
Assessing Software Documents by
Comprehension Effort

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

presented by

Talal El Afchal

under the supervision of

Prof. Michele Lanza

co-supervised by

Prof. Gabriele Bavota, Dr. Andrea Mocci, Dr. Luca Ponzanelli

September 2017

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Talal El Afchal
Lugano, 1 September 2017

i

Your living is determined not so
much by what life brings to you as
by the attitude you bring to life;
not so much by what happens to
you as by the way your mind
looks at what happens

Gubran Khalil Gubran

iii

iv

Abstract

Recommender systems for software engineering have become increasingly pop-
ular in recent years. These systems combine several methodologies to provide
suggestions that meet the developer’s needs. Recommender systems collect data
from online resources, such as blogs, forums, Q&A websites, and suggest doc-
uments or pieces of code that are most likely helpful to the developers. How-
ever, these systems are not taking into consideration their comprehension effort,
which may vary depending on the document familiarity and readability.

In this thesis, we present our approach to calculating the comprehension
effort, by creating a language model able to capture a document familiarity,
that we combine with the document readability. Usually developers are more
interested in documents which they are familiar with. By calculating the com-
prehension effort, a recommender system can complement the rank and suggest
the most comprehensive and appropriate ones to the developer.

v

vi

Acknowledgements

I would first like to thank my thesis supervisor Prof. Michele Lanza for the
opportunity to develop this thesis idea, for providing clear, detailed guidelines,
for steering me in the right direction whenever he thought I needed it.

I would also like to thank my thesis co-supervisors Prof. Gabriele Bavota,
Dr. Luca Ponzanelli, Dr. Andrea Mocci, for their support and assistence, for the
invested time and the extremely fast responses.

Finally, I must express my very profound gratitude to my parents and to my
spouse Antonia, for providing me with unfailing support and continuous en-
couragement throughout my years of study and through the process of writing
this thesis. This accomplishment would not have been possible without them.

vii

viii

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 1
1.2 Objective and Results . 3
1.3 Structure of the Thesis . 4

2 State of the Art 7
2.1 Program Comprehension . 7
2.2 Semantic code search and code search engines 9
2.3 Recommender Systems for Software Engineering 11

3 Approach 15
3.1 Overview . 16
3.2 Training Phase . 17

3.2.1 Stormed Island Parser . 17
3.2.2 Language Model . 19
3.2.3 Training the Language Model 20

3.3 Assessing Phase . 22
3.3.1 Familiarity Estimation . 22
3.3.2 Readability . 26
3.3.3 Accounting for Text Readability 26
3.3.4 Accounting for Code Readability 27

3.4 Accounting Comprehension Effort 28

ix

x Contents

4 Study Design 31
4.1 Research Questions . 31
4.2 Data Collection . 33

4.2.1 Experiment-1 . 33
4.2.2 Experiment-2 . 34

4.3 Replication Package . 34

5 Results 35
5.1 Familiarity Estimation Results . 35

5.1.1 Code LM Results . 35
5.1.2 Text LM Results . 39

5.2 Comprehension Effort Estimation Results 43
5.3 Summary . 45

6 Threats to Validity 47
6.1 Experiment-1 . 47
6.2 Experiment-2 . 47

7 Conclusion 49

Bibliography 51

Figures

3.1 Overall architecture of our approach 16
3.2 Example of Stack Overflow question with HTML tagging 18
3.3 Training Language Model overview 20
3.4 Filtering stop words and separators 22
3.5 3-Gram evaluating process . 23
3.6 Aggregating probabilities by multiplication 24
3.7 Aggregating probabilities by mean 25

5.1 Code LM trained with 10 documents 36
5.2 Code LM trained with 100 documents 36
5.3 Code LM trained with 1000 documents 37
5.4 Code LM trained with 10000 documents 38
5.5 Code LM trained with 100000 documents 38
5.6 Code familiarity mean for each training set 39
5.7 Code LM trained with 10 documents 40
5.8 Code LM trained with 100 documents 40
5.9 Code LM trained with 1000 documents 41
5.10 Code LM trained with 10000 documents 41
5.11 Code LM trained with 100000 documents 42
5.12 Text familiarity mean for each training set 43

xi

xii Figures

Tables

3.1 Flesch-Kincaid score grade . 27
3.2 Buse and Weimer code features . 28

5.1 Comprehension effort evaluation. Formula-1 43
5.2 Comprehension effort evaluation. Formula-2 44

xiii

xiv Tables

Chapter 1

Introduction

1.1 Context

The complexity of software systems is increasing and new technologies are in-
troduced constantly [11]. Software developers often have to work with new
technologies they are not familiar with, and as increasingly more comes out,
the amount of information that they need to know increases.

For example, Android1 was introduced 10 years ago in 2007, and in 2008 the
first version was released, and nowadays, there are 8 versions of Android. When
Android started to become popular, developers had to learn this technology and
stay updated with each new release. They had to search how activities work in
Android, and how to use several APIs to implement different tasks assigned
to them. However, the process of searching the right piece of information as a
tutorial or a documentation is time-consuming and requires considerable effort.
For example, if an Android developer needs to use a new Android API, she
will search web artifacts such as forums, blogs, questions and answers (Q&A)
websites, and API documentation [23].

The amount of resources is vast. A popular Q&A website as Stack Overflow
contains millions of questions tagged as Android2. Github, one of the most
popular version control systems where developers can store their projects, hosts
more than 500 thousand Android repositories3.

A tool helping developers to gather information among the available re-
sources would ideally improve the search process, that would result in time
saved for the developers. Similar tools to suggest items of interest already ex-

1https://www.android.com
2https://stackoverflow.com/questions/tagged/android
3https://github.com/search?utf8=&q=android&type=

1

https://www.android.com
https://stackoverflow.com/questions/tagged/android
https://github.com/search?utf8=&q=android&type=

2 1.1 Context

ists outside the context of software engineering, for example Amazon4, Ebay5

and Netflix6, employ recommender systems to suggest their products.
What is a recommender system? The proposed definition by the organizers

of the ACM International Conference on Recommender Systems 7 is:

“Recommendation systems are software applications that aim to sup-
port users in their decision-making while interacting with large in-
formation spaces. They recommend items of interest to users based
on preferences they have expressed, either explicitly or implicitly. The
ever-expanding volume and increasing complexity of information [...]
has therefore made such systems essential tools for users in a vari-
ety of information seeking [...] activities. Recommendation systems
help overcome the information overload problem by exposing users to
the most interesting items, and by offering novelty, surprise, and rele-
vance.”

In the context of software engineering, developers need other items useful
to their scope as tutorials, code snippet and libraries. Recommender system
targeting similar items are known as recommender systems for software engi-
neering (RSSE). According to Robillard et al. [19] “An RSSE is a software ap-
plication that provides information items estimated to be valuable for a software
engineering task in a given context”.

There is a vast number of proposed RSSEs, some of them suggest relevant
project artifacts or code examples [7] [27] [28]. Others focus on suggesting
relevant code samples, documents and discussions from the web resources [17]
[21] [25] [9]. But none of them has considered the required effort to compre-
hend the suggested documents.

Searching for documentation and tutorials is a crucial step in learning a
new technology. Developers can find online resources as blogs, forums, Q&A
websites, but the real challenge is to find the most suitable one for their needs.
Singer et al. [24] reported in 1997 that the most frequent developer activity
was code search, and Sadowski et al. [20] did a case study on how developers
at Google search for code. They found that developers are generally seeking
answers to questions about how to use an API, what code does, why something

4https://www.amazon.com
5https://www.ebay.com
6https://www.netflix.com/ch-en/
7https://recsys.acm.org/recsys09

https://www.amazon.com
https://www.ebay.com
https://www.netflix.com/ch-en/
https://recsys.acm.org/recsys09

3 1.2 Objective and Results

is failing, or where the code is located. The interesting point in this study was
the fact that most searches focus on code that is familiar, or somewhat familiar
to the developers. Therefore, we believe that RSSEs have to take into consider-
ation the familiarity of a document when they suggest it to the developer.

Understanding a document is a cognitive process, and it depends on human
intelligence, yet if we are familiar with a subject, we will likely comprehend it
with less effort. For example, a computer engineer might comprehend a docu-
ment explaining how to implement a sorting algorithm, with much less effort
compared to a document that explains a constitutional law, and the reason is not
that the algorithm is simple, rather that a computer engineer is more familiar
with sorting algorithms than law.

