that changes were performed on many of those, allowing Hattori’s method to
attribute them an owner. Additionally, around 20% of the files got assigned a
different owner, when analyzing Syde’s information. These considerations stress
the fact that developers’ behaviour (specifically the frequency of changes with
respect to commits) must be considered when measuring code ownership.

Table 2.1 shows the experiment’s numerical results. We remind that for
this particular project under analysis, there were 187 CVS commits, while Syde

14 2.3 Syde

recorded 2,429 changes (over 15 days).

technique source classified files user A user B user C user D
Gîrba’s CVS commits 19% 53% 0% 37% 10%
Hattori’s Syde changes 100% 68% 18% 12% 2%

Table 2.1: Comparison between ownership assigned by different techniques.

Syde is still a prototype, thus it comes along with a number of limitations,
which we briefly discuss. First of all, in order to collect and broadcast changes,
clients must be online and connected to Syde (an auto-connect feature is avail-
able). In case the user is offline, changes will be stored in a buffer and uploaded
to the server when possible. However, this feature was not yet implemented
during the validation period presented above, in the course of which some de-
veloper reported to have forgotten to use Syde a few times.
Another aspect that has to be considered, is that Syde’s efficacy has so far been
tested only on a small set of project, most of them with a single developer.

As a conclusion on Syde, few possible extensions are already planned:

• increase the granularity of changes: at the moment Syde records changes
at file level, but the scenario is to be able to capture changes with more
details (for example, at metod level);

• implement a conflict manager, which would take care of occurring con-
flicts when updating entities;

• record the files that a developer browse during a development session (for
example in order to define dependencies between files);

• implement an instant messaging service, which would allow team mem-
bers to communicate without the need of additional tools external to the
environment;

• following the previous point, a support for the broadcast for help could
be introduced. Given the data at disposal of Syde and its technique to
detect code ownership, the request for help could be automatically sent
only to team members with the requested specific knowledge;

• implement more views, availing of visual metaphors, with the goal to
increase developers interaction.

15 2.4 Thesis Motivation

2.4 Thesis Motivation
We find Syde a valid tool to support collaborative development and we aim to
enhance its environment with visualizations. We developed Scamp, a tool on top
of Syde, which visually informs users about the changes happening in the sys-
tem. The project aims to improve the quality of development in multi-developers
projects, in particular by increasing the level of collaboration awareness of their
developers.

16 2.4 Thesis Motivation

Chapter 3

Scamp

3.1 Data Visualization

(A good) Visualization is a way of showing data, so that it is more accessible and
easily understood. Visualizations are world-widely used as a mean of communi-
cation (maps, graphs, road signs, pictures,..).

Figure 3.1: Visualization potpourri.

17

18 3.1 Data Visualization

Visual perception, with around 70% of the body’s sense receptors dedicated
to it, is the most developed and efficient of our senses, making vision the most
powerful and efficient channel for transmitting information. Following some
perception-based rules, we can display our data so that important and informa-
tive patterns stand out. It is therefore very useful to understand how we can
present data in the most efficient way: following some perception-based rules,
we can display our data so that important and informative patterns stand out.

Line Length Added Mark Size

Figure 3.2: Example of preattentive attributes of visual perception.

Our brain processes visual information with three distinct memories: iconic,
short-term and long-term. Iconic memory can be considered as a “buffer”, which
holds information for a very short period of time (less than a second). The
cognitive process that happens at this stage, called preattentive processing, is
automatic and unconscious. Only visual data that “looks interesting” at this
early stage is considered for further processing. There is a only limited number
of visual attributes that can be detected preattentively (such as those in Figure
3.2 or color).These preattentive attributes is what we can exploit to present our
data in the most effective way.

Visualization is any technique for creating images, diagrams, or anima-
tions to communicate a message. Visualization through visual imagery
has been an effective way to communicate both abstract and concrete
ideas since the dawn of man. - From Wikipedia [Wik09]

Visualizations are particularly useful in a context where there is a lot of in-
formation, because they can scale on both the number and type of information:
the data to visualize can potentially be a huge set, and can even be abstract.
Visualization can show data in particular and organized ways, which allows to
stress relevant facts, thus facilitates considerations about the data.

We believe that visualization is a good means in the context of collaboration
awareness, because it can offer information easily interpreted by developers.

19 3.2 Scamp Plug-in

3.2 Scamp Plug-in

As described in Section 2.3, Syde’s notifier broadcasts changes to clients, along
with relevant information. We use the same data as information source to visu-
ally inform developers about changes in a Java project, as they happen. Scamp’s
main functionality (collaboration awareness) is supported by the tool’s reliability
and usability. Moreover, once developers are aware of changes, they can decide
what action to take. They can access the local code easily and request an update
from the server directly through Scamp (for this feature, we avail ourselves of
Syde’s underlying structure), or they can use other means. Scamp, as Syde, is
thought to be complementary to SCM systems, therefore developers could also
choose to commit/update their code. Another scenario is that developers choose
to get in touch with each other (i.e. via phone call or instant messaging) to com-
municate directly.

Scamp analyzes one project at a time. A project is seen as a collection of
units. A unit is any file under the project directory (java file, xml, text,..).
Changes received from Syde are bound to the corresponding unit and to the
developer who made it. Since Scamp visualizes all the changed units, it will
show also those that are not yet in the user’s local working copy of the project.
Scamp provides three kinds of visualization: a Tag Cloud, a Buckets one and
a Decoration on files. The first two are available directly on the plug-in view,
while the decoration is visible on the files in the default Eclipse’s Package Ex-
plorer view.

The visual system has its own rules. We can easily see patterns pre-
sented in certain ways, but if they are presented in other ways, they
become invisible. - Colin Ware

The visualizations we propose are multivariate and multiscale, which means
that they embed all of the data received from Syde: file, author, and time for
any change (we recall that only successfully compiled changes get notified to
the clients). We decided to provide three different perspectives, each of them
made to inform about different aspects. The Tag Cloud view focuses more on
the temporal aspect by highlighting the most recent changed units, the “bucket”
one aims to remember to the developers how much others are working in the
same project/unit by showing all the changes, while the decoration points out
every file that has changed by adding to its icon a distinctive mark and indica-
tions about the last change made. Scamp’s visualizations show the last changes
happened during a given period of time, which can correspond to a day, a week

20 3.2 Scamp Plug-in

or a month. This allow both to have different overall views on how the sys-
tem evolves and to give some flexibility for different kinds of project or phase
they are in (for example when the team is in an intensive development phase,
a span time of one day is preferred, while if the project gets changed now and
then, a weekly or monthly history of change suits best). Currently this time span
corresponds to the most recent one (i.e. “today”): the possibility to choose the
starting date has not been implemented yet.

Figure 3.3: Scamp’s visualizations in a nutshell.

Since we want to focus on helping developers to be aware of others in their
context, we assign each developer a different color (which remains consistent
between the different views). The color attribute in a visualization has a funda-
mental role as it can be applied to almost any visual element. In fact, color can
be easily assigned to text, figures, lines, etc., while, other attributes may be more
difficult to assign (think of assigning a shape to a textual element). The disad-
vantage of using colors is that there is only a limited amount of them (around
12) that are distinct enough to use simultaneously; additionally, the human eye
can process only about 5 of them at a time. This drawback might be an issue
in projects with a large number of developers. Moreover a small percentage of
people suffer from colorblindness. We provide support for that by indicating the
name of the developer either explicitly (in the decoration) or in a tooltip.

