
Fine-grained Content Classification of
Development emails

Master’s Thesis submitted to the

Faculty of Informatics of the Università degli Studi di Padova

Master of Science in Informatics

Curriculum of Artificial Intelligence

presented by

Tommaso Dal Sasso

under the supervision of

Dr. Fabio Aiolli Alberto Bacchelli Prof. Dr. Michele Lanza

14 December 2012

A mio padre, che mi ha sostenuto ed incitato in ogni
momento della mia formazione.

A mia madre, la cui curiosità mi ha ispirato ad essere
una persona che ama imparare.

Dedico questo mio lavoro ai miei genitori, che con il loro
esempio di impegno e coerenza mi hanno reso la persona

che sono oggi e che sarò domani.

ii

Abstract

Electronic communication means have become crucial with the adoption of soft-
ware at any level of everyday life; playing a central role in the coordination of
collaborative, distributed development. One widely used means is represented
by emails from development mailing list, which contain questions and discus-
sions among developers about design choices and various issues concerning the
evolution of a system. The contents in these archives could lead to consistent
information e.g., describing the system’s history during its evolution, or giving
a meaningful insight on the currently active development tasks. The analysis
of emails poses, however, some serious challenges: the text is often noisy, and
usually contains characters that make it hard to build a robust parser to auto-
matically extract accurate information. Previous research addresses these issues
by working at the document level, without precisely discriminating the various
sections that compose a development email.

In this thesis we present a classification approach, which integrates machine
learning, information retrieval and parsing techniques, to enable robust email
content analysis at the line level. The developed technique classifies email lines
in five categories—i.e., text, junk, code, patch, and stack trace—that allows one
to subsequently apply ad hoc analysis techniques to exploit the peculiarities of
each category and removing the sections of the content that would entail noise,
reducing the effectiveness of the analysis. We evaluated our approach on a sta-
tistically significant set of emails gathered from mailing lists of four unrelated
open source systems, reaching high values of precision and recall.

iii

iv Abstract

Acknowledgements

This long voyage finally gets to an end. During these years, I met many people
that gave me a bit of inspiration to grow and improve myself.

First of all, I would thank the REVEAL Group for adopting me during my
thesis experience: Alberto for being a mentor, a sincere friend and my best man;
Michele for teaching me that fun is a central part of a creative and inspired work,
and that one needs love to make a good coffee; Marco, Fernando and Lile, for
the kind support and the passion they showed in their everyday work.

I would thank my parents and my family for educating me towards contin-
uous self improvement. I would thank my wife for her patience and the smiles
that let me go through all these years.

I would thank AGESCI for making me see a better world, and all the people I
worked with to help make this dream day by day a little more concrete.

Thank to all the students that shared a bit of their path with me, particularly
to the Son of a Bit Company, for teaching me about the game, and that “An
artificial intelligence algorithm is like a piece of marble, that the programmer has
to sculpt to fulfill his needs”.

v

vi Acknowledgements

Contents

Contents viii

List of Figures ix

1 Introduction 1

1.1 Goal . 1

1.2 Domain and Motivation . 2

1.2.1 Problems with the current approach 3

1.2.2 Bag of words and emails analysis 4

1.3 Contribution . 7

1.4 The thesis experience . 8

1.5 Structure of the Document . 8

2 Related Work 9

3 Parsing and Machine Learning 13

3.1 Parsing . 13

3.2 Machine Learning . 14

3.2.1 Naïve Bayes . 15

3.2.2 Decision Trees . 16

3.2.3 Support Vector Machines . 17

3.2.4 Methods implementation . 19

4 Data Collection & Classification 21

4.1 Data collection . 22

4.2 Data classification . 24

4.3 Data distribution . 27

vii

viii Contents

5 Experiment 29
5.1 Term based classification . 30

5.1.1 Selection of the terms . 31
5.1.2 Training and Evaluation Methodologies 34
5.1.3 Term Based Features and Overfitting 35
5.1.4 Results . 36

5.2 Parsing based classification . 38
5.2.1 Stack trace parsing . 39
5.2.2 Patch parsing . 40
5.2.3 Source code parsing . 41
5.2.4 Junk parsing . 42
5.2.5 Results . 44

5.3 Mixed Approach . 46
5.3.1 Adding parsing results to Naïve Bayes 46
5.3.2 Results . 47
5.3.3 Unified Classification Approach 48
5.3.4 Results . 50

6 Discussion And Threats to Validity 51
6.1 Discussion . 51
6.2 Threats to Validity . 53

6.2.1 Construct Validity . 53
6.2.2 Statistical Conclusion . 53
6.2.3 External Validity . 53

7 Conclusion 55
7.1 Contribution . 56
7.2 Exploitation . 57
7.3 Future work . 58
7.4 My contribution to the experiment 58
7.5 Epilogue . 59

Bibliography 61

Figures

1.1 Example development email with mixed content 5

3.1 The new instance (semitransparent) is near to correctly classified
training data, but is incorrectly classified 18

3.2 The SVM maximizes the margin . 19
3.3 A dataset containing data that are not linearly separable: there is

no 1-dimensional line that separates the black instances from the
white one. 20

4.1 Mailpeek: our web app for classifying email content 25

5.1 Lines modeled as vector of terms. Each element is a feature that
contains the frequency of the term in the line. 30

5.2 Results on training and test sets, by line threshold for features . . 36
5.3 Training and Test Process of the Unified Classification Approach . 45

ix

x Figures

Chapter 1

Introduction

1.1 Goal

Last decade showed a massive adoption of software systems in many aspects of
human activities, causing a great number of software project to be developed.
Such projects usually grow over time in number of features and in lines of code,
and employ an increasing number of people working on the development and
mantainance process; these people need to coordinate their efforts, and doing
so they generates great volumes of communication.

This communication is sometimes stored with the software repositories of
the project they refer to, and represent an archive of information that describes
the history of the system during its growth. Being able to access this history
can provide useful information for supporting software analysis and program
comprehension tasks [19]. By analyzing different repositories one has access to
different perspectives on systems; for example, issue repositories open a view on
defective entities, thus enabling research on defect location and prediction [16];
similarly, natural language (NL) documents, such as emails, provide a view on
developers’ interactions and opinions [34].

Obtaining benefits from the history of a system—to support program com-

1

2 Introduction

prehension and software development—is not trivial: the information extracted
from software repositories is not always structured and follows variable conven-
tions derived, for example, from spoken language or from coding style. However,
to perform a reliable analysis we need information that is relevant, unbiased, and
comprehensible. In this vein, researchers are analyzing the quality of issue data
sets, to verify if approaches are accurate enough to provide flawless informa-
tion [11, 38], and to determine what information is more relevant, for example
in bug reports [40] or among the changes in version histories [26].

A clear example of communication related to a software system comes from
development mailing lists that developers use to report bugs, announce version
releases, discuss new features and receive feedback from the users. Develop-
ment emails contain different sections like natural language, code, signatures
or quoted phrases, and does not refer to a defined and consistent structure.
A crucial point to consider when we want to extract information from these
unstructured or semi-structured documents, where natural language may be a
consistent part of the whole corpus (e.g., web pages, IRC chat logs, emails from
mailing lists), is the quality of the data we process. In fact, in natural language
we cannot rely on a standard and unique grammar, because it is subject to ir-
regular changes—for example a neologism or an error—as opposed to standard
structures of programming language keywords or bug reports that are checked
by a parser. Moreover, such documents often contain additional automatically
generated content, like replies and indentation symbols in emails, tags in html
pages, or time and author information in IRC chats, which are usually consid-
ered as noise during the analysis of the content. The risks of using email data
without a proper pre-processing phase that filters noise and unstructured text, is
presented by Bettenburg et al. [9], providing evidence with examples that show
how noise severely impacts such data.

1.2 Domain and Motivation

We believe that the problem that we tackled in this work represents a concrete
need with practical applications. We show that the current state of research has
not yet explored this area, and that fine-grained email content classification can

1.2 Domain and Motivation 3

help improving the performance of software repositories analysis.

1.2.1 Problems with the current approach

Even when an accurate data cleaning is conducted, the analysis performed by
current techniques treats each document as a single bag of words: The document
is stored as a list of terms found in the document with frequencies associated to
each word. This simplification comes from the field of information retrieval,
which usually deals with well-formed natural language documents written by
information professionals, such as journalists lawyers, and doctors [29]. This
representation allows only a coarse-grained analysis, since it gives no inspection
inside the document structure. This classification can assign an entire document
under a single category, thus failing to separate and classify the different sec-
tions in the content. As a result, the information that we can extract with this
technique is whether a document belongs to a category or, at most, whether a
document contains elements of each category. We cannot know the portion of
the text belonging to class, or if a document belongs to a category for a sin-
gle line or for the whole text, so, we have neither quantitative nor qualitative
measures of the categories.

Applied to software engineering problems, the bag of words approach has
shown to be effective in some tasks (e.g., traceability between documents and
code [1]), but generally performs poorly, due to a considerable amount of noise
in the data that causes a reduction of the quality, reliability and comprehensi-
bility of the available information. This degradation happens because natural
language is not defined by a strict, formal grammar; in fact, it can be arbitrar-
ily formatted, and interleaved or embedded in sections containing text of other
classes (commented code).

We can also note that the repositories we want to fetch contain data that
belong to a different domain with respect to standard information retrieval tasks.
Each class is characterized by specific characteristic that can be exploited to help
the classification process: source code contains language keywords in a strictly
defined order, stack traces contain debugging information, signatures contain
standard markers like “wrote” or the character “>” for indentation, while natural

4 Introduction

language shows none of these conventions. With this additional information
we assume that a more precise classification than a bag of words approach can
be succesfully performed. Having a row level precision allows us to remove
the lines that contain noise—like signatures—that would influence our analysis,
thus improving the result of successive inspections. We can also consider only
the lines of selected categories and filter out the uninteresting ones, to operate
on a controlled subset of the original document.

1.2.2 Bag of words and emails analysis

Figure 1.1 shows the content of an example development email. Given the di-
versity of languages used in the example email, if we consider its content as a
single bag of words, we would obtain a motley set of flattened terms without
a clear context, and we would severely reduce the quality and the amount of
available information. If we can automatically distinguish the parts that form
such an email, we would provide better support for many tasks, as for example:

Traceability recovery. In Figure 1.1, the email is referring to several classes
(e.g., Main, Fig, and MPackage), but only the class Explorer is critical to the dis-
cussion: It causes the failure and the email’s author is changing it to provide a
solution. We realize the importance of Explorer by reading the NL line 16. We
often found this pattern: Artifacts mentioned in NL parts of emails are more
relevant to the discussion, than artifacts mentioned in other contexts (e.g., stack
traces). A traceability method based on bags of words (e.g., [3]), would not
be able to recognize the artifacts appearing in NL context and increase the rel-
evance of the link. Such a method can only use the number of occurrences to
weigh more certain terms [29], leading to imprecise results. In Figure 1.1, a
weighting based on occurrences would give the most relevance to class MPack-
age (mentioned 5 times), which is marginal to the discussion. By recognizing
the context in which a term appears, we can improve the quality of traceability
links, by providing additional information to the user.

Common terms removal. To better characterize documents, information re-
trieval research suggests to remove stop words (i.e., very common words) [29],
thus giving more weight to those terms that are peculiar of a document. This

1.2 Domain and Motivation 5

(1) Alice wrote:
(2) > On Mon 23, Bob wrote:
(3) >> Dear list,
(4) >> When starting up ArgoUML on my MacOS X system (Java 2)
(5) >> it throws a NullPointerException very soon. You'll find the
(6) >> trace below. I hope someone knows a solution. Thanks a lot!

