
POLITECNICO DI MILANO
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

Software Archaeology - Reconstructing

the Evolution of Software Systems

Relatore:
Prof. Carlo Ghezzi

Correlatore:
Prof. Michele Lanza

Tesi di Laurea di:
Marco D’Ambros

matr. n. 639633

Anno Accademico 2003-2004

Abstract

Real world software systems require continuous change to satisfy new user
requirements, adapt to new technologies and repair errors. As time goes by,
software increase in size and complexity, and their design gradually decay
unless work is done to maintain the systems. The problem of understanding
the evolution of software has become a vital matter in today’s software
industry.

In this thesis we propose an approach to tackle this problem, composed
of two self-contained parts. The first is aimed at collecting historical infor-
mation regarding the system, and storing it in a structured way. The second
part exploits visual techniques to analyze both evolutionary and structural
aspects of the software, at different granularity levels:

• Coarse-grained, concerning the overall structure of the system.

• Fine-grained, concerning the inner structure of the modules composing
the system.

Based on the combination of fine-grained and coarse-grained information,
we present a top-down methodology to lead the entire analysis of software
systems. We finally validate our approach on the Mozilla case-study.

i

Acknowledgements

First of all, I want to thank Prof. Dr. Michele Lanza for his kind supervision
and Prof. Dr. Carlo Ghezzi for giving me the opportunity to carry out my
thesis in such an uncomplicated way.

I also want to thank Prof. Dr. Harald Gall and Martin Pinzger for
giving me useful suggestions about software evolution. Thanks also go to
European Science Foundation for supporting me journeys to Zurich.

Special thanks go to all my friends, in particular to my current and
previous “co.ca”, to “la comune” fellows, to the Ultimate Milano players,
to the “Malt Storm” partners and to my Chicago roommates, who shared
with me such a nice experience.

And last but not least, I want to thank all the members of my family
for being so patient towards my strange life-style, and in particular to my
sister for providing me language suggestions and to “potino” for being so
amazing.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 The Problem . 2
1.2 Software Evolution State of the art 3
1.3 Our approach . 4
1.4 Thesis contributions . 6
1.5 Thesis outline . 6

2 Challenges in Software Evolution 9
2.1 The problems . 9

2.1.1 Retrieving evolution information 9
2.1.2 Coping with huge amounts of data 10

2.2 Our solution . 10
2.2.1 Version control and bug tracking systems 10
2.2.2 Software metrics . 11
2.2.3 Software visualization 11
2.2.4 Polymetric View . 11

3 The Release History Database 15
3.1 Data sources . 15

3.1.1 CVS Version Control System 15
3.1.2 Bugzilla . 17

3.2 Database structure . 19
3.3 Database population process 21

3.3.1 The log parsing . 23
3.3.2 Execution time considerations 24
3.3.3 Examples . 24

3.4 Related work . 25
3.5 Conclusion . 26

3.5.1 Benefits . 27
3.5.2 Limits . 27

v

vi CONTENTS

4 Software Archaeology in the Large 29
4.1 Preliminaries . 29
4.2 Simple Figures . 30
4.3 Complex Figures . 30

4.3.1 Discrete Time Figure 31
4.3.2 Fractal Figure . 34

4.4 Understanding the evolution of the system 36
4.4.1 System Growth Views 36
4.4.2 The System Production Trend View 40

4.5 Understanding the design and the overall structure of the
system . 44
4.5.1 The CVS Module View 45
4.5.2 The Discrete Time Combo Module View 47
4.5.3 The Module Bugs Correlation View 50
4.5.4 The Product TimeLine View 53

4.6 Related work . 55
4.7 Conclusion . 55

4.7.1 Summary . 55
4.7.2 Benefits . 56
4.7.3 Limits . 56

5 Software Archaeology in the Small 57
5.1 Introduction . 57
5.2 Analyzing the system at the directory granularity 58

5.2.1 The Critical Directory Tree View 59
5.2.2 The Discrete Time Directory Tree View 63
5.2.3 The Fractal Directory Tree View 68
5.2.4 The Directory Bugs Correlation View 72
5.2.5 The Directory Black Holes View 74

5.3 Analyzing the system at the product granularity 77
5.3.1 The God Product View 78
5.3.2 The Product TimeLine View 80
5.3.3 The Fractal Product View 85

5.4 Related work . 88
5.5 Conclusion . 88

5.5.1 Summary . 88
5.5.2 Benefits . 89
5.5.3 Limits . 89

6 Software Archaeology: A Top-down Methodology 91
6.1 Understanding the evolution of the system 92

6.1.1 Number of Revisions Growth 92
6.1.2 Number of Lines of Code Growth 94
6.1.3 Number of Bugs Growth 96

CONTENTS vii

6.1.4 Number of Revisions Trend 97
6.1.5 Number of Bugs Trend 99

6.2 Understanding the design and the structure of the system . . 101
6.2.1 Understanding the overall structure of the system in

terms of modules . 101
6.2.2 Detecting design shortcomings using entities 104
6.2.3 Detecting design shortcomings using relationships . . 107
6.2.4 Detecting logical couplings 110

6.3 The Mozilla Project Evolution: Relations discovered 113
6.3.1 Number of Bugs - Fractal Value 113
6.3.2 Number of Bugs - Number of fellows 114
6.3.3 Number of Bugs - Average Growth rate 115

6.4 Related Work . 116
6.5 Conclusion . 116

6.5.1 Summary . 116

7 Conclusion 119
7.1 Contributions . 119
7.2 Future Work . 121
7.3 Epilogue . 122

A Formal Definitions of Figures 123
A.1 Discrete Time Figure . 123

A.1.1 Stable Phase . 123
A.1.2 Peak Phase . 124
A.1.3 Unstable Phase . 124

A.2 System Production Trend Phases 125
A.2.1 Stable Phase . 125
A.2.2 Increasing/Decreasing Stable 125

B BugCrawler: Implementation 127
B.1 BugCrawler . 127
B.2 The Overall Structure . 128
B.3 The Rhdb Bridge . 129
B.4 The Internal Architecture of CodeCrawler 131
B.5 The CodeCrawler Bridge . 132
B.6 The Visualization Engine . 133

B.6.1 The CodeCrawler Visualization Engine 133
B.6.2 The BugCrawler Visualization Engine 133

B.7 Interactive Facilities . 135
B.8 BugCrawler: Extensions implemented 135

List of Figures

2.1 The metrics mapping. 13

3.1 A Bugzilla Bug (XML format). 18
3.2 A Bugzilla Bug (HTML format). 19
3.3 The Rhdb Entity-Relationship model. 20
3.4 A high level schematization of the populating process. 21
3.5 A scripts execution screen-shot. 24

4.1 Simple Figures. 30
4.2 Discrete Time Figure with phases. 31
4.3 Discrete Time Combo Figure. 33
4.4 Fractal Figures. 34
4.5 The Fractal Value trend. 35
4.6 The superimposition of two System Revisions Growth

View applied to Mozilla. As metric we use the number of
days for the horizontal position and the number of revisions
for the vertical position. 37

4.7 The System Production Trend View applied to Mozilla.
As metrics we use the number of time intervals for the hor-
izontal position and the number of revisions for the vertical
position. 40

4.8 The System Production Trend View applied to Mozilla.
The time period is from Jan 1, 2000 to Jan 1, 2001. The
detected phases are highlighted. 42

4.9 The CVS Modules View applied to Mozilla. As metrics we
use the number of products for both the width and the height
and the number of bugs for the color. 45

4.10 The Discrete Time Combo Module View applied to Mozilla. 47
4.11 The Module Bugs Correlation View applied to the Mozilla

system. As metrics we use the number of revisions for the fig-
ure color and the number of shared bugs for both the edge
color and width. 51

ix

x LIST OF FIGURES

4.12 The Product TimeLine View applied to the entire Mozilla
system. 54

5.1 Evolution analysis schemes. 58
5.2 The Critical Directory Tree View applied to the Sea-

MonkeyLayout module of Mozilla. As metrics we use the
number of products for the figure height and the number of
bugs for the figure color. 59

5.3 The Critical Directory Revision Tree View applied to
the SeaMonkeyLayout module of Mozilla. As metrics we use
the number of revisions for the figure height and the number
of bugs for the figure color. 62

5.4 The Discrete Time Directory Tree View applied to the
SeaMonkeyLayout module of Mozilla. 64

5.5 Two examples of movement of responsibilities. 65
5.6 The scalability of the Discrete Time Directory Tree

View. The view is applied to the RaptorDist module of Mozilla. 67
5.7 The Fractal Directory Tree View applied to the Cal-

endarClient module of Mozilla. As metric we use the number
of bugs for the figure height. 68

5.8 The Fractal Directory Tree View applied to the wid-
get hierarchy of Mozilla. 70

5.9 The Directory Bugs Correlation View applied to the
SeaMonkeyLayout module of Mozilla. As metrics we use the
number of revisions for the figure color and the number of
shared bugs for both the edge color and width. 72

5.10 The Directory Black Holes View applied to the Thun-
derbirdTinderbox module of Mozilla. 75

5.11 Two applications of the God Product View with different
scopes. As metrics we use the number of revisions for the
width, the number of lines of code for the height and the
number of bugs for the color. 78

5.12 The structure of the Product TimeLine View. 80
5.13 Three applications of the Product TimeLine View. 82
5.14 Two examples of the Product Bugs TimeLine View vari-

ation. 84
5.15 Two applications of the Fractal Product View. As met-

rics we use the number of revisions for the size. 86

6.1 The System Revisions Growth View applied to Mozilla.
As metric we use the number of days for the horizontal posi-
tion and the number of revisions for the vertical position. . . 93

LIST OF FIGURES xi

6.2 The System Lines Growth View applied to Mozilla. As
metric we use the number of days for the horizontal position
and the number of lines of code for the vertical position. . . . 95

6.3 The System Bugs Growth View applied to Mozilla. As
metric we use the number of days for the horizontal position
and the number of bugs for the vertical position. 96

6.4 The System Production Trend View applied to the Mozilla
system. As metrics we use the number of time intervals for
the horizontal position and the number of revisions for the
vertical position. 97

6.5 Two System Production Trend Views with different
time intervals applied to Mozilla. 98

6.6 The System Production Trend View applied to the Mozilla
system. As metrics we use the number of time intervals for
the horizontal position and the number of bugs for the vertical
position. 99

6.7 Our approach to study the design and the structure of a sub-
ject system. 101

6.8 The CVS Module View and CVS Revision Module View
applied to Mozilla. 102

6.9 The nob growth with respect to nor. 103
6.10 The nob growth with respect to nop. 103
6.11 The Critical Directory Tree View applied to the Sea-

MonkeyLayout module of Mozilla. As metrics we use the
number of products for the figure height and the number of
bugs for the figure color. 105

6.12 The God Product View applied to the layout hierarchy
of Mozilla. As metrics we use the number of revisions for
the width, the number of lines of code for the height and the
number of bugs for the color. 105

6.13 The God Product View applied to the directories lay-
out/html/base/src and layout/html/style/src. As met-
rics we use the number of revisions for the width, the number
of lines of code for the height and the number of bugs for the
color. 106

6.14 The Product TimeLine View applied to the layout/htm-
l/style/src directory. 106

6.15 The Directory Bugs Correlation View applied to the
SeaMonkeyLayout module of Mozilla. As metrics we use the
number of revisions for the figure color and the number of
shared bugs for both the edge color and width. 107

6.16 The Discrete Time Combo Directory Tree View ap-
plied to the htmlparser and parser hierarchies of Mozilla. . 108

xii LIST OF FIGURES

6.17 The Product TimeLine View applied to the directories
parser/htmlparser/src and htmlparser/src. 109

6.18 The Product TimeLine Views applied to both the versions
of the nsParserModule.cpp product of Mozilla. 109

6.19 The Module Bugs Correlation View applied to the Mozilla
system. As metrics we use the number of revisions for the fig-
ure color and the number of shared bugs for both the edge
color and width. 110

6.20 The Directory Bugs Correlation View and the Prod-
uct Bugs Correlation Views. As metrics we use the
number of revisions for the figure color and the number of
shared bugs for both the edge color and width. 111

6.21 The Number of Bugs - Fractal Value Correlation
View. As metrics we use the number of bugs for the hori-
zontal position and the Fractal Value for the vertical position. 113

6.22 The Number of Bugs - Number of Fellows Correla-
tion View. As metrics we use the number of bugs for the
horizontal position and the number of Fellows for the vertical
position. 114

6.23 The Number of Bugs - Average Growth Rate Cor-
relation View. As metrics we use the number of bugs for
the vertical position and the Average Growth Rate for the
horizontal position. 115

A.1 A Discrete Time Figure with Phases 123
A.2 The System Production Trend View applied to Mozilla.

The time period is from Jan 1, 2000 to Jan 1, 2001. The
detected phases are highlighted. 125

B.1 A screen-shot of BugCrawler’s main window. The visualized
view is a Fractal Directory Tree View applied to the
RaptorLayout module of Mozilla. 128

B.2 The general architecture of BugCrawler, composed of four
main subsystems: The RHDB Bridge, the BC-CC Bridge,
the Internal architecture and the Visualization Engine. 129

B.3 The BugCrawler’s RHDB Bridge interface. 130
B.4 The class diagram of the Rhdb Bridge. 130
B.5 The core model of CodeCrawler. 131
B.6 The plugin class hierarchy. It implements the bridge between

BugCrawler and CodeCrawler. 132
B.7 The class hierarchy implementing the BugCrawler visualiza-

tion engine. 134
B.8 BugCrawler at work. The context menus are dynamically

built depending on the entity or relationship selected. 136

List of Tables

2.1 A list of the metrics used in this thesis. 12

3.1 Release History Database examples. 25
3.2 A comparison between our and Gall approaches. 26

5.1 SeaMonkeyLayout module late birth directories. 66

6.1 Statistical information regarding the production of revisions
for Mozilla. 99

6.2 Statistical information regarding the production of bugs for
Mozilla. 100

6.3 The Mozilla modules classification. 104

xiii

Chapter 1

Introduction

“The key to maximizing reuse lies in anticipating new requirements and
changes to existing requirements, and in designing your systems so that they
can evolve accordingly”[GHJV95].

This principle, known as “Design for change”, is one of the most impor-
tant and widely accepted of the Software Engineering field. Software is a
living entity in a living context. It must adapt to dynamic environments,
changing requirements and new technologies.

The aging of software is a problem too often underestimated in industrial
settings. In these context the strict time constraints, related to market
competition, induce to produce a new working version of the software, rather
than a well designed and documented one. As time goes by, the software
increases in size and complexity and its management becomes more and
more difficult and expensive. Some reasons for this behavior are:

• Developers maintaining the software normally do not understand it in
whole and will even apply changes violating the original architecture
and design decisions.

• The documentation is outdated or partially missing.

• The original developers, or at least some of them, with domain and
system knowledge, are no longer available.

Sommerville [Som00] and Davis [Dav95] have estimated that the cost of
software maintenance takes from 50% to 75% of the overall cost of a software
system. Such a high importance in the entire software life cycle has led to
the so called “Software Evolution Theory”.It concerns how a software system
evolves over time, with respect to some software properties.

The major work in this field was done by Lehman et al. which consists
in a set of empirical laws [LPR+97] based on their case studies of several
large software systems. These laws state that as systems grow in size, it

1

2 Chapter 1. Introduction

becomes increasingly difficult to add new code unless explicit steps are taken
to reorganize the overall design.

1.1 The Problem

Understanding the evolution of a software system is a complex task, espe-
cially when it is composed of a large number of components. Huge amounts
of data have to be analyzed since several versions of the software system
must be considered. Therefore, we need an approach which extracts useful
information only, starting from the whole set of data. This approach must
have the capability to provide fine-grained information as well as grouping
it into higher levels of granularity.

The study of a system has two main aspects of interests, which are:

The evolution: The aim is to understand the evolution of software systems
and to compare it with the existing theory [Tur96, Leh96, LPR+97,
LPR98] and examples [GT00].

The structure and the design: The purpose is to deeply understand the
design of the system, the roles of the entities and the distribution of
the responsibilities.

These two apparently uncorrelated points of view are coupled. The
knowledge of one will significantly improve the analysis of the other. As
suggested by Gall et al. [GJKT97] and Godfrey et al. [GT00], it is useful
to examine the structure of the subsystems to gain a better understanding
of the system evolution. On the other hand, to address the problem of un-
derstanding the overall structure of a software, analyzing more versions of
the system gives more reliability on the conclusions drawn.

Since a complete and exhaustive study of a software takes a lot of time,
especially when the system is large, in most of the cases it cannot be per-
formed. Thus, there is a need of methodologies which are able to lead the
analysis according to well defined goals, such as:

1. Understand the system history in order to deduce how it could evolve
from now on.

2. Identify the major phases of the evolution of the system in order to
evaluate the quality and the maturity of the software.

3. Understand the overall structure and design of the system.

4. Detect hidden dependencies among system entities.

5. Detect the entities which present design erosion. They represent can-
didates for a following reengineering process.

1.2. Software Evolution State of the art 3

In this thesis we focus on software systems developed using CVS [CVS]
as version control system (the reasons of this choice are explained in Sec-
tion 2.2.1). A new problem arises for these systems: The information is
poor, spread and not easily interpretable. A proper way to describe this
issue consists in the Software Archaeology metaphor: The purpose of
the software archaeologist is to understand what was in the minds of other
developers using only the artifacts left behind. He is hampered because the
artifacts were not created to communicate to the future, because only part
of what was originally created has been preserved, and because relics from
different eras are intermingled.

1.2 Software Evolution State of the art

There are many approaches to deal with software evolution, such as:

• Formulating laws based on empirical observations. The observations
are based on interpreting evolution charts which represent some prop-
erty on the vertical (e.g., the number of modules) and time on the hor-
izontal axis. The major work in this area was carried out by Lehman
et. al. [LB85, LPR+97, LPR98].
This approach has recently been applied on a case study (Linux kernel
[Lin]) by Godfrey et. al.[GT00]. They found that at the system level
the growth of the Linux kernel has been super-linear which is a vio-
lation of Lehman and Turski’s inverse square growth rate hypothesis
[LPR98, Tur96].

• Extracting quality related measurements from the history of a soft-
ware. Burd and Munro present a number of metrics to assess the
maintainability of code [BM99]. The availability of such metrics has
the potential to assess if and how maintenance changes have affected
the comprehensibility of the code.
Eick et al. present a number of measurements that index code de-
cay [Eic01]. Code is defined as being decayed if it is more difficult to
change than it should be. They found strong evidence that code does
decay.
Grosser et al. [GSV02] aim at assessing the stability in object-oriented
systems which they define as the ease with which a software system
or a component can evolve while preserving its design as much as
possible. They use case-based reasoning based on the hypothesis that
two software items which show same or similar characteristics will also
evolve in a similar way.

• Detecting entities in the current version using history information.
Demeyer et al. use, in the context of reverse engineering, multiple ver-
sions of a software to detect where the implementation has changed

4 Chapter 1. Introduction

[DDN00]. They propose a set of heuristics to detect specific changes,
i.e., refactorings, by applying object-oriented metrics to successive ver-
sions of a software system.
Gı̂rba et al. [GDL04] propose an approach for identifying key classes
for reverse engineering activities based on the assumption that the
parts which change are those that need to be understood first. The
approach is based on the retrospective empirical observation that the
classes which have changed most recently also suffer important changes
in the near future.
Another approach to understand evolution is proposed by Gall et
al.[GJKT97]. It is based on examining the structure of several ma-
jor and minor releases of a large telecommunication switching system
based on information stored in a database of product releases. The
goal of this work is to identify modules or subsystems that should be
subject to restructuring or reengineering activities.

• Understanding evolution using visualization. In [Lan01, Lan03b] Lanza
introduces the Evolution Matrix, which combines software visualiza-
tion and software metrics to visualize the evolution of the classes of
a software system in a matrix. The evolution matrix displays mul-
tiple versions of a system at class level. Each column of the matrix
represents one version of the software while each row represents the
different versions of the same class. The evolution matrix allows one
to read: The size of the system in a particular version (in terms of
number of classes), the added and removed classes, the system growth
and shrinking phases.
In [GL04] Gı̂rba and Lanza present a visualization approach to un-
derstand the evolution of class hierarchies. The authors introduce the
notion of a history as a first class entity and define measurements
which summarize the evolution of an entity or a set of entities. These
measurements are then used to define polymetric views[Lan03b].
Jazayeri et al. applied another approach based on color [JGR99,
Jaz02]. A history of a release is displayed in a color percentage bar
which contains different colors. The colors represent different version
numbers of certain parts of the release. This allows the observer to
examine the amount of changes from one release to the next.

1.3 Our approach

In this thesis we propose a complete approach to tackle all the issues de-
scribed in Section 1.1. It is complete in the sense that it covers all the
phases required to analyze a software project: From the initial collecting
of information to the data presentation and interpretation. The proposed
approach is composed of two self-contained parts, each of which is aimed at

1.3. Our approach 5

addressing a class of problems concerning software evolution:

The release history database. It is a database containing the version in-
formation with bug tracking report data. The release history database
contains the history of a system as a well defined structure. As a con-
sequence, it represents the starting point for many types of evolution
analyses, which do not necessarily coincide with ours. We implemented
a set of perl and shell scripts able to populate the database in a com-
pletely automatic way.

The polymetric views. The second part of the approach is based on poly-
metric views, simple software visualizations enriched with software
metrics. According to the granularity level we distinguish two clus-
ters of views:

• Coarse-grained polymetric views. They are focused on the
entire system from two different points of view. The first, which is
the evolution, is tackled by analyzing how the system grows and
shrinks, with respect to certain software metrics. The second
aspect of interest concerns the overall structure of the system,
for which we seek to obtain an initial understanding in terms of
modules and module dependencies.

• Fine-grained polymetric views. They are aimed at under-
standing the inner structure of modules. Using the fine-grained
views we can figure out the roles of the entities and the distribu-
tion of the responsibilities in a module. Moreover, we can detect
design shortcomings, hidden dependencies and reengineering can-
didates.

Based on both the fine-grained and the coarse-grained polymetric
views, we propose a top-down methodology to perform the entire anal-
ysis of a system, suggesting how to combine the views.

We implemented a tool, called BugCrawler1, which supports both the
release history database and the polymetric views. All the thesis results
were obtained using exclusively this tool.

We validated the entire approach (release history database, fine-grained
views, coarse-grained views and top-down methodology) on the Mozilla[Moz]
case-study.

1 BugCrawler is an extension of CodeCrawler [Lan03a].

6 Chapter 1. Introduction

1.4 Thesis contributions

The contributions of this thesis can be summarized as follows:

• The development of a release history database which combines version
information with bug tracking report data.

• The presentation and discussion of several polymetric views targeting
the evolution of a software system.

• The presentation and discussion of several coarse-grained polymetric
views. They help to understand the overall structure of a system.

• The presentation and discussion of several fine-grained polymetric
views. They are aimed at figuring out the inner structure of mod-
ules.

• The development of a top-down methodology which leads the analysis
of a software system.

• The analysis of a real case-study (Mozilla) to validate our approach.

1.5 Thesis outline

The thesis is structured as follows:

• In Chapter 2 we present the main problems that have to be tackled in
the analysis of the evolution of a large software system.

• In Chapter 3 we describe the release history database: Its data sources,
its structure, how it can be built and, in the end, some real examples.

• In Chapter 4 we present and discuss the “coarse-grained” polymetric
views. They address the problem of the system understanding from
both the structural and evolutionary perspectives. We call the pre-
sented views “coarse-grained” because they are focused on the whole
system.