Another aspect of Scamp’s visualization approach that enforces awareness
is that views are automatically updated, causing the visualization to move if
any change happened. We exploit this preattentive attribute (motion) to make
the new information stand out in the visualization. The motion is really fast
and it is unique for any change (i.e. it does not blink nor have a transitional

21 3.2 Scamp Plug-in

time), however it is enough for the iconic memory (which is the early and sub-
conscious stage of visual perception) to process the visual information. Being
automatically updated, Scamp views actually tell a story about the system be-
ing developed and this, other than inform, should keep developers “curious” (so
that they will check now and then what is going on).

As we will describe more in Section 3.3, Scamp visualizations do not show a
complete model of the project. Only units with the most recent changes are vis-
ible (with the possibility of changing the period of time visualized). This makes
the relevant information more clear, since there is no extra information, and
also increases performance. Moreover, since we do not model the whole project,
Scamp should scale up to industrial-size projects. As mentioned, Scamp only
shows the most recently changed unit, currently giving the option to choose be-
tween three different time spans: a day, a week or a month. We made this choice
because, for the purpose of collaboration awareness, we want to inform the de-
veloper of changes as they happen. Moreover information about old changes
ages with time and becomes less useful as the system evolves. Therefore the
oldest changes are not relevant for our objective.

During the development of Scamp we took benefit from Hattori’s collabora-
tion. Her kind assistance gave us the opportunity to fully exploit Syde’s change-
centric model. Another great advantage of the direct cooperation with Syde’s
developer has been the possibility to request additional services, such as the
possibility to obtain past changes by giving a period’s start and ending dates
(which was not originally available). Moreover, the usability of Scamp was im-
proved by moving the implementation of the attribution of colors to developers
at Syde server side. In fact, this guarantees consistency among different Scamp’s
instances: all the team members will see the same color representing the same
person.

Even though Scamp is conceived to be used during the development process,
it can also be employed in a research context. Analysis on the visualization can
be valuable in terms of software engineering. For example the Tag Cloud can
indicate where the current developing effort is located, while the “bucket” view
can be useful to get an insight about code ownership. We will explain these
and other phenomena more in the next section (3.3) and propose some concrete
example in Section 4, where we validate our tool. Scamp can also be used
in an educational environment, where professors can “check” the status of the
development of students’ projects.With the use of Scamp, it is possibile to follow
the development effort (that could be measured in number and frequency of
changes) of students, day by day. With regard of code ownership, Scamp would
allow to easily identify who contributed in which part of the project.

22 3.2 Scamp Plug-in

3.2.1 “User Manual”

In this Section we will present and show Scamp’s interface and how to interact
with the plug-in. (To start off, the plug-in needs to be in the plugin folder of
Eclipse, along with Syde and GEF, a graphical framework.)

A

Figure 3.4: Eclipse menu.

To analyze a project with Scamp, it must
be in the list of available projects in the Eclipse
workspace. When right clicking a project, in
the menu there will be an “Monitor project”
entry (see A in Figure 3.4). By selecting “An-
alyze Project”, the plug-in view will eventu-
ally open (only one project can be inspected
at the same time). As the view opens, there
will be indicated which project is currently un-
der analysis: in this example the Scamp plugin
itself (see Figure 3.5). Scamp allows to “fo-
cus” on a package too; in that case, the pack-
age path will be shown. By clicking on the
Syde icon to the right side, you will be able
to connect to Syde to submit and receive in-
formation. Users will be asked to enter their
Syde user name in order to connect (if they
were previously connected to Syde, the user
name used there will be remembered). Once
connected, the view will be filled with the
changes of the past week (in the Tag Cloud
visualization). This might take 5-6 seconds,
depending on the number of changes performed on the system.

Figure 3.5: Scamp initial empty view, with zoom on the toolbar.

23 3.2 Scamp Plug-in

When a user is connected the Syde’s toolbar will look like in Figure 3.6. From
the toolbar it is possible to load the past changes (last day, week or month), to
start/pause receiving new changes, to clear all the changes so far and to switch
between the two available visualizations. Moreover, it is possible to disconnect
from Syde.

Figure 3.6: Scamp toolbar.

Toolbar’s icons are thought to be symbolic and easy to understand. For the
sake of unambiguity, a tooltip indicating their function will appear on mouse
over. As can be seen in Figure 3.5 and 3.6, the toolbar is divided into chunks,
two of which are always visible: the first item, at the start, displays the name
of the project or package currently being monitored, while the part at the end,
related to Syde, has a connect/disconnect action and a label with the developer’s
username (if logged in). Once logged into Syde, more actions are visible: those
relative to changes, the ones to empty the views and those to trigger the differ-
ent visualizations. Following, there is an explanation of each one of the actions
directly available from the toolbar.

This action is actually a menu, which lets the users set the changes
time window, that is the period of time of the visible changes. This
can be currently set to 1 day, 1 week or 1 month. Setting the time
window will cause the last changes to be loaded and displayed.

Load the past changes, according to the time window’s span of
time. The result is displayed only after the loading.

Play / Pause for the changes. Clicking play will let Scamp receive
new changes and display them as they will arrive. Pause will stop that.
Pressing Play after having stopped, will cause all the past “queued”
changes to “flow”.

Clear all the changes (trash bin icon) & empty buckets. Those
buttons let the users delete all the past changes or only those into the
buckets visualization. Although changes can be easily recovered by
clicking the loading button or by changing the time window, the user
will be asked for a confirmation before removing the changes.

24 3.3 Visualizations

TagCloud visualization, where all the changes are seen as a Tag
Cloud, and Bucket visualization, where units are seen as buckets,
and changes are seen as little squares that fill them. The views will be
described in Section 3.3.

The Syde icon allows to disconnect from (respectively connect to)
Syde. If the user is already logged in, the name he in using to commit
changes will be shown in square brackets.

Logging to Syde through the right most button in the toolbar is the only oper-
ation that the user has to perform in order to “activate” Scamp. Once connected,
first the last changes will be loaded, and then the tool will automatically start
receiving changes. To interact with the views, users can pause and restart (play)
the flow of changes. This is particularly useful to see what happens if the user
needs to go away from the keyboard for a short period of time (i.e. stop when
we leave, and play as we get back, to see what happened). If during the period
of absence, the other team members performed a large number of changes, we
suggest to use the load function, which will recover the changes all at once. If
the user logs out during the development session, Scamp’s views will be still
available to see, but they will not be updated until he logs in back.

Scamp also provides the possibility to request for the update of a changed
file. Before deciding to do so, users can choose to compare their local copy
with the last version on the Syde server (a proficient file comparator is not yet
implemented). By right clicking a changed file (distinguishable by the decora-
tion) in the Eclipse’s Package Explorer view, a “Scamp” entry will be available in
the popup menu, making the compare and update options available. The menu
entry will appear only on those units that have changes.

3.3 Visualizations

3.3.1 TagCloud View

A tag cloud is a list of tags (usually words), which are weighted, colored and
sorted according to some metric (not necessarily the same). The tag cloud is a
visual technique that has born on the web (introduced the first time by the pop-
ular photo sharing website Flickr1) to describe the content of a website. Figure
3.7 shows a tag cloud about all the terms used in Scamp, where the size and

1http://www.flickr.com/

25 3.3 Visualizations

color of the tags are correlated to the frequency of the word in the tag. The
cloud is generated by TAGete (a plug-in by an UROP student).

Figure 3.7: A Tag Cloud on Scamp’s vocabulary (by TAGete).

We transfer the concept of the tag cloud to Scamp, depicting the units on
which at least a change has been performed.

Figure 3.8: A Tag Cloud by Scamp on Scamp itself.

In Scamp’s tag cloud (see an example in Figure 3.8) each tag represents a
different unit (i.e. a java class or a documentation file), in which size is propor-
tional to the number of changes made to it: the larger the amount of changes,
the bigger the tag is. Most recently changed units are shown at the beginning of
the cloud (top left), while units that have not been changed recently will have
their tag at the end (bottom right) of the cloud. The color of the tag is asso-
ciated to the developer who made the last (most recent) change to the unit it
represents.