(7) >> Exception in thread "main" java.lang.NullPointerException
(8) >> at
(9) >> javax.swing.event.SwingSupport.fireChange(SwingChange.java)
(10)>> at javax.swing.AbstractAction.setEnabled(AbstractAction.java)
[...]
(11)>> at uci.uml.Main.main(Main.java:148)

(12)> I'm sorry I can't help you Bob but thanks for sharing the stack...
(13)> Alice.
(14)> --
(15)> "Beware of programmers who carry screwdrivers." --L. Brandwein

(16)Alice, I believe we must change Explorer.java to fix Bob's problem:
(17) public void setEnclosingFig(Fig each) {
(18) super.setEnclosingFig(each);
(19) if (each != null || (each.getOwner() instanceof MPackage)) {
(20) m = (MPackage) each.getOwner(); }

(21)The problem is in the condition, I attach the diff with this version:
(22)--- src/org/argouml/ui/explorer/Explorer.java (revision 14338)
(23)+++ src/org/argouml/ui/explorer/Explorer.java (working copy)
(24)@@ -147,1 +147,1 @@
[...]
(25) super.setEnclosingFig(each);
(26) - if (each != null || (each.getOwner() instanceof MPackage)) {
(27) + if (each != null && (each.getOwner() instanceof MPackage)) {
(28) m = (MPackage) each.getOwner(); }

(29)I hope this change is fine by you, if so, please apply it =)
(30)Cheers, Carl.
(31)-- I used to have a sig, but it took up much space so I got rid of it!
(32)---
(33) To unsubscribe, e-mail: dev-...@argouml.tigris.org
(34) For additional commands, e-mail: dev-...@argouml.tigris.org

junkNL text patch stack tracesource code

Figure 1.1: Example development email with mixed content

6 Introduction

approach applied to development emails does not bring the expected benefits:
By removing stop words, we do reduce the noise in NL parts, but we also delete
information in parts that do not share the same vocabulary (e.g., source code);
similarly, we delete important information by removing programming language
keywords from NL. For example, the removal of the stop word “each” from the
whole content of Figure 1.1 would imply the deletion of a variable name in both
a code fragment (lines 17–20) and a patch (lines 25–28). This is suboptimal,
since variable names are known to provide relevant information [27]. By recog-
nizing the different parts that compose an email, we can adopt different common
terms removal techniques, enabling us to expose the most relevant information.

Artifact summarization. Given the amount of data produced during a sys-
tem’s evolution, researchers investigated how to expose the significant details to
reduce information overload (e.g., [32]). Techniques devised so far are tailored
to specific types of artifacts (e.g., source code [21], NL documents [24]) and
results might be poor when applied to mixed documents, such as development
emails. By recognizing the different parts that compose an email, we can devise
an approach that applies the most suited summarization technique according to
the type of each part and extract the correct keywords.

Content parsing. To know the exact meaning of code fragments, patches,
or stack traces, we can use ad hoc parsers; similarly, NL text can be effectively
analyzed with NL processing techniques [25]. For example, in Figure 1.1, using
a parser for patches, we can recognize that the file being modified is Example
(from lines 22 and 23), thus extracting further information on which issue is
discussed. However, ad hoc parsers cannot be applied to mixed content, as they
are not robust enough to manage unexpected data. By distinguishing the type
of each email line, we can exploit ad hoc analysis techniques to extract precise
information.

Non-essential information removal. In Figure 1.1, 8 lines (marked as
“junk”) out of 34 contain irrelevant data. Previous research indicated how some
changes in version history are not essential, and how their detection and filter-
ing can improve change-based analysis techniques [26]. On the same line, we
argue that the detection and removal of junk from email contents increase the
quality of the data, and thus improve analyses based on such data. By recogniz-
ing the noise in emails, the important data emerges, improving the information

1.3 Contribution 7

extraction quality.

1.3 Contribution

We present an approach, based on a combination of parsing techniques and
machine-learning methods, that we used to classify the contents of development
emails in five categories:

1. natural language

2. source code

3. patch

4. stack trace

5. junk (text with no valuable information, such as auto-generated authors’
signatures or disclaimers)

The developed technique works at the line level. We created a web application to
manually classify email content in the chosen categories. We classified a statis-
tically significant set of emails taken from four open source JAVA systems, which
we then used to evaluate the accuracy of our approach, obtaining promising
results.

The contributions of this thesis work are:

1. a novel approach, which combines parsing techniques and machine-learning
methods, for fine-grained classification of email contents;

2. a web application to manually classify email contents;

3. the manual classification of a statistically significant sample set of emails
(for a total of 67,792 lines) from mailing lists of four different software
systems–in the form of a freely available benchmark,

4. the empirical evaluation of our approach on the benchmark.

8 Introduction

1.4 The thesis experience

This thesis is a result of the work performed during a six month internship at the
REVEAL group at Università della Svizzera Italiana in Lugano, occurred from
October 2010 to April 2011. REVEAL is a research group under the guidance
of professor Michele Lanza, and is active in Software Engineering, Evolution
and Visualization. In particular, our work involved supporting the team in au-
tomatically elaborating emails to extract useful information from development
mailing lists. The work produced a conference paper that was published at ICSE
2012 [5]

1.5 Structure of the Document

In Chapter 2, we describe our contributions with respect to related work. In
Chapter 3, we present the parsing techniques adopted during the development
of the experiment and the machine learning algorithms used to complement the
parsing results. In Chapter 4 I show how we collected and manually annotated
the data to test the new approach. In Chapter 5, we detail the classification
methods and describe the evaluation. The evaluation results and threats to va-
lidity are discussed in section Chapter 6. In section Chapter 7, we conclude by
summarizing the contribution of our work and by evaluating my thesis experi-
ence.

Chapter 2

Related Work

Numerous researchers applied natural language analysis techniques to software
related documents, also proposing approaches to improve the comprehension
of the NL parts. For example, Dekhtyar et al. [17] discussed the opportunities
and challenges for text mining applied to software artifacts written in NL. In the
following the focus is on research dealing with the recognition of the different
parts that compose NL artifacts.

As previously mentioned, Bettenburg et al. presented the importance of a
proper cleaning pre-processing phase before using email content [9]. Their idea
revolves around noise in the email data, and they suggest a number of filtering
heuristics to recognize noise and irrelevant information. The focus of their work
is more on making the research community aware of the email data problem,
than on validating the proposed approaches.

Later, Bettenburg et al. devised infoZilla, a tool to recognize and extract
patches, stack traces, source code snippets, and enumerations in the textual
descriptions that accompany issue reports [8]. InfoZilla is composed of four
independent filters, one per category, which are used in cascade to process the
text. The source code filter uses a parsing approach based on text matching
implemented through regular expressions. The authors reported results on the
effectiveness of infoZilla in differentiating documents, i.e., deciding whether they
contain or not each category. They reached almost perfect results, with values

9

10 Related Work

well above 0.95 for both precision and recall in all the categories. Subsequently,
they effectively used infoZilla in a practical application, to investigate which
features are relevant when submitting bug reports [40].

Compared to bug comments, development emails contain some substantial
differences, that present the following issues:

1. they contain a larger NL vocabulary, since the discussion is not limited to
bug related issues, the content of emails can treat topics that range from
deadlines to everyday life or politics;

2. they present more noise, generated for example by email headers and au-
thors’ signatures, or consistent quote sections in replies;

3. emails pose bigger challenges in text recognition, since many email clients
automatically wrap long lines of text, thus breaking the right format-
ting [10].

Bird et al. proposed an approach to measure the acceptance rate of patches
submitted via email in open source projects [10]. They extracted code patches
from emails and used them to analyze the developers’ interactions. Since the
analysis was their main focus, the authors provided little information about the
extraction technique and the data used to assess it.

A number of information retrieval approaches targeted the classification of
text or the recognition of information with specific patterns [25], especially by
exploiting probabilistic and machine-learning models (e.g., Maximum Entropy
Models [7] or Hidden Markov Models [6]). In particular, Tang et al. addressed
the issue of cleaning the email data for subsequent text mining [37]. The authors
proposed a cascaded approach to clean emails in four passes:

1. non-NL text filtering,

2. paragraph recognition,

3. sentence boundaries detection,

4. word normalization.

11

In the first pass, the method filters out email headers, signatures, and program
code (without a distinction from patches or stack traces); then, it recognizes
the paragraphs and sentences that compose the remaining NL text; finally, it
corrects misspelled words. The authors randomly chose a total of 5,459 emails
from 14 unrelated sources (e.g., newsgroups at Google) and created 14 data sets
in which they manually labeled headers, signatures, quotations, and program
codes. Given the labelled data, the authors implemented a classifier for each step
of their approach. All the classifiers use Support Vector Machines (SVM) and are
based on specific features (e.g., number of words). At line level classification,
they achieved an f-measure of 0.81 in recognizing code, and 0.98 and 0.90 for
header and signature.

Carvalo and Cohen devised methods to recognize signature blocks and reply
lines in non-software related emails [14]. They worked at the line level and
tested the effectiveness of a set of features with many machine learning classi-
fiers. In the signature detection task, the methods reached an f-measure value
of 0.97.

Summing up, previous approaches differ from the one we present in this
work as they:

• addressed more compact classification tasks, for example only detecting
patches [10] or signatures [14];

• considered a larger granularity or different data sources (e.g., bug re-
ports [8]);

• did not distinguish structured data forms (e.g., by merging patches, code,
and stack traces [2, 37]).

During the development of the method, we strove for an approach with a wide
breadth and fine granularity, able to provide a row-level detail of information
for increasing the quality of subsequent analyses that could give a more accessi-
ble and useful description of the information contained in development mailing
lists.

12 Related Work

Chapter 3

Parsing and Machine Learning

We present the main methods that we used during the experiment. These ap-
proaches have proved to be effective when applied to a data mining application.
We applied them to our problem to verify their effectiveness in the context of
email content classification.

3.1 Parsing

Parsing is a technique that performs the syntactic analysis of a text identifying a
sequence of tokens that satisfy a set of rules, called a grammar. A parser is an
algorithm that takes some data in input (for example a fragment of text) and
checks it against the rules of the grammar. If the input is syntactically correct, it
is accepted, otherwise it is rejected.

For example, we can imagine a parser as a function that searches a text for all
the occurrences of email addresses. The algorithm then will search a username
followed by the character @ (at) and the domain, where:

username is a word

word is a sequence of alphanumerical characters without spacing

13

14 Parsing and Machine Learning

domain is a sequence of two or more word separated by the character dot

With this definition we can easily construct the grammar of the parser:

email := username@domain

word := character

username := word

domain := word(.word)+

If the parser analyses a text like “To submit bugs please send an email to
tommaso@studenti.unipd.it”, it will recognize tommaso@studenti.unipd.it

as accepted by the grammar and ignore the other parts.

To refine our results, we can further restrict the number of valid addresses
specifying a set of valid top level domains, like .com, .it or .org to get more
precise results.

Using a parser allows us to specify in detail the rules that define what is
accepted by the parser and what is not. We can continue adding constraints
and get increasingly refined results that can be modified interactively during the
analysis of a new domain. Also, the knowledge produced and contained in the
grammar is easily accessible and can be extracted and interpreted.

The use of a parser has some drawbacks. First of all, it requires that the
grammar is defined by an expert that has prior knowledge of the domain and
can formalize his expertise into a set of rules. Such rules need to be directly
derived by the information we have on the data. Also, the generated parser
is specialized for a given domain, and it usually needs to be reconfigured or
rewritten when applied to a new one.

3.2 Machine Learning

Machine learning is concerned with building programs that evolve during time
with the experience gathered from the data. It generally consists of two steps:

3.2 Machine Learning 15

a learning, or training, phase and a classification phase. During the learning
process, the algorithm takes the input data and tries to build a classifier by in-
ductively extracting knowledge from the examples. Such a classifier is then used
in the classification phase, to make predictions on new instances of the dataset.