In this thesis, we try to evaluate similar situations. For example, given two
documents that have approximately the same subject, how can we decide which
one is easier to comprehend? To answer this question we need to introduce two
concepts:

• Familiarity: how much are developers familiar with the document con-
tent?

• Readability: how difficult is it to read a given document?

Familiarity and readability metrics are important for us, since the compre-
hension effort can be derived from the document familiarity and readability.
For example, if we have a tool that gives us a score to indicate which docu-
ment requires less effort to be comprehended, where a higher score indicates a
high effort. Given two documents that contain the same Android task but im-
plemented in different versions(7.1 and 4.0). If the developer is more familair
with Android 7.1, we expect that the first document must have a lower score
since it requires less effort to be comprehended by developers who are more
familiar with Android 7.1.

What if both documents have the same task, and both tasks are implemented
with Android 7.1 ? Which one will have a lower score? In this case, the docu-
ment readability has a big impact on the comprehension effort: The developer
would likely prefer to read the document with the best readability.

1.2 Objective and Results

Our goal is to assess documents by their comprehension effort which can be
leveraged by RSSE to improve their suggestions. To calculate the comprehen-

4 1.3 Structure of the Thesis

sion effort we need to compute the familiarity, and we need to evaluate our
approach to understand if it effectively works. To evaluate our approach we
ran two studies:

In the first study we evaluate our familiarity approach. We select a large set
of Android documents, which represents the hypothetical developer knowledge,
where a document can be a mix of code and natural language. Then we create
a Language Model [6] and we train it with these documents (training set). In
this way, we are able to simulate the context of a developer who is familiar with
Android. Once we trained the language model, we evaluate the familiarity of a
given set of documents (testing set) that contains Android documents and other
documents that are not related to Android.

The language model was able to evaluate the Android documents within
the testing set as the most familiar. In this experiment, the language model ap-
proach satisfied our expectation in capturing the document familiarity.

In the second study we evaluate our approach in assessing documents by
the comprehension effort. We asked developers to read a set of tutorials, and
then we gave them a set of documents, where some documents are related
to the tutorials and some are not, and we asked the developers to score the
documents by the comprehension effort. and we compared their scores with
our precomputed scores. The evaluation results suggest that our approach is
promising in estimating the comprehension effort of developers.

1.3 Structure of the Thesis

This thesis consists of seven chapters:

1. Introduction: In this chapter we introduce the thesis work.

2. State of the Art: This chapter describes the existing related work as code
search engines, and recommender systems.

3. Approach: This chapter describes our approach to calculate the compre-
hension effort.

4. Study design: This chapter discusses the research question, the data ex-
traction process, the analysis method, and the replication package.

5. Result: This chapter shows the results and their implications.

5 1.3 Structure of the Thesis

6. Threat to Validity: This chapter describes the possible threats that could
affect the results validity.

7. Conclusion: This chapter summarizes our work, presents ideas for possi-
ble future work, and concludes the thesis.

6 1.3 Structure of the Thesis

Chapter 2

State of the Art

We present the existing related work concerning the comprehension effort, and
discuss related tools, such as code search engines and recommender systems.

2.1 Program Comprehension

There are several studies on program comprehension that are related to the
thesis work.

Corbi [4] did a research on tools which could help developers in two key ar-
eas: static analysis (reading the code) and dynamic analysis (running the code).
Corbi describes how program understanding relates to software renewal, and
he indicates that more than half of the time is spent in understanding a system.
Corbi concludes by mentioning that developer training and tools should assist
the developer in combining different kinds of information in ways which can
support the understanding of the system being investigated, and they should
not favor or force the use of only one way of gathering information about pro-
grams. Corbis’ work motivated us to investigate and develop a novel technique
to calculate the comprehension effort.

Another related work is by Kushwaha and Misra [10] who claim that the
required effort to understand a software depends on the difficulty in under-
standing the information, where the information is related to the number of
operators and identifiers. They count the number of operators and identifiers
per line of code and they multiply it by an associated weight of the identifier
name (1 if the identifier name belongs to the problem domain, and 4 if the
identifier name is selected arbitrarily).

7

8 2.1 Program Comprehension

They performed an experiment with 60 students, where 5 sample programs
were given. One set of programs had meaningful identifier names related to the
problem domain and the other used arbitrarily selected identifier name. They
measured the required time to comprehend the program.

The result showed that programs with arbitrarily selected identifier names
required about 4 times the time needed to comprehend the programs compared
to programs with meaningful identifiers.

Scalabrino et al. [22] presented a metric able to assess the understandability
of a given code snippet . In their work they consider three types of metrics:

1. Code-related metrics related to the code, (e.g., cyclomatic complexity,
LOC, the number of identifiers, line length).

2. Documentation-related metrics to capture the quality of the internal
documentation of a snippet (e.g, comments readability, and identifiers
consistency).

3. Developer-related metrics to measure the programming experience of
the developer in years, in any programming language.

They analyze whether code-related, documentation-related, developer-related
metrics can be used to assess the understandability level of a snippet code. The
authors asked 46 developers to read and to fully understand eight code snippets.
Participants could, select the option I understood the snippet or I cannot under-
stand the snippet, and the time was monitored. Once the participants chose I
understood the snippet option, the authors asked questions about the code snip-
pet to verify the actual level of understanding.

After an extensive statistical analysis Scalabrino et al. [22] could not find a
significant correlation between the considered metrics and the understandabil-
ity of code snippets. They assumed that the code complexity has a big influence
on the developer’ ability to understand the code, but they could not demonstrate
it with a empirical evidence. They also mentioned that the code readability can
have a direct impact on the understandability of the code.

As mentioned in the previous chapter, in this thesis we take in consideration
the code readability to calculate the comprehension effort.

Buse and Weimer [3] introduced a code readability metric, and they inves-
tigated its relation to software quality. A part of their work was to run an ex-
periment which compared readability of the code to the cyclomatic complexity,

9 2.2 Semantic code search and code search engines

and they were able to show that code readability is significantly independent of
the traditional code complexity.

In this experiment, 120 developers were asked to individually score a se-
quence of 100 code snippets, based on their personal estimation of readability.
From the result, they determined which code features were predictive of read-
ability, and they constructed a readability model. They also tested the model
performance on ten different classifiers, and on average the model classified
correctly between 75% and 80% of the snippets. They found that factors like
average line length and, average number of identifiers per line are very important
to readability. In this thesis we use Buse and Weimer approach [3] to calculate
code readability.

2.2 Semantic code search and code search engines

Reiss [18] presented a tool that generates specific functions or classes from the
open source repositories, where these classes meet user’s specifications. This
tool uses the user’s input, as keywords and other constraints, and suggests codes
that meet the user’s needs.

The tool takes a set of candidate solutions, and it transforms them into a
more appropriate set. Both static and dynamic specifications can be used. The
main goal of this tool is to satisfy the user’s constraints, but it does not take into
consideration the user’s experience and the comprehension effort.

Thummalapenta and Xie [26] presented PARSEWeb, a tool similar to the one
by Reiss [18], where they collect code from public sources and search engines
to suggest it to developers based on their input query. In the query, the devel-
opers have to specify the source object type and the destination object type. For
example, programmers know what type of object that they need to instantiate
like QueueConnectionFactory (Source), but do not know how to write code to get
that object from a known object type like QueueSender (Destination). Therefore,
the proposed problem can be translated to a query of the form QueueConnec-
tionFactory →QueueSender.

McMillan [12] created an application search system called Exemplar, which
reduces the mismatch between the high-level intent reflected in the descriptions
of software and low-level implementation details.

Exemplar differs from traditional search engines that match the keywords,
by matching keywords with the descriptions of the various API calls in help
documents. Exemplar has three components of Ranking:

10 2.2 Semantic code search and code search engines

1. WOS a component that computes a score based on word occurrences in
project descriptions

2. RAS a component that computes a score based on the relevant API calls

3. DCS a score based on data-flow connections between calls

McMillan [12] concludes by mentioning that the performance of search engines
can be improved if those engines consider the API calls that the software uses.