• In Chapter 5 we describe the “fine-grained” polymetric views. They
tackle the problem of understanding the inner structure of a module.
We also introduce some guidelines to identify both symptoms of bad
design and candidates for reengineering.

• In Chapter 6 we present a complete top-down methodology which leads
the entire analysis of a software system. The proposed approach con-
sists in a set of guidelines suggesting how to combine fine-grained and
coarse-grained polymetric views. The explanation of the methodology

1.5. Thesis outline 7

is done together with the analysis of a case-study (Mozilla). In this
way, we have the possibility to evaluate how the approach works in
practice.

• In Chapter 7 we present a summary and possible future work.

• In Appendix A we provide formal definitions of the figures used in the
thesis.

Chapter 2

Challenges in Software
Evolution

2.1 The problems

In this Chapter we present the main problems that have to be tackled in the
analysis of the evolution of a large software system. They can be summarized
as:

• Retrieve satisfying evolution information, with respect to their quan-
tity, quality and reliability.

• Find a way to use efficiently the data.

2.1.1 Retrieving evolution information

To study the evolution of a software system, we need all the data regarding
its development. Taking into account that the quality of the analysis strictly
depends on the quality of the information, it must be carefully evaluated.
We do so according to the following criteria:

1. Applicability. We want our approach to be applicable to any soft-
ware system.

2. Quantity. We want as much information as possible. The greater
the amount of data is, the greater the opportunities we have to reason
about the system are.

3. Quality. We want detailed information covering all the aspects of the
evolution of the system.

4. Reliability. We want data which is not affected by any kind of noise.

9

10 Chapter 2. Challenges in Software Evolution

2.1.2 Coping with huge amounts of data

Once we have collected all the available information, what we need is a
way to easily and effectively use it. The large amount of data makes it
necessary to group the information at higher levels of abstraction, so that it
can be easily understandable. It should then be possible to ungroup them
to perform a deeper and more focused analysis.

The approach we need must achieve the following goals:

1. Simplicity. The data should be presented in a way that it can be
directly interpreted.

2. Scalability. It should be possible to show data at any granularity
level: From the entire system to the single entity.

3. Effectiveness. A lot of information should be shown at the same
time.

2.2 Our solution

In this Section we present our solution to the problems introduced above.
We address the issue of retrieving evolution information using version control
and bug tracking systems. They contain large amounts of historical infor-
mation that can give deep insight into the evolution of a software project.

Two good and widely adopted approaches to tackle the problem of ex-
tracting practical information regarding software systems are software met-
rics and software visualization. We use a combination of these techniques
called polymetric view.

2.2.1 Version control and bug tracking systems

The data sources we have chosen are CVS (as version control system) and
Bugzilla (as bug tracking system) repositories, described in detail in the
following Chapter (see Section 3.1). The choice has been based on the
criteria introduced in Section 2.1.1:

1. Applicability. It represents the best benefit of the chosen sources.
Bugzilla and CVS are the most used systems in the Open Source soft-
ware development. We focus on Open Source software because, for
these systems, the source code is always available.

2. Quantity. These data sources contain huge amounts of information.

3. Quality. It represents the major shortcoming of the data sources.
The information is spread into the repository (the CVS log files, as we
see in Section 3.1.1). Moreover, the link between CVS and Bugzilla is

2.2. Our solution 11

weak and not formally defined. As a consequence, the data cannot be
directly used. A preliminary elaboration phase, which is the topic of
Chapter 3, is required.

4. Reliability. The data contained in both CVS and Bugzilla reposito-
ries is not affected by noise.

2.2.2 Software metrics

Software metrics measure certain properties of a software system by map-
ping them to numbers, according to well-defined measurement rules. The
numbers can then be used to describe the software, with respect to the mea-
sured properties. According to [LK94], metrics can be divided in Design
metrics and Project metrics. The former assess the size and the complex-
ity of software, while the latter deals with the dynamics of entire projects.
Taking into account the information we have, we use design metrics. The
selected metrics, which are referred to CVS and Bugzilla, are depicted in
Table 2.1.

2.2.3 Software visualization

Software visualization is defined as “the use of the crafts of typography,
graphic design, animation, and cinematography with modern human-computer
interaction and computer graphics technology to facilitate both the human
understanding and effective use of computer software” [SDBP98]. The soft-
ware visualization field is divided in: Program Visualization and Algorithm
visualization. We use a sub-area the program visualization called static code
visualization, which visualizes only information statically extracted from the
source code. Once again the choice is based on the available data.

2.2.4 Polymetric View

The approach we use in this thesis is a slightly modified version of the poly-
metric views introduced by M. Lanza in [Lan03b], which combines software
visualization and metrics.
A polymetric view uses two-dimensional visualizations to display software.
In detail, it uses nodes (figures) to represent entities, while edges are used to
display relationships between the entities. This basic visualization technique
is enriched by rendering up to 6 metric measurements on a single node, and
up to 2 metric measurements on a single edge. Figure 2.1 shows the mapping
of the metric measurements on both a node and an edge.

As we can see from Figure 2.1, the metrics can be mapped on:

• Node size. The width and the height of a node can be used to render
two metric measurements. The bigger these measurements are, the
bigger the node is in its dimensions.

12 Chapter 2. Challenges in Software Evolution

Module Metrics
Name Description
fv Fractal Value (see Section 4.3.2)
nob Number of Bugs affecting the products it contains
nod Number of Directories
nop Number of Products
nor Number of Revisions

Directory Metrics
Name Description
age Number of Days since the first product was created
fv Fractal Value (see Section 4.3.2)
level Nesting level in the hierarchy
nob Number of Bugs affecting the products it contains
nop Number of Products
nor Number of Revisions

Product Metrics
Name Description
age Number of Days since it was created
agr Average Growth Rate. It is equal to the average number

of lines added minus the average number of lines removed
(with respect to all the commits)

fv Fractal Value (see Section 4.3.2)
noa Number of different Authors
nob Number of Bugs
nocl Total Number of Lines Changed (with respect to all the

commits)
nof Number of Fellows (products belonging to the same direc-

tory)
loc Number of Lines of code
nor Number of Revisions

Revision Metrics
Name Description
agr Growth Rate. It is equal to the number of lines added minus

the number of lines removed
nob Number of Bugs
nocl Number of Lines Changed. It is equal to the number of lines

added plus the number of lines removed

Table 2.1: A list of the metrics used in this thesis.

2.2. Our solution 13

Figure 2.1: The metrics mapping.

• Node and edge color. The color interval between white and black
can render another metric measurement. The convention is that the
higher the metric value is, the darker the node (or edge) is. The
color interval between red and blue can also be used. The meaning
is that hot colors (red range) correspond to high values of the metric
measurement, while cold colors (blue range) correspond to low values.

• Node boundary color. The color of the boundary of a node can
render a metric measurement as well as the internal node color.

• Node position. The X and Y coordinates of the position of the
node can also reflect two metrics measurements. Since the presence
of an absolute origin within a fixed coordinate system is required, the
position metrics are not applicable to all layouts (e.g., a circle layout).

• Edge thickness. The width of an edge can render a metric measure-
ment. The bigger the measurement is, the thicker the edge is.

In addition to this mapping, we can assign a semantic to the figure shape,
linking different meanings with different shapes. For example, in Figure 2.1
the cross-shaped figure represents a bug, while the other figure represents a
file. The use of “ad-hoc” figures allows an immediate understanding of the
view.

A polymetric view displays entities, enriched with metrics, according to
a well defined layout. The essential layouts are: Tree, circle, scatterplot, and
checkerboard. More complex layouts are explained in the remaining part of
the thesis, contextually to their use.
In the end, we want to stress that the visualizations are interactive, in
the sense that the user can not only see but also interact (zoom, move,
remove, inspect, etc.) with the elements in the polymetric views. We believe
that by making such interactions possible, the process of understanding the
information included in the view can be significantly improved.

Chapter 3

The Release History
Database

In order to analyze a software system, from the evolution and structure
points of view, we need all the information available regarding it. Unfor-
tunately for the systems developed using CVS as versioning system, such
information is poor and not easily readable. However, version information
can be enriched with data from bug tracking systems that report about past
maintenance activities. Once we have collected all the data, what we need
is a way to organize it in a well defined structure.

3.1 Data sources

Our approach is based on two sources of information: The CVS log files
(version information) and the Bugzilla bug reports.

3.1.1 CVS Version Control System

CVS [CVS] is the most used versioning system by the Open Source commu-
nity. It is based on the concepts of check-in and check-out. The common
CVS development process is something like:

1. Get the files (or directories) under development with a CVS check-out
command.

2. Modify locally the files.

3. Send the modified files back to the repository with a CVS check-in
command.

In such a perspective, it is important to stress the difference between a
file and a version of a file. In CVS we have the following entities:

15

16 Chapter 3. The Release History Database

Product: A file, identified by its name and extension.

Revision: A version of a file, corresponding to a CVS check-in, identified
by the product (file name and extension) and the revision number
(unique for each revision).

Module: A high level entity which can contain directories and files. CVS
provides specific commands to manage the modules.

Alias: A symbolic name (while revisions are numbers) assigned to a specific
set of revisions.

All the information collected by CVS during its commits is stored in the
CVS log files.

RCS file : / cvsroot/mozilla/js/src/xpconnect/codelib/Attic/mozJSCodeLib.cpp ,v

Working file: codelib/mozJSCodeLib.cpp

head : 1.1

branch:

locks : strict

access list:

symbolic names:

FORMS_20040722_XTF_MERGE : 1.1.4.1

XTF_20040312_BRANCH : 1.1.0.2

keyword substitution : kv

total revisions : 6; selected revisions : 6

description:

revision 1.1

date : 2004/04/19 10:53:08; author : alex.fritze%crocodile -clips.com; state : dead;

branches : 1.1.2; 1.1.4;

file mozJSCodeLib.cpp was initially added on branch XTF_20040312_BRANCH.

revision 1.1.4.2

date : 2004/07/28 09:12:21; author : bryner%brianryner.com; state: Exp; lines : +1 -0

Sync with current XTF branch work.

...

revision 1.1.2.1

date : 2004/04/19 10:53:08; author : alex.fritze%crocodile -clips.com; state : Exp; lines

: +430 -0

Commit jscodelib (bugid =#238324) onto branch . Needed for XTF javascript

utilities.

===

Listing 3.1: A CVS log file chunk.

Listing 3.1 depicts a typical log file chunk. For each product we can find
two sections in the log: The first concerns the product itself and contains:

• The RCS file, that is the file name with the complete CVS path, as it
is stored in the repository.

• The Working file, that is the file name only.

• The product head revision.

• The list of branches, where they exist.

• The number of revisions.

3.1. Data sources 17

• A text description.

• A list of aliases. For each alias the corresponding revision is also given.

In the second section we find the list of revisions coupled with their check-in
notes, that are:

• The unique revision number.

• The check-in time stamp.

• The author of the check-in.

• The revision state. The possible values are “Exp” and “Dead”.

• The lines added and removed with respect to the previous check-in.
For the first revision these numbers are both zero.

• The list of branches, where they exist.

• A description inserted by the author. This is the only information
asked to the user, while all the other are automatically computed by
CVS. In this field we can find bug references as highlighted in listing
3.1 in red.

3.1.2 Bugzilla

Like CVS, Bugzilla [Bugb] is doubtless the most used Bug Tracking System
by the Open Source community. The list of companies [Bugc], organizations
and projects that use Bugzilla includes IBM, NASA, RedHat, Linux kernel,
OpenOffice, Apache.

Apart from its many features, the core of Bugzilla is a database con-
taining well defined bug information. When queried, it is able to return
information both in XML and HTML (see Figures 3.1 and 3.2).

For each bug stored, Bugzilla includes the following information [Buga]:

Id: The unique integer bug id identifier.

Status: Indicates the general status of a bug. Only certain status tran-
sitions are allowed. This field can be: Unconfirmed, new, assigned,
reopened, resolved, verified, closed.

Product: Identifies the subsystem affected by the bug.

Component: Identifies the software components affected by the bug (in
the Product scope).

Creation time stamp: Indicates when the bug have been reported.

Short description: Describes the problem in a couple of lines.

18 Chapter 3. The Release History Database

Figure 3.1: A Bugzilla Bug (XML format).

Long description: Is a list of comments about the bug. Each comment
includes the author, the time stamp and a text field which could be a
patch.

Platform: Is the hardware platform on which the bug was reported. It can
be: All(happens on all platform; cross-platform bug), Macintosh, PC,
Sun, HP, SGI, DEC, Other.

Operating system: Is the operating system on which the bug was re-
ported.

Resolution: Indicates what happened to this bug. Allowed values are:
fixed, invalid, wontfix, notyet, remind, duplicate, worksforme.

Priority: Describes the importance and order in which the bug should be
fixed. This field is utilized by the programmers/engineers to prioritize
their work. The available priorities range from P1 (most important)
to P5 (least important).

Severity: Describes the impact of the bug. The allowed values are (in de-
creasing order): blocker, critical, major, minor, trivial, enhancement.

3.2. Database structure 19

Figure 3.2: A Bugzilla Bug (HTML format).

Assigned to: Is the person in charge of resolving the bug.

Reporter: Is the person who discovered the bug.

While the bug structure is always as described above, each software
system uses its names to identify the bug fields. For example, the Status
is identified with a <bug status> XML tag in the Mozilla system, while it
is called <status> in the RedHat [Red] software. As another example the
Product is coupled with the <category> XML tag in the Linux kernel [Lin],
and with the <product> XML tag in the Gnome [Gno] software. Since we
want a populating process applicable to all systems using CVS and Bugzilla,
we have to take this problem into account (see bug field names problem in
Section 3.3.1).

3.2 Database structure

On the basis of the available information, as described in the previous Sec-
tion, we have designed a relational database with the ER-structure depicted
in Figure 3.3. The database is implemented with the Open Source MySql
database management system [MyS].

20 Chapter 3. The Release History Database

Figure 3.3: The Rhdb Entity-Relationship model.

As we can see from the diagram, the Release History Database is com-
posed by the following tables:

Bug: Stores all the data related to the system bugs as retrieved from
Bugzilla.

BugComment: Contains an entry for each long description of a bug.

CVS Alias: Contains an entry for each Symbolic Name of the software
system.

CVS Item: Contains all the system revisions and their related information
as retrieved from the CVS log files. The references with the related
CVS products are kept in the Product field.

CVS Product: Is composed of the data regarding the products of the sys-
tem. The fields LinesNumber and Dead are not obtained directly
from CVS log files. We see in Section 3.3 how they are computed.

3.3. Database population process 21

CVS ProductAlias: Stores the one-to-many relation between Symbolic
Names and revisions.

ItemBug: Keeps the many-to-many relation between revisions and bugs.

Modules: Contains the list of system modules. Since the module informa-
tion is not included in CVS log files this data has to be retrieved as
described in Section 3.3.

ModulesDirectory: Stores, for each module, all the directories composing
it.

3.3 Database population process

Figure 3.4: A high level schematization of the populating process.

To populate our Release History Database, we have developed a set of
perl and shell scripts. Thus, besides the prerequisites that the system has
been developed using CVS and Bugzilla, we have to add the need of a
machine with Mysql and perl interpreter installed. The populating process
outline is shown in Figure 3.4.

First of all, we have to perform the CVS check-out of the entire system.
Depending on the system size and the bandwidth (between our machine
and the server containing the CVS repository), the complete CVS check-out
can take from minutes to hours. Once we have downloaded the complete
repository, we are able to populate the database. This is performed using a
shell script responsible for:

22 Chapter 3. The Release History Database

1. Traversing and storing the software directory tree. This step is not
strictly required, since the subsequent parsing could be done “on the
fly”. However, knowing the tree structure allows to determine how
much work has still to be done, at any instant of time. This feedback
is useful in a process which takes a lot of hours.

2. Traversing again the entire software tree. During this operation a CVS
log file is retrieved and locally stored for each directory (with the CVS
log -l command). Then, a perl script is executed with the log file
and a configuration file as parameters. Finally the log file is removed.
Since the log parsing represents the core of the populating process, we
see it in detail in Section 3.3.1.

3. Once step 2 is completed, the database is almost fully populated. Only
little information is lacking. One of them is the Product state, which
should not be confused with the Revision state introduced in Section
3.1.1. We consider a product dead (state=dead) when it is moved
to the Attic subdirectory (with respect to the directory in which the
product is stored). On the contrary, a revision is considered dead when
it is marked as so by its author, during the check-in. A dead revision
does not imply that its corresponding product is dead too. The only
deduction is that this product has a dead branch; only if the product
does not have other living branches it is dead. A dead product has a
dead revision for each branch.

To add the product state information, which corresponds to the Dead
field in the CVS Product table, we use again a perl script. It queries
the database for the products having an “Attic” string in their RCS File
field. Then it modifies these fields by removing “Attic”(from the direc-
tory tree point of view, the files are moved to their original location)
and finally it sets the Dead field to true. For all the other products
the Dead flag is set to false.

4. The next phase consists in filling the LinesNumber field belonging to
the CVS Product table. To do so, a perl script selects the RCS File for
each living product. Then, using this information, the corresponding
file in the CVS checked-out system is located and its size is calculated.
The computed value is stored in the database. For the dead products
the LinesNumber field is set to NULL, because the corresponding file
does not exist in the file system.

5. To conclude the populating process, we need to store the Modules
structure, in terms of directories included. This data is neither present
in the checked-out system, nor in the log files. We can obtain it per-
forming a cvs co -c command. It returns the list of modules and, for
each of them, its list of directories. Once retrieved this information,

3.3. Database population process 23

we have to include it into the database, filling the Modules and Mod-
ulesDirectory tables. The parsing and the storing is performed by a
perl script.

3.3.1 The log parsing

In this Section we describe how the data is taken from the log files and how
it is stored in the database. The CVS repository is not the unique source of
information, but it is coupled with the Bugzilla repository. Before starting,
we summarize the problems that we have to take into account:

Bug field names problem: Different systems use different names to call
the same bug field. This problem can be fully overcome using a bug
configuration file for each software system. This file includes the bug
field names and the Bugzilla repository url used for downloading bug
data.

Bug references problem: The bug link, stored in the CVS revision de-
scription field, is not formally defined. Since it is an intrinsic short-
coming of CVS, we are not able to entirely avoid it, we can only try to
restrict it. In other words, there is no way to be sure of automatically
catching all the bug references; the only manner would be to manually
read all the description fields. In order to find bug links, we use string
matching1.

Execution time problem: The script execution can take dozen of hours
(we see why in Section 3.3.2), and thus it cannot be supervised by
a user all the time. As a result, the script should be entirely auto-
matic. Moreover, it should manage errors like corrupted files without
interrupting itself, writing the errors on its own log file.

The log parsing is performed by a perl script, which is launched by the
shell script, passing it the log file just retrieved and a configuration file (see
Bug field names problem). First of all, the script parses the configuration file,
importing the parameters as local variables. Then it starts the real parsing,
product by product. For each product, it reads all the revisions and stores
them into the database. Whenever the script finds a description tag, besides
adding it to the database, it looks for bug references (as explained in Bug
references problem). If a Bug Id is found, then the program downloads the
bug report (in XML format) performing a wget command. In case the result

1 In detail we look for:

• bug*d{3,}
• id*#*d{3,}
• b*id*d{3,}

where * means any character and d{3,} means at least three digit characters.

24 Chapter 3. The Release History Database

of the wget is corrupted, the script goes ahead, writing the output coupled
with the Bug Id on its own log file (Execution time problem). This allows us
to perform a further analysis when the script terminates its work. Finally,
the downloaded bug report is parsed and, if it does not exist in the database,
it fills a row in the Bug table and a set of rows in the BugComment table.
During its execution the program gives some feedback to the user, writing
it on the screen. Besides the percentage of work (in terms of number of
directories), the number of each entity stored up till now in the database is
given. Figure 3.5 shows a screen-shot of the scripts interface.

Figure 3.5: A scripts execution screen-shot.

3.3.2 Execution time considerations

It could be surprising that the populating process execution time can reach
more than 20 hours. The parsing of log files is fast. On the contrary, the
wget command is relatively slow, because it has to wait for the reply from
the Bugzilla repository server. We have calculated, with a sample of 1000
bug reports, that on average a wget takes 2.5 seconds. Furthermore, we have
another bottleneck, again concerning network time instead of computation
time. This is the cvs log -l command, which can take, depending on the
log size, from 108 to 459 seconds with an average of 195 seconds (on the
entire Mozilla sample).

3.3.3 Examples

To conclude this Section we present 4 real examples of our scripts applica-
tion. We choose big systems because we want to test the reliability of the
process. The other criterion followed is related to the availability of the CVS
repository: This implies choosing Open Source systems.

3.4. Related work 25

The software systems selected for the case-studies are:

• Mozilla[Moz]: A well known web suite including browser, e-mail client,
web composer.

• KDE[KDE]: A powerful graphical desktop environment for Linux and
Unix workstations.

• Gnome[Gno]: A Unix and Linux desktop suite and development plat-
form.

• Apache HTTP Server[Apa]: An Open Source HTTP Server for modern
operating systems including Unix and Windows NT.

The obtained results2 are summarized in Table 3.1. The data confirms
that the bottleneck of the populating process is the wget command. The
scripts execution time is maximum for the system having the highest number
of bugs (Mozilla), while it is shorter for the system having the largest size
(KDE).

System Size Scripts Product Rev Bug ItemBug
ex time

Mozilla 494MB 22h 85792 755274 26635 166601
KDE 2.7GB 16h 334705 4159499 5421 33166

Gnome 466MB 6.5h 27448 366442 5892 34221
Apache 30MB 15m 2049 37292 96 240

Table 3.1: Release History Database examples.

3.4 Related work

To our knowledge, version control systems, and in particular CVS, were the
subject of many studies.
In [GJKT97] Gall et al. propose an approach based on examining the struc-
ture of several major and minor releases of a large telecommunication switch-
ing system based on information stored in a database of product releases.
The historical evolution of the structure is tracked and the adaption made
are related to the structure of the system. The goal of this work is to
identify modules or subsystems that should be subject to restructuring or
reengineering activities.
Ball et al. [BAHS97] focus on the visualization of statistical data derived
from the version control system.

2 The scripts were executed on a Pentium4 machine with 1GB of RAM using
Suse9.1[Sus] as operating system.

26 Chapter 3. The Release History Database

In [GJK03] Gall, Jazayeri and Krajewski use the data stored in CVS to de-
tect logical coupling of modules across the evolution of a software system.
They propose a Relation Analysis (RA) in which classes are compared based
on dates and authors of changes. With this information, parts of the system
that were changed together can be discovered.

Little effort was spent in coupling version control and bug report data.
In [FPG03b] Gall et al. describe how to build a Release History Database
starting from CVS and Bugzilla data. The populating process part of our
work is inspired on theirs and, since they have taken Mozilla as a case study,
we are able to compare the results. Before doing that, we have to briefly
outline the main differences of the two approaches:

• The database ER structure is slightly different. Apart from the tables,
initially empty, they use for the following evolution analysis, the author
entity is represented by a table in their Rhdb, while it is a field in ours.
Moreover, since they do not consider Module information, the Modules
and ModulesDirectory tables do not appear in their Database.

• The populating process proposed by Gall et al. provides an heuristic
method to find merge points across branches (see [FPG03b] at Section
4 for detail). Our approach does not consider this topic.