26 3.3 Visualizations

Shortly after a change is made to a unit, it will be visible on the tag cloud,
which gets constantly updated. We decided to keep tags sorted chronologically
because in a collaborative environment we are interested in the parts of a soft-
ware system that get modified. The most frequently changed entities will be at
the beginning of the cloud, which is the first spot where most people’s eye will
naturally look. In this way the users can always know with a glimpse which are
the files being modified at the moment. New changes are noticeable because
the tag corresponding to the modified unit will “move” at the beginning of the
tag cloud and the color will change to the color of the developer that has made
the change. In this way the user will be aware that something happened in the
system and he will know what changed and by whom. Additionally, it is possi-
ble (thanks to our iconic memory) to remember where the tag was previously
located and its old color, which can give additional information about what is
going on. Moreover, the size of the tag, which gradually increase as the unit
evolves, aims to give an insight about the kind of unit and its importance in
that development phase. For example, it is likely that central or problematic
components of a system will have a higher number of changes, thus a bigger
tag. When a new entity is created by a developer, the other team members will
see the corresponding tag displayed at the beginning of their tag cloud, as with
changes on units already in their local working copy of the project. To obtain
the source of the new entity, the team will need to update their local copies from
the repositories, once it gets committed.

The tag claud view is the default view in Scamp, because it is the one that is
more focused on collaboration awareness. The fact that it changes when there
are new changes, gives the idea that the system is alive. We calibrated the tool,
so that the visualization is refreshed at an appropriate frequency: a too rapid
refresh would be disturbing, while a too slow one would fail in its purpose of
showing changes in (close to) real-time.

The benefits of this view are multiple. The information given by the sorting
of tags is precious when team members work on the same files: if the particular
entity that a developer wants to modify is among the top ones, he might want
to check out the new version of the file before editing it, respectively to wait for
the other to be done working on that entity. On the other hand, if the file is
not among the most recently modified ones, developers should feel more free to
modify it, without fearing concurrent development.

Moreover, a developer can detect a possible conflict by noticing that the color
of a tag has changed from “his” color to another one in a short time, meaning
that someone else changed the entity probably without being aware of his code
modification. Team members do not have to constantly look at the view, because

27 3.3 Visualizations

anyway their mind will spot new changes and, only if it is relevant, process
further the information. Another phenomenon that could be detected by looking
at Scamp’s Tag Cloud view is the refactoring involving two different files. In this
case, we will see that the two files repeatedly alternate each other in taking the
spot at the beginning of the cloud. Detecting such facts is useful to developers,
because they become aware of these particular situations as they happen.

Figure 3.9: Another example of Tag Cloud on Scamp itself.

Interesting files, namely those most recently modified and the ones with most
changes (during the displayed period of time) can not only be detected more eas-
ily thanks to the visualization, but they can also be accessed in a faster way. In
fact, by clicking on a tag, the corresponding unit will be opened in the default
editor (if it is already in the user’s local copy). It is also easy, with the colors, to
recognize and select only those files that have been last touched by a particular
developer.

With regard to evolution analysis, observing the evolving of the tag cloud
during the development of the system can be particularly interesting. Depending
on the selected time span, different conclusion can be drawn about the ongoing
development by analyzing the tag cloud as a whole. If at the end of the day the
general picture (in term of size of tags) is similar for any time span, it can mean
that the development is homogeneous (entities are modified with the same fre-
quency through the development). If the scene of the modifications drastically
differ from a time span to the other, it can mean that the system is in a mainte-
nance phase: in a bug fixing phase it is possible that many un-related files are
modified. Additionally, considering a time span suitable to the project’s “devel-
opment style”, size and color of the tags can be revealing too. God Classes could
be spotted by the large and highly frequent number of changes made to them,
likely from many developers, whereas “activity” of developers can be spotted by
looking at tags’ colors.

We investigate possible patterns in Section 4, where we validate our tool.

28 3.3 Visualizations

3.3.2 Buckets View

In the previous section (Section 3.3.1) we described in details the Scamp’s Tag
Cloud view and we enumerated the various advantages it has. Although the Tag
Cloud is great for drawing the attention of team members on collaboration, it
looses information about changes made in the near past. While it holds historical
facts in the size of the tag and in the chronological order of units’ last change,
information about their authors is lost. We developed a second visualization,
that we call buckets, which retains knowledge about who contributed to the
entities.

The visualization’s name comes from the fact
that units are seen as “buckets”. Those containers
get “filled” by little squares, each of which repre-
sents one single change. The color of each change
maps to the developer that did it. As the plug-in gets
activated and the user connects to Syde, the buck-
ets in the view will be filled with the past changes
(if any). Oldest changes will be at the bottom of the
bucket, newest changes will appear at the top of all
the other changes already present (if any) in the bucket.
Changes will remain there as long as they happened in the given time span.
The result, as can be see in Figure 3.11, is a sequence of buckets, which differ
from each other at different extents in the number and color of contained items.
Each bucket will have at the top a label with its corresponding unit’s name,
which color changes according to the developer who contributed most to that
unit (and who, following Hattori’s definition, which says that the owner of a file
is the developer who has performed the greater number of small changes c on it, is
thus the unit’s current owner).

Figure 3.10: Buckets showing a month of activities in a two-developers project.

This kind of visualization brings along some considerable scalability issues,
which needed to be tackled both from a conceptual and a practical point of view.
In fact we have a limited space at disposal, where only a finite (small) number

29 3.3 Visualizations

of buckets can be always visible, while the systems to be monitored and ana-
lyzed are potentially very large. Although there is the possibility to horizontally
scroll the view and see all the buckets, we find impractical to actually browse a
very large number of entities. A solution is to sort the buckets, so that the most
relevant ones are visible. There are various metrics that can be adopted to sort
buckets: following chronological order (according to the date and time of the
last change), by number of changes (most changed units first), by frequency of
changes (weighting differently old and new changes), alphabetically, and others.
However, the fact that the visualization gets updated as there are new changes,
led us to choose the alphabetical sorting. We noticed that by sorting them ac-
cording to a metric that frequently changes (such as chronologically), results
in distracting the user and interfering with their observation: the view keeps
on “readjusting” and it becomes difficult to follow the units’ evolution. When
applying chronological sorting the buckets keep on changing order and when
sorting by number of changes we frequently noticed cases in which two or more
buckets were keeping on swapping between each other; with the result that in
both cases the visualization lose its value. Another solution, the one currently in
use, is to compromise between the number of displayed unit and the way they
are sorted. To decide how many units to display, we applied the Pareto principle,
which which states that a low percentage of variables causes a high percentage
of effects. This principle can generally be observed in any kind of large complex
system (population&wealth, traffic&roads, etc.) and is widely exploited to de-
cide how and where distribute resources. We approximate that 80% of a changes
involves 20% of the units, therefore the Buckets view will show only the 20%
most changed units (or a minimum of 15 units). We alphabetically sort those
selected buckets, so that their position will be kept more or less constant (de-
pending on the set of most modified unit) and we chose to sort them according
to the unit’s file path, so that units will also be conceptually sorted (units in the
same package will be near each other). Although this choices are good enough
for our current version of the prototype, we plan to investigate more these as-
pects. Finding other ways to sort the buckets and other percentages to choose
them, might lead to a more relevant visualization.

Figure 3.11: Buckets view “in action” on Scamp itself.

30 3.3 Visualizations

The focus of this visualization is mainly to see how each developer in the
team is contributing to the project and to keep into developers’ mind that they
might not be the only person in the team working on some component. For this
reason, information about the most relevant buckets is directly embedded into
the view (i.e. only those are visible), and chronological order is maintained both
by the appearing of new changes and by the order in which those are displayed.
This gives the possibility to exploit visualization features (i.e. color) to present
other aspects in an effective way.