Machine learning is an approximation task. This means that it usually per-
form worse than a pure algorithmic approach. However, it is of great value when
dealing with certain kinds of problems, like when the domain is too complex and
impossible to completely define. For example, given its ability to generalize its
experience finding patterns in the training examples, a machine learning ap-
proach can bring substantial improvements when the input data is too big to
be manually inspected, or contains errors that would make a parsing approach
much harder and less reliable.

3.2.1 Naïve Bayes

Naïve Bayes is a method of supervised learning, i.e., a category of machine-
learning algorithms that uses classified training examples to infer the classifi-
cation function. Naïve Bayes relies on the assumption that the presence of a
feature is unrelated to the occurrence of the other features. Even though this
conditional independence assumption is a strong simplification, the method has
often been found to outperform more sophisticated techniques [25]; in particu-
lar, in the text classification task, researchers showed that the simple probabilis-
tic classifier Naïve Bayes achieves significant results [13].

The method uses the Bayes rule [25] to compute the probability that a doc-
ument d, composed of tk terms, belongs to a class c:

P(c|d)∝ P(c)
∏

k

P(tk|c) (3.1)

To classify an instance we calculate the posterior probability P(ci|d) for each
considered class, and select the ones with the highest probability. This is called
maximum a posteriori (MAP) hypothesis:

16 Parsing and Machine Learning

CMAP = argmax
c j∈C

P(c|d)∝ argmax
c j∈C

P(c)
∏

k

P(tk|c) (3.2)

If, for example, we want to classify the instance d = “Alice wrote :′′ as tex t,
junk, or code, the algorithm first computes the probabilities as: P(tex t|d) =
0.43, P(junk|d) = 0.55 and P(code|d) = 0.02, then selects the value 0.55, and
finally classifies d as junk.

Given the high number of probability multiplication performed, the calcu-
lated values may become too small to be represented by float numbers: This
may introduce the risk of underflow. To avoid this issue, Naïve Bayes computes
the values as logarithms. Moreover, when a term does not occur in the training
test, the calculated probability would be zero, thus Naïve Bayes also applies a
Laplacian smoothing to the product. An asset of Naïve Bayes is its linear com-
plexity, which allows training and classification to be performed efficiently, even
with a very large number of features.

3.2.2 Decision Trees

Decision trees are a kind of supervised learning algorithms to approximate a
classification function when its values are discrete. They are one of the most
used methods in practical application for their efficiency and the properties of
the generated classifier.

The output of the algorithm is a tree that represents the learned function. In
the decision tree, each attribute or feature is mapped to a node of the tree and
each branch that starts from the node represents one of the possible values of
the attribute. The classification is then performed starting from the root of the
tree and descending it choosing a value for each node. When we reach a leaf,
the path from the root to the leaf contains the values of the attributes of the
instance, with its classification.

Various strategies consist in different approaches to decide the order of the
attributes, sorted starting from the root; one of the most common methods uses

3.2 Machine Learning 17

entropy as a measure to select this sorting. Entropy measures the purity of an
arbitrary group of elements, i.e., how homogeneous are the elements in a set.
To select the ordering of the elements during the training phase, the algorithm
chooses the attribute that best separates the instances, which is the one that
maximizes the reduction of the entropy; the difference of entropy is called infor-
mation gain.

One of the biggest advantages of decision trees is that a tree can be com-
pletely converted into a set of logic rules that describes its behavior. As such, the
experience gathered from a decision tree is easily comprehensible by a human,
and so it is reusable.

3.2.3 Support Vector Machines

Linear classifier

SVM is a machine learning method to perform supervised learning. It founds
on the idea that a classifier on a p-dimensional space can be found consider-
ing a (p− 1)-dimensional hyperplane that separates the instances. Its function-
ing resembles another popular machine algorithm, the perceptron [31], but the
two methods differ as they use a different approach in the selection of the hy-
perplane chosen as classifier. The perceptron algorithm is a simple supervised
learning algorithm that starts from a random hyperplane and then iteratively
aims to reduce the error on the training data until it finds a hyperplane that
correctly classifies all the training instances. This approach may lead to errors
when new data is classified, since instances near correctly classified examples
may be misclassified, as shown in Figure 3.1

Support vector machines select instead the classifier that maximizes the mar-
gin [12], which is the distance from the nearest instance of training data, from
both the sides of the classification, as shown in Figure 3.2. This assumption tries
to overcome the overfitting problem of the perceptron shown above.

18 Parsing and Machine Learning

Figure 3.1: The new instance (semitransparent) is near to correctly classified
training data, but is incorrectly classified

Nonlinear classification

As the perceptron, Support Vector Machines with a linear kernel can only train
classifiers that perform a linear separation [23]. This means that the classifier
relies on the assumption that the data instances are perfectly separable with a
hyperplane, as the example in Figure 3.3. Incorrect values can be considered
as penalties that are added to the margin, to minimize the number of tolerated
incorrect classification, but still produces a sub-optimal classification. To address
this issue, researchers have introduced the use of nonlinear kernels. A kernel is
a function that maps a high dimensional space into a smaller one, allowing
easily representation of functions such as inner product, and thus permitting
computation that would otherwise be too complex to handle. With the use of
the correct kernel function, a SVM can classify datasets that are not linearly
separable.

Since learning process is performed by modifying the coefficients associated
to the vectors, support vector machines don’t allow a human reading their in-
ternal representation like a decision tree, so the generated model is not easily

3.2 Machine Learning 19

Figure 3.2: The SVM maximizes the margin

accessible. However, their power and relative simplicity (compared to more
complex methods, such as neural networks [31]) made support vector machines
a very effective method in data mining and information retrieval.

3.2.4 Methods implementation

To test the results of the methods we had chosen, and to quickly check the
performances of possible other approaches, we used Weka [22]. Weka includes
several state of the art machine learning and data mining algorithms. 1 Using
Weka permitted us to conduct a quick evaluation phase, that showed us whether

1SpagoBI, an open source business intelligence framework, uses Weka as its data mining
engine — http://www.spagoworld.org/xwiki/bin/view/SpagoBI/

20 Parsing and Machine Learning

Figure 3.3: A dataset containing data that are not linearly separable: there is no
1-dimensional line that separates the black instances from the white one.

the the methods we had decided to use could fit the problem.

Chapter 4

Data Collection & Classification

The goal was to devise a method for reliably and precisely classifying emails
at line level precision, with the aim of improving data quality and comprehen-
sion. The first step was to obtain datasets that were accurate, comprehensive,
and of statistically significant sizes, to test the approaches we wanted to apply.
These features were critical for validation purposes and to lead to more reliable
training for the supervised classification methods we employ.

We implemented two tools to assist the classification process: a mailing list
importer, to fetch mailing lists repositories mining which would download, for-
mat and store data, and a web application to present the gathered data and
provide a practical method to assist the manual classification of email content in
categories.

We integrated these tools in Miler, a previously developed toolset for explor-
ing email data [4], and we called the new application Miler2. We then used these
tools to collect the necessary data, perform some data cleaning and classify the
instances to build the dataset.

21

22 Data Collection & Classification

4.1 Data collection

Some mailing lists provide their content in the MBOX format, which is a standard
format to archive emails that stores the email content in plain text.

MBOX format was then a good choice in terms of data representation, but
presented the problem that MBOX archives were not centralized, but only avail-
able through the project’s website. To fetch the data we would need to visit each
website, find the location of the email archive, and download it. This process
would be not automatically reproducible for new projects.

We found that various distinct software applications were available for man-
aging and consulting mailing list archives. Consequently, different software sys-
tems often use different applications to manage email repositories, and even a
single system can change the mailing list interface during its lifetime. This re-
sulted in the necessity of writing one custom importer per system and, more
important, in having data that might be not consistently formatted (e.g., with
different line breaks). We tackled this issue by using MarkMail1, an online ser-
vice for searching among more than 8,000 up-to-date mailing lists, presented
through a web application. We had access to the previous implementation of
Miler, a web crawler to extract emails from MarkMail website [4], but due to
structural changes to the HTML page of the emails it was not a reliable source.
Because of this, and due to the need of gathering more data from the website
than the previous application, we wrote a new crawler. To avoid being prone to
structural changes in the web page of the service, we contacted MarkMail ask-
ing for an application programming interface or a standard procedure to gather
information. The administrators provided us with a url template2 to gather one
email message in XML format, given the message id. They also specified that this
is the method used by the Google3 crawlers to fetch their emails. This format not
only offered email content separated from its metadata, as the web version does
too, but also provides faster access, since it does not download the unrelated
data of the HTML version, and it is independent from the website formatting.
The new implementation then takes advantage of these features to build a more

1http://markmail.org
2http://markmail.org/message.xqy?id=<messageId>
3http://www.google.com

http://markmail.org

4.1 Data collection 23

robust parser, and uses a thread pool to parallelize the fetching, resulting in a
faster crawler.

System
URL

Mailing listMailing listMailing listMailing list
System

URL Inception
EmailsEmailsEmails

System
URL Inception

Total After Filtering Sample

ArgoUML
argouml.tigris.org

Jan 2000 25,538 25,538 379

Freenet
freenetproject.org

Apr 2000 23,134 23,134 378

JMeter
jmeter.org

Jan 2006 24,005 5,814 361

Mina
org.apache.mina.dev

Feb 2001 21,384 14,499 375

Table 4.1: Email datasets used in the experiment, by system

Table 4.1 shows the four software systems and mailing lists considered in the
experiment. The selected software systems are unrelated and emerging from
the context of different free software communities, i.e., Apache, ArgoUML, and
Freenet. The development environment, the usage of the mailing lists, and the
development paradigms are likely to differ among the systems, thus mitigating
the impact of the threats to external validity of experiments.

We focused on development mailing lists, since they contain the highest den-
sity of information related to software development, including the part of the
community involved in writing and debugging code. We imported all the mes-
sages starting from the mailing list inception (second column in Table 4.1) to
the end of November 2010. We filtered out messages automatically generated
by the bug tracking system and the versioning system, since they do not con-
tain valuable information related to the development of the project. Also, we
extended the tool to automatically perform the filtering process making it then
reproducible on any new dataset.

From each filtered mailing list, we extracted statistically significant sample
sets (last column, Table 4.1). Since we had no prior knowledge available on

24 Data Collection & Classification

the distribution of line categories in the populations of the mailing lists, I opted
for simple random sampling [39] to pick the emails. The chosen sizes have a
confidence level of 95% and an error of 5%4.

4.2 Data classification

To develop a supervised machine learning approach and to train and test the
classifiers, we needed some pre-classified instances to use as golden set. This
meant manually classifying the 1,493 emails in the sample datasets. Such a
process is both time consuming and consistently error-prone, so we developed a
module of MILER2 called MAILPEEK, a web application written in Smalltalk, using
the Seaside framework [18] to help the annotation process and allow an easier
and immediate visual verification of the classified instances. Figure 4.1 show the
classification interface of MAILPEEK.

MAILPEEK was developed using the MVC pattern, to separate the visualiza-
tion, the model and the controller layers. The Model layer uses a POSTGRESQL
database to read and store the mailing list data, that the application can access
through a Smalltalk module called METADB [15]. MetaDB is a database ab-
straction layer with support for persistency that allows one to interact with the
database entries as if they were object instances. The email content is stored as
text, and its classification is stored as a set of intervals referring to the position
in the text. The controller layer contains the method to receive the text fetched
from the database and its classification, then it combines them into a data struc-
ture that pairs each character to its classification. The presentation layer models
each page as a class. When the web browser asks for a page, the SEASIDE server
sends a message to the relative class, invoking the method that retrieves the data
and composes the page to be rendered.