The numeric results obtained with the two approaches are shown in
Table 3.2 (with respect to the Mozilla system). The numbers depicted are
the Database table sizes, in number of rows. In order to make the comparison
significant, we perform the check-out at the same date as Gall et al. did in
[FPG03b], namely December 14th, 2002.

Product Revision Bug ItemBug
Our approach 38432 361904 22409 122792
Gall approach 36662 433833 28456 158491

Table 3.2: A comparison between our and Gall approaches.

Table 3.2 shows that the approach proposed by Gall et al. is better from
the revision and bug points of view, while our technique is better from the
product point of view.

3.5 Conclusion

In this Chapter we have described the Release History Database: Its data
sources, its structure, how it can be built and, in the end, some real ex-
amples. We believe that the Rhdb could be an excellent starting point for
software evolution analysis. The information it contains is rich of semantics
from an evolutionary perspective.

3.5. Conclusion 27

3.5.1 Benefits

From our point of view, a benefit of the Rhdb consists in its capability of
aggregating two data sources with a weak relationship (the informal link in
the CVS description field). This is important because bug reports tell us a
lot of the history of a system. They give information about the quality of
the design and the code; they help uncovering logical coupling at any level
of abstraction.

Another advantage of our approach comes from the technological choices.
Having a MySql database allows to:

• Apply data mining techniques.

• Import the data in many programming languages.

The last benefit is the fact that the populating process is completely
automatic. The user just has to download the CVS repository, to fill the
bug report configuration file and to provide the Bugzilla repository url.
Assuming large availability of disk space and CPU time, a considerable
number of Rhdbs can be built and analyzed.

3.5.2 Limits

Our approach is limited in the following way:

• Coupling with our evolution technique. When we designed the Rhdb
structure and construction method, we had in mind how we intended
to use it. In other words, the Database was thought ad-hoc for our
application. However, we believe that this instrument could be useful
for different evolutionary approaches.

• No merge points detection. An algorithm to find merge points (like
the one used in [FPG03b]) is not provided.

• Last revision only. The last revisions of files only are available. In fact,
only these revisions are checked-out, while all the other information
is retrieved from the CVS log files. Having all the revisions available
at the same time means knowing the detailed source code history of
every file. This could allow a better understanding of the evolution of
the system.

Chapter 4

Software Archaeology in the
Large

In this Chapter we address the problem of analyzing a large software sys-
tem. We are interested in understanding both its evolution and its overall
structure. These two apparently uncorrelated points of view are coupled.
The knowledge of one will significantly improve the analysis of the other. As
suggested by Gall et al. [GJKT97] and Godfrey et al. [GT00], it is useful
to examine the structure of the subsystems to gain a better understand-
ing of the system evolution. On the other hand, from the system history
we can retrieve information which could guide the inspection of the system
structure.

With the term “in the Large” we mean:

• From the evolutionary point of view, we consider the entire system.

• From the structural point of view, we focus on the highest level entities
(the modules). We want to find out which are the most important
modules and which relationships hold among them. We also want
to understand how the responsibilities and the bugs are distributed
among the modules.

Our approach to analyze a system consists in applying a set of highly
scalable and interactive polymetric views. Each of them highlights a par-
ticular aspect of the entities involved. The examination of the system is
therefore performed through the inspection of the views.

All the views are presented using the same template.

4.1 Preliminaries

Before explaining the views designed for the coarse-grained analysis, we
need to introduce the set of figures composing them. While some figures

29

30 Chapter 4. Software Archaeology in the Large

are so simple that they are self-explanatory, the others require a semantic
description. Therefore, we will go for the figures presentation, dividing them
in simple figures and complex figures.

4.2 Simple Figures

The simplicity of the following figures does not strictly require an explana-
tion. However, for completeness and symmetry with the other Sections, we
provide it.

(a)
Module
Figure.

(b) Directory
Figure.

(c) Product
Figure.

(d) Bug
Figure.

Figure 4.1: Simple Figures.

Name Module Directory Product Bug
Possible entities Module Directory Product Bug, Dead

revision
Possible metrics Width, Height, Color, Boundary color
mapping
Example Fig. 4.1(a) Fig. 4.1(b) Fig. 4.1(c) Fig. 4.1(d)
Customization None

4.3 Complex Figures

The complex figures we implemented are:

1. Discrete Time Figure (see Section 4.3.1).

2. Fractal Figure (see Section 4.3.2).

4.3. Complex Figures 31

4.3.1 Discrete Time Figure

Name Discrete Time Figure
Possible entities Module, Directory, Product
Possible metrics mapping -
Example Figure 4.2

Figure 4.2: Discrete Time Figure with phases.

Notes

The Discrete Time Figure represents the production of revisions (or
bugs) over time. Each rectangle composing the figure is related to an inter-
val of time, while its color corresponds to the number of revisions (or bugs)
checked-in during this period of time. The color is chosen with respect to a
set of thresholds, where the number of possible colors is equal to the number
of thresholds plus one. For example, if the set of thresholds is T = {t1, t2, t3}
then the set of colors is C = {r1, r2, b1, b2} where the choice of colors is made
upon:

r1 if nor(or nob) > t3

r2 if t3 ≤ nor(or nob) < t2

b1 if t2 ≤ nor(or nob) < t1

b2 if nor(or nob) ≤ t1

Independently from the number of thresholds, the first color (r1) is always
a pure red, while the last color (bn/2 where n = |C|) is a pure blue. All
the other colors range from r1 and bn/2 where hot colors mean high pro-
duction of revisions (or bugs) and cold colors mean low production. As we
see from Figure 4.2, in addition to the standard colors there are two special
ones: Transparent and black. The former means that the time period cor-
responding to the rectangle precedes the first revision (or bug) of the entity
(Module, Directory or Product) or follows the last. The latter means that
the entity is dead in the considered time interval1.

1The entity is dead if the time interval follows the last revision (or bug) and all the

32 Chapter 4. Software Archaeology in the Large

The Discrete Time Figure implements a phases detection mechanism.
We examine the sequence of rectangles looking for patterns (the so called
phases). If a pattern is found the lines of the rectangles composing it are
rendered according to the policy described below. In detail, we recognize
the following phases:

Stable: It represents a period of time during which the production of
revisions (or bugs) is relatively constant (no matter if it is high, medium
or low). A sequence of rectangles is recognized as a stable phase if: It is
long enough and there are no oscillations (or small oscillations) in the color
values. For the stable phase the lines of the rectangles are green. An
example is shown in Figure 4.2.

Peak: It is composed of three periods of time having the following
characteristic:

- During the first and the third periods, which are long, the production
of revisions (or bugs) is high (low).

- During the second period, which is short, the production of revisions
(or bugs) is low (high).

A sequence of rectangles is detected as a peak phase if: The first and the
third periods are sufficiently long, and the difference between the values of
nor (or nob) in the first (or third) and in the second periods is adequately
high. For the peak phase the lines of the rectangles are yellow, as we can
see from Figure 4.2.

Unstable: It is the contrary of the stable phase. We call unstable phase
a period of time during which the production of revisions (or bugs) oscillates
from low to high values and vice versa. A sequence of rectangles is detected
as an unstable phase only if: There are at least 6 periods of time such that
the difference between the production of revisions (or bugs) of each pair
of adjacent periods is enough high. Moreover, the difference between the
values of nor (or nob) in time periods having a distance equal to two must
be sufficiently low. For the unstable phase the lines of the rectangles are
pink (see Figure 4.2).

The formal definitions of the phases are provided in Section A.1.

Customization

The Discrete Time Figure is highly customizable. The choice of the
parameter values is fundamental: The figure efficacy depends on it. There
is no optimum choice a priori, it depends on the entity (or entities set) under
analysis. The parameters are:

branches are marked as dead.

4.3. Complex Figures 33

• The number of the thresholds ti ∈ T . If this number is too high, then
the resulting figure is difficult to interpret. On the other hand, the
higher the number of thresholds is, the more the information contained
in the figure is detailed.

• The values of the ti ∈ T . These values can be automatically computed
or manually set. The first alternative is useful if we need a “general”
impression of the entity. The second one could be helpful to underline
a particular aspect of the entity.

• The number of rectangles composing the figure. This parameter rep-
resents the time granularity of the figure: The higher the value is, the
finer the granularity is, i.e., the shorter the time intervals are.

Variations

Discrete Time Combo Figure. It is composed of two Discrete Time Fig-
ures. These figures represent the same entity but while the first is related
to the production of revisions, the second is referred to the production of
bugs (see Figure 4.3). Vertically aligned rectangles in the two Discrete Time
Figures correspond to the same period of time.

Figure 4.3: Discrete Time Combo Figure.

34 Chapter 4. Software Archaeology in the Large

4.3.2 Fractal Figure

Name Fractal Figure
Possible entities Module, Directory, Product
Possible metrics mapping Width, Height
Example Figure 4.4

(a) One de-
veloper

(b) Few de-
velopers

(c) Mainly
one devel-
oper

(d) A lot of
developers

Figure 4.4: Fractal Figures.

Notes

The Fractal Figure gives an immediate view of how the entity was devel-
oped. We can easily figure out whether the development was done mainly
by one author or a lot of people contributed to it. The figure is composed
of a set of rectangles having different sizes and colors. Each rectangle, and
thus each color, is related to an author who worked on the entity2. The area
of the rectangle is directly proportional to the percentage of check-ins per-
formed by the author over the whole set of check-ins. The ratio rectangle area

figure area

is directly proportional to the ratio author check-ins
total check-ins .

In Figure 4.4 four typical development patterns are depicted: Only one
author (4.4(a)), a small number of authors (4.4(b)), many authors but unbal-
anced (one performed half of the work, all the others performed the second
half, 4.4(c)), many balanced authors (4.4(d)). The Fractal Figure gives us
a qualitative impression of the development process. To have a quantita-
tive idea, we have designed the so called Fractal Value, which is formally
defined as:

Fractal Value = 1−
∑
ai∈A

(nc(ai)
NC

)2
, NC =

∑
ai∈A

nc(ai) (4.1)

2If the entity is a product then “worked” means performed at least one check-in. If it is
a module or directory then “worked” means performed at least one check-in of a product
contained in the directory or module.

4.3. Complex Figures 35

where A = {a1, a2, . . . , an} is the set of authors and nc(ai) is the number of
commits performed by the author ai.

Figure 4.5: The Fractal Value trend.

The fractal value measures how much “fractalized” the figure is, that is
how much the work spent on the corresponding entity is distributed among
different developers. Looking at equation 4.1, we notice that:

• Since the square equation is sub-linear between 0 and 1, the smaller
the quantity nc(ai)

NC is (that is always lesser or equal to 1), the more it
is reduced by the square power. Therefore, the smaller a rectangle is,
the lesser its negative contribution to the Fractal Value is.

• The Fractal Value ranges from 0 to 1 (not reachable). It is 0 for entities
developed by one author only, while it tends to 1 for entities developed
by a large number of authors (as shown in Figure 4.5).

Customization

None.

Variations

• Fixed Width Fractal Figure: The figure width is fixed to a constant
value. Therefore, the percentage of commits performed by one author
is proportional to the height of the rectangle.

• Fixed Height Fractal Figure: The figure height is fixed to a constant
value. Therefore, the percentage of commits performed by one author
is proportional to the width of the rectangle.

36 Chapter 4. Software Archaeology in the Large

4.4 Understanding the evolution of the system

The first aspect of interest, in studying the evolution of a software system,
is how the system under analysis grows and shrinks during its life time. The
problem is that there is not a unique definition of growth, since it refers
to a dimension of the system. Our approach consists in considering three
metrics:

1. The number of revisions (nor).

2. The number of lines of code (loc).

3. The number of bugs (nob).

While the first two were extensively used [Tur96, Leh96, LPR+97, LPR98,
GT00], the latter represents a new dimension to inspect. From our point
of view, analyzing the system growth means understanding how the nor,
loc and nob vary. To do so we have designed two clusters of views. The
first, called System Growth Views, is composed of three elements, each
of which shows a particular aspect of the system growth. The second, called
System Production Trend View, includes two elements depicting the
nor and the nob trend during the system life time.

4.4.1 System Growth Views

These polymetric views are aimed at:

• Understanding the system history in order to deduce how it could
evolve from now on.

• Comparing the evolutions of different systems developed with different
paradigms (OpenSource, Commercial).

• Comparing the evolution of the system with the existing software evo-
lution theory [Tur96, Leh96, LPR+97, LPR98] and example [GT00].
Find out where the system is aligned with the theory and, where it is
not, try to understand the reasons for such a difference.

• Identifying the phases of the evolution of the system to evaluate the
quality and maturity of the software project.

The System Growth Views are also applicable at finer granularity
levels. They can show how a single module, directory or product grows and
shrinks during its life time. The modified versions of the view are called
respectively Module Growth Views, Directory Growth Views and
Product Growth Views.

4.4. Understanding the evolution of the system 37

Name System Revisions Growth View

Layout Scatterplot
Scope Entire System
Nodes Entity Growth Point

Figure Fixed Rectangle Figure
Edges -
Metrics Size{Width ; Height} {- ; -}

Position{x ; y} {Time(N. of Days) ; nor }
Color -

Sorting -
Appearance See Figure 4.6

Main Idea

This simple view shows how a software system grows during its life time.

Figure 4.6: The superimposition of two System Revisions Growth View
applied to Mozilla. As metric we use the number of days for the horizontal
position and the number of revisions for the vertical position.

Notes

The System Revisions Growth View helps discovering out phases
in the evolution of a subject system. We can detect them according to the
different nor growth rates. It means that, assuming nor as a function of
the number of days (nor = fnor(nod)), each phase is identified by its nearly
constant dfnor(nod)

dnod derivate value.
The entities composing the System Revisions Growth View are

Growth Points, which encapsulate the following information:

38 Chapter 4. Software Archaeology in the Large

• A time stamp.

• The difference between the time stamp and the time stamp of the first
revision of the system expressed in number of days.

• The number of revisions checked-in until the time stamp.

Key Points

• Dead Phases. They consist in flat chunks of the curve, where
dfnor(nod)

dnod = 0. We call them Dead phases because during these inter-
vals of time no work was spent on the system. The same phenomenon
with the nob or loc metrics does not have the same implication. In
fact, zero bugs could be the consequence of a bugs fixing phase, while
loc = 0 could mean that the lines added are equal to those removed.

• Discontinuity points. They indicate a production of revisions above
average during a time step. A subsequent analysis could explain the
causes of such a high value of nor.

• Changes in the curve slope. They suggest that in these points there
were substantial innovations in the system. They act as boundaries be-
tween two different phases of the evolution of the system. The possible
reasons of such a big change in the system are various, such as:

– Addition of a new product/project to the entire system. The
product is not necessarily new, it could be a porting to another
architecture or operating system.

– Removal of a product/project or a part of it.

– Some maintainers change.

– The budget assigned to the system changes (funds are added or
removed).

– Considerable changes in the system design due to a reengineering
or a refactoring application.

Customization

The only parameter we can change in the view is the time step, that is
the time distance between two adjacent Growth Points. Changing the time
step implies changing the Growth Points density, because3

Growth Points number = (total number of days)/(time step)
3Since the time is measured in days, the minimum value allowed for the time step is

one day.

4.4. Understanding the evolution of the system 39

However, decreasing the time step too much is useless as the Growth Points
will overlap. Increasing it should show discontinuities otherwise invisible.
The time step default value is one week.

Variations

• System Lines Growth View. The number of lines of code can be
used for the vertical position metric, instead of the number of revisions.
The information given by the loc metric is potentially more detailed
with respect to those retrieved from nor. In fact, this metric weighs
each check-in with the work performed, expressed in terms of number
of lines. The loc metric suffers from the effect of the lines removal.
As an example we can have a nor = 1000 and a loc = 0 in the same
situation: It means that, over the 1000 check-ins, on average the lines
added are equal to those removed.

• System Bugs Growth View. This variation is obtained by using
the number of bugs for the vertical position metric, instead of the
number of revisions. It shows how bugs are discovered and reported
during the system life time. The curve interpretation is far from be-
ing immediate. In fact, a high nob growth rate could be related to
a “strong” testing phase as it could imply a bad development phase.
The same can be stated for low values of nob. They could be the con-
sequence of an excellent development process or a poor testing phase.
Furthermore, we have to take into account that many bugs are not
discovered during the testing and some other exist in the context of a
specific application only. Then, there are bugs which are generated by
fixing others. All these reasons make the curve interpretation difficult.

Example

See Section 6.1.1.

40 Chapter 4. Software Archaeology in the Large

4.4.2 The System Production Trend View

Name System Production Trend View

Layout Scatterplot
Scope Entire System
Nodes Entity Time Interval Production

Node
Figure Fixed Rectangle Figure

Edges Time Interval Production Edge
Metrics Size{Width ; Height} {- ; -}

Position{x ; y} {Time(Number of Intervals)
; nor or nob }

Color -
Sorting -
Appearance See Figure 4.7

Main Idea

This view gives an indication of the liveliness of the system. Looking at
the view we can figure out the moments of maximum development and how
the work is distributed over time.

Figure 4.7: The System Production Trend View applied to Mozilla.
As metrics we use the number of time intervals for the horizontal position
and the number of revisions for the vertical position.

Notes

The System Production Trend View is composed of a sequence of
points representing the Time Interval Production Nodes. This type of entity
encapsulates two pieces of information: A time period and the number of
revisions (or bugs) produced during it. The points are rendered in the view
with a vertical position proportional to the number of revisions (or bugs)
checked-in during the time interval. The horizontal position reflects the
time intervals order, that is how many time periods precede the current.

4.4. Understanding the evolution of the system 41

The edges link two adjacent nodes. The purposes of the view in a software
evolution context are various:

1. Assess the system “granularity”. The graph is often characterized by
high and frequent oscillations. With a time interval of one week, this
means that the production of revisions (or bugs) in following weeks
has a weak correlation. Our goal is to figure out which is the time
interval that makes the graph oscillations soft (i.e. the values of nor
computed in adjacent nodes correlated). This time interval is the sys-
tem granularity. This investigation can be done by building the view
many times with an increasing time interval length. If the oscillations
are frequent and high with any time interval length, then the system
has not a granularity. In such a case we postulate that the production
of revisions (or bugs) in the system is a self-similar process [HS98]
(looks ”roughly” the same on any scale).

2. Understand whether a relation between the production of revisions
(or bugs) and the time period exists or not. As an example, we could
expect to find low values of nor during the last weeks of the year. To
find such a relation we have to render a view for each year, overlap
them and look for recurring patterns.

3. Perform a statistical analysis of the graph in terms of mean and vari-
ance. Then we can compare the system with itself in different years
and with other systems.

4. Detect phases in the graph (we see how to do it in detail in the key
points discussion).

5. Figure out the major phases of the evolution of the system (three or
four at most) to understand in which phase it is and how it could
evolve from now on.

6. Check whether a relation between the nor and the nob trends exists or
not. For example we could have that a nor positive peak is followed by
a nob one. In such a case the bugs concerning the nob peak are related
to the revisions checked-in in the nor peak with high probability. So
we suppose that the nor peak is associated to an addition of features
in the system. As another example we could have the same situation
but, this time, the nob peak is negative. We suppose that the nor
peak is associated to a bug fixing phase.

A way to find relations, if they exist, consists in superimposing the
nor and the nob graphs in one view.

42 Chapter 4. Software Archaeology in the Large

Key Points

• Peaks. They indicate a production of revisions (or bugs) much above
or below the average. We need to perform a further inspection to
understand the reasons of their existence.

• Mean and variance. The computation of these quantities gives a nu-
merical idea of how the nor (or nob) metric varies over the considered
time interval.

• Major phases. We can detect them by looking at the general trend in
a view with a time interval equal to a week. Then, to validate major
phases we need to analyze views with longer time intervals.

Figure 4.8: The System Production Trend View applied to Mozilla.
The time period is from Jan 1, 2000 to Jan 1, 2001. The detected phases
are highlighted.

• Phases. They are formally defined patterns involving adjacent points
in the graph. The formal definition allows an automatic detection of
the phases. To distinguish different phases, we assign to each of them a
specific color, according to the policy shown in Figure 4.8. The phases
point out a period of time during which the production of revisions
(or bugs) follows a certain type of pattern. In detail we have:

Stable: Corresponds to a period of at least three time intervals during
which the value of nor (or nob) has small variations. In other words, we
have a stable phase when the time intervals are sufficiently correlated
from the nor (or nob) point of view.

4.4. Understanding the evolution of the system 43

Increasing/Decreasing Stable: Is related to a time period com-
posed of at least three basic time intervals during which the nor (or
nob) growth rate4 has small variations.

Unstable: Is everything remaining after the detection of the previous
phases. An unstable phase is a time period during which the value of
nor (or nob) oscillates without a particular pattern.

Figure 4.8 depicts examples of the phases defined above, for which the
formal definitions are provided in Section A.2. Note that, by definition,
the set of phases covers the entire graph.

Customization

The customization possibility is fundamental for this view, since its effi-
cacy depends on it. The view parameters are:

• The time interval length expressed in seconds. The default value is
604800 which corresponds to one week.

• The beginning and the end dates.

• The values of the thresholds used to detect the phases (see Section
A.2).

Variations

For this view we can use the nor metric, as well as the nob one, for the
vertical position metric of the Time Interval Production Nodes. Using the
nob metric we expect less and lower peaks than with the nor metric. The
nob graph is expected to oscillate less than the nor one.

It would be interesting to analyze the superimposition of the two views,
that represents the relation between the revisions and bugs trends. In par-
ticular, we should look for cross-correlations like:

• A revisions peak followed by a positive bugs spike. It could be related
to an “addition of features” phase.

• A revisions peak followed by either a decreasing stable bugs phase or
a negative bugs spike. It could imply a “bug fixing” phase.

Example

See Section 6.1.4.
4 The nor (or nob) growth rate is positive for the Increasing Stable Phases and negative

for the Decreasing Stable Phases.

44 Chapter 4. Software Archaeology in the Large

4.5 Understanding the design and the overall struc-
ture of the system

Understanding the structure of huge software systems is a complex task.
The large number of components makes it difficult to figure out where the
analysis should start.

We have to tackle the problem incrementally, starting from the highest
level entities. We present a cluster of polymetric views, aimed at obtaining
a first overview of a subject system, which are:

• CVS Module View (see Section 4.5.1).

• Discrete Time Combo Module View (see Section 4.5.2).

• Module Bugs Correlation View (see Section 4.5.3).

• Product TimeLine View (see Section 4.5.4).

4.5. Understanding the design and the overall structure of the system 45

4.5.1 The CVS Module View

Name CVS Modules View

Layout Checkerboard
Scope Entire System
Nodes Entity Module

Figure Module Figure
Edges -
Metrics Size{Width ; Height} {nop ; nop}

Position{x ; y} {- ; - }
Color Number of Bugs

Sorting Number of Products
Appearance See Figure 4.9

Main Idea

The CVS Module View gives a first insight of a software system in
terms of modules.

Figure 4.9: The CVS Modules View applied to Mozilla. As metrics we use
the number of products for both the width and the height and the number
of bugs for the color.

Notes

This view shows all the system modules enriched with the nop and nob
metrics. It gives an idea of which are the modules that play a key role in
the system, and which are the minor and marginal ones. The view is also
helpful to find small modules affected by a large amount of bugs.

46 Chapter 4. Software Archaeology in the Large

Key Points

• Big and dark figures represent the principal modules of the system.
They are good points to start a fine-grained analysis.

• Small and light figures represent marginal modules. In most cases we
don’t need to further inspect them.

