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Abstract

Software systems grow in complexity as their size increases; extending or modifying a system which
is not known has an high probability of introducing bugs or drifting away from its structure, hence
the need for understanding the software system before modifying it. Reverse engineering provides
techniques for helping developers dealing with the complexity of software systems, and one of these
techniques is software visualization.

Software visualization deals with providing a visual representation of software systems. Laying
out the pieces that compose a software system is not a simple task: software entities are intangible
and there are many different relations connecting them that must be taken into account in order to
display the composition and collaboration of the system.

A common approach in visualization techniques is to display only a single relation at a time; this
results however in an incomplete picture of the system, requiring to create different views to achieve
a complete understanding of it. Displaying multiple relations at once is very important to help the
understanding of a system.

In this thesis we developed a layout algorithm that positions elements in such a way that reveals
properties of the data being displayed. Our solution is based on a force-directed algorithm, which
we adapted to place elements further or closer to each other according to the relations between them.
The result is a layout that gives importance to the position in which the elements of the visualization
are disposed, giving the chance to intuitively see related elements according to their proximity and/or
clustering, resulting in a clear representation of the system.

Our approach is used in the implementation of Hubble, a tool to create the visualization of
software systems providing users a high degree of customization upon it.
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Chapter 1

Introduction

Throughout its lifecycle, a software system is subject to a continuous process of change. This process
involves the system at various levels: its requirements, technologies, environment, architecture and
design can all be subject to change.

Modifying a software system without having a sufficient understanding of it has a high probabil-
ity of introducing defects or even disrupting the system’s design [Rig11]. Understanding a software
system means having enough knowledge of its parts, knowing what functionalities they implement,
how they interact and what their dependancies are.

Understanding software systems is a very concrete problem of software engineering, since it
sinks a significant part of the costs invested in software maintenance [Cor89], which is estimated to
require sixty to ninety percent of the total software cost [Erl00, McK84, LS81, ZSG79].

A possible approach to contain those costs is software reengineering [CCI90], which aims at
improving the design of parts of the system to make it more capable of embracing future changes
[Bec00]. This does not however remove the problem of understanding a software system, which is a
basic step towards modifying the software system, and, in spite of existing solutions, remains an
open challenge [Wet10].

This problem is addressed by software reverse engineering [CCI90], which is defined as the
process of analyzing a system to identify its components and their relations to create a representation
of the system at another level of abstraction or in another form. A subdomain of software reverse
engineering is software visualization.

1.1 Software Visualization

Software visualization has been defined by Price et al. as the use of the crafts of typography, graphic
design, animations and cinematography with modern human-computer interaction technology to
facilitate the human understanding and effective use of computer software [PSB92].

1



2 1.2 Goals

Software visualization is used by developers to assist the performing of analysis tasks [Hun96]
and creating a mental model of the system. Moreover it is used to support the understanding of the
system during its evolution: to reveal the design and the structure of the system (e.g., the code with
its execution, history, and uses) [Rei05], as well as analyzing it in order to discover its anomalies
(e.g., by showing coupling between classes). Software visualization is meant to support these tasks
in an effective way [Hun96].

In his book on visual perception, Ware affirms that humans acquire more information through
vision than through all the other senses combined [War04]. Consequently, visualizing software is an
effective approach to support its understanding, which can be enhanced by studying how our brain
processes visual input and applying this knowledge to the visual representation of the system which
we are generating.

Gestalt principles describe how our perceptual system organizes disjoint elements into mental
structures and groups [KN02]. The Gestalt principle we exploit the most in our approach are proxim-
ity, which states that close elements are perceived as grouped, and similarity, stating that similar
elements are perceived as related; those two principles can be easily exploited when computing the
layout of the elements of a system.

Wettel describes the intangibility of software, which has no physical shape or size [BE96] as
one of the major challenges to program comprehension[Wet10]. Although this is true, the fact that
software does not have an intrinsic shape can be seen as an advantage as well: it allows us to assign
it a shape, and to choose this shape in such a way that it helps the comprehension of the software
visualization, for example using it to suggest grouping of elements if they share the same shape.

1.2 Goals

Our goal is to develop a layout algorithm to visualize a software system: the algorithm must take
into account multiple relations connecting the parts that compose the software system and present a
representation of it showing the relations between its components.

We also listed some goals that our proposed solution has to achieve in order to allow developers
to use it in an efficient way; these goals regard both implementation and visualization aspects.

• Peripheral classes are disconnected: the least connected classes must be placed in the
outermost part of the visualization because they are not so relevant to the system.

• Most connected classes are in the center: the most connected classes should be the most
important ones, hence should be placed in the center of the visualization.

• Consistent layout (structural position has a semantic): users should be able to predict
how nodes will end up being before running the algorithm. In addition to that applying the
algorithm to a set of elements with same positions and edges must result in the same graph.

• Speed: the algorithm must complete in a reasonable amount of time.



3 1.3 Approach

• Scalable: the algorithm must be able to scale with an increased number of nodes.

• User interaction: we want users to be able to interact with the algorithm, generating the
visualization according to their needs.

• Display many relations: we want to show different relations at once to directly present the
whole structure of the system in a single visualization.

• Flexible to focus: users should also be able to focus on a specific part of the system in order
to understand it better.

• Uniform: every level at which we apply the algorithm is treated as equal.

1.3 Approach

We decided to display three types of relations: package containment, classes’ reference and inheri-
tance relations. Package containment is useful to give an idea of the structure of the system, while
the other two relations have a key importance in analyzing how the different elements are related to
each other. In addition to those we show relations between packages, which are computed analyzing
the relations between the classes of any two packages, and aggregating them to create the relations
between the two packages.

The algorithm used to layout the elements of the software system is a customization of a force-
directed layout algorithm, which has been proven surprisingly successful in producing good layouts
of undirected graphs [GN98]. This class of algorithms is used on undirected graphs and lays out the
nodes of the graph treating them as electrically charged particles repelling each other, and edges as
springs connecting the nodes. The system obtained is then simulated as if it were a physical system
and the positions of nodes when the algorithm stops, i.e., when the sum of the forces applied to the
system is zero, defines the position of the elements of the software system in its visualization.

One key aspect of force-based algorithms is that the final result depends on the initial positioning
of the elements. Our intuition was to apply the algorithm multiple times, considering each time
a different subset of elements and relations, providing a good starting position to all the elements
before performing the final layout.

The approach we used is very similar to the one presented by Erni: CodeMap [Ern10], which we
are going to analyze in the following chapter. He developed a cartography visualization of software
based on vocabulary, and used Isomap [ZZ03] and Multidimensional Scaling [Lee01, HB95] to then
place the elements in a meaningful way, with the goal of helping developers create a mental map of
the system.

We focused on making the algorithm customizable in order to let users give different weights to
different relations. After developing the algorithm we moved to the implementation of a visualization
tool in order to implement our algorithm and see the results that could be obtained. What we ended
up with is a hierarchical and customizable algorithm, capable of considering multiple types of
relations to generate a complete layout of the system.
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1.4 Contributions

The contributions of this work are:

1. The development of an algorithm for laying out the pieces composing a software system.

2. The implementation of Hubble, a tool which uses our layout algorithm for depicting a software
system.

To create the visual representation of a software system, the first step we have to do is to extract
from the system the information we want to visualize; those pieces of information are then aggregated
to form a graph, which is the input to the layout algorithm which takes care of positioning elements
in the visualization.