Bajracharya and Lopes [1] conducted an exploratory analysis of the usage
log of Koders, the first commercially available Internet-Scale code search en-
gine, and their goal is to answer the following three questions:

1. Usage: What kind of usage behavior can we see in Koders?

2. Search Topics: What are the users searching for?

3. Query Forms: How are users expressing their information need in their
queries?

They analyzed the usage logs, finfing that:

• Most of the users did not use Koders again after using it for a day

• Sessions are short (a series of activities by a single user within a small
duration of time constitutes a session)

• More than half of the sessions had no downloads

• There are sessions with no search activities

• Queries are very short

• Terms in queries are quite diverse

• Code queries are the mostl used types of queries

• Code queries lead to the most of the downloads

They conclude the analysis by mentioning that usage behavior is similar be-
tween Koders and search on the Web, and the majority of the users do not
refine their existing queries.

11 2.3 Recommender Systems for Software Engineering

The approaches described so far do not take into consideration any read-
ability or familiarity metrics. We believe that our comprehension effort metric
can be integrated in these search engines as complementary information to help
the user in choosing the most relevant document.

2.3 Recommender Systems for Software Engineering

Čubranić and Murphy [27] built Hipikat, a tool that helps newcomers by rec-
ommending existing artifacts from the development that are relevant to a task
that the newcomer is trying to perform. Hipikat infers links between the arti-
facts that may have been apparent at one time to members of the development
team but that were not recorded. Hipikat uses those links to suggest possibly
relevant parts of all artifacts that have been produced given information about
a task a newcomer is trying to perform.

The authors performed two qualitative studies, where they showed that
Hipikat helped newcomers to perform a task effectively on an unfamiliar system.

Holmes and Murphy [7] presented Strathcona, a plug-in for the Eclipse in-
tegrated development environment (IDE) that extracts the structural context of
the code on which a developer is working, and selects from an example repos-
itories a set of relevant code examples to be returned using a set of structural
matching heuristics.

To understand if the structural matching heuristics can return examples that
a developer finds useful, Holmes and Murphy [7] performed a case study in
which they asked two developers to complete four programming tasks, where
Subject 1 had less than one month of Eclipse plug-in programming experience
but more than eight years of Java experience. Subject 2 had over six months
of Eclipse plug-in programming experience but only eighteen months of expe-
rience with Java, and neither subject knew how to implement any of the as-
signed tasks. Subject 1 completed all four tasks successfully, finding relevant
examples in all cases for which appropriate examples were returned; Subject
2 completed three out of four tasks, finding relevant examples in two of the
three cases. These results show that Strathcona can suggest relevant examples
to developers.

Ponzanelli et al. [14] presented Prompter, a plug-in for the Eclipse IDE that
retrieves and recommends, with push notifications, relevant Stack Overflow
discussions to the developer. Prompter analyzes the code context in the IDE

12 2.3 Recommender Systems for Software Engineering

and searches for Stack Overflow discussions, and evaluates their relevance by
taking into consideration code aspects, conceptual aspects, community aspects.

The authors performed a study to evaluate to what extent the use of Prompter
can be useful to developers during a development or maintenance task. In the
study they selected 12 participants that have at least 3 years of experience in
programming, with a maximum of 12. The authors asked the participants to
perform one maintenance task and one development task, and if they used the
suggestions by Prompter. Three participants answered absolutely yes, eight more
yes than no, and two more no than yes.

The authors concluded their work by mentioning that Prompter ranking
model resulted to be effective in identifying the right discussions given a code
snippet to analyze.

In a following work Ponzanelli et al. [16] created Libra, a holistic recom-
mender system that supports developers in their information search in the web
browser. The developers are tracked during their activities in the IDE and in the
web browser, which allows Libra to collect information as web search results,
perused pages, and code written and modified by the developer. Libra uses this
information to model a knowledge context of the developer and, constructs a
holistic meta-information model of their contents.

Libra is based on three important metrics :

• Context Complementarity measures the information intake provided by
a resource in the current context of the developer. A low context comple-
mentarity indicates that the resource information is already a part of the
context. In other words, the resource and the context are too similar, and
the amount of new information that the developer can retrieve is low.

• Result Prominence identifies prominent results among the search engine
result set. When a query matches a result, it does not tells much about
the result relevance. If a result overlaps with many other results, it would
be more prominent, since probably it provides diversified information in
its contents.

• Information Quantity sums up the number of “elements” identified by
Libra’s meta-information system. This metric is important to distinguish
which resource has more information giving two resources with a similar
number of characters. If the first resource has only text and the second
one has text and code, obviously the second resource contains a higher
information quantity.

13 2.3 Recommender Systems for Software Engineering

16 third year CS Bachelor students were asked to evaluate Libra in terms of
its ability in correctly assessing for each query search result its prominence and
complementarity with respect to the context, and usefulness to developers during
a development or maintenance task.

The study results indicated that both prominence and complementarity in-
dicators reflect developers perception of such measures, and are considered as
useful indicators. Moreover, students achieved a significantly better task com-
pleteness with Libra.

The work that has been done in this thesis can be integrated with RSSE as
Libra, where the comprehension effort metric can be added to the other three
metrics used by Libra to provide developers with the most relevant documents.

14 2.3 Recommender Systems for Software Engineering

Chapter 3

Approach

The volume of online resources is huge as we can find millions of documents
related to one search query. How can we suggest the most suitable one to de-
velopers? Several elements might determine which documents contain valu-
able information, and one of these elements is the comprehension effort. Code
search has been a part of software development for decades, Singer et al. [24]
reported in 1997 that the most frequent developer activity was code search, and
most searches focus on code that is familiar to the developer [20]. Certainly,
developers prefer to search for documents they are familiar with since they re-
quire less effort to be comprehended. We believe that the comprehension effort
is strictly related to the document familiarity and readability.

In the literature there are several metrics that estimate the readability of a
given text, (e.g., Flesch−Kincaid [8], Dale−Chall [5]), and other metrics that
estimate code readability [2]. In this thesis, we introduce for the first time a
new approach where we combine text readability, code readability and docu-
ment familiarity, to estimate comprehension effort.

15

16 3.1 Overview

Document
Preprocessor
(STORMED)

……

LM
Builder

(LinPipe)

3-Gram
Builder

Document
Preprocessor
(STORMED)

Code
Readability Text

Readability

Comprehension
Effort

Code LM Text LM

Training Assessing

Figure 3.1. Overall architecture of our approach

3.1 Overview

Fig 3.1 shows the overall architecture of our approach. As we can see, there are
two language models, one for code and one for text (natural language), and the
whole process is divided in two phases that work in parallel:

• Training phase: In this phase we train the language models on a given
set of documents, where each document is broken down in two segments:
code and text. To extract code and natural language from a document,
we use the Stormed Island Parser1 [15]. The code language model will be
trained with the code segment, and the text language model will be trained
with the text segment. These language models will give us the familiarity
of a given document in the assessing phase.

• Assessing phase: In this phase we give each document a Comprehension
Effort score. As a first step we use Stormed [15] to brake down each doc-

1https://stormed.inf.usi.ch

https://stormed.inf.usi.ch

17 3.2 Training Phase

ument in two segments: code and text, then we use the language models
that we trained in the training phase to estimate the familiarity. In the
same time we use Flesch−Kincaid[8] to calculate the text readability, and
RayKernel [2] to calculate the code readability. In the last step we com-
bine the familiarity and the readability to get the comprehension effort.

In the next sections we explain the training and assessing phase, and we
give more details about the component that are used in the whole process.

3.2 Training Phase

In the training phase we use Stormed to distinguish between code and text, and
we train two language models, one for text and one for code. We explain what
Stormed is and how we use it, and then we explain what a language model is,
and how we train it.

3.2.1 Stormed Island Parser

Stormed is a dataset and parser for Stack Overflow that models the posts by
building a heterogeneous abstract syntax tree (H-AST) for each discussion in
the data dump [15].

Stormed Parser

Stormed can parse any given data in form of text. For example, given the fol-
lowing text :

With a sorted array, the condition data[c] >= 128

Stormed can identify “With a sorted array, the condition” as text, and “data[c]>=
128” as code.

Stormed gives us more detailed information about the code, that can be one
of the following possible H-AST nodes:

• JavaASTNode: Java code including incomplete fragments.

• StackTracesASTNode: Stack traces including incomplete stack trace lines.

• XMLASTNode: XML/HTML documents, tags and elements.