MAILPEEK presents an interface that allows the user to navigate through the
gathered mailing lists. It offers two modes: a view mode and a classification
mode. The view mode shows all the emails of a mailing list sorted them by
date and topic. The user can inspect the emails, read their content and also

4see [3, 39] for more information about sample size determination.

4.2 Data classification 25

IV

I

III

V

VI

II

Figure 4.1: Mailpeek: our web app for classifying email content

view their properties (e.g., the current classification or if the email has already
been classified), to allow an easy review of the work and reduce the errors. The
classification mode picks a random email among the unclassified ones from a
selected mailing list excluding the emails that were previously filtered. It then
opens its content presenting the classification interface to the user.

The classification interface presents the email and its metadata using a sheet
metaphor. The user can select the text to classify and then choose among the
categories presented at the side of the sheet as post-it. Figure 4.1 shows the clas-
sification interface of Mailpeek, as it appears—in a web browser—after a user
selects a mailing list of interest and the application extracts a random email.

26 Data Collection & Classification

Mailpeek displays the email metadata (point I) and content (point II), with ver-
tical bars to show indentation levels and increase readability.

Users conduct the classification task at the character granularity: To label a
block, they (1) click on starting and ending characters, (2) verify the correctness
of the selection (which is shown in a yellow background), and (3) apply the
appropriate category, either by clicking on a button in the left menu (point III),
or using keyboard shortcuts.

As an important feature, when users hover with the mouse on any character
in the email content area (point II), its font size triples (point IV). According
to Fitts’ Law [28], this eases the selection and reduces the necessary time, thus
decreasing fatigue and errors.

The top menu (point VI) gives the users the ability to control the workflow
with four options: back, save, skip and next. Once an email is completely clas-
sified, the user clicks on save to save the current classification and proceed with
the next email. Mailpeek then automatically loads another random email among
those not yet classified. The skip link allows the user to leave out non-valid
emails that were not removed by the filtering phase. The next option goes to the
next email without changing the status of the current one. This option is useful
when dealing with emails that are hard to classify and need further analysis.
The back link allows one to return to the mailing lists menu to change mailing
list or trigger the MarkMail importer to download new data.

We performed the manual classification task with the help of a PhD student
of the REVEAL Research Group. We conducted the analysis in two passes. First,
we classified different sets of emails, then, each of us reviewed 5% of the emails
analyzed by the other person. In the reviewing phase, we found only 12 erro-
neous lines (less than 0.2%).

4.3 Data distribution 27

ArgoUMLArgoUML FreenetFreenet JMeterJMeter MinaMina TotalTotal

NL Text 10,945 47.2% 7,923 59.6% 7,778 41.8% 6,496 51.2% 33,142 48.9%

Junk 11,122 47.9% 4,096 30.8% 9,734 52.3% 4,633 36.5% 29,585 43.6%

Patch 470 2.0% 986 7.4% 339 1.8% 287 2.3% 2,082 3.1%

Source Code 304 1.3% 29 0.2% 591 3.2% 990 7.8% 1,914 2.8%

Stack Trace 364 1.6% 254 1.9% 165 0.9% 286 2.3% 1,069 1.6%

TotalTotal 23,20523,205 13,28813,288 18,60718,607 12,69212,692 67,79267,792

Table 4.2: Distribution of the categories per line, by system

4.3 Data distribution

Table 4.2 reports the distribution of the different categories in the considered
sample sets. Since the machine-learning techniques that we used are highly
influenced by the distribution of categories, the data had to be carefully analyzed
to achieve optimized and reliable results (see Chapter 5).

We can see that the amount of junk is critical: More than 30% of lines in any
system are classified as junk. This highlights again the impact of noise on email
data. The rest of the lines are mostly composed of natural language, while the
frequency and ranking of other categories is lower and changes according to the
mailing list (e.g., Mina has a higher amount of patches compared to Freenet).
The different composition of the content of these email sets reflects the different
usage of mailing lists among diverse communities, thus stressing the importance
of verifying our results on more than one system.

Hybrid Lines. A row level granularity allows a high degree of precision,
but of course it still is an approximation. Some lines happened to be split into
two sections, each one belonging to a different category, while the row level
approach allowed us to consider a line as an atomic entity. As a result, we
needed to treat these lines as a special case, either considering it belonging to
both categories, or choosing only one classification. By investigating these cases,
we found that these lines are mostly composed of a junk part not well separated
by the NL text, and they are not meaningful. These lines constitute less than

28 Data Collection & Classification

5% of the population (i.e., 3,362 lines). Despite the small number and their low
information value, the bias in the results was reduced by still considering them
as separated instances.

Chapter 5

Experiment

To implement the email classification approach, we decided to combine some
ideas gathered from both the Information Retrieval and Machine Learning fields,
to devise a new technique. Since the domain of the project was different. We
had to adapt the existing techniques and interpret them to fit the properties of
the given dataset.

During the previous case studies of the task, the research group had imple-
mented a solution [4] that we had the opportunity to examine and integrate.
This solution was based on parsing techniques (see Chapter 3), and it consisted
in a battery of parsers, each one configured and tuned to detect whether a line
could belong to a single category. However, given the strict nature of the parsers’
rules and the noisy constitution of the emails content, such method could not
overcome some limitations that bounded its performances. Our approach con-
sisted in integrating this technique using machine learning trying to defeat the
implicit limitation of the parsing approach and increment the results. Both the
original approach and the new one can be used as stand alone methods, but they
achieve the best results when combined, creating a unified approach.

29

30 Experiment

5.1 Term based classification

“Most current IR systems are based on a kind of extreme version of composi-
tional semantics in which the meaning of a document resides solely in the set of
words it contains” [25]. When dealing with text, documents are usually consid-
ered as bags of words, where syntactic information, ordering and constituency
of the words play no role in determining their meaning. In practice, IR systems
model each document as a vector of features, which correspond to the terms
that appear in the corpus vocabulary. For example, if we consider a document
(d), the cardinality of the vocabulary (|C |), and how many times each term (t i)
occurs in d, we could define the document vector as:

vd = [t1(d), t2(d), . . . , tC(d)]

This simple vector modeling has been widely used in association with supervised
machine-learning algorithms to achieve very effective results in automatic text
classification [29, 35]. We decided to model the representation of the documents
on the same basis: by considering the lines to be classified as vectors of terms,
as shown in Figure 5.1.

...
...

...

...0 1 3

0 0 1

0 0 1

0

t1 t2 t3 tC
L1

L2

LN

2

1

0

0

2

t4

...

...

Figure 5.1: Lines modeled as vector of terms. Each element is a feature that
contains the frequency of the term in the line.

The methods we intended to use were mainly funded on statistical principles;
this representation then permitted to easily store the lines of the text together
with their term frequency, thus allowing me to use this information while apply-
ing machine learning algorithms for their classification.

The two main critical steps in the elaboration of the classification method

5.1 Term based classification 31

are the choice of the machine learning techniques and the representation of the
vector of features. The selection of the machine learning method was crucial
since it would define the way the data would be processed and used to detect
patterns to build the classifier. The choice and representation of the vector of
features is essential because it defines the bias and the part of the data that
is used during the analysis; it also affects performances and it is probably the
aspect that has the biggest impact on the final results.

This important decision cannot rely uniquely on results from IR field. The
focus on IR methods mainly refer to other domains and classification tasks as
finding relevant documents for a topic(e.g., a search engine), or categorization
of documents of natural language [30]. Since the selection of the applied tech-
niques is not trivial, we describe and motivate each decision taken.

5.1.1 Selection of the terms

Words

Words are the fundamental tokens of all the languages used in the categories to
be classified. We judged the words in our corpus of 67,792 non-empty lines to be
valid features for a representative line modeling. In fact, the features from ran-
domly sampled development emails, contained a variegate set of terms which
commonly appeared during the threads, generating a core of high-frequency
terms together with many low-frequency ones. A raw approach would consider
all the words of the corpus as features, thus ending up with sparse feature-
vectors of the same dimension as the corpus cardinality. On the contrary, before
mapping the words, IR methods usually include a pre-processing phase to re-
move words that are not significant. This phase usually includes the following
steps:

stop word removal is a process that searches the documents for very common
words, and excludes them. This step is useful to remove the terms that are
not informative, since they are very common and tend to flatten the dif-
ferences between documents. The list of stop words can either come from

32 Experiment

a precompiled dictionary or can be derived from the analyzed documents,
by choosing a frequency as threshold and exclude all the terms that exceed
the threshold.

stemming tries to generalize the terms found, by collapsing the morphological
variants of a word into a single stem (e.g., “model” and “models” are re-
duced to the root “model”). The purpose of this operation is to avoid that
two variations of the same term are considered as two different tokens,
thus increasing the recall and reducing overfitting. Stemming should lead
to a better clusterization of similar documents.

threshold to term frequency behaves like the stop word removal, setting a
threshold to the frequency of a term, but instead of excluding the to-
kens with the highest frequency, it sets a lower bound under which a
term is ignored. This generally leads to better results by removing very
specific terms such as hapaxes that hardly indicate similarities between
documents. Removing these words reduces some of the noise in the data
and reduces overfitting.

Through an analysis of the terms, we evaluated which of the common IR
preprocessing steps could fit the task. We decided to not perform stop words
removal, since we expected the words that appear very frequently to be repre-
sentative and valuable features to describe a class. For example, stop words are
likely to appear more often in natural language, while JAVA keywords in source
code. A word like “if” is expected to have a high frequency inside code, and a
low frequency in junk. This is clearly very informative and helpful for the classi-
fication task. We also decided to not conduct stemming, since we expected some
morphological variants to be more characteristic of certain classes of lines (e.g.,
verb tenses are widely used in natural language text, while terms like “class” in
code do not have the same meaning as “classes” or “classified”). On the con-
trary, words with a low term frequency (i.e., that rarely occur in the corpus) are
unlikely to be relevant for the classification task, because they are probably oc-
casional terms or specific slang. We filtered out terms whose frequency is below
a certain threshold. We then applied a lower threshold to term frequency. This
contributes to the generalizability of our results, since these words are proba-
bly not of general use (like a variable name) and could lead to overfitting the
training data. When a line contains a word that does not have a correspond-

5.1 Term based classification 33

ing feature in the vector, the word is simply ignored, causing each line to be an
extremely sparse vector.

Punctuation

When dealing with documents written in only one language (e.g., NL), IR sys-
tems usually remove punctuation; the topic of a document resides in the words,
then punctuation is considered as noise that adds no relevant information in a
bag of words approach. In this case, where we must distinguish lines written
in languages with different syntaxes, we considered punctuation to be an es-
sential aspect to take into account. For example, in Figure 1.1, lines with code
(i.e., 17 to 20) have a clearly different frequency of parenthesis if compared to
NL parts, and lines with stack traces (i.e., 7 to 11) present more dots. This is
because –differently from the natural language– punctuation in categories like
code or patch has a syntax that follows a formal grammar (excluding the case
where an email can contain some code with error, or where the text has been
corrupted by email formatting). This means that the distribution of the punctu-
ation might be representative of a category. Unless the punctuation marks are
separated by words or spaces (e.g., the dots in javax.swing., are two occurrences
of the feature “.”), We considered them as a single term. In this way, we could
also recognize the special characters in line 24 (i.e., “@@”), characteristic of a
patch block header; or the emoticon in line 29 (i.e., “=)”), a feature of NL or
junk. Also in this case, we only considered punctuation marks that appear in at
least 100 lines.

With the addition of punctuation marks as features and after the threshold
filtering, the considered features grew to 510 elements.