• Small and dark figures are related to modules which contain few prod-
ucts and many bugs. Since these modules are symptoms of bad design,
we need to analyze them.

Example

Figure 4.9 shows the CVS Module View applied to the Mozilla sys-
tem. Since a complete analysis would take time and it is already present
in Chapter 6 (see Section 6.2.1), we outline only few observations. Looking
at the picture we identify four principal modules, marked as 1,2,3 and 4.
The modules 7,8,9 and 10 are medium from both the number of products
and number of bugs points of view. There are also two small modules (5,6)
affecting by a relatively high number of bugs. We consider the rest of the
entities marginal because they are small and light.

Customization

None.

Variations

Instead of using as size the number of products, we can use the number of
revisions. In this way, the more work was spent on a module, the bigger the
corresponding figure is. This altered view, called CVS Revisions Module
View, should be used together with the default one in order to either confirm
or invalidate the conclusions drawn.

4.5. Understanding the design and the overall structure of the system 47

4.5.2 The Discrete Time Combo Module View

Name Discrete Time Combo Module View

Layout Checkerboard
Scope Entire System
Nodes Entity Module

Figure Discrete Time Figure
Edges -
Metrics Size{Width ; Height} {- ; -}

Position{x ; y} {- ; -}
Color -

Sorting Quantity of red
Appearance See Figure 4.10

Main Idea

This view gives a first impression of the modules liveness. We can see
when modules were born and, in some cases, when they died. We can also
understand which parts of the system changed more frequently.

Figure 4.10: The Discrete Time Combo Module View applied to
Mozilla.

48 Chapter 4. Software Archaeology in the Large

Notes

The Discrete Time Combo Module View shows for all the modules
how their production of revisions and bugs are distributed over their life
time. The figures semantic is explained in Section 4.3.1. The thresholds
used to render the view are the same for all the figures and, if automatically
computed, they are based on the entire revisions and bugs sets (concerning
all the modules).

Key Points

• The figures which contain a lot of red rectangles represent the modules
which play a key role in the system. We call them Hot Modules. Since
the system development was concentrated on these modules, a fine-
grained analysis should start from them.

• The figures which contain only red rectangles at the end represent the
modules which are more likely to change in the future, as assumed in
[GDL04]5. We call them LTC Modules (Likely To Change).

• The figures which contain black rectangles represent dead modules.
From the first black rectangle position we can figure out the death date.
It would be interesting to perform a further analysis to understand the
causes of death (for example the module responsibilities were moved
to another module).

• Similar color patterns appearing on different figures could implicate a
logical coupling [GHJ98] among the modules. We need to confirm or
invalidate this hypothesis, performing a following inspection.

Example

Figure 4.10 shows the Discrete Time Combo Module View applied
to the Mozilla system6. Looking at the view, we notice the following system
properties:

5 The assumption is that products which have changed most recently also suffer im-
portant changes in the near future.

6To have a numerical idea of the figures meaning, we report both the threshold values
(automatically computed) and the time interval:

- Revision Thresholds = {100, 200, 300, 400, 500, 600, 700}.

- Bug Thresholds = {37, 74, 111, 148, 185}.

- Time Interval = 60 days.

4.5. Understanding the design and the overall structure of the system 49

• There are three hot modules (1,2,3) on which the productions of both
revisions and bugs were concentrated during the entire system life
time.

• There are five figures (4,5,6,7,8) having an intense middle phase and
a decreasing ending phase. They represent important modules which
tend to be relatively stable (with respect to the first three modules)
in the last year of the system life.

• There is a figure (9) for which the ratio red bug rectangles
red revision rectangles is maximum.

It represents a module that is likely to include one, or more, critical
products.

• There are five dead modules (10,11,12,13,14). It is interesting to notice
that three of them (10,11,13) died at the same moment t1. This fact
suggests that there was a big change in the system, since even three
modules were involved. We also notice that module 15 started to exist
at t2, where t2 = t1 + 3 × time interval = t1 + 180 days. It could be
possible that the responsibilities of 10,11 and 13, or part of them, were
moved to the “new” module 15.

• There are stable phases only and there is no LTC Modules. The reason
is related to the values of the thresholds. They are set according to
the system granularity, and while such values are suitable to compare
different modules, they are inadequate to find something inside a mod-
ule. The best way to highlight phases and LTC Modules is to create
ad-hoc views, composed of one module, or one class of modules7, only.

• There are one weak (involving only revisions) and two strong (involving
both revisions and bugs) color patterns (C,A,B). Once a color pattern
is detected, before going any further with the internal analysis of the
modules, it would be better to confirm the presence of the pattern
using an ad-hoc view (as in the previous point).

Customization

See the Discrete Time Combo Figure customization in Section 4.3.1.

Variations

We could be interested in the production of revisions or bugs only. In this
case, we make use of the simple Discrete Time Figure, instead of the combo
one, applied to nor or nob metrics. These views are called Discrete Time
Module View and Discrete Time Bug Module View respectively.

7A set of modules is considered a class if their nor and nob values are comparable.

50 Chapter 4. Software Archaeology in the Large

4.5.3 The Module Bugs Correlation View

Name Module Bugs Correlation View

Layout Circle
Scope Entire System
Nodes Entity Module

Figure Module Figure
Edges Module to Module
Metrics Module Node

Size{Width ; Height} {- ; -}
Position{x ; y} {- ; -}
Color Number of Revisions
Module to Module Edge
Width Number of Shared Bugs
Color Number of Shared Bugs

Sorting -
Appearance See Figure 4.11

Main Idea

The purpose of this view is to detect dependencies between different
modules. A bug denotes a problem in the software. If it is shared by two
different entities (modules in this case), then they are somehow correlated.
The higher the number of shared bugs is, the stronger the correlation be-
tween entities is.

Notes

The Module Bugs Correlation View allows to easily uncover the
module dependencies by displaying edges with thickness and color propor-
tional to the number of shared bugs. The more the edge is dark and thick,
the stronger the relation between the involved modules is.

The number of revisions metric, applied to the color of the module fig-
ures, is helpful to figure out whether the relation holds between similar
entities (from the development effort point of view) or not.

Key Points

• Dark and thick edges represent strong relations. Since coupling be-
tween entities could be a symptom of bad design, we are interesting in
inspecting the modules linked to the edges.

• Relatively dark and thick edges which link figures having different
colors, represent relations linking different modules (from the number

4.5. Understanding the design and the overall structure of the system 51

Figure 4.11: The Module Bugs Correlation View applied to the
Mozilla system. As metrics we use the number of revisions for the figure
color and the number of shared bugs for both the edge color and width.

of revisions point of view). We need to further analyze the modules
together, in order to understand their role.

Example

In Figure 4.11 the view applied to the Mozilla system is shown. To make
the view easy to read, only the edges with a number of shared bugs greater
than 150 are displayed.
Before going any further, it is important to stress that the example should
be carefully interpreted. In fact, there are modules for which the intersection
is not empty. This implies the possible presence of “false” correlations, in
which the bugs are not really shared. These bugs affect the same files that
belong to different modules.

Looking at the view we find four principal relationships. However, all of
them could be false correlations, since all the pairs of modules involved have
an not empty intersection. To validate this hypothesis, we have to remove
the directories in common (from one module only), and then recompute the
number of shared bugs.
As a result, we find that all the correlations are reduced in strength8.
Furthermore, the dependency marked as 1, that is at first impression the
strongest, is a false correlation.

8The numbers of shared bugs decrease as follows: from 2526 to 642 for correlations 2
and 3; from 2250 to 117 for correlation 4; from 6157 to 0 for correlation 1.

52 Chapter 4. Software Archaeology in the Large

Customization

None.

Variations

The number of bugs can be used for the module color metric, instead
of the number of revisions. The modified version of the view is useful to
study the relation between absolute number of bugs and shared bugs. Are
the critical modules those which share the most bugs? Given two modules
a and b, where a is critical and b is not, does a strong bugs sharing relation
imply that b is also critical?

Another variation consists in altering the view scope: From the system to
the module context. Nothing changes but the module figures are substituted
by directory figures. This variation of the view is presented in the following
Chapter (Section 5.2.4).

4.5. Understanding the design and the overall structure of the system 53

4.5.4 The Product TimeLine View

The detail concerning the Product TimeLine View are described in the
following Chapter (see Section 5.3.2), because it is a fine-grained view. How-
ever, since it scales-up well, this view is also helpful in a coarse-grained con-
text. In Figure 4.12 we can see the view applied to entire Mozilla system9.
In order to have a suitable format, able to fit in the page, the view is split
in chunks. Then, these chunks are placed side by side, with blue lines in
the middle. Inside each chunk all the products are displayed in the very
left, with a vertically alignment. Then, for each product all its revisions are
shown horizontally aligned in a time based scale. The time value is taken
according to the revision check-in time stamp. In other words, the distance
between two revisions is related to the time between the first and the second
check-ins.

Figure 4.12 shows that, at the system scope, the Product TimeLine
View appears as a nebula of points. From the “density patterns” present
inside it, we can deduce important information about the structure of the
system. For example, a vertical line denotes a big commit, involving all the
products aligned with the line. In general, we can assume that products be-
longing to the same density pattern are somehow correlated. Some examples
taken from Figure 4.12 are:

1. Few commits performed at the same time. This is the situation in
which we assume the strongest correlation. If the products involved
belong to different modules, then there could be a logical coupling
between the modules.

2. A lot of commits having similar time distribution. Such a large amount
of check-ins implies that the products involved are important for the
system.

3. Commits concentrated in the first half of the system time life.

4. Commits concentrated in the middle of the system time life.

5. Commits concentrated in the second half of the system time life.

Any time a density pattern is found, we can generate another view using
the products belonging to the pattern only.

9Where “entire” means all the .cpp files.

54 Chapter 4. Software Archaeology in the Large

Figure 4.12: The Product TimeLine View applied to the entire Mozilla
system.

4.6. Related work 55

4.6 Related work

In [HP96] Holt and Pak use a tool, called GASE, to explore software evo-
lution. Their approach uses colors to contrast new, common and deleted
parts of a software system. With this scheme, the developer can easily see
structural change that might otherwise be difficult to discern.

Fischer et al. [FPG03a] combine release history data with information
from problem reports to detect otherwise hidden relationships between fea-
tures. They suggest first to instrument and track features, secondly to estab-
lish the relationships of modification and problem reports to these features,
and thirdly to visualize the tracked features for illustrating their non ap-
parent dependencies. Such visualization of interwoven features can indicate
locations of design erosion in the architectural evolution of a software sys-
tem.

Ball and Eick [BE96] concentrated on visualization of different aspects
related to code-level such as code version history, difference between re-
leases, static properties of code, code profiling and execution hot spots, and
program slices. The basic concepts used in the visualization of the above
aspects are colors and pixel representations of source code lines.

In [JGR99] Gall et al. presented an approach to use color and 3D to visu-
alize the evolution history of large software systems. Colors were primarily
used to highlight main events of the system evolution and reveal unstable
areas of the system. In the interactive 3D presentation it is possible to
navigate through the structure of the system at a coarse level and inspect
several releases of the software system.

4.7 Conclusion

Understanding the evolution and the structure of large software systems is a
complex task. The amount of information describing the history of a system
is usually huge, and their interpretation is far from being immediate. There
are many different aspects that have to be taken into account to evaluate
the software quality and to deduce how the system could evolve from now
on.

4.7.1 Summary

In this Chapter we have presented two clusters of polymetric views. They ad-
dress the problem of the system understanding from both the structural and
the evolutionary points of view. Each view has the capability to highlight
one (or even more) particularity of the software system under inspection.
From their combination we are able to get an insight into the system.

For each view, we have explained how it should be used. We have also

56 Chapter 4. Software Archaeology in the Large

suggested possible inner pattern interpretations. Furthermore, real exam-
ples, showing how the polymetric views act in practice, have been provided.

4.7.2 Benefits

The main benefits of our approach are the following:

• Reduction of complexity. It is possible to understand the structure
of huge and complex software projects without having to read source
code at all.

• Scalability. Each polymetric view is able to give a great amount of
information in a condensed way. Moreover all the proposed views
scale up to large software systems, e.g., more than 2 Mloc.

• Applicability. Our approach is language independent. It is not only
applicable to any programming language, but also to most of the soft-
ware paradigms.

• Use of bugs as cross entities. Analyzing how bugs are shared by dif-
ferent modules makes it possible to uncover otherwise hidden depen-
dencies. This allows to gain a good knowledge of the modules rela-
tionships.

• Customizability. The polymetric views are highly customizable by
changing the metrics, the layouts, the figures and the figure parame-
ters. These changes are important, because every software system has
its particularities to which the view must be adapted to.

4.7.3 Limits

Our approach is limited in the following way:

• Computation time. The huge quantity of information considered makes
the computation of some views (Discrete Time Combo Module
View, Module Bugs Correlation View and Product Time-
Line View) very long. As an example, the time required to render
the Product TimeLine View shown in Figure 4.12 was about 50
hours10.

10 On a Pentium4 machine with 1GB of RAM using Suse9.1[Sus] as operating system.

Chapter 5

Software Archaeology in the
Small

In Chapter 4 we have seen how to detect the principal modules of a subject
system. We have presented a set of views that give a first insight of the
system, helping to classify its modules. The following step in the evolution
analysis is played by the fine-grained study. Its main goal is to understand
the internal structure of the modules, going from the directory to the single
revision point of view. The fine-grained analysis is designed to figure out
how the responsibilities are allocated in a single module and among different
modules. This knowledge not only could be helpful for a reengineering
process, but could also act as the process starting point.

While for the coarse-grained views the scope was fixed at the system
level, now it can vary from the module to the single revision point of view.

5.1 Introduction

Before going into detail with the fine-grained approach, we explain the rela-
tion between the two methods. As a first thought, one could believe that the
two analysis are self-contained processes, with the only restriction of per-
forming the fine-grained after the coarse-grained analysis. Once the latter is
achieved, the former should start, on the basis of the knowledge acquired (as
depicted in Figure 5.1(a)). From this point of view, the information gained
with the fine-grained phase completes that taken from the previous analy-
sis, where the two knowledge sets have an empty intersection. The entire
analysis finishes together with the fine-grained phase, making it possible to
start a reengineering process.

This analysis model is not correct: The fine and the coarse-grained
phases are strongly coupled. It is impossible to perform them as indepen-
dent processes. On the contrary, they give feedback to each other, allowing
a deep understanding of the system.

57

58 Chapter 5. Software Archaeology in the Small

(a) Cascade model. (b) Spiral model.

Figure 5.1: Evolution analysis schemes.

A possible interaction between the two stages is shown in Figure 5.1(b).
As we see, an hypothesis is formulated in the coarse-grained phase and it is
either confirmed or invalidated using the fine-grained information. Another
possibility is to perform the coarse-grained stage in order to focus the fine-
grained one to a particular entity or a particular relation between entities.
The overall model can be represented with a spiral in which the two stages
alternate each other, increasing our knowledge of the system.

5.2 Analyzing the system at the directory granu-
larity

The first phase of the evolution analysis is focused on the directories. We
want to figure out which are the directories containing a large amount of
products and which relations hold among them. We also want to understand
how the responsibilities and the bugs are distributed among the directories.

The cluster of views designed for studying a subject system at the direc-
tory granularity is composed of:

1. Critical Directory Tree View (see Section 5.2.1).

2. Discrete Time Directory Tree View (see Section 5.2.2).

3. Fractal Directory Tree View (see Section 5.2.3).

4. Directory Bugs Correlation View (see Section 5.2.4).

5. Directory Black Holes View (see Section 5.2.5).

5.2. Analyzing the system at the directory granularity 59

5.2.1 The Critical Directory Tree View

Name Critical Directory Tree View

Layout Tree
Scope Module or Hierarchy
Nodes Entity Directory

Figure Directory Figure
Edges Directory to Subdirectories
Metrics Size{Width ; Height} {- ; nop}

Position{x ; y} {- ; -}
Color nob

Sorting Horizontal alphabetical order for hierarchies
Appearance See Figure 5.2

Main Idea

This view gives a first insight of a subject module in terms of directories.

Figure 5.2: The Critical Directory Tree View applied to the SeaMon-
keyLayout module of Mozilla. As metrics we use the number of products
for the figure height and the number of bugs for the figure color.

Notes

The Critical Directory Tree View displays the hierarchies of di-
rectories composing a module. It helps us to understand the inner structure
of a module and to find the so called critical directories. The critical di-
rectories are characterized by containing a great percentage of the module
products and bugs. They are likely to hold also a considerable amount of
the module responsibilities.

With respect to Figure 5.2, the figures having the lines colored in red
represent container directories, which are directories including subdirecto-
ries only (no products). Since they have a structural function only, without
any responsibilities, we choose to distinguish them from the other directories.

60 Chapter 5. Software Archaeology in the Small

Key Points

• The tall and dark figures represent the critical directories, which con-
tain a lot of products and bugs. We need to further inspect them at
the product granularity to figure out the distribution of both bugs and
revisions among products. Moreover this type of directories are likely
to contain God products1.

• The figures having red lines represent the container directories.

• Short and dark figures are small directories affected by a large amount
of bugs. Some possible reasons of such a pattern are:

1. There are few products but they have a large number of revi-
sions. This implies that these products changed a lot during the
directory life time. Is it because they was badly designed? Is it
due to the key role they play? We need to analyze the internal
structure of the directory to answer these questions.

2. There are few products having few revisions too. The large
amount of bugs could be due to bad design or bad implemen-
tation.

3. All the bugs, or most of them, affect a single product, which is
likely to be a God product.

The number of revisions metric plays a key role with these entities.
Before proceeding with the internal analysis, it would be better to
compare the view with the Critical Directory Revision Tree
View variation (explained in the variations Section).

Example

Figure 5.2 shows the view applied to the SeaMonkeyLayout module of
Mozilla. The key hierarchy is the Layout one, since it contains the following
critical directories:

• layout/html/content/src/ (marked as 1). It is the biggest in the
module with a nor value equal to 119 and a nob value equal to 821.

• layout/html/base/src/ (marked as 2). It is the most affected by
bugs with a nor value equal to 77 and a nob value equal to 3114.

• layout/xul/base/src/ (marked as 3). It has the second highest value
of nor equal to 92 and a nob value equal to 1280.

1 A God product is the equivalent of a God class[Rie96] in a CVS context.

5.2. Analyzing the system at the directory granularity 61

• layout/html/forms/src/ (marked as 4). It has the second highest
value of nob equal to 1320 and a nor value equal to 45.

We also observe the presence of:

• The webshell hierarchy composed of small directories only.

• The htmlparser/src/ directory (marked as 5) which is critical for
the htmlparser hierarchy.

• The dom, gfx and widget hierarchies which include average directo-
ries from both the products and bugs points of view.

These observations are confirmed by the Critical Directory Re-
vision Tree View depicted in Figure 5.3 (especially the key role of the
layout hierarchy).

Customization

None.

Variations

The number of revisions could be used for the height metric, instead of
the number of products. The best way to use this new view (called Criti-
cal Directory Revision Tree View) is in combination with the default
one. The variation is helpful to find out on which directories the majority
of the development effort was spent. However, this variation of the view has
a shortcoming: It does not scale up well, as we can see from Figure 5.3.

62 Chapter 5. Software Archaeology in the Small

Figure 5.3: The Critical Directory Revision Tree View applied to
the SeaMonkeyLayout module of Mozilla. As metrics we use the number of
revisions for the figure height and the number of bugs for the figure color.

5.2. Analyzing the system at the directory granularity 63

5.2.2 The Discrete Time Directory Tree View

Name Discrete Time Directory Tree View

Layout Tree
Scope Module or Hierarchy
Nodes Entity Directory

Figure Discrete Time Directory Fig-
ure

Edges Directory to Subdirectories
Metrics Size{Width ; Height} {- ; -}

Position{x ; y} {- ; -}
Color -

Sorting Horizontal alphabetical order for hierarchies
Appearance See Figure 5.4

Main Idea

The purpose of the Discrete Time Directory Tree View is to un-
derstand how the work is distributed not only over the different hierarchies,
but also over time. The view gives an idea of the directories liveness.

Notes

This view allows us to figure out the relationships among directories,
according to particular patterns we describe in detail in the Key Points de-
scription. The view is also helpful to understand how responsibilities move
from a directory to another one. This is possible by looking at the directo-
ries birth and death dates.

Key Points

• Figures which contain a lot of red and no black rectangles represent
directories that lived for the whole system life time. Since the pro-
duction of revisions for these directories was always high, they are
important not only for their hierarchy, but also for the entire module.

• Figures composed of blue rectangles only represent directories which
contain products that changed a little during the system life time.
These products could be related to the definition of constants.

• A set of figures like those shown in Figure 5.5(a) and 5.5(b)2 could
represent a movement of responsibilities. As we can see from the

2The examples are taken from the points marked as 1 and 2 in Figure 5.4.

64 Chapter 5. Software Archaeology in the Small

Figure 5.4: The Discrete Time Directory Tree View applied to the
SeaMonkeyLayout module of Mozilla.

examples, such a situation is characterized by a set of events which
happen together (or almost together). These events are:

1. The death of one or more directories, recognizable by the change
(Not black rectangle ⇒ Black rectangle) in the sequence of rect-
angles. The more the figure is red before its death, the more the
moving of responsibilities is likely to have happened, since the
directory was important for the hierarchy until that point.

2. The birth of one or more directories, recognizable by the change
(Transparent rectangle ⇒ Not transparent rectangle) in the se-
quence of rectangles.

3. An increasing of the nor value, recognizable by the change (Blue
rectangle ⇒ Red rectangle) in the sequence of rectangles.

Let d1 be the directory involved in the death event and d2, d3 the
directories involved in the birth and nor growth events respectively.
d1 is the starting point entity, while d2 and d3 are the possible target

5.2. Analyzing the system at the directory granularity 65

entities. From our experience, d2 and d3 are often either subdirectories
or “sibling” directories of d1, never parent directories. The reason
could be that d2 and d3 include a specialization of the contents of d1.
For example, they could represent a porting to a particular platform
or operating system, while d1 is the general version. From an overall
point of view, the moving of responsibilities towards subdirectories
suggests that the Mozilla system becomes more and more complex
and distributed over different directories.

(a) The dom hier-
archy of Mozilla.

(b) The widget hierarchy of
Mozilla.

Figure 5.5: Two examples of movement of responsibilities.

Example

Figure 5.4 is an example of the view applied to the SeaMonkeyLayout
module of Mozilla. We already notice the presence of two movements of
responsibilities in the Key Points discussion.

We observe that all the directories at level one have existed since the
beginning of the system. As we can see from Table 5.1, the more the level
increases, the more the percentage of directories which was introduced late
grows (with respect to the total number of directories belonging to that
particular level). This fact confirms the hypothesis drawn above: During its
life time the Mozilla system became more and more complex and distributed
over different directories.

The second consideration concerns the Layout hierarchy. The high per-
centage of Hot directories (this name derives from the Hot Module name

66 Chapter 5. Software Archaeology in the Small

Level Late birth Total Percentage of late birth
0 Only containers
1 0 11 0%
2 39 70 55%
3 30 39 76%
4 17 18 94%
5 2 2 100%

Table 5.1: SeaMonkeyLayout module late birth directories.

introduced in Section 4.3.1) it contains, with respect to the other hierar-
chies, confirms that this hierarchy is important for its parent module, as we
conclude using the Critical Directory Tree View.

Customization

The choice of the figure dimensions is fundamental using the Tree Layout.
We have two needs which are in contradiction:

• Short figures in order to fit them on the screen.