Our layout algorithm is based on a novel approach to the use force-directed algorithms on graphs,
which considers the importance of initial positioning of the nodes of the graph with relation to their
final positioning, and uses multiple runs of the algorithm – taking into account different elements
in each of them – to achieve a better final result. Exploiting distance between two elements for
suggesting their degree of coupling allows us to present more information without adding visual
noise to the representation of the software system.

This approach is the core of Hubble, which adds to that a simple and clean interface that allows
users to specify settings of the algorithm and to explore the visualization created in an easy and
intuitive way.

1.5 Document’s Structure

• In Chapter 2 we present some investigations that we have performed on some related works.
Being software visualization a huge area of research, we arbitrarily chose three topics which
have been part of our research and have been of inspiration to us while performing this work:
Graph Libraries, CodeMap and UML Class Diagrams; we are going to introduce them and
show what their advantages and drawbacks are.

• Chapter 3 explains in details our approach for laying out the elements that compose a software
system. The algorithm is divided into three phases: in the first one the system is analyzed
to extract relevant relations, which are used to build a graph representing the system in the
second phase. Finally in the third phase the elements are laid out to produce the visualization
of the system.

• Chapter 4 presents Hubble, a simple and intuitive tool we developed to implement our algo-
rithm. We discuss its implementation, introducing how force-directed algorithms work, and
then move on to the user interface. In the last Sections we present advantages and limitations
of our tool.
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• In Chapter 5 we discuss some visualizations created by Hubble upon different systems, point-
ing out what can be deduced from them and how those representation of the system can help
users understanding it.

• Chapter 6 contains the conclusions of our work: after a short summary of what we have done,
we re-state the contributions of our approach and present a list of possible future works that
could be made to expand it.
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Chapter 2

State of the Art

In this chapter we explore related works. Being the area of software visualization very wide, we
arbitrarily present three different solutions: in Section 2.1 we present UML diagrams, which is for
companies the standard language for creating models of software-oriented programs. Section 2.2
introduces graph libraries, and finally Section 2.3 we present Codemap, an Eclipse plug-in which
uses software cartography to help developers understanding software, and whose approach is similar
to the one we used.

2.1 UML Diagrams

The Unified Modeling Language is the de facto standard for the creation of models that represent
object-oriented software. It provides several types of diagrams (13 in UML 2.0) that allow graphical
representations of software systems.

A number of empirical studies have shown UML diagrams to be very useful during software
maintenance [ABM+06, DT97]. They have in fact very spread use among developers, mainly
thanks to the standardized way of representing everything, which can be immediately understood by
everyone knowing it. The most used UML diagrams are use case diagrams, sequence diagrams and
class diagrams.

Use case diagrams overview the usage requirements for a system, including the relationships
of “actors” (human beings who will interact with the system) to essential processes, as well as the
relationships among different use cases. UML Sequence diagrams are used to represent or model the
flow for a specific use case or even just part of a specific use case, showing the calls between the
different objects in their sequence. In this Section we are going to focus on class diagrams, since
they are the ones which get closer to our approach when looking at what we want to represent. We
are going to explain them in details in the following section.

7



8 2.1 UML Diagrams

2.1.1 UML Class Diagrams

UML Class diagrams are used to show how different entities of a system relate to each other. It
model classes and their relationships, for example inheritance and composition, illustrating the
static structure of a system [Sea05]. A class is depicted in the class diagram as a rectangle with
three horizontal sections. The upper section shows the class’s name; the middle section contains
the attributes of the class; and the lower section contains its operations, which are the methods it
implements. We can see this structure in Figure 2.1.

Pets

name
studentNum

Student

Dog Cat

Animal
courseName

Course

enroll
drop
cancel

date
Enrollment

0..* 1..*

Figure 2.1. UML Class Diagram. On the left we see an example of inheritance. On the right we can
instead see an association.

The most important relation for object-oriented languages is inheritance: it is displayed by an
arrow with a closed arrowhead pointing to the superclass. Other relations between various objects
are modeled with associations, showing the coupling between them. To show package containment
classes belonging to a package are placed inside a big rectangle representing the package, while the
package’s name is shown in a small rectangle on the top left of the class.

2.1.2 UML in Software Visualization Tools

A lot of tools have been developed to automatically generate UML diagrams from source code,
however very few of them are able to generate useful layouts that can make good use of the space
used by the visualization[Eic02].

We can look at Figure 2.2, which shows an automatically generated UML diagram from Java
source code using Rational Software Architect v7.0 [XW08], and at Figure 2.3, which has been
generated by Rational Rose. We can notice from both the figures that the only thing that makes the
placements of elements meaningful is aimed at not overlapping edges and keeping them as short
as possible, which already tends to place related classes near to each other. We believe that this is
however not sufficient.

From Wong and Sun’s analysis on Rational Rose’s automatic generation of UML Class Diagrams
[WS06] it emerges that space’s arrangement is quite good, however there are still some problems,
for example Thermometer class should be closer to its superclass, while it is instead very close to
WmvcMenuItemCtl, with whom it has no relations.
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Figure 2.2. UML Class Diagram automatically generated with Rational Software Architect v7.0.

According to Tilley, UML diagrams, as a form of graphical documentation, can help software
engineers to understand large-scale systems, but their efficacy depends on three main factors: syntax
and semantics of UML, spatial layout of the diagrams, and domain knowledge [TS03]. And our
focus of analysis goes in one of these three factors: the spatial layout.

2.1.3 Considerations

UML diagrams are a very powerful tools, widely used to communicate a system’s structure and
behavior thanks to its standardized language. It is however a very difficult tool to master, where
still there is some confusion on the different visualization, as testimonies the very big amount of
informations and articles upon it, which are sometimes also in conflict.

What emerged from our research is that, despite most of the tools used for software visualization
make use of UML diagrams, the way of laying out the element is still too basic and has a large
potential for being improved: layout is in fact not just about removing edge crossing and giving an
aesthetically pleasing representation, but much more about how to make the process of comprehend-
ing the representation easier.
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Figure 2.3. An UML Class Diagram automatically generated by Rational Rose.

In our proposed solution we tried to make a very good use of the space to solve as many visual-
ization issues as we could, always keeping in mind to balance the amount of informations visualized
with the complexity of reading the resulting visualization.

One big difference between our proposal and UML class diagrams is that UML tries to give more
informations, already displaying some information relative to the class, for example its variables or
methods, while our approach focus only on depicting the system without entering too much in detail.
Every detail that is shown does in fact take space in the visualization, and we have to consider the
fact that when we want to depict an entire system every little detail that we add gets multiplied by
the number of elements on the visualization.

2.2 Graph Libraries

Graph libraries are program libraries designed to aid developers in generating visualizations and
creating graphs. They are used to lay out graph, creating wide variety of images, which could also
be used to depict software systems. Due to the very high number of graph libraries, in the following
sections we are going to introduce a few, presenting different visualizations that can be achieved by
using them.
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2.2.1 D3

D3 is a JavaScript library for manipulating documents based on data. The graph realized with it and
shown in Figure 2.4 is interactive: users can access it by opening a web browser and then pull nodes
and see how the other ones will then start moving until the system will be back to equilibrium.

Figure 2.4. A force-directed graph created with D3.

2.2.2 Graphviz

Graphviz is a package of open source tool for drawing graphs specified in language scripts. It
has multiple applications, and is even used in some well known software programs, for example
OmniGraffle 5. It offers different layouts, which take descriptions of graph in DOT language scripts
and generate diagrams from that. It also provides a discrete level of customization: colors, fonts,
node layouts, line styles and hyperlinks can be specified by the user.