Since we want to “drive” the user’s attention to other aspects, such as pat-
terns in the colors of the changes, the motion component has been given less
importance in this view than in the Tag Cloud. Changes that “appear” will still
be noticed by the user’s iconic memory, giving the indication that the unit is
evolving, however the attention that they capture is “low”.

Figure 3.12: Example
of patterns in buckets.

Figure 3.12 shows an example of buckets from a
real-case two-developers project. Changes in the buck-
ets come from the last month of development, which
roughly correspond to the duration of the whole project.
We can see that in the most noticeable element when
watching a single bucket is its changes’ colors, while if
we watch more than a bucket at a time, we also notice
(and compare) their different state of fullness. In the
particular example is possibile to catch in a glimpse that
the bucket labeled A has twice, respectively four time,
as much changes than the other three. Once noticed this
fact, the user attention is driven to this particular entity,
and the focus moves to the colors and their pattern(s).

We can recognize very different pattern in the colors
of the buckets:

• Bucket A has been co-developed by both developers, more or less in alter-
nating each other. We can spot that in the middle of the unit’s development
there has been a phase in which it has mainly been modified by only one
of the developers (the one with color red). We can see that during this
middle phase, which we assume to be continuous, there are a few changes
by the other developer (i.e. color blue): this could possibly have led to
conflicts.

• The second bucket, B, has initially been developed by both team members.
We can see two distinct blocs at the bottom of the bucket, where the two
developers have been alternating each other: first blue and then red. After

31 3.3 Visualizations

this first phase, the unit has been modified by developer blue, with very
few changes from the other team member, most of which are at the end of
the development (maybe for some bug fixes).

• C has mainly been developed by one developer (blue), however its devel-
opment partner (red) did some changes at the start and at the end.

• Unit D has entirely been developed by one developer: red.

We saw, when singularly analyzing each bucket, that B and C have both been
mainly modified by blue with a few changes by red and noticed that the majority
of those changes can be found at the end of their development. We can interpret
this in a number of ways: maybe at the end of the development the two develop-
ers had sessions of pair-programming, where red was working thus committing
changes, or perhaps red has been responsible for checking and/or adding docu-
mentation’s comments to units. From the example in Figure 3.12, we can also
see how code ownership can be spotted with a quick-look. While for bucket A it
can be difficult to determine which author contributed most, we clearly see that
buckets B and C are owned by blue, whereas C by red. By checking the color of
units’ name at the top of each bucket, we can see that the first three have a blue
label, while the last one is written in red, therefore blue can be considered the
owner of A. We find, anyway, that the labels’ color has only a complementary
value when determining code ownership (or expertise) and that looking at the
buckets is important. Bucket A is a good example showing that, while the unit’s
ownership is assigned to blue, both developers can be considered experts about
it. Concluding, the Buckets view can help in determining to whom ask questions
about entities in a system. In Section 4, where we discuss the validity our tool,
we will present more bucket’s patterns, with relative conclusions and comments.

When checking the Buckets view, users should always keep in mind that a
little square (i.e. a single change) is added each time some code is either mod-
ified, added or removed to the unit. It is therefore quite important to remember
that the level of changes in a bucket is not directly proportional to the “length”
of the entities, for example measured in number of lines of code. The Buckets
view aims to give the idea that entities are evolving, which is represented by
the growing amount of changes. We find that our approach can give a better
insight into the effort taken to develop an unit, with respect to the information
given by comparing two unit’s versions through CVS or Subversion. For exam-
ple, the case of a removal of code is considered as any other change, while in a
SCM it mostly result in a negative difference in the number of file’s lines, which
might give the false impression of being necessarily something unwanted. The

32 3.3 Visualizations

same example is valid in the more general case of code modification of bug fix-
ing (the result of comparing the two versions from a SCM repository shows the
number of lines added and removed, flattening the real number of changes the
unit undergo since the last snapshot and reducing the user’s perception about
the file’s evolution). Exploiting this, Scamp provides the possibility to empty
the buckets. A user can empty the buckets to follow the evolution of the system
from that point in time on. If needed, past changes can be recovered at any time.

While tags in the Tag Cloud has a tooltip indicating the name of the last
developer that modified it, in the Buckets the name of the developers are not
reported anywhere (we are still investigating how to do it in a non-disruptive
way). A third view visualizing developers, currently under development, will be
integrated in the plug-in to overcome this issue (see Section 3.3.4). For now,
we propose to switch to the Tag Cloud view to check out which color is as-
signed to which developer (this method should work fine in a project with up
to five developers, because our memory can memorize around that number of
developer-color pairs and retain the information long enough to switch back to
the Buckets view and transfer it to the visualization colors).

As final remark: each bucket has a tooltip, which indicates the full path of
the corresponding unit and the exact number of changes it underwent during
the visualized time span.

3.3.3 Decoration

The Scamp plug-in, other than the two already mentioned views, also provides
a decoration (little annotations on the Package Explorer) for the files in the
project. Project’s files that changed will be marked, so that users will know
that “something is going on”. Scamp’s Decoration is composed of three main
elements: an overlaid icon, an arrow and an annotation, respectly signed as A, B
and C in Figure 3.13.

A

B

C

Figure 3.13: Decoration added by Scamp to modified file.

33 3.3 Visualizations

Additionally, a fourth element (an annotation with “[Scamp Eyes]”), is added
after the name of the project (and, if any, package) that is being monitored.

A - A black icon is overlaid to the icon of the files (i.e. units) which have
changed. The icon is a slim black stylized Scamp’s logo, which is very
visible and integrates well with the Package Explorer view. We decided
to put this element of decoration in the top left corner of a file’s icon,
trying to avoid conflicts with decorations added by other plug-ins. As an
example, CVS and Subversion add their decorations to the right of the icon
(respectively at the top and at the bottom).

The goal of this decoration is to mark the changed units, so that they are
easily identified.

B - The second element of Scamp’s decoration is an arrow added right after
the icon, in front of the name of the file itself. The arrow is going up (∧),
if the changed has been changed by the user himself, or down (∨), if the
last changing the unit is another developer.

The arrow concisely indicates who made the last change, distinguishing
by the user of Scamp and the other developers of the team. Moreover it
reinforces the visibility of the changed units by shifting their name to the
right, causing misalignment in the list of files, which makes them “stand
out”.

C - If “someone else” changed a file/unit as last, an annotation will be visible
after the name of the file. This decoration contains the indication of who
changed it (i.e. Syde username) and when; showing only the time, omit-
ting the date, if the change has been made in the same day (i.e. “today”).

The annotation aims to give complementary interesting information in an
unobtrusive way.

The three decoration’s components have different goals, yet they coexist and
form an homogeneous Scamp’s feature, which informs once more the user that
the system is changing. The decorations are added to files only as some change
happens and can be cleared by deleting all the changes from the Scamp’s toolbar.
Decorations are not added when loading past changes, because this might result
in marking the majority of files, radically reducing the value of the decoration.

The advantages of the decoration are multiple. First of all it takes little space
and can be seen as long as the user is connected to Syde, even if the Scamp’s view
is not visible. Secondly it visually distinguish changed files from the others in
the project (while the other views we provide do not contemplate non-modified

34 3.3 Visualizations

units). Third, once the unit is modified, the arrow and the annotation decora-
tions will be automatically updated according to new changes. Additionally, it
potentially scales up with any project, as long as it can be imported in eclipse.

Compared to the other views, the Decoration is much more lightweight.
Users that find the visualizations too distracting can still benefit from Scamp
by only looking at the decorations. Collaboration awareness won’t be therefore
entirely compromised, in the case that Scamp’s main view is hidden.