• JSONASTNode: JSON fragments.

18 3.2 Training Phase

Stormed allows us to distinguish between the textual part (natural lan-
guage), and the code part. Moreover, Stormed parses the code part and identi-
fies the Java code even if the code is incomplete.

Stormed Dataset

As shown in Fig 3.2 each Stack Overflow document is represented with HTML
tag, Stormed extracts two types of information units:

• Natural Language Tagged Unit is the textual part of a discussion. Text
units are all fragments that are not tagged as <code> or <pre><code>.

• Code Tagged Unit is the code part of a discussion. Structured Fragment
Unit are every contents tagged as <code> or <pre><code>.

Figure 3.2. Example of Stack Overflow question with HTML tagging

19 3.2 Training Phase

The content of the extracted units are modeled as a H-AST, and added to the
data set. The Stormed data contains a set of JSON files, one for each Stack Over-
flow discussion. The JSON files can be parsed to obtain objects corresponding
to the H-AST.

3.2.2 Language Model

A Probabilistic Language Model (LM) is a probability distribution over se-
quences of words. Given such a sequence of length m, it assigns a probability
P(w1, . . . , wm) to the whole sequence2.

The goal of the language model is to compute the probability of a sentence
or sequence of words.

P(W) = P(w1, w2, w3, w4, w5 . . . wn)

A LM can also compute the probability of an upcoming word.

P(w5|w1, w2, w3, w4)

A LM applies Markov Chain Assumption to compute P(W)

P(w1w2 . . . wn)≈
∏

i

P(wi|wi−k . . . wi−1)

Each component in the product is approximated

P(wi|w1w2 . . . wi−1)≈ P(wi|wi − k . . . wi−1)

Bigram model provides the conditional probability of a word given the previous
word.

P(wi|w1w2 . . . wi−1)≈ P(wi|wi−1)

The bigram model can be extended to trigrams, 4-grams, 5-grams, . . . , n-grams.
P(wi|wi−1 is the maximum likelihood estimation in a bigram where

P(wi|wi−1) =
count(wi−1, wi)

count(wi−1)

2https://en.wikipedia.org/wiki/Language_model

https://en.wikipedia.org/wiki/Language_model

20 3.2 Training Phase

Example
Lets consider the following text:

Hi I am John

Hi John I am David

Hi I am looking for John

P(I |HI) =
2
3
= 0.67

The probabilities of the sentence “I like Italian food” estimated by a bigram
model is:

P(l ike|I)× P(I tal ian|l ike)× P(f ood|I tal ian) = 0.00042

To avoid underflow and to make multiplication faster, we use log space.

log(p1 × p2 × p3 × p4) = log(p1) + log(p2) + log(p3) + log(p4)

3.2.3 Training the Language Model

Documents

Here is a piece of C++ code hat seems very
peculiar For some strange reason, sorting the
data miraculously makes the code almost six
times faster.

int	main()	
{	
				//	Generate	data	
				const	unsigned	arraySize	=	32768;	
				int	data[arraySize];	

………

Initially, I thought this might be just a language or
compiler anomaly. So I tried it in Java.

public	class	Main	
{	
				public	static	void	main(String[]args)	
				{	
								//	Generate	data	
								int	arraySize	=	32768;	
								int	data[]	=	new	int[arraySize];	

………

…

…

…

is

…

Here ……

Code LM

…

…

main

…

int ……

Text LM

Train Train

Figure 3.3. Training Language Model overview

21 3.2 Training Phase

In our approach we use the 3-Gram model, we tried the 4-Gram and the 5-Gram
but there was no significant difference. As we said before, we differentiate be-
tween natural language and code, therefore, we create a language model for
each as we can see in Fig 3.3.

• Natural Language LM training: Once we have identified the textual part
of a document, we remove the stop words, since they are common words
and they add noise to the LM, then we train the Natural Language LM with
the filtered text.

• Code LM training: For the code part we use a similar approach. We use
the ANTLR3 parser to parse the code and to create tokens that we model
as 3-Grams, and we pass them to the LM. But before training the LM on
the code we remove all separators (see Fig 3.4).

The reason why we remove separators is because they add noise. Similar
to text punctuation, they do not tell much about the information that a
document contains. For example, given a Java class code:

public class Example {

void multiply(int a, int b) {

if(a == 0 || b == 0){

System.out.println (0);

}

else{

int result = a * b;

System.out.println(result);

}

}

}

We can see that the code ends with three curly brackets }}}, and almost
all Java calsses end with at least 2 curly brackets. If we do not remove the
separators from code, the three curly brackets will form the most popular
3-Gram.

Before removing the separators, we had several situations where the most
familiar 3-Grams is composed by 2 brackets or 2 parentheses, for this
reason we decide to remove this noise by filtering all the separators.

3http://www.antlr.org

http://www.antlr.org

22 3.3 Assessing Phase

Here is a piece of C++ code hat seems very
peculiar For some strange reason, sorting the
data miraculously makes the code almost six
times faster.

int	main()	
{	
				//	Generate	data	
				const	unsigned	arraySize	=	32768;	
				int	data[arraySize];	

………

Initially, I thought this might be just a language or
compiler anomaly. So I tried it in Java.

public	class	Main	
{	
				public	static	void	main(String[]args)	
				{	
								//	Generate	data	
								int	arraySize	=	32768;	
								int	data[]	=	new	int[arraySize];	

………

 piece C++ code seems peculiar strange reason
sorting data miraculously makes code almost six
times faster

int	main	

				const	unsigned	arraySize	32768	
				int	data	arraySize	

………

Initially I language compiler anomaly I tried Java

public	class	Main	

			public	static	void	main	String	args	

								
								int	arraySize	32768	
								int	data	=	new	int	arraySize	

………

Figure 3.4. Filtering stop words and separators

3.3 Assessing Phase

In the assessing phase we estimate the familiarity of a given document, then we
calculate the document readability and we combine them in a comprehension
effort score.

3.3.1 Familiarity Estimation

We define the familiarity as the estimation of likelihood of a specified character
sequence. But before estimating the familiarity, we need to do the following
preprocessing steps:

• Selecting & Filtering: As we did in the training phase, we use the Stormed
Island Parser4 [15] to break down a document into text and code. We re-
move the stop words form the text, we parse the code5 and we remove
the separators, as shown in Fig 3.4

• 3-Grams generating : In Fig 3.5 we can see that each chunk of code
or text is transformed to a 3-Gram model, and then the language model
evaluates the familiarity of each N-Gram.

4https://stormed.inf.usi.ch
5http://www.antlr.org

https://stormed.inf.usi.ch
http://www.antlr.org

23 3.3 Assessing Phase

public void run

void run
mBlueto
othAdap
ter

run
mBlueto
othAdap
ter

cancelDi
scovery

…..

I really new

really new Android

new Android develop
ment

…..

…

Code LM

…

Text LM

0.0001
0.0032
0.3400
0.0045
0.1001

0.2400
0.0005
0.0062
0.0095
0.1011

	public	void	run	

								mBluetoothAdapter	cancelDiscovery	

												mmSocket	connect	
catch	IOException	connectException	

												try		
																mmSocket	close	
catch	IOException	closeException	
												return	

								manageConnectedSocket	mmSocket	
			

I really new Android

development

I have many questions

Figure 3.5. 3-Gram evaluating process

24 3.3 Assessing Phase

• Familiarity aggregation: Now that we have retrieved the familiarity of
each 3-Gram of a given document, we need to aggregate them in one
value. The trivial way is to multiply all the probabilities to get one value,
but this approach is biased by the document length.

As we can see in Fig 3.6 we have 2 documents, a and b, where document
b contains twice the content of document a. We expect that the familiarity
in both documents must be the same since they have the same text, even
though in document b the text is duplicated.

Document a

Contrary to popular belief, Lorem Ipsum
is not simply random text. It has roots in a
piece of classical Latin literature from 45
BC, making it over 2000 years.

Text LM

…

familiarity = 0.02

Contrary to popular belief, Lorem Ipsum
is not simply random text. It has roots in a
piece of classical Latin literature from 45
BC, making it over 2000 years.

Contrary to popular belief, Lorem Ipsum
is not simply random text. It has roots in a
piece of classical Latin literature from 45
BC, making it over 2000 years.