• A sufficient number of time intervals in order to have figures rich of
information.

The problem is that the more the figures are short, the lower the number
of time intervals (in which the figures are divided) are. A too small number
of time intervals implies that the granularity of the information included in
the figures is too coarse to be useful. Satisfying both the needs (for views
containing a considerable amount of directories) will result in figures for
which the line colors only are visible, while the internal colors are not. How-
ever, we are going to see that this is not necessarily a shortcoming. Figure
5.6 is an example of such a situation. We see that the phases only are visi-
ble, because they are represented by the line colors. Semantically, it is like
rising the level of abstraction, since now we reason in terms of phases. With
this kind of reasoning there is a loss of information because phases contain
differential data. They tell us about the differences among the values of
nor (or nob) in different time periods, whereas nothing is said about their
absolute values. For example, a stable phase (green) could be related to
both high and low values of nor (or nob). In the same way, a peak phase
(yellow) could mean either a high value of nor between low values or vice
versa.

5.2. Analyzing the system at the directory granularity 67

Figure 5.6: The scalability of the Discrete Time Directory Tree View.
The view is applied to the RaptorDist module of Mozilla.

Variations

Both the Discrete Time Bug Figure and the Discrete Time Combo Figure
can be used instead of the Discrete Time Revision Figure.
Using the Combo Figure the view is difficult to understand. The Bug and
the Revision figures are side by side and it is hard to distinguish them,
especially with large scale views.

68 Chapter 5. Software Archaeology in the Small

5.2.3 The Fractal Directory Tree View

Name Fractal Directory Tree View

Layout Tree
Scope Module or Hierarchy
Nodes Entity Directory

Figure Fractal Fixed Width Figure
Edges Directory to Subdirectories
Metrics Size{Width ; Height} {- ; Number of Bugs}

Position{x ; y} {- ; -}
Color -

Sorting Horizontal alphabetical order for hierarchies
Appearance See Figure 5.7

Main Idea

The purpose of the Fractal Directory Tree View is to understand
how the work spent on the directories composing a subject module was dis-
tributed among different authors.

Figure 5.7: The Fractal Directory Tree View applied to the Calen-
darClient module of Mozilla. As metric we use the number of bugs for the
figure height.

Notes

A directory can be mainly developed by few authors (few developers pat-
terns), or the work can be equally divided over a large number of developers
(a lot of developers patterns)3. This view helps us to figure out the hier-
archies development types by looking at the directories belonging to them.
We distinguish the following hierarchies:

• Many developers. It is composed of mainly one developer and a lot of
developers directories.

3The relation between development types and figure appearances is explained in Section
4.3.2.

5.2. Analyzing the system at the directory granularity 69

• Few developers. It is composed of one developer and few developers
directories.

• Mixed. It contains all the directory types.

Using this view, we have also the opportunity to analyze the relation
between different directories on the basis of the similarity between the figures
representing them. In fact, similar development models, that is similar
figures, could be related to a logical coupling. The more the figures are
similar, the higher the probability of the coupling is.

In the end we can study how the number of bugs is related to the devel-
opment model.

Key Points

• The more the Fractal Value of a directory tends to 1, the more this
directory is likely to be affected by a large number of bugs4.

• Tall figures having few predominant colors represent mainly one de-
veloper directories affected by a great amount of bugs.

• Figures with similar patterns could be logically coupled. We need to
further inspect them.

Example

Looking at Figure 5.7 we distinguish the following hierarchies develop-
ment models: gconfig, modules/calendar and xpfc are few developers
while gfx, htmlparser and widget are Mixed. In the htmlparser hier-
archy we notice the presence of a mainly one developer directory (marked
as 1 in Figure 5.7) which is affected by a large number of bugs. We should
further inspect it.

Before concluding we focus our attention on the widget hierarchy, shown
in Figure 5.8. All the third and fourth levels directories have a small amount
of bugs, while they are different from the development type point of view.
Concerning the second level directories they are heterogeneous from both
the development model and the number of bugs points of view. The di-
rectory marked as 1 has a high value of nob and a mainly one developer
pattern. We should analyze it at the product granularity.

4 This observation is based on the data retrieved from the Mozilla system.

70 Chapter 5. Software Archaeology in the Small

Figure 5.8: The Fractal Directory Tree View applied to the widget
hierarchy of Mozilla.

Customization

None.

Variations

Both the number of products and the number of revisions can be used
for the height metric, instead of the number of bugs.

Using the number of products we can detect big directories having a
mainly one developer or few developers patterns, in which few authors are
responsible for a lot of products. This distribution of the work can be due
to:

• The products composing the directory have a small number of revi-
sions, perhaps checked-in at the same time by the same author (an
example is shown in Figure 5.13(b)).

• The directory contains a localized and specific knowledge owned by
one or few authors only.

Using the number of revisions we can detect directories characterized by
having a large amount of revisions and a mainly one developer pattern. We
need to inspect their internal structure in order to discover how the work
is distributed among the products. The central role of an author could be
either “on average”, that is generated by the majority of the products, or

5.2. Analyzing the system at the directory granularity 71

due to few predominant products (see Section 5.3.3). Such products are
likely to be God products.

There is a last variation of the Fractal Directory Tree View, which
consists in using the normal Fractal Figure instead of the Fractal Fixed
Width Figure. The benefit of the variation is the possibility of using both
the height and the width for mapping metrics. On the other hand, using
these figures the view is less scalable than the Fractal Directory Tree
View and hard to interpret.

72 Chapter 5. Software Archaeology in the Small

5.2.4 The Directory Bugs Correlation View

Name Directory Bugs Correlation View

Layout Circle
Scope Module or hierarchy
Nodes Entity Directory

Figure Directory Figure
Edges Directory to Directory
Metrics Directory Node

Size{Width ; Height} {- ; -}
Position{x ; y} {- ; -}
Color Number of Revisions
Directory To Directory Edge
Width Number of Shared Bugs
Color Number of Shared Bugs

Sorting -
Appearance See Figure 5.9

Main Idea

The purpose of the Directory Bugs Correlation View is to detect
dependencies between different directories composing a subject module.

Figure 5.9: The Directory Bugs Correlation View applied to the
SeaMonkeyLayout module of Mozilla. As metrics we use the number of
revisions for the figure color and the number of shared bugs for both the
edge color and width.

5.2. Analyzing the system at the directory granularity 73

Notes

This view is a variation of the Module Bugs Correlation View. As
a consequence it is just described in the previous Chapter (see Section 4.5.3).
All we want to add is that, since the intersection between different directories
is always empty, the so called “false correlations” do not exist. Thus, we
don’t need to perform the validation phase, which is instead required with
the Module Bugs Correlation View.

A similar view exists also at the product granularity, which is called
Product Bugs Correlation View. The scope, in this case, can vary
from a hierarchy to a single directory. The false correlations still do not
exist. Examples of the Directory Bugs Correlation View and Prod-
uct Bugs Correlation View are reported in the following Chapter (see
Section 6.2.4).

74 Chapter 5. Software Archaeology in the Small

5.2.5 The Directory Black Holes View

Name Directory Black Holes View

Layout Black Holes
Scope Module
Nodes Entity Directory

Figure Directory Figure
Entity Bug
Figure Bug Figure

Edges Directory To Bug
Metrics Directory

Size{Width ; Height} {- ; -}
Position{x ; y} {- ; -}
Color -
Bug
Size{Width ; Height} {- ; -}
Position{x ; y} {- ; -}
Color -

Other map-
pings

Bug color Bug owner

Sorting Number of bugs for the directories
Appearance See Figure 5.10

Main Idea

This view gives a detailed idea of the dependencies between directories
composing a subject module. It allows also to detect the most shared bugs.

Notes

The Directory Black Holes View makes use of an ad-hoc layout
called Black Holes. A set of directories (or more generally a set of entities)
are displayed using a checkerboard layout, showing for each of them all its
bugs circularly aligned around the directory. The cross-over edges represent
shared bugs.

This view can be thought as a specialization of the Directory Bugs
Correlation View. The information encapsulated by the edges in the
latter, that is the bugs shared, is now explicitly shown. Thus, we are again
in a position to understand the directories dependencies. We can also figure
out how the correlations are structured.
The view allows us to detect, and then to analyze, bugs which are shared
by many directories. They are likely to include interesting data in the bug
comment field. A useful piece of information we can exploit concerns the

5.2. Analyzing the system at the directory granularity 75

Figure 5.10: The Directory Black Holes View applied to the Thun-
derbirdTinderbox module of Mozilla.

owners of the bugs. Looking at the bug figure colors we can distinguish the
directories according to the ratio r = number of different bugs owners

number of bugs :

• Low values of r are related to one owner or mainly one owner.

• High values of r are related to a lot of owners.

The Directory Black Holes View has a drawback: It is less scalable
than the Bugs Correlation View. When applied to big modules, it is
hard to interpret.

Key Points

• Directory figures surrounded by a large amount of bug figures represent
critical directories. Since they look like black holes, both the view and
the layout get this name.

• Directories which do not share bugs are called self-contained. They
are likely to encapsulate specific data or responsibilities, especially if
the number of different bug owners is small.

• Bugs linked with many directories represent correlations between di-
rectories. Therefore, these bugs can be helpful to understand the di-
rectory dependencies, looking at the description and bug comment
fields.

76 Chapter 5. Software Archaeology in the Small

Example

Figure 5.10 depicts an example of the Directory Black Holes View
applied to the ThunderbirdTinderbox module of Mozilla, in which we find:

• A black hole figure (marked as 1) representing a critical directory. It
is characterized by a large number of different bug owners.

• Three self-contained directories (marked as 2). Since they are affected
by only two or three bugs, we do not need to further inspect them.

• Two directories (marked as 4) having a “mainly one owner” pattern.

• Two bugs shared by four and five directories respectively (marked as 31

and 32). Reading the bug comments we discovered that the problems
are related to:

– A virtual function that should not be virtual, for the bug marked
as 31.

– A “general purpose stack” which creates a lot of confusion, for
the bug marked as 32.

Since the resolution field is fixed for both the bugs, we found also the
solutions and the patches for these problems.

Customization

None.

Variations

The bug gravity or priority can be used for the bug figure color, instead
of the owner. In this way, we are able to answer questions like: Are the
most shared bugs those with the highest priority (or gravity)?

Another variation consists in altering the view scope: From the mod-
ule to the directory context. Nothing changes but the directory figures are
substituted by product figures (the view is called Product Black Holes
View). All the observations and the key points still be valid, taking into
account that now we are arguing about products.

5.3. Analyzing the system at the product granularity 77

5.3 Analyzing the system at the product granu-
larity

The second phase of the evolution analysis is focused on the products. We
want to find out which are the biggest products with respect to either the
number of revisions or the number of lines of code or both (God Products).
We are also interested in understanding which relations hold among the
products and how the responsibilities and the bugs are distributed among
them.

The cluster of views designed for studying a subject system at the prod-
uct granularity is composed of:

1. God Product View (see Section 5.3.1).

2. Product TimeLine View (see Section 5.3.2).

3. Fractal Product View (see Section 5.3.3).

78 Chapter 5. Software Archaeology in the Small

5.3.1 The God Product View

Name God Product View

Layout Horizontal line
Scope From the directory to the entire system
Nodes Entity Product

Figure Product Figure
Edges -
Metrics Size{Width ; Height} {nor ; loc}

Position{x ; y} {- ; -}
Color Number of Bugs

Sorting Number of revisions
Appearance See Figure 5.11

Main Idea

This view gives a first insight of a high level entity (a module, a hierarchy
of directories or a directory) in terms of products. It also allows us to detect
God Product.

(a) Directory Scope (layout/html/base/src of Mozilla).

(b) Module Scope (SeaMonkeyLayout of Mozilla).

Figure 5.11: Two applications of the God Product View with different
scopes. As metrics we use the number of revisions for the width, the number
of lines of code for the height and the number of bugs for the color.

5.3. Analyzing the system at the product granularity 79

Notes

The God Product View is able to scale up to the entire system scope.
It is presented in this Section because it is usually used either in a directory
or in a hierarchy context. The view shows all the products belonging to a
particular entity enriched with the nob, nor and loc metrics. In this way,
we can detect the most critical products, which are characterized as follows:

• Huge size in terms of lines of code.

• A large amount of revisions.

• A large number of bugs.

All the properties mentioned above can be summarized by stating that
a God product tends to own too many responsibilities. For this reason the
presence of such an entity is a symptom of bad design.

Key Points

• Tall, wide and dark figures represent products which are likely to be
God products. We need to perform a code inspection to validate this
hypothesis.

• Wide and short figures represent relatively small products (in terms
of lines of code) on which a great development effort was spent. If
the figures are also dark, then the corresponding products are likely
to play a key role in the higher level entity (module or directory). It
is also possible that the products encapsulate complex data. We can
confirm these suppositions by performing a code inspection.

• Flat figures represent dead products. Since the files are not present in
the CVS checked-out system, the loc values are conventionally set to
zero (see Section 3.3).

Example

Figure 5.11 shows two examples of the God Product View applied to
the Mozilla system. Concerning Figure 5.11(a) the most interesting product
is the one marked as 1. It has the highest values of nor, loc and nob (951,
7835 and 380 respectively) and thus it is likely to be a God product. The
product marked as 2 with “just” 1186 lines of code, has 543 revisions and
176 bugs. Looking at Figure 5.11(b) we detect another God product candi-
date (marked as 1). Its nor, loc and nob are the highest in the whole set of
products (1301, 13683 and 457 respectively).

Customization and Variations
None.

80 Chapter 5. Software Archaeology in the Small

5.3.2 The Product TimeLine View

Name Product TimeLine View
Layout Time Based Evolution Matrix
Scope From the System to the single Product
Nodes Entity Product

Figure Product Figure
Entity Revision
Figure Rectangle Figure

Edges -
Metrics Product

Size{Width ; Height} {- ; -}
Position{x ; y} {- ; -}
Color -
Revision
Size{Width ; Height} {- ; -}
Position{x ; y} {Time ; - }
Color -

Other map-
pings

Revision y position Corresponding Product

Revision Color Revision Author
Sorting Vertical alphabetical order for the products
Appearance See Figure 5.13

Main Idea

This view gives a detailed idea of how the high level entity (a module, a
hierarchy of directories or a directory) was developed. To do that it exploits
the check-in information: The time stamp and the author. Performing a
careful inspection of the view, we have the opportunity to gather informa-
tion concerning both the products and their dependencies.

Figure 5.12: The structure of the Product TimeLine View.

5.3. Analyzing the system at the product granularity 81

Notes

The Product TimeLine View makes use of an ad-hoc layout called
Time Based Evolution Matrix. Figure 5.12 shows a simple example of the
view, which describes the structure of the layout. All the products are
displayed to the very left using a vertical alignment. Then, for each product,
all its revisions are rendered according to the following rules:

1. The vertical position is equal to the corresponding product vertical po-
sition. Thus, all the revisions belonging to a product are horizontally
aligned among themselves and with the product.

2. The horizontal position is computed using the following formula:

xi = xmin + sf ×
(
nod(ri)−Minr∈R(nod(r))

)
(5.1)

where sf is a scale factor, R is the set composed of all the revisions
in the view and nod(r) is the difference between the time stamp of
r and January 1, 1901, expressed in number of days (for the first
checked-in revision xi = xmin). What equation 5.1 states is that, given
two revisions referring to the same product, the horizontal distance
between them is proportional to the time elapsed between the first
and the second commits.

3. The color is related to the author whom performed the check-in. Equal
colors correspond to the same author.

4. Cross-shaped figures with red boundaries represent the last revisions of
dead products. Coloring the boundaries differently from all the other
figures (for which the boundaries are black) makes the dead products
visible even in large scale views.

Key Points

• Given a product, the first rectangle figure (from left to right) horizon-
tally aligned with it represents the first revision of this product. The
figure’s horizontal position corresponds to the product birth date. We
call such figures “product first revision figures”.

• Vertically aligned figures having the same color represent a single
check-in. Products sharing one or more check-ins are likely to be cor-
related. The higher the ratio number of check-ins in common

total number of revisions is, the stronger
the correlation is.

• Horizontal lines filled with a large amount of figures represent products
which play key roles in the high level entity.

82 Chapter 5. Software Archaeology in the Small

(a) A moving of responsibilities (the lay-
out/html/content/src directory of Mozilla).

(b) A strong correlation (the
modules/calendar/sr-
c/libcal/ical directory of
Mozilla).

(c) The Directory widget/src/mac of Mozilla.

Figure 5.13: Three applications of the Product TimeLine View.

• One or more vertically aligned cross-shaped figures followed by one or
more product first revision figures could denote a movement of respon-
sibilities (as shown in Figure 5.13(a)).

We can either confirm or invalidate all these hypothesis by performing
code inspections.

5.3. Analyzing the system at the product granularity 83

Example

In Figure 5.13(c) some examples of the previously introduced Key Points
are depicted. The three red rectangles marked as 1 concern big commits
involving almost all the living products of the directory. This implies a
considerable correlation. The products marked as 2 are bound by a strong
correlation, since they share a lot of check-ins. The last observation regard-
ing the Figure 5.13(c) is about the product marked as 3. The large number
of revisions it contains and their distribution over time indicate that this
product is likely to play an important role in the directory.

Figure 5.13(a) shows an example of a moving of responsibilities (marked
as 1). The death of some products is immediately followed by the birth of
some others. Performing an inspection we discovered that the moving of re-
sponsibilities is nothing but a renaming (nsHTMLBR.cpp ⇒ nsHTML-
BRElement.cpp, nsHTMLBase.cpp ⇒ nsHTMLBaseElement.cpp,
and so on always with the “Element” suffix).

Customization

None.

Variations

The Time Based Evolution Matrix Layout can be used with bugs instead
of revisions. In this case, the horizontal position of a bug figure is computed
according to the bug report time stamp. The figure color represents the bug
Resolution (see Section 3.1.2 for detail) with the following correspondences:
Green ⇒ fixed, red ⇒ notyet, pink ⇒ wontfix, white ⇒ worksforme, black
⇒ invalid, gray ⇒ duplicate or remind.

The Product Bugs TimeLine View, as the variation is called, can be
helpful to argue about the high level entity maturity. A view having most of
the bugs concentrate to the left suggests that the entity is either stable or no
more developed (an example is depicted in Figure 5.14(a)). We expect that,
from now on, the number of bugs for this entity will not increase a lot. On
the other hand, a view having a large amount of bugs to the right denotes
an entity either under development or under testing (an example is shows
in Figure 5.14(b)). The number of bugs which will affect this entity from
now on, will probably remain high. The same holds for a view containing a
lot of bug figures, which are equally distributed over the horizontal space.

84 Chapter 5. Software Archaeology in the Small

(a) The widget/src/windows directory of Mozilla. It is a stable or no more devel-
oped entity.

(b) The gfx/src/beos directory of Mozilla. It is an under development or testing
entity.

Figure 5.14: Two examples of the Product Bugs TimeLine View varia-
tion.

5.3. Analyzing the system at the product granularity 85

5.3.3 The Fractal Product View

Name Fractal Product View

Layout Checkerboard
Scope From module to directory
Nodes Entity Product

Figure Fractal Figure
Edges -
Metrics Size{Width ; Height} {nor ; nor}

Position{x ; y} {- ; -}
Color -

Sorting Number of Revisions
Appearance See Figure 5.15

Main Idea

The Fractal Product View gives an impression on the development
model of both the high level entity and its inner products. It helps us to
understand in which way the products contribute to the high level entity
development type. Have all of them more or less the same weight? Is there
a big main product which influences the high level entity the most? The
view makes us able to answers these questions.

Notes

The main difference between the Product TimeLine View and the
current view consists in the dimensions considered. The Fractal Prod-
uct View does not make use of the time dimension; only the authors in-
formation is taken into account. On one hand this is a shortcoming, since
the view encapsulates less semantics. On the other hand, the choice of not
considering the time makes the Fractal Product View much more scal-
able than the Product TimeLine View, up to the module scope5.

Key Points

• Views which contain figures having both similar sizes and similar
patterns represent “balanced” high level entities. It means that all
the products equally contribute to the high level entity development
model.

• Figures having huge dimensions, with respect to the average figure size,
represent products which are important in the high level entity context.

5In a large scale Product TimeLine View the internal rectangle colors, that are the
authors, are not visible.

86 Chapter 5. Software Archaeology in the Small

(a) Balanced weight (the xpinstall/src di-
rectory of Mozilla).

(b) Main product (the ed-
itor/libeditor/html di-
rectory of Mozilla).

Figure 5.15: Two applications of the Fractal Product View. As metrics
we use the number of revisions for the size.

The development types of the products are reflected in the high level
entity. We need to perform a following analysis to understand whether
such products own too many responsibilities or not.

• Figures characterized by having similar patterns6 represent products
which are likely to be logically coupled. This is especially true if the
shared pattern is different from that characterizing the high level entity
(for example a couple of “a lot of developers” products into a “mainly
one developer” directory). The way to discover the reasons of the
coupling is a code inspection.

Example

Figure 5.15 shows two examples of the view. For practicality’s sake, in
the pictures the fractal figures representing the high level entities are also
depicted.

Figure 5.15(a) is an example of a balanced directory, while a critical
product is present in Figure 5.15(b)(marked as 1). In the second example,
the figures marked as 2 are also interesting. They are in contradiction with
the directory, since they have a “mainly one developer” pattern, while the
directory is “a lot of developers” entity.

6The figure patterns represent the entity development types, as explained in Section
4.3.2.

5.3. Analyzing the system at the product granularity 87

Customization

None.

Variations

The number of bugs can be used for the size metric, instead of the num-
ber of revisions. In this way, big figures are related to critical products which
are likely to be God products.

88 Chapter 5. Software Archaeology in the Small

5.4 Related work

In [Lan01, Lan03b] Lanza depicts several releases of a software system in
a matrix view. Each class is represented by a rectangle whereas opposite
edges visualize a specific metric. Based on the evolution matrix classes are
assigned to different evolution categories such as, for example, pulsar (class
grows and shrinks repeatedly) or supernova (size of class suddenly explodes).

In [GL04] Gı̂rba and Lanza focus on the evolution of class hierarchies,
which provide a grouping of classes based on their similar semantics. Thus,
understanding a hierarchy as a whole reduces the complexity of understand-
ing big systems. The proposed approach is based on polymetric views de-
signed according to measurements which summarize the evolution of an
entity or a set of entities.

In [DLS00] Ducasse et al. provide a query tool to identify software
entities which are of interest regarding their life cycle in the context of the
overall evolution of the whole system.

5.5 Conclusion

Comprehending the internal structure of a module allows to better under-
stand both the evolution of a system [GJKT97] and its overall structure.
Furthermore, from the inspection of a module, we can not only evaluate
its design quality, but we can also find out where it shows design erosion.
Such parts of the module represent candidates for a following reengineering
process, aimed at improving the module design.

The problem is often difficult to tackle, especially when the module is
big. The large amount of available information makes it necessary to find a
way to easily represent the data.

5.5.1 Summary

In this Chapter we have described two clusters of polymetric views, address-
ing the problem of understanding the inner structure of a subject module.
They show the module characteristics at different granularity levels: The
first cluster works with directories, while the second one works with prod-
ucts. Changing the scope of the analysis allows us to gradually gain infor-
mation concerning the entities which belong to the module. First of all,
we figure out how the module is composed in terms of directory hierarchies.
Then, we discover the directory relationships and, finally, we detect the most
critical products.