Figure 3.14: Decoration and Tag Cloud showing the same information (on
Scamp).

Figure 3.14 shows the matching between the Decoration and the Tag Cloud
views (example on the Scamp project itself). Users that for some reason are not
interested in the main view, will still be informed through the decorations. Al-
though changes might not be spotted as they happen, developers will eventually
notice that a file has been modified by seeing the decoration at the moment they
open a it for editing. If the file is open in the editor, the decoration will be visible
also in the Eclipse’s Outline view (see Figure 3.15).

Figure 3.15: Decoration in Eclipse’s Outline view.

35 3.3 Visualizations

3.3.4 Developers View

In this section we describe a third view, the Developers view, which is currently
under development and therefore is not yet integrated part of the Scamp plug-in.
The goal of this view is to visualize all the team members that took part in the
project’s development, giving information about their assigned colors and if they
are currently connected to Syde. Moreover we plan to embed indications about
how much they contributed. There are a few ideas about how to consistently
display all the information in unique view:

• A possible idea is to “reuse” the concept of the tag cloud. Each tag would
represent a developer and encode both his user name and color in its text,
with size mapped to the number of changes he made (always in the given
time span, which is common for all the views). The by looking at the tag
cloud, users will spot either the color of the developer’s name they are
interested it and know the matching in a second. Tags can be separated
in online and offline users and then sorted, for example, by number of
changes made or alphabetically. Sorting them by number of changes can
help the look up of both a color or developer’s name, because users already
have an insight of the amount of his contribution if they previously looked
at the Buckets view.

• Another alternative is to implement a rich buddy list, like those of the
well known IMs, where each entry in the list would correspond to a team
member. The user name can be colored, or the developer’s color can be
otherwise added as an additional icon in each entry. This kind of view
would be particularly useful in the case where the status of team members
has a central role, because the status can either be displayed as additional
icon/text in the entry, or can be mapped to the text’s color (for exam-
ple distinguish offline developers by writing their username in light gray).
Moreover, if the status is mapped to an icon, there is the possibility to add
other kinds of status (such as “idle”, “developing” or “away”), which could
be automatically detected by the plug-in and then broadcasted to the other
team members. With regard to this, a twitter-like status message with ad-
ditional information, such as date and time of the last change(s) made
to the system, could also be automatically assigned by Scamp, informing
others about the last few units modified by a developer and making this
visualization a rich pool of information about developers. Team members
could also have the possibility to keep others updated by adding them-
selves information about what features they are implementing or which
bug they are trying to fix.

36 3.3 Visualizations

• Extending the previous point, a small chat could be developed to serve
the purpose of visualizing developers, informing the user about who else
of the team is logged on Syde and easing communication among team
members. A chat would allow users to exchange messages between each
other or broadcast a request for help.

• A different approach could be to visualize the developers and the or “corre-
lations” among them. This “Developer Pool” view will show developers,
maybe displayed as little colored sketched humas (or with a customiz-
able avatar), more or less close to each other, depending on the relation-
ship’s strength. Connections between developers can be measured with
the amount of units they developed together to a certain degree (a rel-
evant metric should be conceived and tested). The resulting view is a
graph-like visualization, which can reveal groups of developer. This can
be useful for a user to limit the number of colors he has to remember,
and for example to which he has to pay attention when watching the Tag
Cloud.

Visualizing developers in a dedicated view has a dual value: at one side it
assists the other two visualizations, by providing an explicit and clear match-
ing between colors and people; while from another point of view, it is comple-
mentary, enhancing awareness by notifying which team member is online and
working on the project at the moment.

Chapter 4

Validation

In this chapter we will present 3 real-case projects, that have been developed
with the assistance of Scamp. Two of the projects are two are students’ projects
developed in pairs, while the third one is Scamp itself, which have mainly been
developed by only one person, We will describe the users’ experience, show
screenshots and comment them in order to validate the ideas behind our proto-
type that we described in Chapter 3. Because of the nature of the data collected
and visualized by Scamp, the validation will also have a strong evolution analysis
component.

4.1 PF II Projects

Four USI student have been at disposal to use our prototype during the devel-
opment of their programming fundamental class final semester project. The stu-
dents have been given a tutorial about Scamp’s basics (with informations very
similar to those that can be found in Section 3.2.1). Their projects lasted for
about 4-5 weeks, during which we were refining and testing Scamp for its first
release. The students provided us with some intermediate feedback, reporting
any problem they encountered.

At the end of their semester project we collected a final feedback from each
one of the involved student, by means of a small questionary about their experi-
ence using Scamp.

4.1.1 Questionnaire

To validate our prototype, we are interested in knowing a few fact from its users.
In particular we first wanted to check if it has been used and was appreciated
and secondly if it served its purpose of enhancing collaboration awareness.

37

38 4.1 PF II Projects

Because the targets of our “interview” were students, we decided to send
them by e-mail a few (optional) questions, which they could answer with no
pressure. Among the requests we made to get an insight into their experience
with Scamp, we asked them to explain in few words what Scamp was, what is
its use is and we invited them to report its positive aspects and what could be,
otherwise, ameliorate.

4.1.2 PF II Project - Group 1

The first experience we collected is the one of Stefano and Thomas, which devel-
oped jArk. jArk is an Arkanoid/Breakout implementation in Java. After 5 weeks
of development, jArk counts approximately 7,200 lines of code in 83 classes (82
files), divided among 12 packages and has been committed almost 300 times.
The students have been using goggle code, which provide Subversion code host-
ing.

From Stefano’s experience, Scamp “lets the user see in real time other people
changes in the working project” and would be particularly useful in a context with
a large number of developer working on the same software system. Stefano and
Thomas have mostly been programming at the university, therefore they mainly
spent time working in the same place and speaking to each other. However,
Stefano reports that “it happened that seeing a file was beeing modified, I didn’t
commit my changes but waited for the other.”. Thomas reported that Scamp was
not so useful for the awareness purpose, since they almost always worked to-
gether, however we can understand from his answers that Scamp’s view was
almost always visible and active and that it was not distracting or disturbing
their development.

I like the fact that you can actually see who did how much.
- Stefano

The experience with Scamp lived by jArk’s developers was overall nice: even
if the awareness information where not always useful in their context, they both
liked the fact that with Scamp it is possibile to actually see how much each per-
son contributed to the project and how much each file has been modified (by
looking at the size of the tags). As suggestions for future works, both students
report that it would be useful if Scamp would provide the possibly to automat-
ically connect and the possibility to scroll through the Tag Cloud to see all the
units. In fact, although at the moment Scamp remembers the user’s login name,
it does not automatically log. Another suggestion made is that “it could be in-
tresting to have a preview of the changes being made, instead of only the files.”.

39 4.1 PF II Projects

A basic answer to the “request” is given by the simple comparator provided by
the current Scamp prototype, however, at the moment of the tutorial to the stu-
dents, this feature was not yet implemented. Nevertheless, to implement such
feature in a cleaner and more efficient way, Scamp will need finer-grained data
from Syde.

Figure 4.1: jArk’s Tag Cloud in April.

Figure 4.2: jArk’s Buckets in April.

Figure 4.3: jArk’s Buckets in May.

40 4.1 PF II Projects

Figure 4.1, 4.2 and 4.3 show screenshots of jArk’s changes: the first two pic-
tures are related to April, while the last one depicts changes done in May. From
the Tag Cloud we can that Game, GamePanel and Ball tags are more noticeable
than others. Knowing the game and talking to the developers we can confirm
that. More interesting is the fact that from the Buckets we can see how files (i.e.
classes) modeling the different kind of balls implemented in the game (i.e. De-
faultBall, ExplosiveBall, FastBall, GostBall,..) have the same pattern of changes.
Relate to that, a very similar pattern can also noticed in the changes of the Ball
class, which is most probably a superclass of the above, even though it has ap-
proximately twice as much changes as its subclasses.