Document b

Text LM

…

familiarity = 0.004

Figure 3.6. Aggregating probabilities by multiplication

Given a set of documents with different lengths, the shortest documents
turns out to be the most familiar. This approach is valid if all documents have
the same length, which is not the case with the documents that we are dealing
with, since they have heterogeneous length.

We tackle this problem by introducing a new approach to aggregate the
probabilities as shown in Fig 3.7. The approach consists in 5 steps:

25 3.3 Assessing Phase

1

2

3

1 2

3 4

5

1

2

3

LM

…

1 2

3 4

5 6

4

5

6

1

2

3

3

4

5

0.09
 0.12
0.23

0.01
0.42
0.31

0.17
 0.02
0.13

0.01
 0.22
0.53

0.05
 0.15
0.03

0.0024 0.0013 0.0010 0.0011 0.0002
= = = ==

0.0018 0.0006 0.0010

meanmean

1

2

3

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 3.7. Aggregating probabilities by mean

26 3.3 Assessing Phase

• step 1: We select from the set the document with the smallest number of
3-Gram, say of length m.

• step 2: We split each document into chunks of length m.

• step 3: For each chunk we calculate the familiarity of its 3-Grams

• step 4: Now that all chunks have the same size, we calculate the famil-
iarity of a chunk by multiplying the probability of all its 3-Grams

• step 5: Is the last step, we calculate the familiarity mean of each docu-
ment chunks.

3.3.2 Readability

The document readability has a big impact on the comprehension effort. Two
text documents can contain approximately the same information, but one text
can be easy to read and the other one can be difficult to read, and it is the same
for code. The following piece of code can be written in one line :

{"name ":" mkyong.com","messages ":[" msg

1","msg 2"],"age ":100}

But most likely developers will find it easier to read the indented code:

{

"name ":" mkyong.com",

"messages ":[" msg 1","msg 2"],

"age ":100

}

As mentioned so far we distinguish between code readability and text read-
ability. Therefore, we use different tools to calculate the readability of each.

3.3.3 Accounting for Text Readability

The text readability score is calculated by the Flesch-Kincaid 6 formula:

0.39
�

total words
total sentences

�

+ 11.8
�

total syllables
total words

�

− 15.59

6https://en.wikipedia.org/wiki/FleschKincaid_readability_tests

https://en.wikipedia.org/wiki/FleschKincaid_readability_tests

27 3.3 Assessing Phase

A higher scores indicate that the document is easier to read, and a lower number
indicates that the document is more difficult to read.

Flesch-Kincaid score is scaled in 0-100 rage, but for convenience we normal-
ize it to 0-1 range. The score can be interpreted as shown in the table below,
Table 3.1.

Score School Level Notes
100.0− 90.0 5th grade Very easy to read. Easily understood by

an average 11-year-old student.
90.0− 80.0 6th grade Easy to read. Conversational English for

consumers.
80.0− 70.0 7th grade Fairly easy to read.
70.0− 60.0 8th & 9th grade Plain English. Easily understood by 13-

to 15-year-old students.
60.0− 50.0 10th to 12th grade Fairly difficult to read.
50.0− 30.0 College Difficult to read.
30.0− 0.0 College Graduate Very difficult to read. Best understood

by university graduates

Table 3.1. Flesch-Kincaid score grade

3.3.4 Accounting for Code Readability

To calculate the code readability we use the Buse and Weimer [2] code read-
ability metric and tool7. Buse and Weimer determined a set of code features
that are predictive of readability. The features are listed in the Table 3.2.

Buse and Weimer’s readability score is scaled in 0-1 range, where a higher
scores indicate that the code is easier to read and a lower number indicates that
the code is more difficult to read.

7http://www.arrestedcomputing.com/readability

http://www.arrestedcomputing.com/readability

28 3.4 Accounting Comprehension Effort

Feature Name
line length (# characters)
identifiers
identifier length
indentation (preceding whitespace)
#keywords
#numbers
#comments
#periods
#commas
#spaces
#parentheses
#arithmetic operators
#comparison operators
#assignments (=)
#branches (if)
#loops (for, while)
#blank lines
#occurrences of any single character
#occurrences of any single identifier

Table 3.2. Buse and Weimer code features

3.4 Accounting Comprehension Effort

To calculate the Comprehension Effort of a given document we calculate:

• The familiarity of the textual parts ft

• The familiarity of the code parts fc

• The readability of the textual parts rt

• The readability of the code parts rc

The rt and rc are on a scale of 0 to 1, the ft and fc are unbounded log2

probabilities.
We propose two formulas to calculate the Comprehension Effort:

29 3.4 Accounting Comprehension Effort

Comprehension Effort =
(rc × fc) + (rt × ft)

2
In the above formula the readability and the familiarity have the same weight
in calculating the comprehension effort.

Comprehension Effort =
(rc × fc) + (rt × ft)

rc + rt

In the above formula the familiarity has a higher weight. In this thesis we
explore both formulas to understand which one performs better.

30 3.4 Accounting Comprehension Effort

Chapter 4

Study Design

In this chapter we present two studies aimed of assessing the LM capability to
evaluate the familiarity of a given document, and to evaluate the effectiveness
of our approach in assessing documents by the comprehension effort. Towards
this goal, we run two tailored studies:

The first study evaluates the familiarity approach. In this study (Experiment-
1) we select a set of Android documents representing the developer knowledge
context, and we train the LMs with these documents (Chapter 3.2). Once we
trained the language model, we evaluate the familiarity of a given set of doc-
uments about Android and other documents that are not related to Android
(Chapter 3.3.1).

The second study evaluates our approach in assessing documents by com-
prehension effort. In this study (Experiment-2) we ask developers to read a set
of tutorials, and then we give them a set of documents, where some documents
are related to the tutorials and some are not, and we ask them to score the doc-
uments comprehension effort on a scale from 1 to 5. Then we compare their
score with our precomputed comprehension effort score (Chapter 3.4).

4.1 Research Questions

To evaluate the effectiveness of our approach we have formulated the following
research questions:

31

32 4.1 Research Questions

RQ1: Can a language model correctly evaluate the familiarity of a given doc-
ument?

We have answered this research question by downloading 200,000 Stack
Overflow questions tagged as Android. From these 200,000 documents we se-
lect 5 training sets with different size (10, 100, 1000, 10000, 100000), and we
select 1000 documents for testing.

We extend the testing set by downloading:

• 1000 Stack OVerflow questions tagged as JavaScript.

• 1000 Stack OVerflow questions tagged as Swift.

• 1000 Stack OVerflow questions tagged as Java.

We create a code LM and a text LM, and we train them with the Android
10 documents training set, then we calculate the familiarity of the testing sets
(Android, JavaScript, Swift, Java). We repeat this experiment with 100, 1000,
10000, 100000 android documents to understand how the training set size can
influence the performance. Then we plot the familiarity results to check if the
LMs classify Android documents as the most familiar.

RQ2: What is the accuracy of our technique in assessing documents by the
comprehension effort?

To answer this research question we asked two developers with no experi-
ence with Android to read a set of introduction tutorials to Android, then we
asked them to read two Android tutorials. The first one explains how to use
the Android-Bluetooth API and the second one explains how to use the Android-
Camera API. Once they finished reading the tutorials, we asked them to score
the comprehension effort of 6 documents from Stack Overflow. The compre-
hension effort scores are on a scale from 0 to 5, where a higher score indicates
a higher effort in comprehending the documents. The developers scored the
following 6 documents:

• Android-Bluetooth discussion1.

• Android-Camera discussion.2

• Android-AsyncTask discussions (not related to Bluetooth or Camera) 3.

1https://stackoverflow.com/questions/9693755
2https://stackoverflow.com/questions/5991319
3https://stackoverflow.com/questions/31874990

https://stackoverflow.com/questions/9693755
https://stackoverflow.com/questions/5991319
https://stackoverflow.com/questions/31874990

33 4.2 Data Collection

• Android-Database discussions (not related to Bluetooth or Camera)4.

• Two Cordova discussions. (Cordova also known as PhoneGap is a mo-
bile application development framework that enables software develop-
ers to build applications for mobile devices using CSS3, HTML5, and
JavaScript)5 6.