Figure 2.5 shows a software visualization representing dependencies between modification to a
large program. The graph has been created with the goal of discovering which subsets of modifica-
tions could be tested separately or even removed by removing some key dependencies.

2.2.3 Considerations

These libraries offer a very solid base for developing software able to create visualization of different
systems: having an algorithm for laying out graphs ready and tested allow developers to concentrate
on the visualization and use it without having to deeply understand it. Implementing the layout
algorithm – as we did in this work – does however offer a small advantage, even if it requires more
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Figure 2.5. A software visualization obtained using Graphviz to represent dependencies between
modifications to a large program.

time: using a library might not provide enough understanding of the algorithm, which would be
obtained by working on it, and which would allow developers more ease of customizing it according
to their needs.

The limitation of graph libraries is that they are too general for the problem we are addressing:
additional code must be written in order to obtain the visualization, and this prevent them to be
directly used for displaying systems. What developers need is a ready-to-use tool which they can
immediately start working with and obtaining results.

2.3 Codemap

Codemap is an Eclipse plug-in presented by Erni in his master thesis work [Ern10], which makes
use of software cartography in the context of an IDE to help developers establish a stable mental
model of their software.
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2.3.1 Algorithm Approach

The approach used by Codemap is to apply software cartography to obtain a visualization of the
software that aims at helping the development team to establish a stable mental model of the project.

The first step is parsing the source files to create a term-frequency matrix according to their
vocabulary. Then Latent Semantic Indexing [DDF+90] is used on the matrix to reduce its complexity.
After that the algorithm proposed by Codemap makes use of both Isomap and Multidimensional
Scaling to place all software elements in the visualization; this results in a two dimensional position
on the visualization map for each software entity.

Isomap is an approach to reduce the dimensionality [JTL00]. It can find meaningful low-
dimensional structures hidden in high-dimensional data: it represents as a spiral a two-dimensional
plane that is embedded in a three dimensional space. When now measuring the distance in the
two different dimensional planes it is possible to obtain two different distances for any two points,
according to the way in which the distance is measured.

Multidimensional Scaling is an iterative approach to map high-dimensional data to a lower
dimensionality space. It performs this task by preserving the relative distance between points in the
best way possible. Multidimensional Scaling computes the dissimilarity values (a value indicating
the difference between two elements, ranging from 0 if the elements are equal, up to infinity) between
each pair of elements.

Multidimensional Scaling tries then to find a low-dimensional configuration where the pro-
portions between the dissimilarities are as close as possible to the ones of elements in the higher-
dimensional space. This is performed with an iterative approach, refining the solution at each step
until a certain error threshold is reached.

Since Multidimensional Scaling’s output depends on the initial placement of the elements, per-
forming Isomap reduction before it and then running it on the output of Isomap grants a much better
result in the end.

2.3.2 Codemap Tool

The result of performing the steps described in the above section is a two-dimensional position
for each element we want to display. Starting from this cartographic visualization Codemap now
computes the elevation of each pixel according to the size of the software element (computed based
on the element’s lines of code). The landscape is then rendered to achieve a pleasing view of the
system, using colors and shading to help users in the analysis. A possible result is shown in figure 2.6.

Metrics and markers are rendered in additional layers on top of the landscape. This allows users
to activate and deactivate each layer, customizing the map according to the visualization they want
to achieve. These layers can be used to display a wide variety of things: a heat-map can be used to
show code coverage and locations visited last; result of searches are displayed on the map by little
pins; call hierarchies are displayed using an arrow-based overlay and also files being edited by other
developers will appear on the map.
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Figure 2.6. An example representation obtained using Codemap.

To achieve these results Codemap is completely integrated into the IDE (Eclipse), allowing to
support the programmer in his tasks much better than a standalone analysis tool: this gives in fact
the opportunity of performing some actions that would otherwise not be possible. Here we present
Erni’s list the programming task allowed by Codemap:

• Explore a system for reverse engineering purposes.

• Connect two Eclipse instances to show what other developers are currently working on.

• Compare different software metrics, for example code coverage vs. bug density.

• Navigate within a software system in a way which is completely integrated in the map:
Codemap indicates open files on the map, and allows to open files from the map swell.
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2.3.3 Considerations

Codemap’s layout algorithm brings the innovation of making use of multiple steps for computing the
position of the elements: having a good starting point is a great enhancement for multidimensional
scaling to position them, and since this concept can also be applied to force-based algorithms, using
a hierarchical algorithm is a very good starting point for creating a layout algorithm.

One important statement by Erni is not to forget for whom the tool is built: during the user study
performed on Codemap it turned out that their decision to base the positioning of elements on their
vocabulary was rather confusing for the participants. The lexical distance is in fact a good way to
produce a visualization of the system, but this resulting visualization is not useful for developers
software because it does not help too much them with the analysis and understanding of the software.

We decided to base our visualization on something which is useful to know and is always looked
for when analyzing a system: knowing class coupling does in fact provide a good starting point for
looking both where to extend software and where to look for bugs or anomalies.

A limitation of Codemap is that, despite considering the distance between classes (computed as
lexical similitude) and translating it into a semantic positioning of the elements, it does not allow
users to customize which relations to use and how much importance to give to each one, which limits
the possibilities of analysis from the developers.
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Chapter 3

Algorithm

Our goal is to support the understanding of a software system by creating a visualization of it in
which the elements are laid out in a way that their positioning suggest which elements are related
and which are instead disconnected.

In this chapter we explain in details our approach for laying out the parts that compose a software
system. We present an overview of the three phases in which our algorithm is divided in Section 3.1,
and then proceed analyzing them in the following sections: during the first phase, described in
Section 3.2, we analyze the system to extract the elements we need for creating the visualization;
with these data, in the second phase, we create a graph which we use to represent the structure of
the system as explained in Section 3.3. In Section 3.4 we describe how we layout the elements
that we now have, obtaining the visualization of the system. Finally in Section 3.5 we discuss the
results obtained with our approach. During the analysis of the three phases, our description will be
supported by graphs showing the intermediate results we reach.

While the first two phases of our algorithm are more related to the implementation, and will
be discussed more exhaustively in the next Section, the third one is more conceptual and will be
analyzed in detail in this section.

3.1 Overview

The layout of the part composing the software system is performed using a force-directed layout, a
class of algorithms used to layout graphs by treating nodes as electrically charged particles repulsing
each other, edges as springs connecting the nodes, and then simulating the graph as if it was a physi-
cal system. The nodes tend repulse each, while edges tend to pull closer the two nodes they connect.
Force-directed algorithm are presented in details in Section 4.1, however a quick introduction was
needed to understand how our approach work.

The input that we have is a list of the packages that we want to visualize. Starting from these
packages we need to collect all the elements composing the software system that we want to take
into account and then lay them out to create a representation of the system. To reach our goal and
create a comprehensible visualization our approach is divided into the following three phases:

17
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1. Analyze the system to collect elements we want to visualize and the relations according to
which we will position them. To get them we have to start from the package level and go
down until method level; we then go up again to class level while gathering information at
each level.

2. Obtain the information still missing, such as relations between packages, which are computed
from the relation between classes extracted in the first phase; we then build a graph containing
all the information gathered, which we use to model the software system.

3. Lay out the nodes of the graph using the force-directed algorithm. We perform the layout
in three different steps, starting from considering each package individually and laying out
its classes, proceeding then to layout the packages according to relations between them, and
ending up in the last step considering the whole informations gathered and positioning all
classes.