For most of the views, we have presented which patterns can be found
and which are their possible meanings. We have also introduced some guide-
lines to identify both symptoms of bad design and candidates for reengineer-

5.5. Conclusion 89

ing. As in the previous Chapter, real examples showing how the polymetric
views act in practice are provided.

5.5.2 Benefits

The main benefits of our approach are the following:

• Scalability, applicability and customizability. Since they come from the
use of the polymetric views, they are described in the previous Chapter
(see Section 4.7.2).

• Different points of view. The module entity is shown from different
points of view. In this way, we can either confirm or invalidate an
hypothesis drawn with a view, using another view.

• Reengineering candidates detection. It makes our approach useful in a
reengineering context.

5.5.3 Limits

Our approach is limited in the following way:

• No source code analysis. The only available data regarding the source
code is the number of lines (loc). Information like the number of meth-
ods or attributes (in an Object Oriented context) are not provided.

• Directory. The level of abstraction between the module and the prod-
uct is the directory. The problem is that a directory represents a
container of products, without having any equivalent in most of the
programming languages (with the exception of Java). Therefore, prod-
ucts belonging to the same directory are likely to share responsibilities,
but this is not formally required.

Chapter 6

Software Archaeology: A
Top-down Methodology

In this Chapter we present a complete top-down methodology to analyze
a software system developed using CVS as version control system. The
proposed approach does not consist of a fixed list of steps that have to be
followed. On the contrary, it is composed of a set of guidelines which suggest
how the coarse-grained and fine-grained views should be combined according
to what we are looking for. There are many paths which can be followed,
and the choice depends also on the system under analysis.

To better explain our evolution technique, it is contextually presented
with a case-study. In fact, we are convinced that with principles it is easy to
make generalizations. On the other hand, it is with examples that we can
see what is going on. The example needed to guide us in the methodology
explanation must meet the following requirements:

• The software must be developed using CVS as version control system
and Bugzilla as bug tracking system.

• The CVS source must be available.

• The system must be so large that we need the help of a tool to study
it.

• The software has many years of development.

• The software has a large number of versions.

Among many candidates which meet the listed requirements we have chosen
the Mozilla system, which is just described in Chapter 3 (see Section 3.3.3).

The aim of the case-study is not performing a complete and exhaustive
analysis of Mozilla, which besides would require a lot of time. It is just an
example of how the views introduced in this thesis can interact in a real
case.

91

92 Chapter 6. Software Archaeology: A Top-down Methodology

6.1 Understanding the evolution of the system

The first part of the methodology concerns the study of the evolution of the
software. In this context, the first aspect of interest is how the system under
analysis grows and shrinks during its life time, with respect to well defined
system metrics. We inspect this point using the System Growth Views.
As a second point of view, we want to figure out how the work was dis-
tributed over time and which were the moments of maximum development
of Mozilla. We do that by analyzing the trends of both the number of revi-
sions and number of bugs over time using the System Production Trend
Views.

Before analyzing the views, we explain the choices of the metrics used.
Lehman suggests using the number of “modules” as the best way to measure
the size of a large software system [LPR+97]. On the contrary, in [GT00]
W. Godfrey and Q. Tu use the number of uncommented lines of code. We
decide to use:

• The number of revisions: Since a revision represents a new version of
a file, it can be viewed as a new file. Thus, from this point of view,
our approach meets Lehman’s suggestions.

• The number of lines of code: It gives a potentially more detailed in-
formation than the number of revisions. Studying the evolution of
Mozilla using the nor metric only would mean losing some of its his-
tory. Moreover, using the loc metric gives us the possibility to compare
our case-study with another Open Source example: The Linux Kernel
[GT00].

• The number of bugs: It represents a new dimension to inspect.

We consider the growth of the system with respect to the time dimen-
sion, rather than the version number (as suggested by Lehman et al. in
[LPR98]). The time dimension is more suitable for Open Source software
and, in fact, it is also used by W. Godfrey and Q. Tu in the Linux Kernel
evolution analysis ([GT00]). The Open Source development does not have
the industrial constraints characterizing the commercial software. As a con-
sequence, the relation between version number and time is often difficult to
understand.

6.1.1 Number of Revisions Growth

Figure 6.1 shows two superimpositions of the System Revisions Growth
View. In the black one what we call the system is the set of all the “.cpp”
products, while in the red one the system is composed of all the “.h” prod-
ucts. Both refer to the Mozilla project.

6.1. Understanding the evolution of the system 93

Figure 6.1: The System Revisions Growth View applied to Mozilla.
As metric we use the number of days for the horizontal position and the
number of revisions for the vertical position.

First of all, we observe that the evolution of Mozilla is aligned with
Lehman and Turski’s inverse square growth rate hypothesis [LPR98, Tur96],
that is: “As the system grew, the rate of growth would slow, with the system
growth approximating an inverse square curve”.
Our statistical analysis shows that the growth rate of the nor metric over
time fits well into an inverse square model. If t is the time expressed in num-
ber of days since the first version was released, then the following functions
are good models of the growth:

nor(t) = −11752 + 720 0.7
√

t Products .h (6.1)
nor(t) = 102

(
− 283.75 + 11.86 0.7

√
t
)

Products .cpp (6.2)

where t ∈ T = {0, .., tmax}.
The relative errors, given by the equation 6.3, are 0.09 for model 6.1 and
0.2 for model 6.21.

Relative error =

∑
ti∈T

∣∣∣nor(ti)− n̂or(ti)
nor(ti)

∣∣∣
|T |

(6.3)

Continuing the inspection of the view, we notice that there are four dis-

1 A better model for the .cpp products growth is given by the equation:

nor(t) = 104`
− 72.28 + 110.42

0.2
√

t− 60.16
0.4
√

t + 13.73
0.6
√

t− 1.07
0.8
√

t
´

which is anyway sub-linear. The relative error for this model is equal to 0.07

94 Chapter 6. Software Archaeology: A Top-down Methodology

continuity points2 (marked as DP) for each curve (with the same horizontal
positions) and zero dead phase. The latter is a good symptom, since it im-
plies that the system was always living. We claim that Mozilla obeys to the
Continuing Change Lehman Law [LB85], that is:
“Software systems must be continually adapted else they become progressively
less satisfactory”.
Regarding the discontinuity points, we need to perform a following inspec-
tion to understand the reasons of their presence. However, since a complete
analysis would take a lot of time and it goes further from the purposes of
the case-study, we outline only how the inspection can be done. First of
all, we have to apply the Module Revisions Growth View to all the
modules. Then, analyzing this set of views, we can figure out which mod-
ules contain the discontinuity points under inspection as well. We finally
apply the Directory Revision Growth View to all modules containing
the discontinuity points, and select the directories as we did with modules.
In this way we can locate the discontinuities. The method described in the
second part of the case-study (Section 6.2) could then be used to understand
the causes of the presence of the discontinuity points.

If we assign to the “.cpp” products the meaning of implementation and
to the “.h” products the meaning of functionality, then we can state that:

• The two curves have a similar shape, suggesting that the “.cpp” files
were always modified in the context of their “.h” counterparts. Our
conclusion is that the functionality and the implementation changed
together.

• In a first period the “.h” curve is over the “.cpp” one, while from a
certain point onwards not only they exchange each other, but also the
gap between them grows at constant rate. We conclude that at the
beginning of the system the functionality was dominant, while in the
remaining part of the system life the implementation changed faster.

6.1.2 Number of Lines of Code Growth

Figure 6.2 shows two superimpositions of the System Lines Growth
View, where the colors meaning are the same as in Figure 6.1.

Also from the loc point of view, the evolution of Mozilla follows an
inverse square model. The models of the growth are given by the following
equations:

loc(t) = 103
(
− 78.5 + 17.4

√
t
)

Products .h (6.4)

loc(t) = 104
(
− 30 + 5.8

√
t
)

Products .cpp (6.5)

2The discontinuity points are related to the following time stamp: 11/6/1999,
9/22/2001, 4/6/2002, 4/17/2004.

6.1. Understanding the evolution of the system 95

Figure 6.2: The System Lines Growth View applied to Mozilla. As
metric we use the number of days for the horizontal position and the number
of lines of code for the vertical position.

The relative errors (given by equation 6.3) are 0.08 for model 6.4 and 0.15
for model 6.5.
These results are in contradiction with the Linux Kernel case-study. In
[GT00] it is shown that the Linux Kernel growth, in terms of loc, is super-
linear.

The “.cpp” file sizes increase much faster than the “.h” ones. This con-
firms that the implementation changed faster than the functionality (see
Section 6.1.1).

Looking at Figure 6.2 we notice the existence of five discontinuity points3.
One of them only corresponds to a discontinuity point found in Figure 6.1.
The point marked as DP1 is related to an addition of 230546 lines of code,
which is the 9% of the size of the last version of the system. Using the
methodology described in the previous Section (6.1.1) we found two com-
mits having a number of lines added greater than 10000. The correspond-
ing products (which are lib/libnet/mkimap4.cpp and network/proto-
col/imap4/mkimap4.cpp) represent reengineering candidates.

We consider the flatness of the red curve to be a good sign, as it suggests
that new functionalities were not being indiscriminately added. The same
situation was found in the Linux Kernel [GT00].

The final observation, generalizable to all the “.cpp”-“.h” curves pair,
concerns the angle between them. If it is roughly constant, as it is for
Mozilla, then we postulate that the methods length is on average constant.

3 The discontinuity points are related to the following time stamp: 6/20/1998 (black
and red curves), 8/14/1999 (black curve) and 9/22/2001 (black and red curves).

96 Chapter 6. Software Archaeology: A Top-down Methodology

On the contrary, an increasing or decreasing angle corresponds to an in-
creasing or decreasing methods length respectively.

6.1.3 Number of Bugs Growth

Figure 6.3: The System Bugs Growth View applied to Mozilla. As
metric we use the number of days for the horizontal position and the number
of bugs for the vertical position.

Figure 6.3 shows two superimpositions of the System Bugs Growth
View. The models of the growth are super-linear. They are given by:

nob(t) = −0.004− 0.52t + 0.004t2 .h
nob(t) = 211− 855.2t + 1472t1.2 − 997t1.4 + 328t1.6 − 52t1.8 + 3.2t2 .cpp

The relative errors (given by the equation 6.3), are 0.1 for the first and 0.06
for the second model.

Summarizing the results obtained, the nob growth is super-linear, while
both the nor and loc growth are sub-linear. Some possible reasons for this
difference are:

• As the system increases in size and complexity, changes take longer
and are more likely to introduce bugs.

• Each bug fixed may introduce more than one bug.

We claim that the number of bugs metric is a new and attractive perspec-
tive for studying the evolution of software systems. It would be interesting
to compare this result with other case-studies.

Looking at the view, we notice an initial flat phase in both the curves.
From our point of view, the presence of this phase is due to:

6.1. Understanding the evolution of the system 97

• The first version of Bugzilla was released in August 1998. Therefore,
from April to August 1998 no bug was reported.

• At the beginning Bugzilla was not as known as it is now. It could
be possible that some developers did not know its existence and, as a
consequence, they did not report bugs using it.

6.1.4 Number of Revisions Trend

Figure 6.4: The System Production Trend View applied to the Mozilla
system. As metrics we use the number of time intervals for the horizontal
position and the number of revisions for the vertical position.

Figure 6.4 shows the view representing the production of revisions for
the Mozilla system. The nor trend has four peaks, for which the correspond-
ing time stamps coincide with the time stamps of the discontinuity points
detected in Figure 6.1.

Looking at the view, we find neither recurring patterns nor major phases.
In order to detect major phases, we need to use a longer time interval. We
consider Figures 6.5(a) and 6.5(b) which are rendered with a time intervals
56 days and 112 days long respectively.

Analyzing these new views we draw the following conclusions:

1. The production of revisions for the Mozilla system is a self-similar
process (see Section 4.4.2).

2. The Mozilla development can be divided in three major phase: First
the system continuously grew, then there was an oscillating phase and
finally the nor value tended to decrease, suggesting a stabilization
stage.

As a next step in the analysis, we want to gain a numerical idea of the
production of revisions. We do so using both phase detection (see Section
4.4.2) and statistical analysis. The results obtained by applying them are
reported in Table 6.14, split by year.

4 The year 1998-1999 corresponds to 4/9/1998-1/1/1999, while the year 2004-2005 is
related to the pair of dates 1/1/2004-11/13/2004. All the other years are considered from
1/1 to 1/1.

98 Chapter 6. Software Archaeology: A Top-down Methodology

(a) 56 days time interval. (b) 112 days time inter-
val.

Figure 6.5: Two System Production Trend Views with different time
intervals applied to Mozilla.

The data in Table 6.1, and in particular the Mean values, confirms the
existence of three major phases. The nor mean value increased from 1998
to 2000; then from 2000 to 2002 it oscillated and, finally, from 2002 to 2004
it tended to decrease. From the mean values we draw another conclusion:
The maximum development of Mozilla was from 1999 to 2002.
Looking at the variance column, we notice that the highest value corresponds
to the year 2002-2003, during which the nor trend had its highest peak.

The last observation concerns the phases. Each year the number of
unstable phases is greater (or, only in one case, equal) than the number of
both the stable and the increasing/decreasing stable ones. This means that,
given two adjacent weeks w1 and w2, in most of the cases the numbers of
commits performed during w1 and w2 are uncorrelated. From our point of
view, this is due to the Open Source development model. The large number
of developers and their geographic distribution could make the number of
commits a variable quantity. It would be interesting to compare this data
to data retrieved from another Open Source software system, in order to
either confirm or invalidate our hypothesis.

6.1. Understanding the evolution of the system 99

Phases Statistic
Year Stab. Inc/Dec Stable Unstab. Mean Variance

1998 - 1999 10 4 25 556.8 34551.2
1999 - 2000 11 8 32 1085.4 252187
2000 - 2001 7 11 33 778.9 173056
2001 - 2002 15 13 24 858.8 277713
2002 - 2003 23 6 23 622 395225
2003 - 2004 16 4 25 451.5 314314
2004 - 2005 19 10 23 363.6 75911.1

Table 6.1: Statistical information regarding the production of revisions for
Mozilla.

6.1.5 Number of Bugs Trend

Figure 6.6: The System Production Trend View applied to the Mozilla
system. As metrics we use the number of time intervals for the horizontal
position and the number of bugs for the vertical position.

Figure 6.6 depicts the view representing the production of bugs for the
Mozilla system.
This time the graph has a general trend: First the number of bugs tended
to grow, then it remained on average constant (with a lot of oscillations)
and, in the end, it decreased. As we did with the revisions graph, we build
a couple of new views with longer time intervals5. Using them, not only we
validate the existence of the major phases detected into the general trend,
but also we recognize the production of bugs as a self-similar process (see
Section 4.4.2).

Table 6.2 reports the results of both the statistical analysis and the phase
detection. Looking at the mean column, we get another confirmation of the
presence of the three major phases: from 1998 to 2000 the nob mean value
grew up to 49.1, then from 2000 to 2002 it varied (64.6 ⇒ 71.8 ⇒ 55.9) and
finally from 2002 to 2005 it decreased to 24. From the values of the variance
and from the number of unstable phases we draw the same conclusion stated

5The views, which are not shown for brevity’s sake, have time interval lengths equal
to 56 days and 112 days respectively.

100 Chapter 6. Software Archaeology: A Top-down Methodology

Phases Statistic
Year Stab. Inc/Dec Stable Unstab. Mean Variance

1998 - 1999 24 0 15 4.71 24.4
1999 - 2000 4 10 38 49.1 650.4
2000 - 2001 7 10 34 64.6 232.1
2001 - 2002 4 10 38 71.8 302.5
2002 - 2003 23 4 25 55.9 300.2
2003 - 2004 18 8 6 28.6 147.1
2004 - 2005 13 8 24 24 36.3

Table 6.2: Statistical information regarding the production of bugs for
Mozilla.

for the revisions trend: The Open Source development model makes the
numbers of bugs reported in adjacent weeks uncorrelated quantities.

Before concluding, we analyze the superimposition of Figure 6.4 and
Figure 6.6, in order to find patterns involving both the revisions and the
bugs trend (the superimposition is not depicted for brevity’s sake).
Unfortunately our analysis does not produce any results. Neither recurring
patterns nor cross-correlations6 were found.

6See Section 4.4.2.

6.2. Understanding the design and the structure of the system 101

6.2 Understanding the design and the structure of
the system

Our methodology does not consist in a set of rules defining which views to
apply and on what parts of the subject system. It outlines a possible way to
combine the views (shown in Figure 6.7), according to what we are looking
for.

Figure 6.7: Our approach to study the design and the structure of a subject
system.

The scheme depicted in Figure 6.7 should be read taking into account
that:

• There is no unique or ideal path through the views.

• Different views can be applied at the same stage depending on the
current context.

• The decision to use a certain view depends on the results obtained
with the currently displayed view.

6.2.1 Understanding the overall structure of the system in
terms of modules

The purpose of this part of the methodology is to address the first contact
problem (with respect to Figure 6.7). We want to figure out which are the
most important modules, taking into account all the available metrics. From
now on, we consider the system as the set of all the “.cpp” products.

102 Chapter 6. Software Archaeology: A Top-down Methodology

To attack a system, a good starting point is represented by the pair CVS
Module View and CVS Revision Module View, which are shown in
Figure 6.8. They give a first insight of the software, dividing the modules
according to their sizes and importance.

(a) The CVS Module View. As
metrics we use the number of prod-
ucts for the size and the number of
bugs for the color.

(b) The CVS Revision Module
View. As metrics we use the num-
ber of revisions for the size and the
number of bugs for the color.

Figure 6.8: The CVS Module View and CVS Revision Module View
applied to Mozilla.

Looking at Figure 6.8(b) we introduce the following empirical law:

Mozilla Empirical Law 1 given a module, the higher the number of revi-
sions it contains, the higher the number of bugs affecting it.

In other words, greater the work performed on a module is, greater the
production of bugs is.

The first criterion we are going to use for reasoning about modules is
the number of revisions. The aim is to identify the most important modules
in an unambiguous way. We do that by choosing a so called “threshold
module”. It represents the smallest of the big modules. Then, we just
look at its number of revisions r and select the modules having nor > r.
Using the threshold module SeaMonkeyMailNews(nor :22646,nob : 6644) we
obtain two sets:

BigRevMod = {m ∈ Modules | nor(m) ≥ nor(SeaMonkeyMailNews)}
= {CalendarClient, RaptorDist, RaptorLayout,

SeaMonkeyCore,SeaMonkeyEditor, SeaMonkeyLayout,
SeaMonkeyMailNews} (6.6)

SmallRevMod = Modules \ BigRevMod (6.7)

6.2. Understanding the design and the structure of the system 103

The distinction is meaningful because while all the elements belonging to
BigRevMod obey to Mozilla Empirical Law 1, this does not hold for the
modules composing the SmallRevMod set (as shown in Figure 6.9).

(a) The BigRevMod set. (b) The SmallRevMod set.

Figure 6.9: The nob growth with respect to nor.

As a second step in identifying the key modules, we look at the CVS
Module View depicted in Figure 6.8(a). A first observation suggested by
the view and proved by the graph depicted in Figure 6.10, is that the number
of bugs does not monotonically increase with the number of products. The
same holds even if the Module set is split in two subset using a threshold
module.

Figure 6.10: The nob growth with respect to nop.

As a consequence, we need a different method to partition the module set.
Considering the ratio nob

nop , we can figure out which are the critical modules
with respect to nop and nob criteria. These modules, which compose the

104 Chapter 6. Software Archaeology: A Top-down Methodology

BigPrdMod set, are those with the highest number of bugs per product:

BigPrdMod = {m ∈ Modules | nob(m)
nop(m)

> 10}

= {SeaMonkeyEditor (12.8), SeaMonkeyXPToolKit(10.36),
RaptorLayout(10.3), SeaMonkeyLayout(12.26),
SeaMonkeyMailNews (12.21)} (6.8)

Up to now we have built two sets (BigRevMod and BigPrdMod) repre-
senting the key modules with respect to different criteria. The intersection
of them gives the most important modules from both the points of view.

MIMod = BigRevMod ∩ BigPrdMod
= {RaptorLayout, SeaMonkeyEditor, SeaMonkeyLayout,

SeaMonkeyMailNews} (6.9)

All the results obtained are summarized in Table 6.37.

Name nop nor nob BigRev BigPrd
Mod Mod

SeaMonkeyLayout 2398 103669 29412 x x
RaptorLayout 1938 73930 19971 x x

SeaMonkeyEditor 721 31149 9235 x x
SeaMonkeyMailNews 544 22646 6644 x x

SeaMonkeyCore 3266 58134 16652 x
RaptorDist 2455 42197 10345 x

CalendarClient 1060 27584 7043 x
SeaMonkeyXPToolKit 210 6997 2175 x

Table 6.3: The Mozilla modules classification.

6.2.2 Detecting design shortcomings using entities

Since we are not interesting in performing a complete and exhaustive analysis
of Mozilla, we focus our attention on the SeaMonkeyLayout module only,
which has the highest values of both nor and nob into the MIMod set.

First of all, we are interested in understanding the internal structure of
the module and detecting the most important hierarchies. To do so, we
make use of the Critical Directory Tree View, shown in Figure 6.11.

7 The numbers of bugs in Table 6.3 are apparently in contradiction with the data shown
in Figure 6.3 (in which the total number of bugs is 15355). The reason is that in Table
6.3 we consider the number of bug references. In Figure 6.3 a bug affecting two different
products is considered as one bug, while in Table 6.3 it is considered as two bug references.

6.2. Understanding the design and the structure of the system 105

Figure 6.11: The Critical Directory Tree View applied to the Sea-
MonkeyLayout module of Mozilla. As metrics we use the number of products
for the figure height and the number of bugs for the figure color.

The module is composed of nine hierarchies, where content and layout
seem to be the most critical. Moreover, we notice the structural similarity
between the parser and the htmlparser hierarchies.
The next step in the analysis consists in inspecting the products belonging
to the critical hierarchies. We focus on the layout hierarchy using a God
Product View (depicted in Figure 6.12)

Figure 6.12: The God Product View applied to the layout hierarchy
of Mozilla. As metrics we use the number of revisions for the width, the
number of lines of code for the height and the number of bugs for the color.

Looking at the view, we find that the layout hierarchy contains huge
products affected by a large number of bugs. As a consequence, this hierar-

106 Chapter 6. Software Archaeology: A Top-down Methodology

chy is a reengineering candidate.
In particular the products marked as 1 (nsCSSFrameConstructor.cpp)
and 2 (nsPresShell.cpp) in Figure 6.12 are likely to be God products, since
they have 13683 and 7835 lines, 453 and 380 bugs respectively.
To better understand which roles these products have, we compare them
with the products belonging to their container directories. The product
nsCSSFrameConstructor.cpp, which is the most critical, is not con-
tained in the most critical directory (marked as 1 in Figure 6.11), but it
belongs to layout/html/style/src (marked as 2 in Figure 6.11). The prod-
uct nsPresShell.cpp is contained in the directory layout/html/base/src
(marked as 1 in Figure 6.11). Figure 6.13 shows the God Product Views
applied to both the directories.

(a) The layout/html/base/src
directory.

(b) The layout/html/style/src di-
rectory.

Figure 6.13: The God Product View applied to the directories lay-
out/html/base/src and layout/html/style/src. As metrics we use the
number of revisions for the width, the number of lines of code for the height
and the number of bugs for the color.