Bi-grams

To use Naïve Bayes means accept the strong assumption that features are con-
ditionally independent. As a result, inside a text, the presence of a word is
considered to be unrelated to the presence of its predecessor or successor. In
this task, the effect of this strong assumption is mitigated by the fact that we are

34 Experiment

considering the emails at row level. This assumption also makes the modeling
of NL text features easier: Defining the possible dependencies between words in
NL sentences would be an overwhelming task. However, in the other languages
considered, which have a stricter syntax, we often find patterns of terms appear-
ing together. For example, “public void” is very frequent in lines of code (e.g.,
line 17 in Figure 1.1), while “java)” is frequent in stack traces. To model and
exploit this intrinsic dependency characteristic of some terms, thus also reducing
the negative effects of Naïve Bayes’ assumptions, we added bi-grams to the set of
considered features. A bi-gram is a pair of terms that appear one after the other
in a text: For example, in the first line of Figure 1.1, we find two bi-grams: “Al-
ice wrote”, “wrote:”. We derived all the bi-grams in the corpus and added those
more frequent than the threshold as new features. With bi-grams, the number
of features reached 827 elements.

5.1.2 Training and Evaluation Methodologies

After we defined all the aforementioned features, we modeled each line as a 828-
dimensional vector. The first 827 elements of each vector represent the features,
while the last one is the manual classification value (e.g., “stack trace”). The
features are populated counting the corresponding term’s occurrences in the
line text, e.g., if the feature t i corresponds to the term “public”, and the line l
contains two occurrences of it, then in vl , we have t i(l) = 2. When a line contains
terms that are not mapped as feature, these terms are discarded.

Since we decided to use a supervised machine-learning algorithm, we needed
to train it on classified data. We did 10-fold cross validation, i.e., we split the
dataset in 10 folds, using 9 folds (90% of the instances) as training set to build
the prediction model, and the remaining fold as a validation set to evaluate the
accuracy of the model. Each fold is used once as a validation set. Since the
distribution of the classes is not homogeneous (i.e., NL lines are more frequent
than stack traces lines), we applied a stratified cross validation, in which the
distribution of classes is kept equal in both training and test sets. At this point,
the starting set for the cross validation was composed of all the lines from all
the emails, thus we merged the different mailing lists. The final approach is also
evaluated with cross mailing list validation to ensure its generalizability.

5.1 Term based classification 35

To evaluate the effectiveness of the prediction, we measured two IR metrics
broadly used in classification [29], namely precision and recall

P recision=
|T P|

|T P + F P|
Recal l =

|T P|
|T P + FN |

T P (true positives) are the correctly classified lines, F P (false positives) are the
incorrectly classified lines and FN (false negatives) are the incorrectly ignored
lines. Since precision (P) and recall (R) trade off against one another, we also
report the F-measure: their weighted harmonic mean [29]. With F-measure it is
possible to decide on a different weighting of precision and recall. We chose to
emphasize neither recall nor precision by using the balanced F-measure.

5.1.3 Term Based Features and Overfitting

By considering the entire set of features (i.e., words, punctuation, bi-grams, and
context), we obtained a complex classification model with more features than
training instances. In such a scenario, overfitting is likely to occur—this hypothe-
sis is supported by the reduced performances of the classifier in mailing list cross
validation (see Table 5.1). By reducing the features that are not valuable to cor-
rectly predict instances outside the training set, overfitting decreases, while the
generalizability of the results increases.

Since we used words and punctuation to describe the common traits of each
language, we hypothesized that the terms that rarely occur in the corpus are
less relevant and can be removed. We investigated this hypothesis by gradually
filtering out features (from all four kinds) that appear in less than t lines and
inspecting the results.

Figure 5.2 shows the average classifier’s performance in mailing list cross
validation, with t ranging from 1 to 4,587 (higher values reduce the number
of features to less than 10 greatly reducing the results). The blue dashed line
(above) is the average percentage of correctly classified lines on the training set,
while the red solid line (below) is the average percentage on the test set. The
best result on the training set (i.e., 96.1%) is set at t value of 1, (i.e., we consider
all the features, 115,864 on average when training on three mailing lists), while

36 Experiment

46000 1000 2000 3000 4000

1

0.65

0.7

0.8

0.9

Best result on Training, 1 line threshold

Best result on Testing, 11 lines threshold

Highest ratio between results
of testing and training, 548 lines threshold

Training results

Testing results

Minimum number of lines in which a term must appear to be considered as a feature

Ratio of correctly classified lines

Figure 5.2: Results on training and test sets, by line threshold for features

the best result on the testing set (i.e., 89.9%) is set at t value of 11 (i.e., 5,618
features on average), which reduces some noise. The optimal t value for the
best testing set results, however, changes according to the mailing list: Two lists
have a t value of 2, one of 25, and one of 46. A valid approach to find a good
value for t, also for unseen data, is to consider the point with the highest ratio
between testing results and training results [39]. We found this hot spot with a
threshold of 548 lines (i.e., 122 features on average). Interestingly the number
of features is a tiny fraction of the initial ones, but the testing results are reduced
only by a 1.5% (i.e., 88.3%). Higher thresholds lead to lower performances.

5.1.4 Results

Table 5.1 shows the results achieved by the Naïve Bayes classifier, which was
trained and evaluated with the 10-fold stratified cross-validation. As expected,
the chosen terms are already reasonable features for text classification, espe-
cially when also considering punctuation and bi-grams as features.

5.1 Term based classification 37

AverageAverageAverage Correct
Instances
Correct

InstancesPrecision Recall F-Measure

Correct
Instances
Correct

Instances

Words 0.771 0.735 0.716 49,852 73.5%

Words and
Punctuation

0.863 0.860 0.860 58,316 86.0%

Words, Punctuation
and Bi-grams

0.876 0.867 0.868 58,806 86.7%

Table 5.1: Results with term based classification, by feature sets

classified as !classified as ! NL Text Junk Patch
Source
Code

Stack
Trace

Precision Recall F-Measure

NL Text 31,434 1,006 240 347 114 0.858 0.948 0.901

Junk 4,772 23,943 495 177 198 0.944 0.809 0.871

Patch 219 125 1,130 567 41 0.571 0.543 0.557

Source Code 157 81 112 1,520 44 0.581 0.794 0.671

Stack Trace 69 214 3 4 779 0.662 0.729 0.694

Table 5.2: Classification with words, punctuation, and bi-grams

Table 5.2 reports confusion matrix [29], precision, recall, and F-measure
values for the classification done when considering all the term-features (i.e.,
words, punctuation, and bi-grams). We noticed how patch lines are often classi-
fied as code: This is reasonable, considering that we only analyzed features of a
single line, thus losing the context. For example, even a human reader could not
determine whether line 28 in Figure 1.1 belongs to the patch category or to the
code one, without inspecting the preceding lines. From Table 5.2 we also noted
that junk, patch, and stack traces are often misclassified among themselves. This
is probably due to the punctuation that is similar in these three classes.

38 Experiment

5.2 Parsing based classification

In the previous approach, all the features (i.e., terms) considered for classifi-
cation are extracted only from the line under classification, thus taking into
account a limited context. Even though the results (see Table 5.2) justify this
simplification for most of the cases, some of the considered classes (i.e., patch
and stack trace) present a structure that can only be recognized considering a
larger number of lines. For example, line 7 in Figure 1.1 cannot be easily distin-
guished from NL, unless we read the following lines; similarly, line 18 and line
25, which have exactly the same content, can be mapped to the correct class
only if considering the surrounding lines.

Researchers dealing with a similar problem tried to solve it by adding new
features seizing the characteristics of lines close to the one under classifica-
tion [14, 37]. To adapt this approach to our case, for each line being classified,
we also considered what appears in the preceding and in the following lines.
For example, in addition to “@@”, we added the features “@@-lineBefore”, and
“@@-lineAfter”. With this information, the classifier was facilitated in recogniz-
ing line 25 as part of a patch, especially thanks to the “@@-lineBefore” feature
with value 2. By trying this approach, we managed to improve the overall re-
sults, but this also led to three main issues:

1. The vectors dimension increased considerably,

2. some patterns cannot be recognized by only considering one line of looka-
head,

3. we still use the same kind of supervised approach.

About the first issue, by simply considering the features of only two addi-
tional lines, the dimension of the vector tripled and reached 2,481 features. Such
a high value hinders the feasibility of testing the features with machine-learning
algorithms other than Naïve Bayes, because they mostly have a polynomial com-
plexity and such a high number of feature would severely impact the training
time. The second issue could be tackled by considering more lines and features,
but this would worse the first issue even more. The third concern regards the

5.2 Parsing based classification 39

fact that this approach not only requires training data to generate the classifier,
but also that it is still based on the same approach: The possible intrinsic flaws
of Naïve Bayes on certain instances can hardly be tackled by only considering
more features.

For these reasons, we decided to not consider features from other lines, but
tackle the classification from a different perspective and use a different ap-
proach, i.e., parsing. In fact, three of the considered classes (i.e., stack trace,
patch, and source code), which are either produced or to be consumed by a ma-
chine, present a clearly structured and defined syntax that might be recognized
even if embedded in a noisy unstructured context. As illustrated below, the re-
search group had already developed a parsing-based solution to classify email
content. We then fine-tuned the parsers for the task, and then we combined
them with my machine learning based solution. We devised one specialized
parser per each class, excluding NL text. In the following we detail the most
salient features of each parser, that we contributed to develop.

5.2.1 Stack trace parsing

Let’s define some terminology: The exceptionMessage refers to the NL message
usually included at the beginning of stack traces (e.g., line 7 in Figure 1.1); the
atLine refers to a line that reports a method invocation occurred in a specific file
(e.g., lines 8 to 11); the ellipsisLine is a line used to reduce lengthy stack traces
and has the form: “. . .<number> more”; the causedByLine is a line that might
appear at any point in a stack trace to introduce a new nested trace and has the
form: “Caused by: <stacktrace>”.

Among these elements, atLines and ellipsisLines have the most recognizable
form. By using the concept of island parsing [36] and the parser generator
PetitParser [33], we defined a grammar to obtain a parser to extract these two
elements, even if embedded in the noisy content of emails or arbitrarily split on
more lines, because of erroneous line breaks. By testing our approach on the
whole corpus we found no errors in this parsing phase.

The exceptionMessage and the causedByLine elements have a mostly unpre-

40 Experiment

dictable structure (e.g., different JAVA virtual machine versions may output the
same error message differently), thus they cannot be parsed with a specific gram-
mar. To overcome this issue we use a double-pass approach: In the first pass,
we recognize and mark all the atLines and ellipsisLines; in the second pass, we
look for each line that contains strings such as “exception”, “error”, “failure”,
etc. When such a line exists, if the next n lines belong to those lines marked in
the first step, we classify it and all the lines up to the first atLine as stack trace.
We empirically found the n value equals to 3, to be a good tradeoff between
precision and recall.

For example, if we apply our stack trace parser to the email in Figure 1.1, in
the first pass, it would classify lines 8 to 11 as stack trace; in the second pass,
it would consider lines 5 and 7 as exceptionMessage candidates, since they both
contain the string “exception”. Finally, it will only pick line 7, because in the
next 3 lines there is an atLine element (in this heuristic, we also count the empty
lines, such as the line between 6 and 7).

Since this is a method that does not require training, we could test it on the
whole manually classified instances. We reached an F-measure value of 99.1%
in the classification of stack trace lines. The complete results are reported in the
first row of Table 5.3.

5.2.2 Patch parsing

For the patch parser, we also define some terminology: The patchHeader refers
to the first two lines of a patch, which contain the reference to the modified file
and, optionally, the revision versions (e.g., lines 22 and 23 in Figure 1.1); the
patchBlockHeader refers to the lines detailing the modification done by the patch
on a chunk (e.g., line 22); and the patchBlock refers to all the lines in the chunk
(e.g., lines 25 to 28). We note that a single patch has only one patchHeader, while
it might have multiple patchBlockHeaders followed by the respective patchBlocks.