The structure of our approach is presented in pseudocode in Algorithm 3.1. In each of the
Sections in which we describe a phase of the algorithm, we show the corresponding part of the
pseudocode.

Algorithm 3.1 High level description of our approach.

INPUT: packages
classes← getC lasses(packages)
classesRelat ions← getRelat ions(classes)
classesRelat ions← classesRelat ions ∪ getPackageContainment(classes, packages)
packagesRelat ions← getRelat ions(classes, classesRelat ions)
graph← createGraph(packages, classes, classRelat ions, packagesRelat ions)
for all pkg in packages do

la youtPackageNodes(graph, pkg, classes, classesRelat ions)
end for
la youtPackageNodes(graph, packages, packagesRelat ions)
la youtClasses(graph, classes, classRelat ions)
return graph

3.2 Phase I: System Analysis

INPUT: packages
classes← getC lasses(packages)
classesRelat ions← getRelat ions(classes)
classesRelat ions← classesRelat ions ∪ getPackageContainment(classes, packages)

In this phase we analyze the system in order to extract the different elements that we use to
create our visualization. In order to do that we start from the package level and go down until the
method level, extracting all the elements that we want to position to visualize our system: classes and
packages. We then begin from the method level and go up again until the package level, extracting
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the relations which we use to define the final positioning of classes and packages.

We explored different ways for extracting relationships of the software system being analyzed;
our first choice was Moose, a platform for software and data analysis [NDG05]. We switched later
to using Smalltalk’s reflective property to programmatically browse classes and directly extract
relations from them.

The input to our algorithm is the list of packages that the user wants to display. The first step
we perform is to collect all of the classes contained in those packages, obtaining all of the elements
that we want to lay out. At this point we start working to get the three types of relations that we
want to display: inheritance, reference and package containment relations, which will define the
final positioning of classes and packages.

The first step is obtaining all reference relations going down to the method level, browsing all the
methods of each class and creating a relation to every class which is referenced. We then step a level
up and collect inheritance relations by asking each class for its superclass, and adding a relation from
the class to its superclass, and finally cycle through all the packages and add a package relations for
each package to all the classes contained in it.

A B C D

E F G H

I J K L

M N O P

Package1

Package2

Package3

Figure 3.1. Elements we extracted analyzing the system during phase I.

Figure 3.1 shows in a visual way the pieces of information we have now: we managed to obtain
the following elements:

• classes, shown as rectangles labeled with alphabet letters.

• packages, represented like packages in UML diagrams.

• class reference relation, represented as filled arrows with black arrowhead.

• inheritance relations, shown as filled arrows with white arrowhead connecting two classes and
pointing to the superclass.

• package containment relations, represented as dotted arrows starting from classes and pointing
the package containing it. In the following Figures this relations will be however represented
by placing the class inside the package.
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We display all those elements in a grid, showing all relations connecting them: with this layout it
is almost impossible to understand the structure of the system, and our goal for the remaining part of
the algorithm is to display those elements in the way which helps the comprehension of the software
system.

3.3 Phase II: Graph Creation

packagesRelat ions← getRelat ions(classes, classesRelat ions)
graph← createGraph(packages, classes, classRelat ions, packagesRelat ions)

We compute the remaining relations and then build the graph representing the system, in order
to build the graph representing the structure of the system. We then use this graph as input of the
layout algorithm in the following phase, and in the end of the three phases the graph will contain the
final position of all of the elements that we want to visualize to represent the system.

To collect the two missing types of relations we need to go up one level, and end up where
we started from: at the package level. Package containment relations are computed by cycling all
packages, and for each package creating a relation from it to each of its contained classes.

At this point we already have all relations of classes, and can compute the relations between
packages. To do it we cycle all packages and, for each package P, we parse all classes it contains,
analyzing relations between classes computed in the previous phase; for each class of another
package related to the classes of P we create a relation from package P to that package. Additional
relation found between two packages will increase the weight of the relation connecting them.

The two relations that we are still missing are package containment relations, and the relation-
ships between packages. To compute the relations between packages we cycle them all, and for each
package P, we parse all his classes and create a relation from P to each package which contains a
class referenced by a class inside package P.

At this point we build the graph, transforming all packages, classes and relations, in the corre-
sponding nodes and edges of the graph, as explained in Section 3.3.1. All the positions of nodes are
generated randomly, and will be updated in the next phase, where the graph we obtained is used as
data model.

3.3.1 Data Model

We decided to model the data we are working with as a graph: a collection of nodes and edges;
we use nodes to represent the elements of the software system that we have to position, which
are classes and packages, while edges represent the different types of relations connecting those
elements. Figure 3.2 illustrates an example graph which encodes a system, which we are briefly
analyzing to better present what is stored inside it.
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HEdge
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HBasic
Node

Figure 3.2. Example structure of a graph which encodes a system.

In the example graph we can count seven nodes – two packages, Hubble-Core and Hubble-UI,
containing three and two classes, respectively – and some edges connecting them. We can notice
that since there is an inter-package reference from HubbleUI class to Hubble class, there is also a
package reference from Hubble-UI package to Hubble-Core package.

This data model allows us to have everything stored as a collection of nodes and edges, sim-
plifying the complexity deriving from the different elements of the system we are exploring, and
allowing us to only have to handle two different objects. The final position of each nodes after the
algorithm completes defines the position that element will have in the visualization of the system. In
the following subsections we are going to analyze more in details the elements that compose our
graph.

Nodes

In our graph we dispose of class nodes and package nodes, which are used to show relations at
different levels in our algorithm. The former are used to represent classes, showing the relations
between them in the visualization of the system according to their spatial distance: the closer two
class nodes are, the more the two corresponding classes are related to each other.
Package nodes work basically in the same way but at a different level: they show the relations
between packages according to their positioning, and moreover they condition the positioning of the
classes in the final step of the layout phase: each class node in fact has a relation connecting it to its
containing package, whose goal is to prevent the class node from drifting too much away from the
package node during the layout steps.

Edges

In our model we use four different types of edges: reference, inheritance, package containment
and package relation. All of them have a weight attribute which can be specified by the users to
enable them to customize the visualization by giving more importance to a specific relation. Edges
are grouped in two different categories, relation edges and binding edges, according to how they
influence the positioning of classes during the layout phase of the algorithm:
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• Relation edges. This class of edges includes reference, inheritance and package relation
edges, which represent the relations between two classes or packages. They are used to specify
which classes should be drawn near each other in the visualization of the system.

• Binding edges are used to represent the belonging of a class to its containing package. Their
use in the algorithm is to prevent classes from being positioned too far from their package.

3.4 Phase III: Layout

for all pkg in packages do
la youtPackageNodes(graph, pkg, classes, classesRelat ions)

end for
la youtPackageNodes(graph, packages, packagesRelat ions)
la youtClasses(graph, classes, classRelat ions)
return graph

The last phase of our algorithm deals with taking the graph created in phase II and laying out its
nodes according to its edges. This is done in three steps: in each of them we focus on different types
of relations to layout parts of the graph, similarly to the hierarchical approach of phase I to extract
information from the system being analyzed. During the layout phase we however start from laying
out each individual package, and then start aggregating elements until we lay out all the elements of
the graph.

The following subsections present the three steps, whose starting point in this phase is basically
what we shown in Figure 3.1, to which we have to add the references between packages that were
computed in phase II. The explanation of each of the steps of our algorithm is accompanied with a
Figure presenting the results of applying that steps; each image has the relations which are not used
blurred out, making the relations which were considered to position the nodes stand out.