Figure 6.13(b) confirms that nsCSSFrameConstructor.cpp is a God
product. Its nob and loc metric measurements are huge with respect to those
characterizing the other products belonging to the layout/html/style/src
directory. Such hypothesis is also validated by the Product TimeLine
View, depicted in Figure 6.14. As time goes by, the products belonging to
the directory layout/html/style/src tend to die, giving their responsibil-
ities to nsCSSFrameConstructor.cpp (marked as 1).

Figure 6.14: The Product TimeLine View applied to the layout/htm-
l/style/src directory.

6.2. Understanding the design and the structure of the system 107

The directory layout/html/base/src is more balanced. There are five
products (marked as 1 in Figure 6.13(a)) which are likely to have a funda-
mental role, since their nob and loc values are large. This directory is a
candidate for the starting point of a reengineering process.

6.2.3 Detecting design shortcomings using relationships

With the previous set of views, we have seen how, starting from a module,
it is possible to detect design shortcomings. These can be found at any
granularity level: Hierarchy, directory and single product. Up to now we
have used only the information concerning the entities, without considering
their relationships.
Now we want to understand which correlations hold among the directories
belonging to the module under analysis. The Directory Bugs Corre-
lation View, depicted in Figure 6.15, shows these dependencies, from the
bugs shared point of view. In order to make the view easy to read, only the
edges having a number of shared bugs greater than 100 are displayed. The
standalone directories are also removed.

Figure 6.15: The Directory Bugs Correlation View applied to the
SeaMonkeyLayout module of Mozilla. As metrics we use the number of
revisions for the figure color and the number of shared bugs for both the
edge color and width.

The directories marked as 2 (layout/html/base/src) and 3 (content-
/base/src) are those which share bugs the most. This implies that they own
a central role in the parent module context. The directory content/base/src
represents a new reengineering candidate, while for the directory layout/htm-
l/base/src the need of a new design is confirmed (it is detected as reengi-
neering candidate in the previous Section).

108 Chapter 6. Software Archaeology: A Top-down Methodology

We focus our attention on the correlation marked as 1, which is the
strongest in the view. This dependency holds between the directories parser-
/htmlparser/src/ and htmlparser/src/. For the hierarchies htmlparser
and parser we have just noticed a structural similarity in the Critical
Directory Tree View (Figure 6.11). We want to inspect whether this
similarity is also present in the temporal dimension or not. In other words,
we want to check whether the entity developments are somehow correlated
or not. We do that using the Discrete Time Combo Directory Tree
View.

Figure 6.16: The Discrete Time Combo Directory Tree View applied
to the htmlparser and parser hierarchies of Mozilla.

Figure 6.16 shows that the two hierarchies are similar from both the pro-
duction of revisions and bugs points of view. Then, since the time dimen-
sion analysis seems to be the right way, we apply to the “hot directories”8

(htmlparser/src marked as 1 and parser/htmlparser/src marked as 2)
the Product TimeLine View.

Performing a cross-inspection of Figures 6.17(a) and 6.17(b) we find
that the directories contain exactly the same products. Furthermore, up to

8 The concept of “hot directories” is explained in Section 5.2.2.

6.2. Understanding the design and the structure of the system 109

(a) The parser/htmlparser/src directory.

(b) The htmlparser/src directory.

Figure 6.17: The Product TimeLine View applied to the directories
parser/htmlparser/src and htmlparser/src.

April 18, 2004, all the commits of corresponding products were performed
simultaneously. Then, from this date onwards, the products belonging to
the parser/htmlparser/src directory tended to die.
Before drawing any conclusion, it would be better to focus on one product
only (nsParserModule.cpp shown in Figure 6.18). In this way, we are in
the position to analyze the situation at fine granularity.

Figure 6.18: The Product TimeLine Views applied to both the versions
of the nsParserModule.cpp product of Mozilla.

Up to the revision 3.338 the commits are identical from the revision
number, author and time stamp points of view. Then, for the revision 3.339
both the author and the time stamp are different.

110 Chapter 6. Software Archaeology: A Top-down Methodology

From this point onwards, the two products behave differently. In detail,
the parser/htmlparser/src/nsParserModule.cpp file takes the branch
3.338.2.1 and, in the end, die (recognizable by the presence of the cross-shape
figure). On the contrary, the htmlparser/src/nsParserModule.cpp prod-
uct follows the main trunk until the revision 3.352.

Such situation does not represent a directory renaming, from parser-
/htmlparser/src to htmlparser/src. In fact, in this case the directory
htmlparser/src should have been created after the renaming, that is after
the death of parser/htmlparser/src9. On the contrary, both the directo-
ries have existed since the beginning of the system.

We conclude that there was a duplicated part of the system, which was
finally removed. The strong correlation found in Figure 6.15 is due to a
directory duplication, that represents a bad design symptom.

6.2.4 Detecting logical couplings

Another design shortcoming is represented by logical couplings between
modules, directories or products. Before concluding the presentation of the
methodology, we would describe how our approach can uncover logical cou-
plings not only between modules, but also between directories and products
belonging to different modules. Such dependencies are much more signifi-
cant than the logical couplings between directories belonging to the same
module or products belonging to the same directory, because different parts
of the system are involved.

Figure 6.19: The Module Bugs Correlation View applied to the
Mozilla system. As metrics we use the number of revisions for the figure
color and the number of shared bugs for both the edge color and width.

9 We can recognize the birth of a product by the presence of the so called product first
revision figure (see Section 5.3.2).

6.2. Understanding the design and the structure of the system 111

The starting point of this analysis is the Module Bugs Correlation
View, which is depicted in Figure 6.19. As we have seen in Section 4.5.3, the
strongest dependency, after filtering the false correlations, is that between
the CalendarClient and SeaMonkeyLayout modules (marked as 3). Once
the logical coupling between modules is detected, we have to decrease the
analysis granularity to the directory level. We do so using a modified version
of the Directory Bugs Correlation View. It displays only the edges
linking directories belonging to different modules. The view is shown in
Figure 6.20(a).

(a) The Calendar and SeaMonkeyLayout
modules.

(b) The view/src/ and lay-
out/html/base/src directories.

Figure 6.20: The Directory Bugs Correlation View and the Prod-
uct Bugs Correlation Views. As metrics we use the number of revisions
for the figure color and the number of shared bugs for both the edge color
and width.

All the edges in Figure 6.20(a) are likely to represent design shortcom-
ings, since they involve directories belonging to different parts of the system.
These directories are reengineering candidates.
We continue the analysis focusing on a pair of directories, in order to uncover
correlations between products also. We choose the strongest dependency,
that is marked as 1 in Figure 6.20(a). It links the directories layout/htm-
l/base/src and view/src/ with a number of shared bugs equal to 123.

Figure 6.20(b) depicts the Product Bugs Correlation View ap-
plied to the directories mentioned above.
By construction, the view has the following property: Given two products
p1 and p2, if p1 and p2 belong to different directories, then they belong to
different modules too.

112 Chapter 6. Software Archaeology: A Top-down Methodology

With respect to Figure 6.20(b), the edge colored in red is the only correlation
holding between products belonging to different directories. Such products
are: layout/html/base/src/nsPresShell.cpp and view/src/nsView-
Manager.cpp. As a consequence, the logical coupling marked as 1 in Fig-
ure 6.20(a) is entirely mapped to the dependency between nsPresShell.cpp
and nsViewManager.cpp. These two products replace the directories lay-
out/html/base/src and view/src/ as reengineering candidates.

We conclude that using the Product Bugs Correlation View, we
can filter the coarse-grained information gained analyzing the Directory
Bugs Correlation View, focusing on more precise targets.

6.3. The Mozilla Project Evolution: Relations discovered 113

6.3 The Mozilla Project Evolution: Relations dis-
covered

One of the features of our tool consists in its capability to design and apply
“on-the-fly” new polymetric views.
During the analysis of Mozilla, we hypothesized that some relations between
entity metrics could hold. In this Section we empirically verify the validity
of these relations. To do so, we use a cluster of views designed ad-hoc for
either confirming or invalidating the supposed relations. All of them share
the following characteristics:

• They make use of the correlation layout, in which the two position
(vertical and horizontal) are mapped on metric measurements.

• They use neither the size nor the color for mapping metric measure-
ments.

• They use only rectangle figures.

• For all of them figures represent products.

6.3.1 Number of Bugs - Fractal Value

Figure 6.21: The Number of Bugs - Fractal Value Correlation
View. As metrics we use the number of bugs for the horizontal position
and the Fractal Value for the vertical position.

114 Chapter 6. Software Archaeology: A Top-down Methodology

With respect to Figure 6.21, the horizontal position represents the num-
ber of bugs, while the vertical position is related to the Fractal Value10.

Taking into account that, given a product:

• If it was developed by one author only then the Fractal Value is equal
to 0.

• The Fractal Value → 1 if the development was equally distributed
among a lot of authors.

We postulate the following empirical law:

Mozilla Empirical Law 2 the more the development of a product is dis-
tributed among different authors, the greater the number of bugs affecting it
is.

6.3.2 Number of Bugs - Number of fellows

Figure 6.22: The Number of Bugs - Number of Fellows Corre-
lation View. As metrics we use the number of bugs for the horizontal
position and the number of Fellows for the vertical position.

For each rectangle contained in Figure 6.22, the horizontal position is
related to the number of bugs, while the vertical position is proportional to
the number of fellows.
Given two products p1 and p2, we define that p1 is a fellow of p2 if they
belong to the same directory. Therefore, the number of fellows is equal to

10The concept of Fractal Value is presented in Section 4.3.2.

6.3. The Mozilla Project Evolution: Relations discovered 115

the directory size, in terms of number of products. Looking at Figure 6.22,
we introduce the following empirical law:

Mozilla Empirical Law 3 given a product p which belongs to a directory
d, the greater the number of products belonging to d is, the lower the number
of bugs affecting p is.

6.3.3 Number of Bugs - Average Growth rate

Figure 6.23: The Number of Bugs - Average Growth Rate Cor-
relation View. As metrics we use the number of bugs for the vertical
position and the Average Growth Rate for the horizontal position.

Concerning Figure 6.23, the vertical position represents the number of
bugs, while the horizontal position is proportional to the Average Growth
Rate.
Given a product p composed of a set of revisions R = {ri}, the Average
Growth Rate of p is defined as:

Av. Growth Rate(p) =

∑
ri∈R

Lines Add(ri)−
∑
ri∈R

Lines Rem(ri)

|R|
(6.10)

Looking at Figure 6.23, we postulate that:

Mozilla Empirical Law 4 given a product, the more its Average Growth
Rate approximates the value 10, the greater the number of bugs affecting the
product is.

116 Chapter 6. Software Archaeology: A Top-down Methodology

6.4 Related Work

Lehman et al. have built the largest and best known body of research on
the evolution of large, long-lived software systems [LB85, LPR+97, LPR98,
Tur96]. Lehman’s laws of software evolution [LPR+97], which are based on
his case-studies of several large software systems, suggest that as systems
grow in size, it becomes increasingly difficult to add new code unless explicit
steps are taken to reorganize the overall design. Turski’s statistical analysis
of these case-studies suggests that system growth (measured in terms of
numbers of source modules and number of modules changed) is usually sub-
linear, slowing down as the system gets larger and more complex [LPR98,
Tur96].

In [GT00] Godfrey and Tu examine the growth of Linux [Lin] over its
six year lifespan using several metrics. They find that, at the system level,
its growth is super-linear which is a violation of Lehman’s fifth law.

Mozilla has been already addressed by Mockus et al. in a case-study
about Open Source Software Projects [MFH02]. However, in contrast to our
work, they focus on the overall community and development process. Their
goal consists in comparing the development process of both open source
(or free) and non-free software. They are interested in understanding how
the work is distributed over the developers, while we focus on the time
dimension.

6.5 Conclusion

In the previous two Chapters we have addressed the problems of studying a
large software system “in the Large” and “in the Small”.
Now, what we need is a way to combine the two approaches in order to
perform a complete analysis of the system, from the highest to the lowest
levels of abstraction.

6.5.1 Summary

In this Chapter we have presented a complete top-down methodology which
leads the entire analysis of a subject software system. The proposed ap-
proach consists in a set of guidelines suggesting how to combine fine-grained
and coarse-grained polymetric views.

The explanation of the methodology has been done together with the
analysis of a case-study (Mozilla). In this way, we have had the possibility
to evaluate how the approach works in practice.

First of all, we have studied the evolution of Mozilla. We have compared
it with both the existing software evolution theory [Tur96, Leh96, LPR+97,
LPR98] and with another Open Source system [GT00] (the Linux Kernel).
In this context, we have introduced a new evolutionary perspective: the

6.5. Conclusion 117

number of bugs growth point of view, finding that it is super-linear for the
Mozilla system.

We have then shown how to detect hidden dependencies among modules,
directories and products. The last feature of our methodology consists in
the detection of design shortcomings and reengineering candidates.

In the end, we have postulated four empirical laws to which Mozilla
seems to obey.

Benefits

The main benefits of our approach are the following:

• Completeness. Using our methodology, we can analyze both the evo-
lution and the structure of a system. Furthermore, all the possible
granularity levels are considered in the structural inspection.

• Customizability. The proposed methodology has the capability to
adapt itself to the system under analysis. In fact, as we have seen
in Section 6.3, it can be enriched with new polymetric views designed
ad-hoc for the subject system.

• Simplicity. We have seen how simple it is to find out design shortcom-
ings in a large software system like Mozilla.

• Interactivity. We have always the opportunity to interact with the
figures composing a view. We can not only inspect and query them,
but also we can apply on the figures new polymetric views “on the
fly”.

Limits

Our approach is limited in the following way:

• Computation time. It is a limit of the coarse-grained analysis (see
Section 4.7.3).

• Choice of the view. It is not always clear which is the most effective
view to apply.

• Need of a validation phase. In most of the cases, we are not able to
draw conclusions, but we can only formulate hypothesis. We need to
perform a following validation phase (for example code reading).

Chapter 7

Conclusion

In this Chapter we summarize the contributions made in this thesis, discuss
the benefits of our approach, and point to directions for future work.

7.1 Contributions

In this thesis we have presented a new approach to study both the structure
and the evolution of large software systems. We claim that our method is
complete, in the sense that it covers all the stages required to analyze a
software project: From the initial collecting of information to the data pre-
sentation and interpretation. In detail, the proposed approach is composed
of the following phases:

1. The population of a release history database. It combines the
version information with bug tracking report data. The information is
retrieved from the data sources (CVS repository and Bugzilla), parsed
and finally stored in a database. The release history database con-
tains the history of the system and therefore it represents the starting
point for the evolution analysis. The main benefits provided are the
following:

• Scattered information, like that presents into the CVS log files,
is aggregated in a well defined structure.

• The populating process has the capability of coupling two data
sources (CVS and Bugzilla) having a weak relationship (the infor-
mal link in the CVS description field). This is important because
bug reports tell us a lot of the history of a system.

• The populating process is completely automatic.

2. The coarse-grained and the fine-grained analysis. We have
discussed four clusters of polymetric views, aimed at addressing the
problem of the system understanding from both the structural and the

119

120 Chapter 7. Conclusion

evolutionary perspectives. The presented views make us able to study
a software system at every level of abstraction. The coarse-grained
analysis is focused on the entire system, while the scope of the fine-
grained is the internal structure of a module. The two approaches
provide the following benefits:

• Reduction of complexity. We can understand the structure of huge
and complex software projects without having to read source code
at all.

• Scalability. Each polymetric view is able to give a great amount
of information in a condensed way. Moreover, all the proposed
views scale up to large software systems, e.g., more than 2 Mloc.

• Applicability. Both the approaches are language independent.
They are applicable to not only any programming language, but
also most of the software paradigms.

• Use of bugs as cross entities. Analyzing how the bugs are shared
by different modules, directories and products makes it possible
to uncover otherwise hidden dependencies.

• Customizability. The polymetric views are highly customizable
by changing the metrics, the layouts, the figures and the figure
parameters. These changes are important, because every software
system has its particularities to which the view must be adapted
to.

• Different points of view. The entities are shown from different
points of view. In this way, we can either confirm or invalidate
an hypothesis drawn with a view, using another view.

• Reengineering candidates detection. It makes our approach useful
in a reengineering context.

3. The top-down methodology. It consists in a set of guidelines sug-
gesting how to combine fine-grained and coarse-grained polymetric
views, in order to lead the entire analysis of a software system. The
proposed methodology has been explained together with the analysis
of the Mozilla case-study. The main benefits provided are the follow-
ing:

• Completeness. We can study both the evolution and the structure
of a system. Furthermore, all the possible granularity levels are
considered in the structural inspection.

• Customizability. Our methodology has the capability to adapt
itself to the system under analysis. It can be enriched with new
polymetric views designed ad-hoc for the subject system.

7.2. Future Work 121

• Simplicity. The proposed approach makes it easy to find out
design shortcomings into large software systems.

• Interactivity. We have always the opportunity to interact with
the figures composing a view. We can not only inspect and query
them, but also we can apply on them new polymetric views “on
the fly”.

7.2 Future Work

In the future we plan to investigate the following ideas:

• Generalize the Release History Database.
When we designed the Rhdb structure and construction method, we
had in mind how we intended to use it. However, we believe that such
an instrument could be useful for different evolutionary approaches.
Thus, our future work will be concentrated on yielding the Rhdb as
general as possible, minimizing the coupling with our application. This
should be done by removing the Rhdb simplification assumptions; in
detail:

– Develop an algorithm to detect merge points (like the one pro-
posed by Gall et al. in [FPG03b]).

– Develop a porting for Subversion [Sub] which is replacing CVS.

– Develop bridges for other version control systems like ClearCase
[Cle] and SourceSafe [Sou].

– Consider the entire CVS repository. Having all the revisions avail-
able at the same time, that is the entire CVS repository1, could
open new evolution perspectives. We are interested in exploring
this new direction, keeping in mind the database “size problem”.

• Computational efficiency.
We could use caching mechanism as a possible solution for decreasing
the time needed to render a view from the second time on.

• New entities and relationships.
We would introduce new entities which do not have an equivalent in
the software, such as:

– Bug clusters sharing a particular property.

– As proposed by Gall et al. [FPG03a], software features.

In order to use these entities to generate new polymetric views, it
should be possible to design and create them “on-the-fly”.

1The entire CVS repository can be downloaded with rsync.

122 Chapter 7. Conclusion

• Source code analysis.
We would improve our approach by providing a set of parsers able
to analyze source code written with the most common programming
languages. In this way, we can introduce new entities like classes,
methods, attributes and new relationships like inheritance and use (in
an Object Oriented context).

• Quantitative hypothesis reliability.
During the analysis of a view, we formulate some hypothesis. With
the introduction of a “score” we can get a quantitative idea of the
hypothesis reliability. For example, a movement of responsibilities can
be detected by the presence of different patterns into different views.
By assigning a score to each pattern, we can compute the reliability
of the hypothesis. It is given by the sum of the pattern scores.

• Automatic patterns detection.
Given a pattern, if we define its formal definition, then we can develop
an algorithm able to automatically detect it. We believe that the most
complex task of this approach will be the formal definitions of patterns.

• Perform other case-studies.
The analysis of other software systems gives us the possibility to:

– Evaluate our methodology on other systems.

– Check whether the Mozilla empirical laws still be valid for other
software systems or not.

– Taking into account that the growth of Mozilla is sub-linear, while
the growth of the Linux Kernel is super-linear [GT00], it would
be interesting to study the model of the growth of other Open
Source software systems.

7.3 Epilogue

In this thesis we have proposed an approach to tackle the problem of under-
standing the evolution of software systems, based on software metrics
and software visualization. We claim that its main benefit consists in com-
bining the formalism of the former with the simplicity and interactivity of
the latter.

The wide applicability of the approach (there are hundreds of Open
Source software projects developed using CVS as versioning system and
Bugzilla as bug tracking system) will allow us not only to study many soft-
ware systems, but also to extend, improve and specialize our technique on
the basis of the gained experience.

Appendix A

Formal Definitions of Figures

This Appendix provides some formal definitions concerning the figures in-
troduced in this thesis.

A.1 Discrete Time Figure

We present the formal definition of the Discrete Time Figure Phases intro-
duced in Section 4.3.1.

Figure A.1: A Discrete Time Figure with Phases

A.1.1 Stable Phase

Let R = {r1, r2, . . . , rn} be the set of rectangles composing a Discrete Time
Figure like one of the two shown in Figure A.1. We define S = {r1, r2, . . . , rs}
as a Stable Phase if the following holds:

|S| ≥ 6∧
(

∀i ∈ N : 1 < i ≤ |S| ⇒ (ri = next(ri−1) ∧∣∣Red(ri)− Red(ri−1)
∣∣ < dmax)

)
(A.1)

where next(ri) returns the rectangle which follows directly ri and Red(ri)
returns the R value (in the RGB notation) of the internal color of ri

1.
1The R value for pure red is 255 while it is 0 for pure blue.

123

124 Chapter A. Formal Definitions of Figures

A.1.2 Peak Phase

Given the set R as previously and the set P = {r1, r2, . . . , rp}, if the following
holds then P is defined as a Peak Phase:((

∀t ∈ N : 1 < t ≤ |P | ⇒ rt = next(rt−1)
)
∧

(
∃i ∈ N : 2 < i < p− 1 ⇒(

∀j ∈ N : 1 < j < i ⇒
∣∣Red(rj)− Red(rj−1)

∣∣ < dmax2 ∧
∀k ∈ N : i < k < p ⇒

∣∣Red(rk)− Red(rk+1)
∣∣ < dmax2 ∧

∀j, k ∈ N : 1 ≤ j < i, i < k ≤ p ⇒
∣∣Red(rk)− Red(rj)

∣∣ < dmax2 ∧

∀z ∈ N : (1 ≤ z ≤ p ∧ z 6= i) ⇒
∣∣Red(rz)− Red(ri)

∣∣ > dmin

)))
∧|P | > 5 (A.2)

A.1.3 Unstable Phase

Given the set R as usual, a set U = {r1, r2, . . . , ru} and a time interval
length equal to l, U is defined as Unstable Phase if the following holds:

|U | = k × l, k ∈ N ∧ k ≥ 4 ∧
(
∀i, j :

(
i ∈ N, j ∈ N : 1 ≤ i, j ≤ k × l ∧(

(
⌊ i

l

⌋
= 2ni + 1, ni ∈ N ∧

⌊j

l

⌋
= 2nj + 1, nj ∈ N) ∨ (

⌊ i

l

⌋
= 2ni, ni ∈ N

∧
⌊j

l

⌋
= 2nj , nj ∈ N)

)
∧ i 6= j

)
⇒ |Red(ri)− Red(rj)| < dmin2

)
∧(

∀i, j :
(
i ∈ N, j ∈ N : 1 ≤ i, j ≤ k × l ∧

(⌊ i

l

⌋
= 2ni + 1, ni ∈ N ∧⌊j

l

⌋
= 2nj , nj ∈ N

)
∧ i 6= j

)
⇒ |Red(ri)− Red(rj)| > dmax3

)
(A.3)

Analyzing the Mozilla case-study we found that the values dmax = 20%, dmax2 =
20%, dmax3 = 50%, dmin = 65%, dmin2 = 20% give the best results in high-
lighting discrete time phases.

A.2. System Production Trend Phases 125

A.2 System Production Trend Phases

We present the formal definition of the Phases detectable in a System Pro-
duction Trend View like the one depicted in Figure A.2. These Phases
are informally introduced in Section 4.4.2.