We adopted an approach similar to the stack trace parser: We started from
the most recognizable lines and expanded to include the more ambiguous ones.
The parsing is done in a single pass: We wrote a grammar to generate a parser

5.2 Parsing based classification 41

that recognizes the patchHeader, even if split on multiple lines, by using the
tokens “—”, “+++”, and “@@” as hooks; then we generated a parser that first
recognizes the patchBlockHeader (thanks to its clear structure), then matches
the following patchBlock. The patch blocks are problematic, since they have
variable length and their ending is not clearly defined. In fact, after the deleted
and added lines (which are marked with initial “+” or “-” signs, as in lines 26
and 27), patches include some contextual lines: Their number may vary between
zero and three, or more if not well formatted. Bird et al. tackled the patch block
ending issue both by using the information about the range to be found in the
patchBlockHeader and by analyzing how a line starts (usually the context lines
should be preceded by a space) [10]. However, in our dataset we found this
information to be not reliable, because of unexpected line breaks and wrong
formatting. For this reason, we implemented a lookahead heuristic that checks
whether the lines after the “+” or “-” signs might be good candidates as patch.
The heuristics checks whether the lines are source code, by using a reduced
version of the source code parser described later (Section 5.2.3), and in the
positive case it classifies them as patch.

With this method we reached an F-measure value of 97.9%. The complete
results are reported in the first row of Table 5.3. As expected, since we used a
conservative lookahead threshold (maximum four lines), we have a higher pre-
cision and lower recall. By manually inspecting the false negatives, we noticed
that the low recall is also due to some patch lines that have neither patchHeader
nor patchBlockHeader, thus are completely not considered by our parser.

5.2.3 Source code parsing

Among the three classes with most structured language (i.e., stack trace, patch,
and source code), code is the most ambiguous. This is due to the fact that email
authors, when discussing, usually do not report a complete compilation unit
(e.g., an entire JAVA class definition), but only some selected fragments (e.g., the
method declaration in lines 17 to 20 in Figure 1.1). These fragments can present
more ambiguities, with respect to NL and junk, than other blocks of patches or
stack traces. For example, if a line contains only the words “public class”, it can
be either the beginning of a class declaration or a NL sentence talking about a

42 Experiment

specific class. To overcome this issue we wrote a parser based on the concept
of island parsing. In our case, however, we did not limit ourselves to define
only a few construct of interests, but we wrote a complete JAVA grammar for
PetitParser1, by implementing the entire latest specification of the official JAVA

language [20]. Then, we wrote an island parser able to recognize most of the
constructs of the grammar (we excluded those that are too ambiguous with NL
text), starting from the most comprehensive (i.e., compilation unit) down to
very specific ones (e.g., expression statements). In addition, we also added rules
to recognize incomplete constructs (such as method declarations without the
body–common in email discussions).

Compared to BESC [2], a previous approach, this island parser reaches higher
precision and is able to locate constructs that span on more lines. For example,
BESC would never classify a line with “public class” as code, while our island
approach can classify it as code according to the surrounding lines.

We note that our island parser for source code would match most of the
content of patchBlocks, because they do contain valid source code. This increases
the number of false positives. For this reason, we chain the source code parsing
to the patch parsing: We first detect the patches, then, on the lines that are not
classified as patch, we run the source code parser. As a beneficial side effect, this
chained procedure reduces the text and the ambiguities to be managed by the
island parser, thus increasing the performances.

As expected, in its task of classifying source code, this method reaches a
lower F-measure (i.e., 92.6%), compared to the values achieved by the parsers
for the previous two classes. This is mainly due to extremely incomplete source
fragments that could be only detected by seriously impacting the approach pre-
cision.

5.2.4 Junk parsing

Even though noisy text, such as authors’ signatures, is difficult to automatically
distinguish from NL text without reading the actual content, we found some

1Our full JAVA parser is available at www.squeaksource.com/PetitJava

www.squeaksource.com/PetitJava

5.2 Parsing based classification 43

peculiar common patterns that can be matched with a parser. This approach is
completed in three steps:

1. matching and classification of email headers (such as those in lines 1 and
2 in Figure 1.1) with a simple regular expression;

2. identification and extraction of signatures of mailing lists (e.g., common
lines added to the end of every email sent to the same list) and authors;
and

3. usage of the recognized signatures to automatically compose a grammar
for generating a parser to match them, in any possible formatting or posi-
tion in the email body.

To recognize signatures in step 2, we consider all the emails whose last block of
text is not quoted from previous emails. In these emails, the authors themselves
conclude the message and most probably include their signatures. For example,
the email in Figure 1.1 contains the author’s signature in the last block. Among
the selected emails, we only consider the last not quoted block. We analyze it
backward starting from the last line (e.g., from lines 34 up to line 16). Every
time we encounter a line that starts with, or is only composed of, two dashes or
more than 3 (to avoid matching patch headers) dashes, underscores, or stars,
we take out the lines up to the bottom and consider this block to be a signature.
We continue the process until we reach the top of the not quoted block. For
example the algorithm, applied to the email in Figure 1.1, would extract lines
32 to 34, and line 31 as block signatures.

However, by simply classifying these blocks as junk, we would miss the cases
in which signatures compare in quoted text (such as in lines 14 and 15). For this
reason, we conduct the aforementioned step 3: We use each extracted string to
automatically define a grammar able to recognize the signature in any possible
position or formatting the text (e.g., a signature can be quoted with wrong line
breaks). We use these grammars to automatically generate the corresponding
parsers with PetitParser. Finally, we classify as junk all the matched lines.

This approach reaches an F-measure value of 81.2%, by recognizing more
than 65% of the junk lines.

44 Experiment

5.2.5 Results

Total
Instances

True
Positives

False
Positives

Precision Recall F-Measure

Stack trace parser

Patch parser

Source code parser

Junk parser

1,069 1,054 4 0.996 0.986 0.991

2,082 1,996 0 1.000 0.959 0.979

1,914 1,715 74 0.959 0.896 0.926

29,585 20,372 226 0.989 0.689 0.812

Table 5.3: Single classification results achieved by using parsers

Table 5.3 reports the results of each parser in the classification of the lines
into the corresponding type. For example, the first line covers the results in using
the Stack trace parser described in Section 5.2.1 to classify lines as stack trace.
The false positives (e.g., four in the first row), are instances that are classified
as stack trace by the method, but had a different manual classification, such as
junk.

We argue that these parsers are not only valuable thanks to the high classi-
fication values they achieve, but also because they are mailing list independent
and require no training to be used. The former feature is given by the fact that
the parsers rely on syntactical characteristics of programming languages, stack
traces, and patches, that are the same across all the mailing list pertaining to
JAVA systems; the latter feature allows their usage on any textual source of data.

However, these parser-based approaches have limitations. First, they are
manually implemented, and for this reason they cannot predict or cover all the
possible variants of the patterns that they match, especially due to truncated
content. In addition, the values reached in classifying junk are lower than those
achieved with the term based approach, which was able to find junk with an F-
measure of 87.1%. In the next we present the method we devised to merge
machine-learning and parser-based approaches, with the aim of overcoming
these issues and create a more complete, precise, and robust approach.

5.2 Parsing based classification 45

C
om

m
it

C
om

m
en

ts
C

om
m

it
C

om
m

en
ts

Em
ai

ls

C
om

m
it

C
om

m
en

ts
C

om
m

it
C

om
m

en
ts

Tr
ai

ni
ng

 S
et

C
om

m
it

C
om

m
en

ts
Te

st
in

g
Se

t

N
aï

ve
 B

ay
es

 m
ac

hi
ne

-
le

ar
ni

ng

Le
ar

ne
r

C
la

ss
ifi

er

D
ec

is
io

n
tr

ee
 m

ac
hi

ne
-

le
ar

ni
ng

Le
ar

ne
r

C
la

ss
ifi

er

...
.

.
.

.
...

.
.

.
...

Pa
rs

er
 c

la
ss

ifi
er

s

Pa
rs

er
 c

la
ss

ifi
er

s

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
..

M
an

ua
l

C
la

ss
ifi

ca
tio

n
M

an
ua

l
C

la
ss

ifi
ca

tio
n

Au
to

m
at

ic

C
la

ss
ifi

ca
tio

n

C
om

pa
ris

on

1

2

3

4

5

6

9

10
M

er
ge

M
er

ge

7

8

Figure 5.3: Training and Test Process of the Unified Classification Approach

46 Experiment

5.3 Mixed Approach

As explained before, the main goal was to integrate the parsing based classi-
fiers with machine learning techniques, to produce a better and more robust
classification process. So we merged the two approaches into a single method,
generating a mixed approach. This approach merges the valuable characteristics
of the term based classification and the parser-based approaches.

5.3.1 Adding parsing results to Naïve Bayes

Similarly to most of the other machine-learning approaches, Naïve Bayes is not
limited to consider terms as features. We then considered other aspects that
could be relevant for the classification to include them as new features in the
classification process. For example, researchers considered the quotation level
in which an email line reside as a valuable feature for recognizing noise [37].

We had to decide how to merge the parsers’ results with the features I had ex-
tracted. Given these premises, we decided to add the output of the parser-based
classification to improve the Naïve Bayes machine-learning process. To achieve
this, we joined the four prediction of the parsers together with the features of the
words, punctuation and bi-grams, to form a new vector. Each new feature maps
the output of a parser: Its value is one when the corresponding parser-based
classifier matches the specific line, and it is zero in the other cases. For exam-
ple, we expect the feature-vectors corresponding to lines 31 to 34 in Figure 1.1
to have the feature “junk parser” with value one, while the other parser-based
features with value zero; similarly, we expect the “stack trace parser” feature to
be one for the vector of line 10, while the others to be zero on the same line.
It would be possible that, in a few cases, more than one parser-based features
have value one.

With these new features in place, we used again the Naïve Bayes machine-
learning process and conducted training and evaluation as presented in Sec-
tion 5.1.2.

5.3 Mixed Approach 47

5.3.2 Results

Table 5.4 reports the confusion matrix on the results achieved by adding the
four parser-based features to the Naïve Bayes approach. Overall, it correctly
classified 61,875 instances (91.3%), 3,000 instances more than the previous
machine-learning approach.

classified as !classified as ! NL Text Junk Patch
Source
Code

Stack
Trace

Precision Recall F-Measure

NL Text 31,603 1,001 184 244 184 0.902 0.954 0.927

Junk 3,320 25,468 416 176 205 0.960 0.861 0.908

Patch 51 23 1,969 32 7 0.759 0.946 0.842

Source Code 57 22 23 1,787 25 0.797 0.934 0.860

Stack Trace 9 9 1 2 1,048 0.752 0.980 0.851

Table 5.4: Results adding parser-based features

Comparing the confusion matrices of the machine-learning approaches (Ta-
ble 5.4 and 5.2), we saw that the new features helped to decrease the instances
wrongly classified as NL text. Being NL the most frequent class (see Table 4.2),
it has a strong impact on the evaluation of the MAP hypothesis of Naïve Bayes;
since the new features reduced the NL class impact, they play a major role in the
classification.

Although achieving the best results so far, this approach has drawbacks. First,
we can note that the class patch has more than a hundred wrongly classified
instances. This contradicts the precision value of one reported by the single
patch parser classifier. This is probably due to the fact that, even if the “patch
parser” feature has a very high weight in the computation, it is placed at the
same level of the other features that, being a large number, also influence the
results. Although this is good for the junk class, we do not find it optimal in all
the cases. Another issue of this approach is that the number of considered fea-
tures is very high and makes it hard to try other machine-learning approaches.
In fact, it is clear that the conditional independence assumption, that seemed
reasonable when considering the words in a line, is now inadequate dealing
with the parsers’ classifications. Also, Naïve Bayes cannot sufficiently enhance

48 Experiment

the weight of the parsers, with respect to the word features. It then would be
possible that an approach not having the conditional independence assumption
of Naïve Bayes could be better suited for modeling the new features, which are
highly dependent.