From the statistics about the project, we can also see that, for this project,
Scamp’s units correspond almost 1-to-1 to classes (jArk has 83 classes and 81
files), therefore observations about the visualized “units”, applies to the pro-
gram’s Java classes.

4.1.3 PF II Project - Group 2

The second team that participated in Scamp’s validation was composed by Mark
and Luca (however, only Mark decided to answer our questions, therefore we
will report here only his experience). They developed a Java version of Pacman
in 5-6 weeks. The project counts 5 package, 59 classes, 382 metods, for a total
of 3,978 lines of code and has been committed 170 times to Subversion.

Pacman has been mainly developed in pair-programming, however some
parts of the project assigned to the one or the other student. They went through
an initial experimental phase, where they gained confidence with the technol-
ogy, and then they started from scratch some part of the project.

The useful part of this plugin was the possibility to see live if my other
team mate was modifying a file I was working on too, so that I could
ask him “What are you doing?”.
- Mark

Mark particularly liked the possibility to see who did the last change on each
file, while he found a bit disturbing the fact that any kind of file (in particular
he was concerned about images) are shown by Scamp, because that “filled” the
Tag Cloud view with tags not relevant to him. Moreover, he also suggested to
provide an “auto connect” feature.

41 4.1 PF II Projects

Figure 4.4 shows the Tag Cloud view by Scamp on Pacman. We find this view
very interesting from an engineering point of view, in fact from the image can
be spot a few classes: Level, Board. Ghost, Pacman, Player, Creature, Controller,..
we asked to the developers if those classes have a central role in the project
and they confirmed, however Mark pointed out that (due to some refactoring)
entities such as GameFrame, which can also be spotted in the cloud, do not ex-
its anymore. As a remark: these “false positive” gets automatically eliminated
through time, since those units do not get updated anymore, they will eventually
exit the visualized time span.

Figure 4.4: Pacman’s Tag Cloud (last month).

Figure 4.5 and 4.6 show two snapshots of the corresponding Buckets view.
From the Buckets, it is possible to spot some patterns. We can identify the units
that have been mainly pair-programmed and those that have been entirely de-
veloped by only one of the two developers. Mark explained that classes relatives
to the model and the testing classes have been pair-programmed, while other
independent components (such as the view) have been assigned to one of the
two developers (the view elements can be spotted in Figure 4.6, on the right
side, because they all have the same color).

42 4.1 PF II Projects

Figure 4.5: Pacman’s Buckets (last month).

Figure 4.6: Pacman’s Buckets (last month).

4.1.4 Conclusions on the PF II Projects experience

Two students’ projects have been constantly monitored by Scamp through their
development. Some patterns emerge from the resulting visualizations: the Tag
Cloud enlighten the central classes of the project, while the Buckets reveals pat-
terns between the contribution of developers. The Decoration has not been men-
tioned by any of the three students that answered our questionary (premising
that we ourselves did not mention any of our visualizations in the questionary).
The reasons behind this omission can be a few, the first of which is that the
decoration needs in some cases to be triggered from Eclipse’s preferences (thus,
maybe the students did not had it visible at all). While, in the case the deco-
rations were visible, it is possible that the Decoration is seen by the user as “an
extra and additional feature”, while identifying Scamp with its two main views.

43 4.2 Scamp itself

In a context where developers work close to each other (i.e. in the case of
pair-programming), the additional value added by Scamp to the project develop-
ment process result minor with respect to its potential value in a project where
developers do not interact with each other and works geographically distributed.

4.2 Scamp itself

Scamp has been developed over a period of about 3 months: during approxi-
mately half of the project, only one person was working on Scamp, while later
in the development a second one joned, cooperating in some parts. The first
weeks were focused on “exploring” APIs and in starting up with a first basic
visualization, the following 4-6 weeks have been the core of the development,
while the last month has mainly been dedicated to ameliorate the plug-in in
order to have a final stable release.

We had the possibility to use Syde to capture all the changes we made to
Scamp from project creation, which gave us the opportunity to test our plug-in
“in action” with known data since the very beginning of its development. Having
the possibility to test the plug-in visualizing our own ongoing development has
been of great advantage: the developer knew exactly what she was doing and
could check if the visualizations were matching her expectations. In this way, we
could constantly test and calibrate our views as Scamp was taking form. Being
ourselves the very first users of Scamp has for sure helped to make it better,
improving its views, and to enhance its usability.

To overcome the fact that Scamp has mainly been developed by only one
person, we decided to modify its code so that changes were resulting as coming
from a pool of developers, so that we could roughly simulate a multi developer
project. This “hack” has been useful throughout the development of Scamp and
has been removed in the last phases of the project, when Hattori joined the
development for some part of the plug-in and to test it. Besides, because we
introduced the additional developers at Scamp side (and not by connecting to
Syde with multiple different names), all the changes we made to Scamp have
been faithfully recorded.

Figures 4.7, 4.8 and 4.9 shows Scamp’s Buckets view for each one of the
months during which Scamp has been developed, while Figures 4.11, 4.12 and
4.13 show the corresponding Tag Cloud views. We can see from the Buckets
that during the first month (March), only one developer (color blue) has been
developing, as at the start of April (it can be guessed looking at the bottom of the
buckets). While from a collaborative point of view, the visualizations seem use-
less in a system being developed only by one developer, recording the changes

44 4.2 Scamp itself

can be useful from an evolutionary point of view. The information collected by
Syde can be useful in term of reverse engineering and Scamp’s views can help
detecting pattern in the data: for example the size of tags can indicate the im-
portance of an entity.

Figure 4.7: Scamp’s Buckets in March.

Figure 4.8: Scamp’s Buckets in April.

Figure 4.9: Scamp’s Buckets in May.

In April, as we can see in Figure 4.8, a second person (color azure) joined
the development. From an awareness point of view, we can see that during
April the changes have different color, indicating that two person collaborated.
This can also be seen by looking at the corresponding Tag Cloud view, in Figure

45 4.2 Scamp itself

4.12. However conclusions about the development effort made by a developers,
should be drawn after looking at the buckets. As an example, in Figure 4.10 we
can compare a Tag Cloud view, where all the tags have the same color, to the
corresponding Buckets view, where we can see that the units are actually being
modified also by others developers.

Figure 4.10: Contributions by developers: Tag Cloud vs. Buckets.

Comparing the screenshots it is possible to notice that the three Tag Cloud
views differ from each other, however some units (such as SydeServer) can be
spotted in each month. Those unit are the central ones in the system, thus have
constantly been evolving through the development, for example to extend them
because new features were added or to fix some issue.

Figure 4.11: Scamp’s Tag Cloud in March.

Table 4.1 presents the number of changes monthly made to the project as a
whole and to three of the most modifies units, while Table 4.2 summarizes the
total number of changes for each one of them, compared to the number of CVS
commits for the corresponding file. We can see that the number of quantity made
is remarkably larger with respect to the commits to the repository. However,
this could also be argumented with the fact that in a one-developer project, the
repositories serves as backup storage, rather than as a synchronization point.

46 4.2 Scamp itself

Figure 4.12: Scamp’s Tag Cloud in April.

Figure 4.13: Scamp’s Tag Cloud in May.

whole project ScampController SydeServer ChangeAwareUnit
march 25,458 1,039 847 922
april 17,091 419 593 106
may 2,564 25 35 18
total 45,113 1,483 1,475 1,046

Table 4.1: Changes made on Scamp as a whole and on three central units.

changes CVS commits
ScampController 1,483 32
SydeServer 1,475 52
ChangeAwareUnit 1,046 23

Table 4.2: Number of changes vs. number of CVS commits for the three most
changed units of Scamp.