Layout Class Nodes of Each Package Individually

In the first step we want to position all classes inside their containing packages, and lay them out
considering relations internal to the package: we consider each package individually, and for each of
them we perform the following tasks:

1. We lay out all of the classes contained in the package according to the intra-package relations
between them i.e., leaving out all the relations that relate classes belonging to two different
packages.

2. The package node is translated in such a way that its center ends up coinciding with the center
of the classes we just laid out.

3. The radius of the package node is set to have all the classes of the package positioned inside
its range.

The result of this step is shown in Figure 3.3: it already looks much more understandable than
what we had before performing the step, with classes already positioned inside their enclosing
packages.
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Figure 3.3. Representation of the graph representing the system after the first layout step.

Layout Package Nodes

The goal of the second phase is to lay out packages according to packages relations; this process is
very similar to the one applied for laying out the classes of each package in the first step. To achieve
this result we run the layout algorithm considering just package nodes and package relations edges.

The result is shown in Figure 3.4. Just looking at packages we can get a general idea of the
high-level structure of the system. We can in fact see that Package3 is positioned in between the
other two, showing that it is connected to them both, while the other two do not have reference to
each other; since package nodes’ position already suggest the relations between them, they are not
going to be moved further.

Layout Class Nodes

In the last step we want to lay out class nodes to show relations between them according to their
distance in the visualization. We run the algorithm keeping in consideration class nodes and all
edges computed in phase II; package nodes are not used because we don’t want them to be moved
anymore, however package containment edges are used to prevent classes from moving away from
their containing packages.

The result obtained after this step is shown in Figure 3.5. We can see from it that classes’ posi-
tioning now resembles the disposition of packages: since classes contained in Package3 reference
both classes of Package1 and classes Package2, the classes of those two packages got positioned
closer to package3.
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Figure 3.4. Representation of the graph after laying out package nodes.
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Figure 3.5. Representation of the graph after laying out class nodes. This coincides with the visualization
of the system.
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3.5 Achievements

Visualizing the software system using our approach allows the achieving of some of the goals
presented in Section 1.2, as well as obtaining other positive results which were not part of our initial
set of goals.

Class Positioning

Among the set of goals proposed inside the Introduction, two of them were related to the positioning
of classes:

• Most connected classes must be positioned in the center of the visualization.

• Least connected classes must be laid out in the outer side.

In this Section we are going to explain how these two goals are achieved. Even if the goals
were regarding classes, everything presented in the following paragraphs is valid for packages as well.

Thanks to the use of force-directed algorithm to lay out classes, our algorithm managed to achieve
both goals; in order to understand how this is accomplished we must first explain what happens
during the layout phase. That phase is divided into three steps, and since the final positioning of
classes happens in the third one, our analysis is only considering it.

Due to the nature of the layout algorithm, the more edges a class has, the more classes will be
placed near it. In the case a group of related class nodes has a high number of edges those classes
will end up forming an agglomerate of classes i.e., a group of classes linked, directly or indirectly, to
each other. In the case this amount of nodes and edges is elevated, there would be no way to layout
all the elements respecting the distances each pair of classes connected by an edge normally has,
causing the agglomerate to look like a group of classes disorderly positioned.

Since our force-directed algorithm keeps in account weight of nodes when positioning them,
an agglomerate of nodes will have a an higher overall weight than a single node, or a group of few
of them. This would result in having classes related with the agglomerate – classes which have
a relation with one class belonging to the agglomerate – being attracted by it and behaving like
satellites, ending up near it in the visualization of the system. This places the agglomerate in the
center of the visualization with relation to the nodes connected with it, directly or indirectly; in case
there were disjoint subsets of the systems, each of them would end up displayed around its biggest
agglomerate.

in addition to having the most connected classes in the center of the visualization, our algorithm
also places a node with many connections in the middle of all the nodes connected to it, assuming
that there are no other forces in play. Assuming node A is connected with other five nodes, those
would be placed all at the same distance from node A, and due to the repulsion force each of them
would be pushed away from each other. As a result of this node A would end up being in the center,
with the other five nodes radially disposed around it.

What has been said in this Section proves our first goal of positioning most connected classes in
the center; the achieving of the second goal is much easier to explain: unconnected classes due to
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the repulsion force of nodes, will be pushed away from all other classes, ending up being placed in
the outermost part of the visualization.

Multiple Relations Shown

Another goal we imposed ourselves was to show different types of relations. This goal was fully
achieved: we can in fact display different types of relations:

• Package containment

• Inheritance

• Class reference

In addition to those we also display the degree of coupling between packages, which is obtained
by analyzing the relations between the classes contained in pairs of packages. This achievement
is very important when visualizing a system because it allows developers to better understand its
structure, facilitating them to analyze and inspect it, and enabling them to make mental connections
that would be otherwise impossible to make.

Multilevel Analysis

In our final visualization we manage to lay out in a single image both nodes and packages, positioned
according to the multiple relations connecting them. This allows us to analyze the system at two
different levels: at package level and at class level.

The former options provides a high-level overview of the software system, which shows how
the different packages interact between each other. With this information a developer has already
some understanding of the structure of the system, and this knowledge will also support him when
performing a lower level analysis going down to the class level.

At class level we can perform a more in-depth analysis of the system, which allows understanding
the degree of coupling between classes, exploring more in details the connection between different
parts of the system, which could be already recognized with the high-level analysis.

The advantage of having the possibility to perform a multilevel analysis satisfies the goal of
creating a visualization flexible to focus: developers can get an overview of the system, and then
explore the parts of it they are most interested in.



Chapter 4

Tool

In this chapter we analyze and discuss Hubble, the tool we developed to implement our algorithm.

In Section 4.1 we discuss in details the force-directed algorithm, which is the base of our layout
process. Section 4.2 introduces enhancements made to the force-directed algorithm. In Section 4.3
we discuss the user interface, presenting the control panel and the display screen. Finally in Sec-
tion 4.4 and Section 4.5 we discuss the result of our implementation, presenting a achievements and
limitations of it.

4.1 Force-directed Algorithm

Force-based or force-directed algorithms are a class of algorithms for displaying graphs in an aes-
thetically pleasing way: this is achieved by assigning force among nodes. The most common to do
this is to assign forces as if edges were springs connecting the nodes (Hooke’s law), and nodes were
electrically charged particles (Coulomb’s law). The entire graph is then simulated as if it were a
physical system: the forces iteratively are applied to the nodes pushing them apart or pulling them
close together until the system reaches an equilibrium state. The physical interpretation of this
equilibrium state is that all the forces are in mechanical equilibrium.

In the case of spring-and-charged-particle graphs, the edges tend to have uniform length (because
of the spring forces), and nodes that are not connected by an edge tend to be drawn further apart
(because of the electrical repulsion), which are goals that we imposed ourselves at the beginning of
this work.

An important advantage of force-based algorithms is flexibility: force-directed algorithms can in
fact be easily adapted and extended to fulfill additional aesthetic criteria: this makes them the most
versatile class of graph drawing algorithm, and also is the reason we have chosen this algorithm to
work on our graph. We took in fact advantage of flexibility of this class of algorithms to customize
our implementation, allowing users a high degree of freedom in the algorithm.

There are also some limitations of force-based algorithms: high running time and poor local
minima. Typical force-based algorithms are generally considered to have running time equivalent to
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O(v3), where v is the number of nodes. This is because the number of iterations is estimated to be
O(v), and for each iterations all pairs of nodes need to be visited and their mutual force computed,
which has a time estimation of O(v2).