Motivated by these issues, we devised a two-passes classifier approach to
better use parser-based classifiers, but still exploiting Naïve Bayes qualities.

5.3.3 Unified Classification Approach

The idea behind this approach was to use Naïve Bayes to evaluate a partial
classification only on the features based on terms, and then use another machine-
learning classifier to merge and model Naïve Bayes results and parser-based
classifications.

Training

We first (Point 1) extracted the emails on which we wanted to train the machine-
learning algorithms (e.g., 90% of the sample set for the stratified 10-fold cross
validation). Then, we concurrently provided them in input to the parser-based
classifiers (Point 2), and for each line we extracted the feature-vector on words,
punctuation, and bi-grams, that we provided to the Naïve Bayes learning al-
gorithm, along with the manual classification (Point 3). With this data, Naïve
Bayes trains a classifier, very similarly to what we did in my first term based
approach. But instead of returning the instance classifications, it outputted a
5-dimensions vector for every line: Each dimension represents a class (e.g., NL
text) and the value is the probability evaluated by Naïve Bayes on that instance
to belong to that class. In other words, instead of simply picking the highest
value, and provide the final classification, we output all the 5 probabilities and
we map them to features, thus reducing the initial 827 features to 5 predictions.

At the same time, the parser-based classifiers created other four features, as
in Section 5.3.1. Once both feature sets were evaluated, our approach merged

5.3 Mixed Approach 49

them and constructed a unified 9-dimensions vector, to which it added the man-
ual classification (Point 5). This final vector was the input to another machine-
learning algorithm to train the final classifier (Point 6): The actual output of the
training.

The choice of the machine-learning technique for the second step is critical:
We need an algorithm that correctly models the peculiar characteristics of our
features. Thanks to the reduced dimensions of the new feature-vectors, we was
able to try a number of different machine-learning approaches. The two meth-
ods that we empirically saw obtain better results were Support Vector Machines
and Decision Trees, which both are broadly used methods in data mining (see
Section 3.2). The two methods perform nearly identical in time and results,
with the latter performing slightly better than the former. We found the simple
decision trees to be the most suited to our parser-based classifiers because they
output almost mutually exclusive features that permit a reading and interpre-
tation of the features that had the larger influence on the classification. SVM,
however, would probably benefit from a selection of a kernel specifically chosen
for the task, which would represent an interesting aspect for further refinement
of the method.

Testing

The test process is depicted in the bottom half of Figure 5.3. We took the testing
set of emails (i.e., 10% of the sample set in the stratified 10-fold cross validation)
and we extracted the manual classification. Then, we concurrently provide the
emails to the parser-based classifiers (Point 8) and created the feature-vectors,
to be given as an input to the previously trained Naïve Bayes classifier (Point
7). Subsequently, we merged the output of the two technique in a unified 9-
dimensions vector which I input to the second machine-learning classifier, pre-
viously trained, which outpus the final classification. We compared this classifi-
cation (Point 10) to the manual one (Point 9) and we evaluated the results.

As final evaluation, the training and test phases were repeated 10 times ac-
cording to the cross validation.

50 Experiment

5.3.4 Results

classified as !classified as ! NL Text Junk Patch
Source
Code

Stack
Trace

Precision Recall F-Measure

NL Text 30,719 2,363 1 57 2 0.959 0.927 0.943

Junk 1,210 28,252 35 84 4 0.921 0.955 0.938

Patch 16 35 2,019 12 0 0.981 0.970 0.975

Source Code 88 28 3 1,795 0 0.921 0.938 0.929

Stack Trace 15 10 0 0 1,044 0.994 0.977 0.985

Table 5.5: Unified approach results on 10-fold cross validation

Table 5.5 presents the results achieved by our unified classification approach.
This two-steps approach, which differently merges and model the available in-
formation, improves the results for all the classes, by increasing not only the
results related to the parser-based classifiers (i.e., patch, stack trace, and code)
but also those connected to the Naïve Bayes algorithm. The F-measure values
are all increased, even though there is a decrease in precision of junk classifica-
tion and in recall of NL classification, probably due to the overall lower weight
given to Naïve Bayes results.

Chapter 6

Discussion And Threats to Validity

6.1 Discussion

The results of the unified classification approach were particularly good and
exceeded our expectations. However, the effectiveness of the method is strictly
related to the terms that it indexes, and these terms are depending on the kind of
mailing list that we consider, as every group of user may represent a completely
different environment. In fact, we have seen that two mailing lists, even if
treating similar projects for programming language, may differ substantially in
their content. For example, the mailing list of ArgoUML have a lot of emails
related to the architecture of their software, or that discuss about a bug in a Java
class, while the mailing list of Freenet is much more concerned about privacy, its
political implication, freedom or implementation of cryptography algorithms.

Obviously different topics mean different distribution of words and different
term frequencies, so that the model of a category built using a set of mailing lists
may not be representative of the distribution of a new mailing list. It is then
legitimate to expect that the results previously obtained should be negatively
effected and may perform poorly when applied to a brand new mailing list.

To test the generalizability of the results achieved, we then performed a

51

52 Discussion And Threats to Validity

“mailing list cross validation”. we created 4 different folds, where each fold
consisted of all the emails from a mailing list. We then used three of these folds
as the training set to train the classifier and the remaining one to test the classi-
fication predicted by the method, so that the emails used to test the model were
completely separated from the emails used to train it.

In practice, it is a 4-folds cross validation, in which folds are neither strat-
ified nor randomly taken, but correspond exactly to the different mailing list.
We conducted this four times rotating the mailing lists, and then measured the
average results. As explained above, the considered mailing lists only share the
programming language, i.e., JAVA, thus we expect this to be a veritable test to
understand which results we could expect from the classifier applied to a new
and unseen JAVA development mailing lists.

classified as !classified as ! NL Text Junk Patch
Source
Code

Stack
Trace

Precision Recall F-Measure

NL Text 30,499 2,578 1 62 2 0.945 0.920 0.933

Junk 1,591 27,876 36 78 4 0.913 0.942 0.927

Patch 63 48 1,945 26 0 0.980 0.934 0.956

Source Code 106 37 3 1,768 0 0.914 0.924 0.919

Stack Trace 6 8 0 0 1,055 0.994 0.987 0.991

Table 6.1: Results on mailing list cross validation

Table 6.1 reports the results on this custom cross validation achieved us-
ing the unified classification approach. As expected, the values are lower to
those achieved with stratified 10-fold cross validation. This suggests that this
test might provide more reliable information when compared to a real world
usage scenario on a new mailing list. However, although the decrease of pre-
cision and recall, they still remain above 91%, with an average F-measure of
94.5%. This shows an important result: Even when changing a system, which
also means changing the terms used in the emails and their distribution, the
generated model is robust enough to perform reasonably well without the need
of additional training on new data.

We think that in this result, a big role is played by the use of threshold,
bigrams and parsers. In fact, the effect of the different distribution of the terms

6.2 Threats to Validity 53

exposed above is not enough to overcome the clustering effect given by the
different syntax of each category. As such, it can be considered as noise that
is removed during the cleaning phase. The remaining terms are then a sort of
cliques, representative of each category.

6.2 Threats to Validity

6.2.1 Construct Validity

Threats to construct validity regard the relation between theory and observa-
tion, i.e., measured variables may not measure conceptual variables. To classify
email content we rely on error-prone human judgment. To alleviate this is-
sue, we devised MAILPEEK, a web application to ease the annotation process (see
Chapter 4). The classification process was cross-inspected, checking 10% of the
emails finding only 12 erroneously classified lines. We corrected these errors
in the set of email that was used for the experiments. We expect the same low
error proportion in the rest of the sample, which may affect the accuracy of the
results.

6.2.2 Statistical Conclusion

Threats to statistical conclusions are concerned with whether the dataset is large
enough to support the claims. We took samples of email populations that were
representative with a 95% confidence and a 5% error level, which are standard
values. On the number of lines, the corpus has 67,792 not empty classified lines.

6.2.3 External Validity

Threats to external validity are concerned with the generalizability of the results.
The approaches we tried may show different results when applied to other soft-

54 Discussion And Threats to Validity

ware systems and mailing lists. We showed that the mailing list cross validation
performs well with new mailing lists, developed by separate communities still
reports significative results. A problem may arise when considering a different
programming language. In this case a new classification and training phase and
new parsers should be necessary. The mixed programming language case still
remains to verify.

It is also important to note that we only considered open-source systems,
and that usage patterns may vary in the industry. In particular, mailing lists
often occupy a central role in the development of open-source systems, which
may not be the case in systems developed in a more centralized environment.

Chapter 7

Conclusion

The idea behind this project is that development mailing lists contain significant
information about the software system they discuss. However, this information
is buried inside the archives. In order to render this information available, we
dealt with the problem of accurately classifying email data content according to
five main language categories:

1. Natural language text

2. source code fragments

3. stack traces

4. code patches

5. junk

To devise a robust approach to conduct this classification and prove it cor-
rectness, we first carefully conducted the manual classification of statistically
significant sample sets of emails extracted from four development mailing list:
ArgoUML, Freenet, JMeter, and Mina.

We presented Mailpeek, a web application developed to assist the data set
construction in its two main steps:

55

56 Conclusion

1. automatically fetching the Markmail online service and download a for-
matted version of publicly available mailing lists;

2. supporting the manual classification task providing a user friendly inter-
face that easily drove the user through the tagging of the email content.

On the basis of the obtained data, We established that a classification at line
granularity offered a reasonable accuracy. We conducted an experiment where
we tested different machine learning techniques, and evaluated them in terms
of precision, recall, and F-measure. We investigated how to merge my classifier
with the parsers based on island-parsing, developed by the research group. Since
these techniques in isolation are neither accurate nor robust enough to deal with
the noisy email data, we combined them in an unified 2-steps approach that
tries to overcome the limitation of the techniques if taken alone. The results
obtained are very positive, even when performing cross mailing list evaluation.
The reason is that the parser-based classifiers are mailing list independent and
offer a valuable basis. On the other hand, the probabilistic machine-learning
approach, gains great benefits from the data cleaning phase, thus making the
method even more robust and general.

All data sets of the experiment and a SMALLTALK image containing a working
copy of the classifier with full source code are available at the website located at
http://mucca.inf.usi.ch.

7.1 Contribution

The contributions of our work are:

A new dataset containing 1,493 development emails.
We built a dataset containing classified email from four development mail-
ing lists. This data can be used for future analysis on information extrac-
tion from software repositories.

http://mucca.inf.usi.ch

7.2 Exploitation 57

A web application to download and classify mailing lists.
We developed MAILPEEK, a web application written in SMALLTALK to auto-
matically download mailing lists from the MarkMail service. The appli-
cation also supports the manual email classification with an user friendly
graphical interface.

A new approach for fine-grained email classification.
We devised a new approach that combines parsing methods with ma-
chine learning techniques, to precisely classify the content of development
email at row-level. Researchers have shown that a precise pre-processing
data cleaning phase could greatly improve the performance in an analysis
method [9]. Since all the previous works considered the problem of email
classification only ad document scope, our method is the first that presents
such a fine-grained resolution, and that allows accurate analysis on email
content.

The evaluation of our method tested on a real dataset.
We tested our approach on our dataset built from real development mail-
ing lists. We obtained surprisingly good performances, with a f-measure
above 0.9 for each category.

7.2 Exploitation

This work allows accurate analysis and data cleaning on development emails.
In particular, the method will be used to obtain clean emails and perform spe-
cific analysis on each category, with the intent of extraction informations that
describe the software system to which they are related (e.g., the evolution of a
system, or make predictions about bugs in the code).