We trained the LMs with the tutorials that we gave to the developers. Since
the tutorials are not enough to train a LM, we augmented the set by adding
several tutorials that have the same subject as the one that we gave to the de-
velopers. We also trained the code LM with as set of Android-Bluetooth and
Android-Camera code snippets from Gist7.

After the training phase we calculated the comprehension effort of the 6
Stack Overflow documents and we compare our results with the developers
scores.

4.2 Data Collection

To run the two experiments we collect and extract data from different sources.
In the next sections we explain how we collect data for each experiment.

4.2.1 Experiment-1

The Stormed dataset provides a set of JSON files, one for each discussion. We
use the Stormed development kit to parse the JSON files and obtain the H-AST.
As we mentioned in the previous section, in Experiment-1 for the training set
we select a set of 100,000 Android discussions, and for the testing set we select
a set of 1000 Android discussions. These sets are retrieved from the Stormed
dataset, where we select discussions that are tagged only as Android, and the
training and testing sets are disjoint.

We also use Stack Overflow dump8 to select the JavaScript, Swift and Java
discussions that we add to the testing set. We selected Java discussions that are
not also tagged as Android to avoid having Android discussions in the Java set,
since Android is implemented in Java.

4https://stackoverflow.com/questions/17451931
5https://stackoverflow.com/questions/20835768
6https://stackoverflow.com/questions/10023328
7https://gist.github.com/
8https://archive.org/details/stackexchange

https://stackoverflow.com/questions/17451931
https://stackoverflow.com/questions/20835768
https://stackoverflow.com/questions/10023328
https://gist.github.com/
https://archive.org/details/stackexchange

34 4.3 Replication Package

4.2.2 Experiment-2

In Experiment-2 we have a set of 4 tutorials that introduce Android to devel-
opers, and give them an overview of how Android works. These tutorials are
selected from the tutorialspoint website9.

To augment the training set we select 4 Android introduction tutorials, 7
Android-Bluetooth, 6 Android-Camera tutorials from several websites. The tuto-
rials are parsed by Stormed and passed to the LMs.

Besides the Android tutorials, we augment the training set by selecting from
Gist 525 Android-Bluetooth, 2666 Android-Camera code snippets.

4.3 Replication Package

The Stormed data set that contains the Stack Overflow dump is available on
Stormed website : https://stormed.inf.usi.ch.

The Thesis work is publicly accessible on this link : https://github.com/

talalelafchal/familiarity/tree/Aggregation. The repository contains:

• Testing and training sets used in Experiment-1

• Tutorials, Stack Overflow discussions and Gist files used in Experiment-2

• Experiment-1 results in .csv files with the R script to plot the results.

• Experiment-2 results.

• The source code.

9https://www.tutorialspoint.com/android/

https://stormed.inf.usi.ch
https://github.com/talalelafchal/familiarity/tree/Aggregation
https://github.com/talalelafchal/familiarity/tree/Aggregation
https://www.tutorialspoint.com/android/

Chapter 5

Results

In this Chapter we present and discuss the evaluation results of our familiarity
and comprehension effort estimating approach.

5.1 Familiarity Estimation Results

To evaluate our approach in estimating familiarity, we train two LMs (one for
code and one for text) on a set of Android discussions from Stack Overflows’
dump (training set). Then we evaluate the familiarity of 1000 Stack Over-
flow discussions on each of the following subjects: Android, Java, Swing and
JavaScript.

We select 5 training sets with different size (10, 1000, 1000, 10000, 100000)
to understand how the training set size can influence the performance. In the
following sections we discuss the code LM results and the text LM results.

5.1.1 Code LM Results

As a first step in the experiment, we train the code LM with 10 Android doc-
uments and we evaluate the code familiarity of the testing set. In Fig 5.1, we
show the box plot result. The y axis represents the Log estimated familiarity,
where a higher box position indicates a lower familiarity. In this plot, we can
see that JavaScript and Swing documents are estimated as more familiar than
Android documents (JavaScript Fc mean = −169, Swing Fc mean = −178, An-
droid Fc mean = −212). The reason why Android is not estimated as the most
familiar is because 10 documents are too few to train a LM.

35

36 5.1 Familiarity Estimation Results

Figure 5.1. Code LM trained with 10 documents

Then we train the code LM with 100 Android documents, and as we can see
in Fig 5.2, the Android testing documents are not estimated as the most familiar,
since 100 documents are still not enough (Swing Fc mean = −245, JavaScript
Fc mean= −274, Android Fc mean= −280, Java Fc mean= −294).

Figure 5.2. Code LM trained with 100 documents

37 5.1 Familiarity Estimation Results

With a training set of 1000 Android documents we start observing some
changes, as we can see in Fig 5.3, Android testing documents are more familiar
than Java and significantly more familiar than JavaScript (Swing Fc mean =
−322, Android Fc mean = −331, Java Fc mean = −350, JavaScript Fc mean =
−419).

Figure 5.3. Code LM trained with 1000 documents

In Fig 5.4, we can see that with a training set of 10,000 documents, Android
is estimated as the most familiar, followed by Java; then Swing and JavaScript,
are clearly less familiar (Android Fc mean = −351, Java Fc mean = −378,
Swing Fc mean= −405, JavaScript Fc mean= −483).

This result reflects our expectation, where Android is expected to be the
most familiar, since the training set contains only Android documents, and as
Android is implemented in Java we expected that Java should be more familiar
than JavaScript and Swing. We have to mention that the familiarity result is
logarithmic, therefore a small difference between the boxes position has to be
interpreted as a big difference between the familiarity of the boxes.

38 5.1 Familiarity Estimation Results

Figure 5.4. Code LM trained with 10000 documents

Figure 5.5. Code LM trained with 100000 documents

We also train the code LM with a set of 100,000 Android documents and
as we can see in Fig 5.5, the result is similar to Fig 5.4 where the training set
contains 10,000 documents (Android Fc mean = −355, Java Fc mean = −389,
Swing Fc mean= −435, JavaScript Fc mean= −512).

39 5.1 Familiarity Estimation Results

These results infer that a LM can capture the code familiarity. In Fig 5.6, we
can see that bigger is the training set, better is the performance. In this figure,
the y axis represents the code familiarity mean, and the x axis represents the
testing set size.

Figure 5.6. Code familiarity mean for each training set

5.1.2 Text LM Results

As we did for the Code LM, we train the text LM with 10, 100, 1000, 10,000
and 100,000 Android documents, and for each training set we estimate the
familiarity of the testing set.

In Fig 5.7, we can see that Android documents are not the most familiar
documents (Swing Fc mean = −693, JavaScript Fc mean = −700, Android
Fc mean = −752, Java Fc mean = −769), and the reason is the small size of
the training set.

Also, Fig 5.8, shows that Android documents are not the most familiar (Swing
Fc mean = −1140, JavaScript Fc mean = −1214, Java Fc mean = −1241, An-
droid Fc mean = −1246), and the reason still because the training set size is
small.

40 5.1 Familiarity Estimation Results

Figure 5.7. Code LM trained with 10 documents

Figure 5.8. Code LM trained with 100 documents

In Fig 5.9, we can see that when we train the text LM with 1000 Android
documents, Android is estimated as more familiar than Java and JavaScript
(Swing Fc mean= −1440, Android Fc mean= −1482, Java Fc mean= −1494,
JavaScript Fc mean = −1497), and in Figure 5.10 we train the code LM with

41 5.1 Familiarity Estimation Results

10,000 documents which estimate Android as the most familiar (Android Fc mean
=−1499, Swing Fc mean= −1535, Java Fc mean=−1546, JavaScript Fc mean
= −1555).

Figure 5.9. Code LM trained with 1000 documents

Figure 5.10. Code LM trained with 10000 documents

42 5.1 Familiarity Estimation Results

We get the expected result when we train the text LM with as set of 100,000
documents. In Fig 5.11, we can see that Android is the most familiar and then
Java which is more familiar than JavaScript and Swing (Android Fc mean =
−1488, Java Fc mean = −1532, Swing Fc mean = −1599, JavaScript Fc mean
= −1575).

Figure 5.11. Code LM trained with 100000 documents

These results infer that the LM can capture the familiarity of text. Fig 5.12
shows that to get a better performance we need to train the LM with a large
set of documents. In this figure, the y axis represents the text familiarity mean,
and the x axis represents the testing set size.