Force-directed algorithms produce graphs with minimal energy, in particular one whose total
energy is a local minimum. This local minimum found can be in many cases considerably worse
than the global minimum, and this would result in a low-quality graph. This problem is partially
solved by our hierarchical approach: since the result of force-directed algorithms depends on the
initial position of the nodes involved in the algorithm, performing additional runs prior to laying out
classes results in a much better result than just running the algorithm with random starting positions.

4.2 Implementation

In this section we discuss a few important implementation-related decisions, which have been
important during the development of our tool.

We explored different ways of extracting the relationships within the program to layout. Our
first implementation of the algorithm was using Moose, a platform for software and data analysis.we
switched at a later stage to directly extracting relations inside Smalltalk, which allows us to pro-
grammatically browse classes and directly ask objects for references and inheritance. This way we
do not need to use external tools, having a way to access data which is directly embedded into the
programming language, which is independent from third party’s software, faster and simpler.

In our implementation of the force-directed layout algorithm we make use of binding nodes, a
concept we introduced with our implementation: a binding node is a node which does not necessarily
represent an element of the graph and its only purpose is to be used as a basis to apply forces to other
nodes in order to obtain the desired positions on the nodes.
Bindings nodes are used to show package containment: we make each binding node attract all of the
nodes belonging to a package to it. In order not to impair the positioning of the other elements a
binding node has an attraction threshold under which its force is not applied. This way elements are
free to arrange themselves according to other relations shown, however nodes which are too far will
begin getting attracted in order to contain the package in a reduced space.

4.3 User Interface

We kept our user interface very simple in order to be intuitive and provide a quick way of performing
the different actions possible on the program. It consists of two parts: the control panel and the
display screen. They are shown together in Figure 4.1.

4.3.1 Display Screen

A screenshot of the display screen is shown in Figure 4.2. Packages are shown as colored bubbles,
with their size depending on the number of classes they contain. Packages are placed according to
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their relations, similarly to what happens to classes, so looking at packages can give us a very high
overview of the system.

Classes are represented as rectangles, colored with the same color of their package. Class nodes
have an algorithm which adapts the name of the class to the space available in the label, only
displaying the part of the name which fits it, and displaying a bigger part of it as the user zooms in
and the label’s size increases.

All of the elements displayed in the screen can be dragged and re-positioned to give the possibil-
ity of modifying the automatically generated view in order to better analyze the system.

Left-clicking a class opens a menu where users can choose to inspect it, or to open a browser on
that class, providing developers a way to explore and modify the code without having to switch to
another program. This greatly enhances its usability, providing developers a quick access to source
code, and allowing them to use Hubble’s visualization as starting point for opening classes and
modifying them.

Another menu can be shown left-clicking an empty area, this allows users to toggle edge dis-
playing, return to the starting zoom level, which allows to see the entire area, and close the display
screen. The two menus are the only way users have to interact with the visualization from the display
screen. All other tasks can be done from the control panel.

4.3.2 Control Panel

The control panel is used to control the visualization. We are now going to present what it allows to
do with the help of Figure 4.3. It is divided into four different sections:

The top part allows to choose which package to visualize, and presents a list of the packages
currently selected; upon pressing the "Choose packages" button, a new window pops up, and users
can perform a filtering on packages by their name, and add or remove them from the current selection.
After deciding what they want to display, pressing the "OK" button will start the computations, and
once they will finish the Display Screen will appear, presenting users the visualization.

The central parts of the Control Panel contains some sliders which are used to adjust the weight
modifier for the different types of edges that connect classes. The higher a modifier is set, the
more two nodes connected by that type of edge will be near in the visualization. This possibility to
specify the weights of the various relations was inspired by the work of Noack and Lewerentz [NL05].

After that we can find a list of options users can set in order to specify settings for the algorithm;
the setting users can define are:

• Repulsion force. Specifies the modifier of the repulsion force.

• Ideal edge length. Expresses the ideal length of edges, which is the distance nodes connected
by an edge will try to be placed at.

• Repulsion radius. Specifies how far from each other nodes will be affected by the force of
repulsion.
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• Max iterations. Expresses the maximum number of iterations that the algorithm will run.

• Desired iterations. Expresses the number of desired iterations that algorithm will try to run,
this

• Attraction distance. Specifies how far the binding attraction of package nodes will begin to
take effect.

Finally the lower part is dedicated to the controls of the camera, that allows users to easily and
intuitively explore the display screen. There are four buttons, each of them for moving the camera
along one direction.

4.4 Achievements

In this section we present the main results we reached with our implementation; first of all we
concentrate on the results related with the list of goals we discussed in Section 1.2.

The display screen offers a limited range of options for navigating the visualization, hence is
very intuitive and simple to use and still provides enough functionalities to exhaustively explore the
system. Users can also customize all the parameters of the algorithm, both regarding the specifica-
tions of the layout algorithm e.g., number of iterations or repulsion force, as well as giving different
weights to different relations between classes. This high freedom of customization helps reaching a
very important goal, which is the one of building a tool flexible to focus i.e., which allows devel-
opers to concentrate the analysis on a specific part of a software system in order to explore it in details.

Flexibility does however not only lie in the customization of the parameters: our tool allows
in fact to get a general representation of the system, which presents its structure, and then gives
developers the possibility to zoom in and explore it more in details, concentrating on the relations
between single elements.

In addition to those results, which were proposed as goal, we also managed to provide a tool
which makes use of the capabilities of our brain to show additional information through the use of
coloring and proximity. Coloring is used to represent package containment: classes contained in a
package will in fact be represented with the same color of their enclosing package. This enables
users to immediately recognize to which package a class belongs to without having to draw any
edge or connection, which would have added visual noise to the visualization. Proximity is used to
show if two elements are related according to how distant they are, even if the edges are not being
displayed.

4.5 Limitations

Our tool presents some limitations, which we are going to list according to their importance:

1. Class Nodes Label. Hubble uses an algorithm for adapting the label of classes to the space
available for displaying it, cutting it and adding trailing dots if it does not fit in the class
node, to prevent it from exiting from the classes. However when the system is zoomed out
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the classes are so small that their names are reduced to only a couple of letters, making it
impossible to distinguish them. When zooming in the problem persists and, since classes
usually have long names, even with the maximum zoom in allowed it is often impossible to
distinguish classes or to find a particular one.

2. Clustering. Since the goal of our system is to suggest relations between elements based on
their proximity, developers must be able to clearly see the distance between two nodes to
understand their degree of coupling. This is however true only if there is not a cluster of nodes,
. We will present an example use case in which we occur into this problem in Section 5.4.

3. Scaling. Force-directed algorithms work best with a medium-sized graph i.e., containing
around fifty nodes. When this number grows the algorithm begins to get slow. This problem is
due to the nature of the algorithm, and even if we managed to speed it up with a large amount
if nodes or relations it will take much time to complete.
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Figure 4.1. A view upon Hubble’s user interface.
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Figure 4.2. An example view of Hubble.
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Figure 4.3. Hubble Control Panel



Chapter 5

Evaluation

In this chapter we evaluate our tool by visualizing different systems, and then analyzing the obtained
representations.

The first system we analyze, in Section 5.1, is Hubble, to provide an example use and also show
how its structure looks like. After that we visualize Gaucho in Section 5.2, which is being used
by Hubble, and then in Section 5.3 we show the two systems together to analyze their interactions.
Finally in Section 5.4 we try to visualize the Collections subsystem of Smalltalk.