This thesis work also produced a conference paper, publshed at ICSE 2012 a
top tier conference [5].

58 Conclusion

7.3 Future work

The first improvement involves the extension of the classification categories,
adding new group. For example, the category link is not considered in this work,
but still contains valuable information, since it defines a form of correlation
between two topics that could indicate an interaction between two classes or
additional information about a bug.

The second idea is on reconsidering the use of Support Vector Machines.
During the experiment presented in this work, SVM were adopted with standard
kernels, leading to similar results to the Decision Trees. It would be interesting
to explore the behavior of this approach by fine-tuning a ad hoc kernels that
could better fit the context.

The third possible expansion involves the classification of the emails. I, to-
gether with a PhD student, have spent a lot of time reading and classifying a lot
of emails. An approach considering techniques of semi-supervised learning could
be applied to allow the generation of new examples, thus permitting more pre-
cision and shorter starting time while classifying new email, for example when
applying the approach to a new domain like a new programming language.

7.4 My contribution to the experiment

When I joined, the group was trying to perform email data cleaning using a pure
parser approach. My involvement into the project consisted in integrating these
parsers with machine learning techniques, to obtain more robust classifiers. In
particular, my contribution consisted in:

Analysis of the features to include in the method. The first step required an
analysis of the domain, to identify the exploitable characteristics of the
data we wanted to analyze.

Development of MILER2 I wrote a large part of the code of MILER2, the appli-
cation to download development emails from MarkMail

7.5 Epilogue 59

Development of MAILPEEK I write MailPeek, the web application to manually
classify the email content.

Manual classification of the dataset I, together with a PhD student, manually
classified the emails that we used in our dataset.

Selection of the machine learning methods Based on the analysis of the do-
main, I selected some machine learning methods that I proposed to the
group to be tested on the dataset.

Development of the machine learning methods using WEKA I performed the
tests with WEKA to find the methods that best fitted our problem.

Help tuning the parsers to be used in the mixed approach I had a little part
in the tuning of the parsers to obtain the best performances used together
with machine learning algorithms.

Development of the unified approach I proposed some approaches to develop
the unified method, and I tested them.

Help writing the paper I was involved in the writing of the paper, and had the
possibility of contribute in this exciting experience.

Each step of this process was assisted by the members of the group, which helped
me in the evaluation of the approaches.

7.5 Epilogue

The experience of the thesis helped me to improve many aspect of my com-
puter science education. First of all, being able to work in a group motivated
by passion and enthusiasm, inspired me to develop the experiment with true
motivation and curiosity, and tested my relational abilities dealing with other
people to constructively participate in finding a solution in a collaborative envi-
ronment. Furthermore, the need to tackle a real problem from the beginning to
the implementation details, made me realize some aspects of the analysis pro-
cess that I did not get so crucially during the MSc courses. Particularly, I focused

60 Conclusion

on modeling the problem in a significant way, choosing the correct features and
synthesizing the data in an efficient and sustainable form, whereas during the
classes I perceived a bigger attention towards the algorithms mechanic itself.

I also learned SMALLTALK, which has been a great experience either from an
historical point of view—since it is the language that introduced many concept
considered essential in modern programming languages—and also as a differ-
ent and interesting style of thinking in Object Oriented Programming, which
widened my comprehension and interest for design patterns.

The REVEAL research group is mainly interested in research about reverse
engineering, mining software repositories, software evolution and software vi-
sualization. This experience allowed me to explore a field of knowledge that I
have since then ignored, and made me develop an interest for the application of
the artificial intelligence techniques that I have studied during my education to
these topics. Moreover, being part of the process of writing a paper has been an
exciting experience, that gave me an insight on how research is conducted; an
experience that I recall with great satisfaction.

I think that the instruments I got from my education were adequate for the
task, and allowed me make a concrete and significant contribution.

Bibliography

[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia,
and Ettore Merlo. Recovering traceability links between code and docu-
mentation. IEEE Transactions on Software Engineering, 28(10):970–983,
2002.

[2] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Extracting source
code from e-mails. In Proceedings of ICPC 2010 (18th IEEE International
Conference on Program Comprehension), pages 24–33. IEEE Computer So-
ciety, 2010.

[3] Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails
and source code artifacts. In Proceedings of ICSE 2010 (32nd International
Conference on Software Engineering), pages 375–384. ACM, 2010.

[4] Alberto Bacchelli, Michele Lanza, and Marco D’Ambros. Miler: A toolset
for exploring email data. In Proceedings of ICSE 2011 (33rd International
Conference on Software Engineering), page to be published, 2011.

[5] Alberto Bacchelli, Tommaso dal Sasso, Marco D’Ambros, and Michele
Lanza. Content classification of development emails. In Proceedings of ICSE
2012 (34th ACM/IEEE International Conference on Software Engineering),
pages 375–385. IEEE CS Press, 2012.

[6] Matthew J. Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. Fac-
torial hidden markov models. In Machine Learning, pages 29–245. MIT
Press, 1997.

[7] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A

61

62 Bibliography

maximum entropy approach to natural language processing. Computa-
tional Linguistics, 22(1):39–71, 1996.

[8] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun
Kim. Extracting structural information from bug reports. In Proceedings of
MSR 2008 (5th IEEE Working Conference on Mining Software Repositories),
pages 27–30. ACM, 2008.

[9] Nicolas Bettenburg, Emad Shihab, and Ahmed E. Hassan. An empirical
study on the risks of using off-the-shelf techniques for processing mailing
list data. In Proceedings of ICSM 2009 (25th International Conference on
Software Maintenance), pages 539 –542. IEEE Computer Society, 2009.

[10] Christian Bird, Alex Gourley, and Prem Devanbu. Detecting patch submis-
sion and acceptance in OSS projects. In Proceedings of MSR 2007 (4th In-
ternational Workshop on Mining Software Repositories), pages 26–29. IEEE
Computer Society, 2007.

[11] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bern-
stein, Vladimir Filkov, and Premkumar Devanbu. Fair and balanced? Bias
in bug-fix datasets. In Proceedings of FSE 2009 (17th ACM International
Symposium on Foundations of Software Engineering), pages 121–130. ACM,
2009.

[12] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Compu-
tational Learning Theory, pages 144–152. ACM Press, 1992.

[13] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of
supervised learning algorithms. In Proceedings of ICML (23rd International
Conference on Machine learning), pages 161–168. ACM, 2006.

[14] Vitor R. Carvalho and William W. Cohen. Learning to extract signature
and reply lines from email. In Proceedings of CEAS 2004 (1st Conference on
Email and Anti-Spam), 2004.

[15] Marco D’Ambros, Michele Lanza, and Martin Pinzger. The metabase:
Generating object persistency using meta descriptions. In Proceedings of
FAMOOSr (1st Workshop on FAMIX and MOOSE in Reengineering), 2007.

Bibliography 63

[16] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive com-
parison of bug prediction approaches. In Proceedings of MSR 2010 (7th
IEEE Working Conference on Mining Software Repositories), pages 31–40.
IEEE CS Press, 2010.

[17] Alex Dekhtyar, Jane Huffman Hayes, and Tim Menzies. Text is software
too. In Proceedings of MSR 2004 (1st International Workshop on Mining
Software Repositories), pages 22–26, 2004.

[18] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside: A flexible
environment for building dynamic web applications. IEEE Software, 24(5):
56–63, 2007. ISSN 0740-7459.

[19] Tudor Gîrba and Stéphane Ducasse. Modeling history to analyze software
evolution. Journal of Software Maintenance and Evolution, 18:207–236,
2006.

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison Wesley, 3nd edition, 2005.

[21] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program
comprehension with source code summarization. In Proceedings of ICSE
2010 (32nd International Conference on Software Engineering), pages 223–
226. ACM, 2010.

[22] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update.
SIGKDD Explorations, 11, 2009.

[23] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to
support vector classification. 2003. URL http://www.csie.ntu.edu.tw/

~cjlin/papers/guide/guide.pdf.

[24] Karen Spärck Jones. Automatic summarising: The state of the art. Infor-
mation Processing and Management, 43:1449–1481, 2007.

[25] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition. Prentice Hall, 2nd edition, 2009.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

64 Bibliography

[26] David Kawrykow and Martin P. Robillard. Non-essential changes in version
histories. In Proceedings of ICSE 2011 (33rd International Conference on
Software Engineeering), page to be published, 2011.

[27] Adrian Kuhn, Stéphane Ducasse, and T Gírba. Semantic clustering: Iden-
tifying topics in source code. Information and Software Technology, 49(3):
230–243, 2007.

[28] William Lidwell, Kritina Holden, and Jill Butler. Universal Principles of
Design. Rockport, 2003. ISBN 978-1-59253-007-6.

[29] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008.

[30] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to Information Retrieval. Cambridge University Press, 2008.

[31] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997. ISBN 0070428077, 9780070428072.

[32] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Summarizing software
artifacts: a case study of bug reports. In Proceedings of ICSE 2010 (32nd
International Conference on Software Engineering), pages 505–514. ACM,
2010.

[33] Lukas Renggli, Stéphane Ducasse, Gîrba, and Oscar Nierstrasz. Practical
dynamic grammars for dynamic languages. In Proc. of DYLA 2010 (4th
Workshop on Dynamic Languages and Applications), 2010.

[34] Peter C. Rigby and Ahmed E. Hassan. What can oss mailing lists tell us?
a preliminary psychometric text analysis of the apache developer mailing
list. In Proceedings of MSR 2007 (4th International Workshop on Mining
Software Repositories), pages 23–. IEEE Computer Society, 2007.

[35] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Computing Surveys, 34:1–47, 2002.

[36] Oliviero Stock, Rino Falcone, and Patrizia Insinnamo. Island parsing and
bidirectional charts. In Proc. of the 12th Conf. on Computational Linguistics,
pages 636–641, 1988.

Bibliography 65

[37] Jie Tang, Hang Li, Yunbo Cao, and Zhaohui Tang. Email data cleaning. In
Proceedings of KDD 2005 (11th ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 489–498. ACM, 2005.

[38] Ahmed E. Hassan Thanh H. D. Nguyen, Bram Adams. A case study of
bias in bug-fix datasets. In Proceedings of WCRE 2010 (17th IEEE Working
Conference on Reverse Engineering), pages 259 –268. IEEE CS Press, 2010.

[39] Mario Triola. Elementary Statistics. Addison-Wesley, 2006. ISBN 0-321-
33183-4.

[40] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just,
Adrian Schroter, and Cathrin Weiss. What makes a good bug report? IEEE
Transactions on Software Engineering, 36(5):618–643, 2010.

	Contents
	List of Figures
	Introduction
	Goal
	Domain and Motivation
	Problems with the current approach
	Bag of words and emails analysis

	Contribution
	The thesis experience
	Structure of the Document

	Related Work
	Parsing and Machine Learning
	Parsing
	Machine Learning
	Naïve Bayes
	Decision Trees
	Support Vector Machines
	Methods implementation

	Data Collection & Classification
	Data collection
	Data classification
	Data distribution

	Experiment
	Term based classification
	Selection of the terms
	Training and Evaluation Methodologies
	Term Based Features and Overfitting
	Results

	Parsing based classification
	Stack trace parsing
	Patch parsing
	Source code parsing
	Junk parsing
	Results

	Mixed Approach
	Adding parsing results to Naïve Bayes
	Results
	Unified Classification Approach
	Results

	Discussion And Threats to Validity
	Discussion
	Threats to Validity
	Construct Validity
	Statistical Conclusion
	External Validity

	Conclusion
	Contribution
	Exploitation
	Future work
	My contribution to the experiment
	Epilogue

	Bibliography