43 5.2 Comprehension Effort Estimation Results

Figure 5.12. Text familiarity mean for each training set

5.2 Comprehension Effort Estimation Results

To evaluate our comprehension effort estimation, we ask two developers to read
4 introduction tutorials to Android, and one Android-Camera API tutorial and
one Android-Bluetooth API tutorial, and as described in the Chapter 4.1, we
ask them to score the comprehension effort of 6 documents on a scale of 0 to 5,
where a higher score means a higher effort. In the meanwhile, we train the LMs
and we estimate the comprehension effort that we compare with their score.

Tutorial Fc Ft Rc Rt Effort Dev 1 Dev 2
Bluetooth -2694.64 -377.42 0.19 0.54 1166.6 1 1
Camera -2794.77 -309.74 0.15 0.47 1259.8 2 2
AsyncTask -3446.07 -265.87 0.25 0.53 1348.2 3 3
Database -3491.46 -336.06 0.24 0.62 1377.4 4 3
Cordova-1 -4539.99 -313.44 0.33 0.49 1582.5 4 1
Cordova-2 -4429.52 -273.63 0.15 0.41 1944.5 2 1

Table 5.1. Comprehension effort evaluation. Formula-1

44 5.2 Comprehension Effort Estimation Results

Tutorial Fc Ft Rc Rt Effort Dev 1 Dev 2
Camera -2794.77 -309.74 0.15 0.47 1836.9 2 2
Bluetooth -2694.64 -377.42 0.19 0.54 1854.6 1 1
AsyncTask -3446.07 -265.87 0.25 0.53 2217.3 3 3
Database -3491.46 -336.06 0.24 0.62 2439.5 4 3
Cordova-1 -4539.99 -313.44 0.33 0.49 2712.0 4 1
Cordova-2 -4429.52 -273.63 0.15 0.41 2729.8 2 1

Table 5.2. Comprehension effort evaluation. Formula-2

In Table 5.1 and Table 5.2 we show our estimation effort for each tutorial.
As we mentioned in Chapter 3.4 we explore two formulas to compute the com-
prehension effort. Formula-1 :

Comprehension Effort =
(rc × fc) + (rt × ft)

2

In the above formula the readability and the familiarity have the same weight
in calculating the comprehension effort. Formula-2:

Comprehension Effort =
(rc × fc) + (rt × ft)

rc + rt

In the above formula the familiarity has a higher weight. The tables contain also
the developers scores (Dev 1, Dev 2). As we can see in In Table 5.1 and Table
5.2, our approach estimates Bluetooth and Camera tutorials as the documents
that require less effort to be comprehended, and both developers gave them a
low score (1 and 2), we also estimate that AsyncTask and Database require more
effort, and also both developers gave them a higher score (3 and 4).

We estimate Cordova-1 and Cordova-2 to require the highest effort. The first
developer gave them 4 and 2 which still a high score, but the second developer
gave them 1, which is a low score. We asked the developer if he can justify
the low score that he gave to the Corodova documents, and he pointed out that
JavaScript is the programing language that he knows best. Therefore, he is
familiar with JavaScript, and Cordova is implemented with JavaScript, which
justifies the low score.

The results in Table 5.1 and Table 5.2 are similar, the only difference is
that Formula-1 estimates that the Camera document is easier to comprehend
compared to the Bluetooth document, which matches with the developers esti-
mation. Therefore in this experiment Formula-1 performs better.

45 5.3 Summary

5.3 Summary

To evaluate our familiarity estimation approach, we ran an experiment where
we evaluate the LM efficiency in estimating the familiarity of a given document.
In this experiment we tried different training sets sizes, and the results showed
that 10 or 100 training documents are not enough to build a LM able to capture
the familiarity. The LM needs larger set to perform well. With a training set of
10,000 documents we got a very good performance.

To evaluate the comprehension effort estimation approach, we asked two
developers to read a set of tutorials and then to score a set of StackOverflow dis-
cussions and we compare their score with our precomputed score. The results
indicate that our score match with the developers score, therefore we believe
that our approach is promising in estimating the comprehension effort.

46 5.3 Summary

Chapter 6

Threats to Validity

6.1 Experiment-1

Two potential threats to validity concern the training and testing sets in Experiment-
1. The experiment is based on training LMs on Android discussions and evaluat-
ing the familiarity of different testing sets (Android, Java, Swing, JavaScript).
The experiment considers only Android framework to show that LMs are ef-
ficient in estimating Android familiarity, but we did not run other studies to
evaluate our approach on different frameworks. To generalize our approach
we need to evaluate other frameworks or even other programming languages.
We will investigate this further in future research.

The testing and training sets are StackOverflow discussions, where docu-
ments contain code snippets and text. In this experiment, the code LM is trained
on small and some times incomplete code. If we run this experiment in a dif-
ferent context as any system where the code is complete and much bigger than
Stack Overflow discussions, we might have different performance in estimating
the familiarity.

6.2 Experiment-2

In Experiment-2, the main threats are related to the data set size. In this study,
we asked two developers who have no experience with Android framework to
read a set of 6 Android tutorials (training set) and to score the comprehension
effort of a set of Stack Overflow discussions (testing set). To compare the de-
velopers’ scores with our estimation we trained the LMs with the same training
set. But as we mentioned in Chapter 5.1 the LM requires a large training set to

47

48 6.2 Experiment-2

perform well, and 6 tutorials are too few. Therefore, we trained the code LM
with a large set of Gist code snippets that have the same subject as the tutorials.
This procedure can introduce some inconsistency since the training set that we
gave to LMs is different form the one that we gave to the developers.

In this experiment, we compare our comprehension effort estimation with
two developers scores. In order to generalize our approach, we need to run our
experiment on a bigger sample. Furthermore, we could not run any statistical
analysis as calculating the precision and accuracy of our approach because the
sample size is too small, but this experiment is a starting point which suggests
that our approach is promising in estimating the comprehension effort. We will
investigate this further in future research.

Chapter 7

Conclusion

In this thesis, we have presented and evaluated the first approach in the liter-
ature able to assess documents by comprehension effort. The comprehension
effort is based on the readability and the familiarity of the document. We have
conducted a study over 100,000 Stack Overflow documents aimed to evaluate
the language model efficiency to estimate the familiarity of a given document.
The achieved results have shown that the language model is able to estimate the
familiarity and we noticed that its performance is tightly related to the training
set size. The best results have been achieved with a training set size ≥ 10,000
Stack Overflow documents.

We have conducted a study to evaluate our approach in estimating the com-
prehension effort. The sample size was not big enough to generalize the findings
of your study, but the achieved results suggest that our approach is promising in
estimating the comprehension effort. We beleive that the RSSE as Libra might
take advantage of our comprehension effort metric to improve their suggestions.

Future Work

In the future studies aimed at replicating our work, we plan to run the famil-
iarity evaluation experiment on a different framework or programing language.
For example, we might train a LM on Java and to evaluate its efficiency in pre-
dicting the familiarity of Java and a C++ sets, where these two programing
languages have a similar syntax.

We plan to run the comprehension effort evaluation experiment on a larger
sample in order to generalize our estimating approach. Moreover with a large
sample we can have a better evalaution to understand which effort estiamting
folmula performs better.

49

50

Finally, it is important to note that the comprehension effort metric de-
scribed in this thesis is not intended as the final model where only the read-
ability and familiarity of a document determine the required human effort to
comprehend it. Other metrics, (e.g., cyclomatic complexity) can be explored
and added to readability and familiarity metrics to compute the comprehension
effort.

Bibliography

[1] Sushil Krishna Bajracharya and Cristina Videira Lopes. Analyzing and min-
ing a code search engine usage log. Empirical Software Engineering, 17(4):
424–466, Aug 2012. ISSN 1573-7616. doi: 10.1007/s10664-010-9144-6.
URL https://doi.org/10.1007/s10664-010-9144-6.

[2] Raymond P. L. Buse and Westley R. Weimer. Learning a metric for code
readability. IEEE Trans. Softw. Eng., 36(4):546–558, July 2010. ISSN
0098-5589. doi: 10.1109/TSE.2009.70. URL http://dx.doi.org/10.

1109/TSE.2009.70.

[3] R.P.L. Buse and W.R. Weimer. Learning a metric for code readability. IEEE
Transactions on Software Engineering, 36(4):546–558, jul. 2010.