Figure A.2: The System Production Trend View applied to Mozilla.
The time period is from Jan 1, 2000 to Jan 1, 2001. The detected phases
are highlighted.

A.2.1 Stable Phase

The formal definition of Stable Phase is:

S = {s1, s2, . . . , sn} is a stable phase if
n ≥ 3 ∧ ∀i ∈ N : 1 < i ≤ n ⇒ |y(si)− y(si−1)| < dmax (A.4)

where y(si) is the Y value of the si time interval production node.

A.2.2 Increasing/Decreasing Stable

The formal definition of Increasing/Decreasing Stable Phase follows:

S = {s1, s2, . . . , sn} is an inc/dec stable phase if
n ≥ 3 ∧ ∀i ∈ N : 2 < i ≤ n ⇒

(1− α)
(
y(si−1)− y(si−2)

)
≤

(
y(si)− y(si−1)

)
≤ (1 + α)

(
y(si−1)− y(si−2)

)
∧ sign

(
y(si−1)− y(si−2)

)
= sign

(
y(si)− y(si−1)

)
(A.5)

Examining the Mozilla case-study we found that the values dmax = 25,
α = 50% give the best results in detecting the Phases.

Appendix B

BugCrawler: Implementation

In this Chapter we describe the implementation of BugCrawler, the tool we
have implemented and which made possible all the visualizations presented
in this thesis.

B.1 BugCrawler

BugCrawler is an extension of CodeCrawler, a software visualization tool
written in Smalltalk by M. Lanza [Lan03a]. BugCrawler supports software
evolution through the combination of software metrics and software visual-
ization. In Figure B.1 we can see a screen-shot of BugCrawler.

The discussion of the implementation of BugCrawler is structured ac-
cording to the following topics:

1. The Overall Structure, i.e., the way the tool is structured in terms
of subsystems (Section B.2).

2. The Rhdb Bridge, i.e., the subsystem responsible for retrieving data
from the Release History Database and mapping it in Smalltalk objects
(Section B.3).

3. The Internal Architecture of CodeCrawler, i.e., the design of
the core domain model (Section B.4).

4. The CodeCrawler Bridge, i.e., the subsystem responsible for link-
ing Release History Database objects with CodeCrawler entities (Sec-
tion B.5).

5. The Visualization Engine, i.e., the subsystem responsible for visu-
alizing polymetric views (Section B.6).

6. Interactive Facilities, i.e., the direct-manipulation possibilities that
are offered to the user (Section B.7).

127

128 Chapter B. BugCrawler: Implementation

Figure B.1: A screen-shot of BugCrawler’s main window. The visualized
view is a Fractal Directory Tree View applied to the RaptorLayout
module of Mozilla.

7. Extensions implemented, i.e., a summary of the extensions imple-
mented in BugCrawler, with respect to the original tool CodeCrawler
(Section B.8).

B.2 The Overall Structure

The general architecture of BugCrawler dictates on one hand how much and
which kind of functionality it provides, on the other hand it also defines how
it can be extended in case of changing or new requirements.

BugCrawler adopts the double-bridges architecture shown in Figure B.2,
which is composed of:

• The Rhdb Bridge. It provides flexibility by decoupling the Rhdb from
the other subsystems. In this way, only the Rhdb Bridge must be
changed when the Rhdb changes, while the remaining part of the sys-
tem is not affected by the modification.

• The BC-CC Bridge and the Code Model. They act as a bridge between
the visualization engine and the Rhdb entities. In order to keep a
certain flexibility BugCrawler uses the facade pattern [GHJV95] which

B.3. The Rhdb Bridge 129

Figure B.2: The general architecture of BugCrawler, composed of four main
subsystems: The RHDB Bridge, the BC-CC Bridge, the Internal architec-
ture and the Visualization Engine.

hides both the visualization engine and the Rhdb entities from the
core. In this way, only the facade classes (which implement the facade
pattern) must be changed when the visualization engine or the Rhdb
entities change.

B.3 The Rhdb Bridge

The Rhdb is the BugCrawler subsystem responsible for managing the con-
nection with the Release History Database. It provides to the user the op-
portunity of performing queries to the database, using the window depicted
in Figure B.3.

The queries can be composed, modified and saved in XML format. More-
over, since the execution of some queries can take a lot of time, the number
of executions and the average execution time are computed and stored for
each query. When the user performs a query, the Rhdb Bridge retrieves
the data from the database, mapping it in Smalltalk objects (Rhdb entities)
according to the class hierarchy shown in Figure B.4.

As we can see, the main Rhdb entities are designed as follows:

• Module, i.e., the highest level entity which can contain one or more
directories.

• Directory. It implements the composite pattern [GHJV95]. A direc-
tory can include subdirectories and products.

• Product. It represents a CVS product and contains at least one
revision.

130 Chapter B. BugCrawler: Implementation

Figure B.3: The BugCrawler’s RHDB Bridge interface.

• Revision and Bug, i.e., the CVS revision and the Bugzilla Bug. The
n-to-n relationship represents the fact that a revision can be affected
by many bugs, while a bug can affect many revisions.

For all the classes mentioned above, we implemented the corresponding
proxies (proxy patter [GHJV95]). In this way, the original classes represent
accurately the information stored in the database, while the proxy classes
provide complex and composite data concerning the corresponding entities.

To create Rhdb objects we use the small hierarchy having the abstract
class RhdbObjectFactory on the top. The two concrete subclasses Rhdb-
DambrosObjectFactory and RhdbGallObjectFactory make it possible to cre-
ate instances from both our Release History Database and the one developed

Figure B.4: The class diagram of the Rhdb Bridge.

B.4. The Internal Architecture of CodeCrawler 131

by Gall et al. [FPG03b]. Each subclass encapsulates the particularities of
the corresponding Database.

We designed the RhdbCache class in order to improve the performance
of the data retrieval. This class implements a cache mechanism which avoids
to retrieve data from the database if it is already present in the system.

B.4 The Internal Architecture of CodeCrawler

In this Section we describe the internal architecture of CodeCrawler, as
designed by M. Lanza [Lan03a] and slightly extended by us. The internal
architecture can be divided into four parts: (1) the core model, (2) the
polymetric views subsystem, (3) the layout engine and (4) the user interface
and service classes.

1. The Core Model. We can see a simple class diagram of Code-
Crawler’s core model in Figure B.5.

Figure B.5: The core model of CodeCrawler.

CodeCrawler uses nodes to represent entities (modules, directories,
products, etc.) and edges to represent relationships (bugs sharing,
bugs containing, etc.) between the entities. The nodes and edges are
contained within a class that represents a graph in the mathematical
sense. Both the node class (CCNode) and the edge class (CCEdge)
inherit from an abstract superclass which represents a general item
(CCItem). CCItem serves as bridge between the visualization part (it
contains an attribute named figure which points to a figure class). It
is also a bridge to a parallel plugin hierarchy (it contains an attribute
named plugin which points to a plugin class). The classes in the plugin
hierarchy provide most of the functionality of the nodes and edges.
This functionality is separated into an own hierarchy in order to obtain
more flexibility and a higher degree of extensibility.

2. The Polymetric Views. All information regarding a certain visual-
ization (what is to be visualized, how, where, which metrics, etc.) is

132 Chapter B. BugCrawler: Implementation

stored by means of a view specification class (CCViewSpec). When it
comes to display a view of a software system, a view builder (CCView-
Builder) interprets an instance of a specification class and builds the
needed visualization.

3. The Layout Engine. In CodeCrawler all layouts (at this time ca.
15) inherit from a common abstract superclass (CCAbstractLayout).
A layout class takes as input a collection of node figures and assigns a
position to each of them.

We extended the CodeCrawler layout engine by adding 6 layouts (Black
Holes, Time Based Evolution Matrix, etc.). Furthermore, we designed
a new type of layout (applicable to composite figures) which assigns
positions to composite figures according to the properties of their inner
figures.

4. The Service and UI Classes. Besides the classes mentioned above,
CodeCrawler contains many more classes which provide for various
services, for example storing constants and color mappings. Other
classes are pure user interface classes (Dialogs, Panels, etc.). Since
these classes do not have any features that are particularly important
for software visualization tools, their discussion is omitted.

We added our service classes creating them from scratch for services
concerning only BugCrawler, while we inherit from CodeCrawler in
the other cases (for example User Interface).

B.5 The CodeCrawler Bridge

The bridge linking BugCrawler and CodeCrawler is implemented by means
of the plugin hierarchy shown in Figure B.6. As we have seen in Section
B.4, this hierarchy belongs to the core model of CodeCrawler.

Figure B.6: The plugin class hierarchy. It implements the bridge between
BugCrawler and CodeCrawler.

B.6. The Visualization Engine 133

The abstract superclass CCItemPlugin defines an attribute named entity
which points to the needed class, e.g., in our case a Rhdb entity. To protect
against changes in the representation of the Rhdb entities we use facade
classes, i.e., in BugCrawler we implemented a hierarchy of plugins which
have counterparts in the Rhdb entities. To make an example, to represent a
Bug class, BugCrawler implements a CCBugNodePlugin class which inter-
faces with the Bug class. The same structure is used for all the other Rhdb
entities.

B.6 The Visualization Engine

The original tool CodeCrawler uses as visualization engine the HotDraw
framework [Bra95]. We implemented the BugCrawler visualization engine
inheriting from both BugCrawler (in most cases) and HotDraw.

B.6.1 The CodeCrawler Visualization Engine

The HotDraw framework is a lightweight 2D editor written in Smalltalk,
consisting of ca. 150 classes. It provides for basic graphical functional-
ities like zooming, scaling, elision and comes with a collection of simple
figures (rectangles, lines, ellipses, composite figures, etc.) that can be eas-
ily reused and extended through subclassing, as CodeCrawler does indeed:
The subclasses include CCDrawing, which represents the drawing surface on
which the visualization is displayed, and several figures classes (CCRectan-
gleFigure, CCLineFigure, etc.) which add functionality to the quite simple
HotDraw figure classes. However, these subclasses do not offer protection
against changes in HotDraw, since the subclasses would be affected too.
Therefore in CodeCrawler three classes (CCItemFigureModel, CCNodeFig-
ureModel and CCEdgeFigureModel), organized in a small hierarchy, serve
as facade classes for the figure classes that subclass HotDraw’s classes. This
allows us to replace on-the-fly the graphical representation, e.g., the figure
of a node or an edge. Furthermore, the facade classes implement several op-
erations that we want to effect on figures (graphical operations, geometric
transformations, etc.) and delegate them to the appropriate concrete figures
on the screen.

B.6.2 The BugCrawler Visualization Engine

We extended the CodeCrawler visualization engine by means of the strategy
pattern [GHJV95] depicted in Figure B.7. Its structure is based on the com-
bination of two hierarchies: The first, having BCCompositePolygonFigure
as superclass, is composed of classes mapping Rhdb entities.

The second hierarchy, having the abstract class BCFigureSpec on the
top, implements a family of algorithms for drawing figures. In this way, the

134 Chapter B. BugCrawler: Implementation

Figure B.7: The class hierarchy implementing the BugCrawler visualization
engine.

figure appearances can be dynamically assigned. For example, in the Dis-
crete Time Directory Tree View the class BCDirectoryFigure is as-
sociated with either a BCDiscreteTimeFigSpec or a BCFolderShapeFigSpec
class depending on the number of products the directory contains (zero or
more). In the same way, a BCRevisionFigure can have a rectangle shape
or a cross shape in the Product TimeLine View, depending on the dead
state of the revision.

The use of the strategy pattern in this context provides the following
benefits:

• Each class added to the BCCompositePolygonFigure hierarchy can
use all the drawing algorithms just implemented in the BCFigureSpec
hierarchy.

• We can implement new drawing algorithms without modifying any
class belonging to the BCCompositePolygonFigure hierarchy. The new
algorithms will be applicable to all the figures, giving a high degree of
extensibility.

• The classes belonging to the BCCompositePolygonFigure hierarchy
can define behaviors which are independent from the figure appear-
ances defined by FigureSpec classes. For example, each figure class
implements a context-based menu (described in detail in Section B.7)
which is identical for all the figure appearances, even for those which
will be added later on.

B.7. Interactive Facilities 135

The classes BCDateFigure and BCTimeAxesFigure are not associated
with any Rhdb entity or relationship, because they represent information
concerning entire views. For example, the BCTimeAxesFigure represents
the temporal dimension in the Discrete Time Combo Module and Prod-
uct TimeLine views. These classes don’t need the CCItemFigureModel
facade functionality provided by CodeCrawler, since they don’t have the
item counterparts. That is the reason why we chose to inherit them directly
from HotDraw instead of CodeCrawler.

B.7 Interactive Facilities

Once the visualization is rendered on the screen, the user not only wants
to look at it, he also wants to interact with it. According to Storey et al.
[SFM99] this helps to reduce the cognitive overhead of any visualization. In
CodeCrawler the HotDraw framework provides for direct manipulation at
a purely graphical level, i.e., the user can click, drag, double-click, delete,
zoom out/in, spawn child windows, etc. CodeCrawler uses that functionality
by providing context-based (popup) menus for each node and edge. Note
that, depending on the type of the node, different choices are offered to the
user. CodeCrawler offers also a so called macro navigation, a facility that
enables the user to go back/forth from one view to another.

We implemented the interactive facilities of BugCrawler extending both
context menus and macro navigation. For example, the BCDirectoryFigure
defines a context menu which allows the user to apply views at the product
granularity, having the selected directory as target. Figure B.8 shows the
original view (Critical Directory Tree) with the context menu in the
left window, and the chosen view (Product TimeLine) applied to the
selected directory in the right window.

B.8 BugCrawler: Extensions implemented

The main extensions implemented in BugCrawler, with respect to the orig-
inal tool CodeCrawler, can be summarized as:

• A bridge responsible for querying MySql databases and importing the
data as Smalltalk objects. The bridge provides also a cache mechanism
to improve its efficiency.

• A class hierarchy representing Rhdb entities and factory classes to
create them.

• A bridge linking Rhdb entities with CodeCrawler plugins.

• New entities, relationships, metrics and layouts.

136 Chapter B. BugCrawler: Implementation

Figure B.8: BugCrawler at work. The context menus are dynamically built
depending on the entity or relationship selected.

• New figure classes hierarchically organized and a family of algorithms
for drawing these figures.

• New context-based menus and macro navigation for Rhdb entities.

Bibliography

[Apa] Apache http server home page. http://httpd.apache.org.

[BAHS97] Thomas Ball, Jung-Min Kim Adam, A. Porter Harvey, and P. Siy.
If your version control system could talk. In ICSE Workshop on
Process Modeling and Empirical Studies of Software Engineering,
1997.

[BE96] T. Ball and S. Eick. Software visualization in the large. IEEE
Computer, pages 33–43, 1996.

[BM99] Elizabeth Burd and Malcolm Munro. An initial approach towards
measuring and characterizing software evolution. In Proceedings
of the Working Conference on Reverse Engineering, WCRE ’99,
pages 168–174, 1999.

[Bra95] John Brant. Hotdraw. Master’s thesis, University of Illinois at
Urbana-Chanpaign, 1995.

[Buga] A bug’s life cycle. http://bugzilla.remotesensing.org/bug status.html.

[Bugb] Bugzilla home page. http://www.bugzilla.org/.

[Bugc] Bugzilla installation list. http://www.bugzilla.org/installation-
list/.

[Cle] Clearcase home page. http://www-
306.ibm.com/software/awdtools/clearcase/.

[CVS] Cvs home page. http://www.cvshome.org/.

[Dav95] Alan Mark Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding
refactorings via change metrics. In Proceedings of OOPSLA ’2000
(International Conference on Object-Oriented Programming Sys-
tems, Languages and Applications), pages 166–178, 2000.

137

138 BIBLIOGRAPHY

[DLS00] Stéphane Ducasse, Michele Lanza, and Lukas Steiger. Supporting
evolution recovery: a query-based approach. In ECOOP ’2000
International Workshop of Architecture Evolution, 2000.

[Eic01] Stephen G. Eick. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software En-
gineering, 6(1):1–12, 2001.

[FPG03a] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing
and relating bug report data for feature tracking. In Proceedings
of the 10th Working Conference on Reverse Engineering (WCRE
2003), pages 90–99, November 2003.

[FPG03b] Michael Fischer, Martin Pinzger, and Harald Gall. Populating
a release history database from version control and bug tracking
systems. In Proceedings of the International Conference on Soft-
ware Maintenance (ICSM 2003), pages 23–32, September 2003.

[GDL04] Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yesterday’s
weather: Guiding early reverse engineering efforts by summa-
rizing the evolution of changes. In Proceedings of ICSM 2004
(International Conference on Software Maintenance), 2004.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of
logical coupling based on product release history. In Proceedings
of the International Conference on Software Maintenance 1998
(ICSM ’98), pages 190–198, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, Mass., 1995.

[GJK03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release
history data for detecting logical couplings. In International
Workshop on Principles of Software Evolution (IWPSE 2003),
pages 13–23, 2003.

[GJKT97] Harald Gall, Mehdi Jazayeri, René R. Klösch, and Georg Traus-
muth. Software evolution observations based on product release
history. In Proceedings of the International Conference on Soft-
ware Maintenance 1997 (ICSM ’97), pages 160–166, 1997.

[GL04] Tudor Gı̂rba and Michele Lanza. Using visualization to under-
stand the evolution of class hierarchies. In 11th IEEE Working
Conference on Reverse Engineering (WCRE 2004), 2004.

[Gno] Gnome home page. http://www.gnome.org/.

BIBLIOGRAPHY 139

[GSV02] David Grosser, Houari A. Sahraoui, and Petko Valtchev. Predict-
ing software stability using case-based reasoning. In Proceedings
of the 17th IEEE International Conference on Automated Soft-
ware Engienering (ASE ’02), pages 295–298, 2002.

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in Open Source
software: A case study. In Proceedings of the International Con-
ference on Software Maintenance (ICSM 2000), pages 131–142,
San Jose, California, 2000.

[HP96] R. C. Holt and J. Pak. GASE: Visualizing software evolution-in-
the-large. In Proceedings of WCRE ’96, pages 163–167, 1996.

[HS98] J. W. Harris and H. Stocker. Handbook of Mathematics and Com-
putational Science. Springer-Verlag, New York, 1998.

[Jaz02] Mehdi Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2002, pages 13–23.
Springer Verlag, 2002.

[JGR99] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing soft-
ware release histories: The use of color and third dimension.
In ICSM ’99 Proceedings (International Conference on Software
Maintenance), pages 99–108. IEEE Computer Society, 1999.

[KDE] Kde home page. http://www.kde.org/.

[Lan01] Michele Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proceedings of
IWPSE 2001 (International Workshop on Principles of Software
Evolution), pages 37–42, 2001.

[Lan03a] Michele Lanza. Codecrawler — lessons learned in building a soft-
ware visualization tool. In Proceedings of CSMR 2003, pages
409–418. IEEE Press, 2003.

[Lan03b] Michele Lanza. Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visualization.
PhD thesis, University of Berne, May 2003.

[LB85] Manny M. Lehman and Les Belady. Program Evolution — Pro-
cesses of Software Change. London Academic Press, 1985.

[Leh96] Manny M. Lehman. Laws of software evolution revisited. In
European Workshop on Software Process Technology, pages 108–
124, 1996.

[Lin] The linux kernel home page. http://www.kernel.org/.

140 BIBLIOGRAPHY

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics:
A Practical Guide. Prentice-Hall, 1994.

[LPR+97] M.M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, and P. D.
Wernick. Metrics and laws of software evolution - the nineties
view. In Metrics ’97, IEEE, pages 20 – 32, 1997.

[LPR98] M. M. Lehman, Dewayne E. Perry, and Juan F. Ramil. Implica-
tions of evolution metrics on software maintenance. In Proceed-
ings of the International Conference on Software Maintenance
(ICSM 1998), pages 208–217, 1998.

[MFH02] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two
case studies of open source software development: Apache
and mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[Moz] Mozilla home page. http://www.mozilla.org/.

[MyS] Mysql database. http://www.mysql.com.

[Red] Redhat home page. http://www.redhat.com/.

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison Wes-
ley, 1996.

[SDBP98] John T. Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, editors. Software Visualization — Programming as a Mul-
timedia Experience. The MIT Press, 1998.

[SFM99] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A.
Müller. Cognitive design elements to support the construction
of a mental model during software exploration. Journal of Soft-
ware Systems, 44:171–185, 1999.

[Som00] Ian Sommerville. Software Engineering. Addison Wesley, sixth
edition, 2000.

[Sou] Sourcesafe home page. http://msdn.microsoft.com/vstudio/previous/ssafe/.

[Sub] Subversion home page. http://subversion.tigris.org.

[Sus] Suse home page. http://www.novell.com/linux/suse.

[Tur96] W. M. Turski. Reference model for smooth growth of software
systems. IEEE Transactions on Software Engineering, 22(8):599–
600, 1996.

	Abstract
	Acknowledgements
	Introduction
	The Problem
	Software Evolution State of the art
	Our approach
	Thesis contributions
	Thesis outline

	Challenges in Software Evolution
	The problems
	Retrieving evolution information
	Coping with huge amounts of data

	Our solution
	Version control and bug tracking systems
	Software metrics
	Software visualization
	Polymetric View

	The Release History Database
	Data sources
	CVS Version Control System
	Bugzilla

	Database structure
	Database population process
	The log parsing
	Execution time considerations
	Examples

	Related work
	Conclusion
	Benefits
	Limits

	Software Archaeology in the Large
	Preliminaries
	Simple Figures
	Complex Figures
	Discrete Time Figure
	Fractal Figure

	Understanding the evolution of the system
	System Growth Views
	The System Production Trend View

	Understanding the design and the overall structure of the system
	The CVS Module View
	The Discrete Time Combo Module View
	The Module Bugs Correlation View
	The Product TimeLine View

	Related work
	Conclusion
	Summary
	Benefits
	Limits

	Software Archaeology in the Small
	Introduction
	Analyzing the system at the directory granularity
	The Critical Directory Tree View
	The Discrete Time Directory Tree View
	The Fractal Directory Tree View
	The Directory Bugs Correlation View
	The Directory Black Holes View

	Analyzing the system at the product granularity
	The God Product View
	The Product TimeLine View
	The Fractal Product View

	Related work
	Conclusion
	Summary
	Benefits
	Limits

	Software Archaeology: A Top-down Methodology
	Understanding the evolution of the system
	Number of Revisions Growth
	Number of Lines of Code Growth
	Number of Bugs Growth
	Number of Revisions Trend
	Number of Bugs Trend

	Understanding the design and the structure of the system
	Understanding the overall structure of the system in terms of modules
	Detecting design shortcomings using entities
	Detecting design shortcomings using relationships
	Detecting logical couplings

	The Mozilla Project Evolution: Relations discovered
	Number of Bugs - Fractal Value
	Number of Bugs - Number of fellows
	Number of Bugs - Average Growth rate

	Related Work
	Conclusion
	Summary

	Conclusion
	Contributions
	Future Work
	Epilogue

	Formal Definitions of Figures
	Discrete Time Figure
	Stable Phase
	Peak Phase
	Unstable Phase

	System Production Trend Phases
	Stable Phase
	Increasing/Decreasing Stable

	BugCrawler: Implementation
	BugCrawler
	The Overall Structure
	The Rhdb Bridge
	The Internal Architecture of CodeCrawler
	The CodeCrawler Bridge
	The Visualization Engine
	The CodeCrawler Visualization Engine
	The BugCrawler Visualization Engine

	Interactive Facilities
	BugCrawler: Extensions implemented