5.1 Hubble Analysis

To show what the product we have developed is capable of doing, we are now going to use it to
analyze itself, taking advantage of this demonstration to also show and present in a few more details
details what we have done.

5.1.1 General Analysis

We open the program and immediately press the "Choose packages" button. We specify "Hubble" in
the search box, add the three Hubble packages to the list of selected packages, and press the OK
button to start computing the visualization.
After waiting a very few second while classes’ references are cached and the algorithm is run, the
visualization appears; we adjust the camera a bit to have it in the center of the scene and we obtain
what is shown in Figure 5.1.

The first thing that stands out when we first see the image is that there are three different packages,
visualized as colored bubbles, and that almost all of the classes have been placed in the middle of the
image.

We can distinguish at a first glance the three packages, visualized as colored bubbles, and recog-
nize which classes belong to which package: the two packages "Hubble-UI" and "Hubble-Core"
are bigger than "Hubble-SceneGraph", meaning that they contain much more classes: "Hubble-
SceneGraph" package has in fact only two classes in it.
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Another thing we can understand from the image is that the Hubble-UI package has relations
with both the other two packages, while Hubble-Core and Hubble-SceneGraph have no relations
between themselves and are in fact placed far from each other.

In contrast to the central cluster of classes, we can also find some classes which are placed on
the outside area: we suppose those classes don’t have connections with other classes of the system.
Since we are displaying the whole Hubble and these classes are not referenced, the most probable
option is that those are classes whose code has been moved elsewhere, and that those are now disjoint
from the system.

After a little bit of investigation in the code we see that in fact these are classes are not used
anywhere, and that their functionality has been moved in other places, so they could be removed
without any harm.

5.1.2 In-depth Analysis

The visualization of the global system allowed us to get the information presented above, however to
have a better understanding of the system we need to explore it more in details: we zoomed in the
central part, where the two big packages get near each other, to try to understand something more
from the many classes in that area, as shown in Figure 5.2.

We can clearly see from the image that there are only a few classes, namely HubbleUI, Hubble-
LayoutSpec and RelationsMapper, from the Hubble-UI package that are close to the Hubble-Core
package, so we suppose that these are the classes that bridge the two packages.

HubbleUI class is also in the middle of many other classes, and thus we suppose that all of
them are related with it, according to the considerations we already presented in Section 3.5, where
we discussed the tendency of elements connected with many other to have them radially disposed
around it.

Because of the high density of classes in the area, it could happen that some classes gets dis-
played near each other even if they don’t have any relation, but just due to the fact that they are in
connection with some other classes that are instead related. In order to prove if our observations
were right we toggled edges displaying on while still focusing the same area of the visualization,
as shown in Figure 5.3. The first thing we checked is that HubbleUI class is indeed the one which
effectively connects the Hubble-Core package with the Hubble-UI package: we can in fact count
eleven relations with neighboring classes.

We can see that also the other two classes RelationsMapper and HubbleLayoutSpec have con-
nection with the Hubble-Core package, despite being in the Hubble-UI package. We decided then
to quickly browse the two classes and we found out that they are used to store the settings of
the algorithm, which are decided by the user in the control panel and must then be used in the
Hubble-Core package before the algorithm is run.
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5.2 Gaucho Subsystem

The first thing we want to analyze is the subpart of Gaucho that we use in our system: we did not
need to import the whole Gaucho, so we would like to explore how what we needed to connect to
Hubble works.

Figure 5.4 shows how this subpart of Gaucho looks like, however being it a larger system than
Hubble, there are more packages and connections; as a result all of the classes of the various packages
got attracted to the center of the visualization. Since we would like to analyze it at a more general
level we decided to increase the weight of package containment relations to see classes tidily closer
to their packages. The result of this new visualization can be seen in Figure 5.5.

If we wanted to keep all the classes inside their respective packages on the visualization we
could increase even more the weight on package containment relations, however the result already
obtained is good enough to learn something from the visualization.

We can immediately notice that two packages, namely GauchoMorphic-SystemSnapshots and
GauchoMorphic-Icons, are not connected to the rest of the system: their classes are in fact still
contained in the package, meaning they have no relations with other classes. We can also notice that
in package GauchoMorphic-Icons classes are not even connected between themselves.

In contrast with the two packages just described, GauchoMorphic-Core is clearly the central
package of this subsystem: is easy to see that it is connected to almost all of the other ones, and has
in fact been placed in the center of the visualization.

Being all connected classes attracted in the center, the classes which stayed on the outer packages
are classes which are not connected with the rest of the system. After this analysis of the Gaucho
subsystem, we can now visualize it together with Hubble, focusing on their interaction.

5.3 Interaction between Gaucho and Hubble

After selecting the packages we want to display and waiting more or less a minute, the visualization
of the two systems appears as shown in Figure 5.6.

With classes of the two systems already cached, Hubble took a bit less than one minute to
visualize them, and this is an already good result in terms of scaling since we are working with
slightly more than a hundred elements if we combine the two systems.

At a first glance we immediately recognize that the visualization is very similar to the one
of Gaucho presented in the above section in Figure 5.5: it has in fact the same structure. The
GauchoMorphic-Core is again in the center of the image, with other packages surrounding it; we
added in fact just three packages, which cannot modify too much how the Gaucho system is repre-
sented.

This time however also the Hubble-Core package is in the center, overlapping by a large amount
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of space with GauchoMorphic-Core. This is because they are both related with the packages sur-
rounding them, and the algorithm we developed tends to place such classes in the middle or on the
sides of the elements they are connected with, as we previously explained in Section 3.5.

The other two packages of the Hubble system took place in the circle around the cores of the
two systems. They have structurally the same disposition thay had when we explored the system in
Section 4, where Hubble-UI connected to both of the other two, which are instead not neighboring
each other.

With these two element we can now state that our algorithm always processes the data and returns
visualizations that are very similar to each other when run on the same system multiple times. This
is clearly valid for the general structure of the system, as the positioning of single classes depends on
the random starting position of elements on the first run, and cannot therefore be always identical.

An alternative view of the two system is displayed in Figure 5.7 to show how the random starting
position can influence the final positioning and that in case this happens the structure of the system
is however still preserved. All of the statements that we have done based on Figure 5.6 are in fact
still valid.

The only structural difference between the two visualizations is the positioning of Hubble-Core,
which is not anymore in the center of the packages. This happens because it was not connected to all
of the packages that were surrounding it in Figure 5.6, but only to some of them, and therefore it was
just an aleatory event that he did get positioned in the center. Hubble-Core is however in the central
part of the visualization also in Figure 5.7, meaning that it is one of the most connected packages,
as opposed for example to Hubble-SceneGraph package, which is only connected to Hubble-UI
package and therefore placed on the outer part.

One interesting peculiarity of the visualization of Figure 5.7 is the interaction between Gau-
choMorph class and GauchoMorphic-Events-Conditions package. What happens here is that Gau-
choMorph, which is related with a lot of classes, is also linked to GMCondition, which has connection
with many of the classes of the package. The two classes would tend to be pulled close one another
by the algorithm, however they are also being pulled away from each other by their other relations.
As a result we can see that GMCondition, which is the only class in the package that has relations
outside it, got pulled out of its package, and all of the classes it is related to have been pulled to the
edge of GauchoMorphic-Events-Conditions package.