[4] T. A. Corbi. Program understanding: Challenge for the 1990’s. IBM Syst. J.,
28(2):294–306, June 1989. ISSN 0018-8670. doi: 10.1147/sj.282.0294.
URL http://dx.doi.org/10.1147/sj.282.0294.

[5] J.Chall E.Dale. Educational Research Bulletin.

[6] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. On the naturalness of software. In Proceedings of the 34th In-
ternational Conference on Software Engineering, ICSE ’12, pages 837–847,
Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL
http://dl.acm.org/citation.cfm?id=2337223.2337322.

[7] Reid Holmes and Gail C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the 27th International Conference
on Software Engineering, ICSE ’05, pages 117–125, New York, NY, USA,
2005. ACM. ISBN 1-58113-963-2. doi: 10.1145/1062455.1062491. URL
http://doi.acm.org/10.1145/1062455.1062491.

51

https://doi.org/10.1007/s10664-010-9144-6
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1147/sj.282.0294
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/1062455.1062491

52 Bibliography

[8] Rogers.RL Chissom.BS Kincaid.JP, Fishburne.RPJr. Research Branch Report
8-75, Millington, TN: Naval Technical Training, U. S. Naval Air Station,
Memphis, TN.

[9] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes. Automatically lo-
cating relevant programming help online. 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2012), 00:127–134,
2012. ISSN 1943-6092. doi: doi.ieeecomputersociety.org/10.1109/
VLHCC.2012.6344497.

[10] Dharmender Singh Kushwaha and A. K. Misra. Improved cognitive in-
formation complexity measure: A metric that establishes program com-
prehension effort. SIGSOFT Softw. Eng. Notes, 31(5):1–7, September
2006. ISSN 0163-5948. doi: 10.1145/1163514.1163533. URL http:

//doi.acm.org/10.1145/1163514.1163533.

[11] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of
Software Change. Academic Press Professional, Inc., San Diego, CA, USA,
1985. ISBN 0-12-442440-6.

[12] Collin McMillan. Finding relevant functions in millions of lines of code. In
Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 1170–1172, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0445-0. doi: 10.1145/1985793.1986032. URL http://doi.acm.

org/10.1145/1985793.1986032.

[13] Roberto Minelli, Andrea Mocci and, and Michele Lanza. I know what you
did last summer: An investigation of how developers spend their time.
In Proceedings of the 2015 IEEE 23rd International Conference on Program
Comprehension, ICPC ’15, pages 25–35, Piscataway, NJ, USA, 2015. IEEE
Press. URL http://dl.acm.org/citation.cfm?id=2820282.2820289.

[14] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Michele Lanza. Mining StackOverflow to Turn the IDE into a Self-
confident Programming Prompter. In Proceedings of MSR 2014 (11th Work-
ing Conference on Mining Software Repositories), pages 102–111. ACM,
2014.

[15] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Stormed: Stack over-
flow ready made data. In Proceedings of MSR 2015 (12th Working Confer-
ence on Mining Software Repositories), pages 474–477. ACM Press, 2015.

http://doi.acm.org/10.1145/1163514.1163533
http://doi.acm.org/10.1145/1163514.1163533
http://doi.acm.org/10.1145/1985793.1986032
http://doi.acm.org/10.1145/1985793.1986032
http://dl.acm.org/citation.cfm?id=2820282.2820289

53 Bibliography

[16] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Mas-
similiano Di Penta, Rocco Oliveto, and Michele Lanza. Supporting soft-
ware developers with a holistic recommender system. In Proceedings of
ICSE 2017 (39th ACM/IEEE International Conference on Software Engineer-
ing). to be published, 2017.

[17] Mohammad Masudur Rahman and Chanchal K. Roy. Recommending rele-
vant sections from a webpage about programming errors and exceptions.
In Proceedings of the 25th Annual International Conference on Computer
Science and Software Engineering, CASCON ’15, pages 181–190, Riverton,
NJ, USA, 2015. IBM Corp. URL http://dl.acm.org/citation.cfm?id=

2886444.2886471.

[18] Steven P. Reiss. Semantics-based code search. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09, pages
243–253, Washington, DC, USA, 2009. IEEE Computer Society. ISBN
978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070525. URL http:

//dx.doi.org/10.1109/ICSE.2009.5070525.

[19] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems
for software engineering. IEEE Software, 27(4):80–86, July 2010. ISSN
0740-7459. doi: 10.1109/MS.2009.161.

[20] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. How devel-
opers search for code: A case study. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
191–201, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8.
doi: 10.1145/2786805.2786855. URL http://doi.acm.org/10.1145/

2786805.2786855.

[21] Nicholas Sawadsky and Gail C. Murphy. Fishtail: From task context to
source code examples. In Proceedings of the 1st Workshop on Developing
Tools As Plug-ins, TOPI ’11, pages 48–51, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0599-0. doi: 10.1145/1984708.1984722. URL http:

//doi.acm.org/10.1145/1984708.1984722.

[22] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario
Linares-Vásquez, Denys Poshyvanyk, and Rocco Oliveto. Automatically
assessing code understandability: How far are we? In 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017),
2017.

http://dl.acm.org/citation.cfm?id=2886444.2886471
http://dl.acm.org/citation.cfm?id=2886444.2886471
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://doi.acm.org/10.1145/2786805.2786855
http://doi.acm.org/10.1145/2786805.2786855
http://doi.acm.org/10.1145/1984708.1984722
http://doi.acm.org/10.1145/1984708.1984722

54 Bibliography

[23] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V.
Lopes. How well do search engines support code retrieval on the web?
ACM Trans. Softw. Eng. Methodol., 21(1):4:1–4:25, December 2011. ISSN
1049-331X. doi: 10.1145/2063239.2063243. URL http://doi.acm.

org/10.1145/2063239.2063243.

[24] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil.
An examination of software engineering work practices. In Proceedings
of the 1997 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’97, pages 21–. IBM Press, 1997. URL http://dl.acm.

org/citation.cfm?id=782010.782031.

[25] Jeffrey Stylos and Brad A. Myers. Mica: A web-search tool for finding
api components and examples. In Proceedings of the Visual Languages and
Human-Centric Computing, VLHCC ’06, pages 195–202, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2586-5. doi: 10.1109/
VLHCC.2006.32. URL http://dx.doi.org/10.1109/VLHCC.2006.32.

[26] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer assis-
tant for reusing open source code on the web. In Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pages 204–213, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-882-4. doi: 10.1145/1321631.1321663. URL http:

//doi.acm.org/10.1145/1321631.1321663.

[27] Davor Čubranić and Gail C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 408–418, Washing-
ton, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X. URL
http://dl.acm.org/citation.cfm?id=776816.776866.

[28] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. In Proceed-
ings of the 26th International Conference on Software Engineering, ICSE
’04, pages 563–572, Washington, DC, USA, 2004. IEEE Computer Soci-
ety. ISBN 0-7695-2163-0. URL http://dl.acm.org/citation.cfm?id=

998675.999460.

http://doi.acm.org/10.1145/2063239.2063243
http://doi.acm.org/10.1145/2063239.2063243
http://dl.acm.org/citation.cfm?id=782010.782031
http://dl.acm.org/citation.cfm?id=782010.782031
http://dx.doi.org/10.1109/VLHCC.2006.32
http://doi.acm.org/10.1145/1321631.1321663
http://doi.acm.org/10.1145/1321631.1321663
http://dl.acm.org/citation.cfm?id=776816.776866
http://dl.acm.org/citation.cfm?id=998675.999460
http://dl.acm.org/citation.cfm?id=998675.999460

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Objective and Results
	Structure of the Thesis

	State of the Art
	Program Comprehension
	Semantic code search and code search engines
	Recommender Systems for Software Engineering

	Approach
	Overview
	Training Phase
	Stormed Island Parser
	Language Model
	Training the Language Model

	Assessing Phase
	Familiarity Estimation
	Readability
	Accounting for Text Readability
	Accounting for Code Readability

	Accounting Comprehension Effort

	Study Design
	Research Questions
	Data Collection
	Experiment-1
	Experiment-2

	Replication Package

	Results
	Familiarity Estimation Results
	Code LM Results
	Text LM Results

	Comprehension Effort Estimation Results
	Summary

	Threats to Validity
	Experiment-1
	Experiment-2

	Conclusion
	Bibliography