Chapter 5

Conclusions

5.1 Summary

We developed Scamp to visualize information about ongoing development in
multi-developer projects. Our tool informs its users about changes made to the
system under analysis. We developed three kinds of visualization, each one
dedicated to a different aspect of the data.

There is a Tag Cloud view, which focus on notifying developers about changes
as they happen, allowing developers to follow all the changes made by others in
real time. This visualization displays the system as being alive and constantly
modified, moreover it gives indications about the most modified entities in the
system. Following, there is the Buckets view, which shows all the changes made
to the system, with indication of who made each change. The main goal of this
second view is to see how the project is evolving, based on what each developer
in the team is working on. The Decoration is the third visualization kind offered
by Scamp. It allows to see what changed, when and by whom directly from
the Package Explorer, in a more lightweight fashion with respect to the other
two proposed visualizations. The decorations added by Scamp will eventually
be seen by users at the moment they open a file, informing them about the
evolution of the project, even if the main view is not visible.

Scamp can potentially reduce merge conflicts, by notifying users about every
change that happens. A developer, once is aware that some other team member
is modifying an entity, can decide to wait before performing some change to it.
Our prototype also allows to know whom to ask in case of questions or problems
relative to some part of the system, in fact with Scamp code owners can be easily
identified. Additionally, Scamp can be useful in terms of software evolution
analysis, because it depicts all the changes made to the system, giving an insight
into the development efforts made to develop it. In the specific, the Tag Cloud

47

48 5.2 Discussion

gives information about the total effort made into each unit’s development, in
the context of the project (the information is contextualized, because the its
relevance is determined by comparing sizes between one tag and the other in
the same project); whereas the Buckets view gives information about how the
team members worked on the project, revealing, for example, which entities
have collaboratively developed and which have otherwise been mainly under
the responsibility of only one developer.

Besides using and testing our prototype extensively, while monitoring our
own ongoing development, we had the possibility to argument the validity of
Scamp by having four students using it during the development of their semester’s
projects. However, we also plan to apply Scamp in the context of larger (both in
term of size and number of developers) projects. We identify a number of future
improvement and extension to the plug-in, which we enumerated in Section 5.3.

5.2 Discussion

With its Tag Cloud, Buckets and Decoration, Scamp helps to keep track of the
evolution of a project, and is particularly useful for teams of developers working
de-located, because it informs all the team members about who is touching and
changing each entity (i.e. file) in the project. We think that using Scamp, every
developer is constantly aware that he/she is part of a team. It is also possible
that Scamp enhances communication among team members, because once they
are informed about some ongoing change they might be interested in, they can
contact their colleagues to obtain further information.

The advantages of being integrated into a development environment are
multiple. For example, Scamp can is at disposal of a large community of Java
developers without having them to switch development environment. However
this also limit the kind of visualization that can be offered (for example, of-
fering the possibility to visualize the development of a system in a movie like
manner, with the possibility to go back in time and replay changes, it is still un-
realistic in the context of Eclipse). Additionally, the plug-ins architecture needs
the plug-ins to be lightweight and use a limited amount of resources, whereas
animated views (such as as those provided by Scamp) needs to be constantly re-
freshed. Scamp’s view are therefore “heavy” in terms of needed resources (such
as memory). Moreover, due to the large amount of data about changes, the vi-
sualizations can filled only when the user is online (even if he wants to see past
changes).

With regards of its validation, Scamp needs further investigation. We find
that observing the users could also give more information about its validity.

49 5.3 Future Work

5.3 Future Work
As previously mentioned in the document, Scamp can be both improved and
extended. In this section we will list some of the improvements and give details
about what could be added in the future releases of the plug-in. Scamp’s future
works can be categorized in the following subsets:

• features to enhance usability

• improvements for the current visualizations

• additional views

• stability and performance

5.3.1 Features to enhance usability

Scamp is prototype and many features could be added to enhance it and ame-
liorate the user’s experience. We are listing here a few future works that could
be implemented.

• The main feature we plan to add in the near future to enhance the plug-
in usability is the possibility to change the starting time for the visualized
time span. This could be implemented by means of a calendar that would
let users choose a date. Additionally Scamp could provide the possibility
to choose a custom time span.

• Filters are another features that can be added across visualizations. Scamp
provides the possibility to limit the monitoring to a particular selected
package, however the possibility to filter the visualized units in a cus-
tom way is missing. In particular for the Buckets view, it could be useful to
limit the set of visualized buckets to some in which the user is interested.
Scamp could furnish developers with a set of predefined filters, such as
by developer(s) (which would show only units that have been modified by
the given developer or by all the specified developers), by workspace’s files
(which would show only those units for which a corresponding file ex-
ists in the user local copy of the project) or by viewed file (which would
show only those buckets relative to the files currently opened in the user’s
Eclipse editor).

• The scale used for the size of tags in the Tag Cloud and for the changes
in the Buckets should be tested and calibrated accordingly. At the moment
the views are adjusted for rather small projects developed by 1-2 people.

50 5.3 Future Work

Further investigation about larger projects should be done in order to get
an insight of how many changes per day, week and month there are on
average and, to then resize tags/changes according to the time span visu-
alized. The views could also be adjusted automatically given the project
statistics (computed automatically), however this would reduce the consis-
tency between views over time. Moreover, a zoom-in/zoom-out feature
to scale sizes in a custom way could be implemented to allow users to
adjust the views in a custom way.

• Future work include the possibility to automatically connect to Syde as
the user open Eclipse.

• We plan to implement a file comparator in the next releases, giving users
the possibility to compare their local copy to the one on Syde server. The
comparator would also help in case of conflicts, allowing to accept of
refuse new changes.

• Scamp, with special support from Syde, could also implement hierarchies
among developers, which will be reported when notifying changes. This
can be particularly useful in large teams, where developers have different
roles and power of action in the project. For example, the decoration on
changed entities could be of different shape, and/or color, indicating the
role in the team that the person who did the change has.

5.3.2 Improvement for the Buckets visualization

We consider a number of possible improvements for the Buckets visualization. In
particular, further investigation should be done regarding the number of visual-
ized buckets and their sorting order. The following ideas should be implemented
and tested in a prototype:

• a metric to select the most relevant buckets. We propose to select the
most frequently changed, weighing past and recent changes differently.

• A different way to display more buckets in the view. We propose to imple-
ment the view as if it has multiple “pages”. The top most relevant buckets
will then be in the first “page”, while the less relevant in the last one. Users
could browse the different pages, looking at buckets from the most to the
least relevant ones. This would avoid the problem of the current view,
where some relevant units results at the “far end” of the view.

• The possibility to distinguish the type of changes in modifications, addi-
tions and removal of code. Different shapes of the change’s representation

51 5.3 Future Work

could be used (to keep the information about the developer as color). Oth-
erwise provide a way to switch the mapping on the color from the devel-
opers to the type and back. Visualizing the type of changes in the Bucket
view could reveal different pattens, giving more information in particular
about buckets with many changes.

5.3.3 Additional views

Additionally to the Developers view, that we already described in details in Sec-
tion 3.3.4 and which is under development, more views can be added to Scamp
to both improve collaboration awareness and to help evolution analysis. The
plug-in is designed so that additional visualizations can be added easily, from a
technical point of view.

A few ideas about additional visualizations include:

• heat maps

• system complexity

• charts (sparklines)

Heat maps could be exploited to argument collaboration awareness in a
number of ways. A first possibility is to design a visualization in which the
whole system is represented (for example by means of a system complexity)
and where each unit changes color with an heat map fashion. New incoming
changes would make the color of the relative unit go toward red (or darker),
while as the time goes by without modifications, it would change toward blue
(or lighter). The visualization can then be enriched further with information
about developers. For example, making the size of the unit bigger or smaller
according to the number of developers working on it in certain period of time,
giving both a “tag cloud” and a heat map effect on the visualization (the first one
emphasizing the number of developers working on a unit, whereas the second
one points out the number of changes to units). This view would therefore show
(in real time), where the development efforts are distributed over the system
and make some patterns distinguishable at sight.