This is possible because GauchoMorph and GMCondition are quite far from each other, and so
the edge connecting them is strong enough not only to pull the two classes close, but also to cause
a movement of many other classes in the GauchoMorphic-Events-Conditions package. The edge
was however not strong enough to pull other classes out of that package, as each class who would
have been gone out of it would have triggered the binding force that would have pulled it back to the
package. We can see this in more details in Figure 5.8, where GauchoMorph class is identified by a
red oval, while GMCondition is identified by a black one.
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5.4 Collections

With this example we want to show some of the limitations of our tool, but emphasizing the fact that
they are limitations relative to our implementation, and re-arranging the algorithm would enable us
to solve them.

Figure 5.9 shows the visualization of the Collections packages included in the last release of
Pharo, which is the framework in which Hubble was developed. What we wanted to show with this
example is the interaction between Hubble and the Collections package.

Already when selecting the classes we noticed a high number of packages, we could in fact
count fifteen of them, already leaving out all of the tests, since including them would have more than
doubled that amount. At a first gaze at the visualization we can immediately notice from the high
overlapping of packages that there are a lot of relations between them.

This is confirmed by the fact that almost all of the classes are concentrated in the middle area,
but this is a different situation with respect to the analysis of Figure 5.6. The previous analysis was
also showing all classes positioned in the center, but in that case the connections were still visible,
while now classes are so clustered that is impossible to see what is connected with what.

Figure 5.10 shows a detailed view of Collections packages: we zoomed in the cluster of classes
and turned edge showing on to emphasize the extremely high number of relationships taking place.
Our system cannot show in a good way such a high dense graph, and this is one of the limitations of
our approach, which is much better at working with a smaller number of relations.
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Figure 5.1. Hubble system visualization
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Figure 5.2. A zoomed view of the system’s visualization.
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Figure 5.3. Hubble system visualization zoom, with edges displaying toggled on.
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Figure 5.4. A general view of Gaucho.
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Figure 5.5. A general view of Gaucho with increased weight package containment relations.
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Figure 5.6. A general view of Gaucho and Hubble.
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Figure 5.7. An alternative general view of Gaucho and Hubble.
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Figure 5.8. Analysis of relations between classes.
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Figure 5.9. The general representation of Collections subsystem of Smalltalk.
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Figure 5.10. A view of the surprisingly high number of edges in the Collections subsystem of Smalltalk.
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Chapter 6

Conclusions

This thesis presents our algorithm for visualizing a software system, whose development revolves
around the set of goals we defined in Section 1.2.

In this closing chapter we analyze the results obtained with respect to those goals. We retrace the
development steps done during the development and implementation of our work in Section 6.1;
following it, in Section 6.2 we present a list of the possible directions which our thesis could be
developed further into. Finally, to conclude this document, in Section 6.3 we state our impressions
regarding the obtained results.

6.1 Summary

The goal of this work is to develop and implement an algorithm able to lay out the different part
that compose a system in a way that many different relations between displayed elements are taken
in account. To achieve it we created an algorithm which makes use of the space available in the
canvas, exploiting the positioning of the elements of the software system being analyzed to suggest
the degree of coupling between them.

To create the visualization of a software system our approach is divided into three phases:

1. Analyze the system to extract relevant entities that are both displayed i.e., classes and packages,
or used for laying out the visualization i.e., reference, inheritance and package containment
relations.

2. Aggregate the information extracted in the first phase to obtain the missing relations; once
this is done combine all the information to build a graph, which is used to model the software
system.

3. Layout the nodes of the graph using a customized force-directed algorithm. This process
is performed in three steps: first each package is considered individually and its classes are
positioned, then the package nodes are laid out according to relations between them, and
finally all the classes nodes are taken in consideration and positioned according to the edges
connecting them.
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After completing the algorithm we developed Hubble, a visualization tool created to implement
our approach and present its benefits. Hubble was developed to be used intuitively and to be learned
quickly, providing developers a way to create a visualization easy to comprehend, which would help
them creating a mental model of the system.

6.2 Future Works

Being this a very broad subject of study, there is a wide range of directions in which our proposed
solution could be expanded. Here we define some of the possible path that could be taken for
expanding this work and of the functionalities that could be added.

1. Prevent nodes overlapping. One problem of the force spring layout we have been using is
that it is meant to work with points, and not with extended shapes; this results in the overlap-
ping of some nodes under certain conditions, and thus in not letting users have a graphically
pleasant view of the system. We managed to work around the problem by modifying the
settings of the algorithm in order to try to prevent overlapping or at least reduce it to the
minimum possible, however some overlapping could still be possible in some situations.

We thought about two different strategies to solve this problem: the first would be imple-
menting a corner stitching layout [Ous82] that would prevent the overlapping of nodes in the
visualization phase. This is a simple solution to implement and would ensure good results
as we would be sure that no overlapping would occur, it could however cause some minor
movement that could cause two classes to move closer even if not related, or vice versa take
apart two connected ones.

The second strategy would be enhancing the algorithm to directly prevent overlap while
running the algorithm. This approach is surely harder to realize and, depending on its im-
plementation, could still not prevent all cases of overlapping. The advantage is that, having
it directly implemented in the algorithm, the final result would be closer to the optimal solution.

2. Speed up the algorithm. Even though the algorithm for laying out the graph has been opti-
mized while working on the thesis, there is still a lot of room for making it better. The first
thing that could be done is working on the computation of the force and try to simplify them.
Another way of making it faster would be to start cacheing results of some operations that are
computed many times and re-structure the algorithm around this cache.

3. Define a more intuitive way to browse the graph. Despite being possible to browse the
graph trough the zoom and move in the four directions (up, down, right and left), during
interaction with the program it came out to be intuitive for the users to click on the window
and drag the graph to display a different part of it. Implementing this would let users have a
better experience while working with our program.

4. Visualize class size. As of now, all classes displayed look the same, except for the name
and different color if they belong to different packages. One possible enhancement would be
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displaying some properties of a class by showing classes with different sizes, or with thicker
border according to the lines of code of the class, or depending on the number of method it
has, to make easier for users to recognize which are the main classes of the system.

5. Provide a detailed class tooltip. The program already provides a little tooltip showing the
name of classes displayed while mouse hovers them, however it could be a nice enhancement
to also provide additional information on the class in some ways, i.e. clicking on the class with
the right mouse button, giving users the opportunity to grab additional pieces of information,
while still having in mind our goal of keeping the use of the application extremely simple and
fast.

6. Show system evolution. As said in the previous part of the thesis, Hubble uses a graph as
basis to display data; this is a strong starting point that could be expanded and used as a
tracking tool for the system’s evolution.

Being already able to save snapshots of the systems at different time and to show them at
a later time, users could create a history of the lifecycle of the system. Once this has been
done it could be possible to integrate Hubble by making it able to create a video showing the
evolution of the system based on these snapshots.

6.3 Last Thoughts

Building a very flexible tool that lets users define which data should be taken in account for creating
systems’ visualizations, and also moving elements after the visualizations have been generated, gives
developers the freedom to analyze and explore in different ways various systems which can differ
in many aspects. This provides them with more possibilities to approach the problem of creating a
mental mode of the software system.

Our intuition of using space for displaying information, which can be grabbed by our brain
without spending much effort in it, is a characteristic that prove itself very useful and must always
be kept in consideration when developing any visualization tool.

We would also like to point out the importance of displaying multiple relations at once, as this
allows a good understanding of the system. Our approach of utilizing space for showing them is
a valid approach, however there could be others as well viable, if not better, and we hope that our
work is be able to push research in this way.
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