The system complexity view can also be transposed to a collaborative con-
text in a number of different ways, other than overlying it with a “changes heat
map”, for example adding a distinct marks for each developer that modified it
or by coloring each unit according to its “owner”. The advantage of such visual-
ization is that it would contextualize changes in the system as a whole.

Charts could also be added to Scamp, in particular with the goal of giv-
ing information about the exact chronological sequence of changes, for exam-
ple depicting them on a time line. Each developer could be represented by a

52 5.3 Future Work

“serie” in the chart, which would embed its color. Charts can make different
patterns stand out, stressing out one or the other variable (such as frequency of
changes), however scalability must be carefully considered. Collaboration data
is multivariate and multiscale, potentially leading to huge clumsy charts. Figure
5.1 and 5.2 show an example of a possibile visualization: a Sparkline. Each
sparkline would represent a single unit on a time line, showing all the changes
relatives to it by means of a marker placed whenever a change has been made.
The marker’s color matches the color of the developer that made it. Addition-
ally, Sparklines could show information about the type of the change, by using
different markers. This view could show every unit (or a subset of them, like in
the current Buckets view), or it could visualize only selected and requested units
(for example, Scamp could give the possibility to “inspect” a unit from any other
view, which would show its relative Sparkline). The sparkline has the advantage
of being a compact visualization, which can give many information at a glance.

8:24 9:36 10:48 12:00 13:12 14:24 15:36 16:48

RED BLU ORANGE

8:24 9:36 10:48 12:00 13:12 14:24 15:36 16:48

blu

Figure 5.1: Hypothetical Sparkline visualization: unit changed by three devel-
opers.

8:24 9:36 10:48 12:00 13:12 14:24 15:36 16:48

RED BLU ORANGE

8:24 9:36 10:48 12:00 13:12 14:24 15:36 16:48

blu

Figure 5.2: Hypothetical Sparkline visualization: unit changed by one developer.

5.3.4 Stability and performance

Scamp’s performance could be greatly increased: in fact, to avoid to deal with
memory problem due to caching at the early stage of our prototype, we decided
to load changes when the time span or the project vary, with consequent in-
creased waiting time for the user and increased network loading. Caching of
changes could be introduced to speed up the loading of past changes and the
switching from a time span to the other, however in addition to the usual mem-
ory issues caching needs to be thoroughly thought for the particular environment
Scamp is in. In particular it needs to be taken into account that some user could
be offline at the moment they make some changes (logging to Syde only later),

53 5.3 Future Work

in this case Scamp should be able to detect and retrieve those “old” changes to
avoid losses of informations and consequence inconsistency between views.

Scamp needs to be improved in term of stability too. In particular, it does
have some memory issues with the Buckets view when there are lots of changes
(i.e. when visualizing a whole month).

54 5.3 Future Work

Bibliography

[DB92] P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW’92), pages 107–114, Toronto,
Ontario, 1992. ACM Press.

[GG02] Carl Gutwin and Saul Greenberg. A descriptive framework of
workspace awareness for real-time groupware. Computer Supported
Cooperative Work (CSCW), 11(3 - 4):411–446, 2002.

[GKSD05] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane
Ducasse. How developers drive software evolution. In Proceedings
of International Workshop on Principles of Software Evolution (IW-
PSE 2005), pages 113–122. IEEE Computer Society Press, 2005.

[GPF99] Luis A. Guerrero, Roberto C. Portugal, and David A. Fuller. Top: A
platform for the development of web interfaces and collaborative
applications. CLEI Electron. J., 2(2), 1999.

[Heg09] Rajesh Hegde. Collaborative development environment using vi-
sual studio. http://research.microsoft.com/en-us/projects/
collabvs/default.aspx, June 2009.

[HL09a] Lile Hattori and Michele Lanza. An environment for synchronous
software development. In Proceedings of ICSE 2009 (31st ACM/IEEE
International Conference on Software Engineering - New Ideas and
Emerging Results Track), pages 223–226. IEEE CS Press, 2009.

[HL09b] Lile Hattori and Michele Lanza. Mining the history of synchronous
changes to refine code ownership. In Proceedings of MSR 2009 (6th
IEEE Working Conference on Mining Software Repositories), pages
141–150. IEEE CS Press, 2009.

[RL05] Romain Robbes and Michele Lanza. Versioning systems for evo-
lution research. In Proceedings of IWPSE 2005 (8th International

55

http://research.microsoft.com/en-us/projects/collabvs/default.aspx
http://research.microsoft.com/en-us/projects/collabvs/default.aspx

56 Bibliography

Workshop on Principles of Software Evolution), pages 155–164. IEEE
Computer Society, 2005.

[RL06] Romain Robbes and Michele Lanza. Change-based software evolu-
tion. In Proceedings of EVOL 2006 (1st International ERCIM Work-
shop on Challenges in Software Evolution), pages 159–164, 2006.

[RL07] Romain Robbes and Michele Lanza. Towards change-aware devel-
opment tools. Technical Report 6, Faculty of Informatics, Università
della Svizzerra Italiana, Lugano, Switzerland, may 2007.

[RL08] Romain Robbes and Michele Lanza. Spyware: a change-aware de-
velopment toolset. In ICSE, pages 847–850, 2008.

[SES05] Janice Singer, Robert Elves, and Margaret-Anne Storey. Navtracks:
Supporting navigation in software maintenance. In International
Conference on Software Maintenance (ICSM’05), pages 325–335, sep
2005.

[SGPP04] Kevin A. Schneider, Carl Gutwin, Reagan Penner, and David Paque-
tte. Mining a software developerÕs local interaction history. In In
Proceedings of the International Workshop on Mining Software Repos-
itories, pages 106–110, 2004.

[SKSH96] Christian Schuckmann, Lutz Kirchner, Jan Schümmer, and Jörg M.
Haake. Designing object-oriented synchronous groupware with
coast. In CSCW ’96: Proceedings of the 1996 ACM conference on
Computer supported cooperative work, pages 30–38, New York, NY,
USA, 1996. ACM.

[SNvdH03] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantir: raising aware-
ness among configuration management workspaces. In Software
Engineering, 2003. Proceedings. 25th International Conference on,
pages 444–454, 2003.

[SSS99] Jan Sch§mmer, Christian Schuckmann, and Till Sch§mmer. Coast
in action: An efficient way to build complex groupware, 1999.

[Wik09] Wikipedia. Visualization (computer graphics). http://en.
wikipedia.org/wiki/Visualization_(computer_graphics),
May 2009.

http://en.wikipedia.org/wiki/Visualization_(computer_graphics)
http://en.wikipedia.org/wiki/Visualization_(computer_graphics)

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Structure of the Document

	Multi-developer Projects
	Collaboration Awareness
	State of the Art
	Software Repositories
	Awareness Support

	Syde
	Synchronous Development
	Design & Implementation
	Validation & Results

	Thesis Motivation

	Scamp
	Data Visualization
	Scamp Plug-in
	``User Manual''

	Visualizations
	TagCloud View
	Buckets View
	Decoration
	Developers View

	Validation
	PF II Projects
	Questionnaire
	PF II Project - Group 1
	PF II Project - Group 2
	Conclusions on the PF II Projects experience

	Scamp itself

	Conclusions
	Summary
	Discussion
	Future Work
	Features to enhance usability
	Improvement for the Buckets visualization
	Additional views
	Stability and performance

	Bibliography

