
MARS - Modular Architecture
Recommendation System

Analysis of System Decompositions through
Coupling and Cohesion metrics

Master’s Thesis submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

presented by

Alessio Böckmann

under the supervision of

Prof. Dr. Michele Lanza and Dr. Mircea Lungu

June 2010

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Alessio Böckmann
Lugano, Yesterday June 2010

i

Every big computing disaster has
come from taking too many ideas
and putting them in one place.

Gordon Bell

iii

iv

Abstract

Software architecture recovery and software re-engineering is of crucial impor-
tance for software maintenance and evolution. Through this process, the archi-
tect is able to obtain the original architecture from the “as is” system.

Such a recovery task requires automated tool support which aid in extracting
data of the system in order to reason on the provided information which may
be used for several different purposes (such as reducing the architectural drift
given by the absence of documentation or identifying reusable components and
isolated modules).

Due to the considerable size of many software systems, the raw metric in-
formation that can be extracted from the implemented system quickly becomes
unmanageable and therefore such data needs to be represented in a wide variety
of ways, each trying to uncover different aspects of the system.

The aim of the study is to devise a recommendation engine which informs the
software architect whether some entities belonging to a given package should be
moved to a different parent package. Such recommendations are provided on
the basis of an assessment of the coupling and cohesion of modules within a
system.

We discuss the impact and significance of coupling and cohesion within
object-oriented systems and we show different views and interpretations of these
metrics.

The direction that we follow is based on the Softwarenaut tool which, through
a visualization of software systems, provides an exploratory approach for uncov-
ering their architecture and evolution. We are going to introduce the MARS
tool built as part of this thesis, explain various strategies and algorithms that we
developed and discuss the results.

v

vi

Acknowledgments

First of all I would like to thank my supervisor, prof. M. Lanza for his guidance
and for the helpful comments that were given on earlier drafts of this disserta-
tion.

I would like also to thank M. Lungu for his valuable help and constant sup-
port without which, the tool and subsequent thesis would not have been possi-
ble.

Last but not least, many colleagues and close friends, that cannot be exten-
sively acknowledged but whose aid I am very grateful, have also been of great
support and I would like to thank them all as well.

vii

viii

Contents

Abstract v

Acknowledgments vii

Contents x

1 Introduction 1
1.1 Outline / Structure of the Document 2

2 Problem Description 3
2.1 Absence of a silver bullet . 3
2.2 Common practices for modularizing systems 4

2.2.1 Partitioning according to the architectural style 4
2.2.2 Partitioning through high level logical properties 4

2.3 Evolutionary issues . 5
2.4 Architecture Recovery . 5
2.5 Software Visualization . 7
2.6 Goals & Problem statement . 8

3 Sotwarenaut & MARS 9
3.1 Softwarenaut . 9

3.1.1 MARS component . 10
3.2 Modularizing Object-Oriented systems 11
3.3 Overview of coupling and cohesion 12

3.3.1 Coupling . 12
3.3.2 Coupling summary . 15
3.3.3 Using coupling as a quality metric 16
3.3.4 Cohesion . 18
3.3.5 Using cohesion as a quality metric 20
3.3.6 Coupling-Cohesion correlation 21

3.4 MARS tool . 22

ix

x Contents

4 Modularity recommendations 23
4.1 Types of Recommendation strategies 24

4.1.1 Inheritance strategy . 25
4.1.2 Dependency-based strategies 27

4.2 Structure of recommendations . 29
4.2.1 High level vs. Low level dependencies 31
4.2.2 Subject mobility ratio . 32
4.2.3 Granularity of module expansion 34
4.2.4 Informational metrics . 36
4.2.5 Strategies . 37

4.3 Scenarios . 49

5 Validation 53
5.1 AICup . 53

5.1.1 First impression . 55
5.2 SimpleSample . 58

5.2.1 Decoupling optimization . 60
5.3 Considerations on the strategies . 63
5.4 Softwarenaut . 66

5.4.1 Considerations on the results 68
5.5 CodeCity . 70
5.6 Improvements . 72

6 Conclusions 73
6.1 Summary . 73
6.2 Reflections . 74
6.3 Future Work . 75

List of Figures 78

List of Tables 79

Bibliography 81

Chapter 1

Introduction

Software engineering has characteristics which span both realms of rigid science
and artistic creativity. Considering that it is a relatively new science, as all of
computer science is, many attempts have been made towards finding a rational,
standardized and unified design process.

However, despite the improvements in software design which range from
better development tools, enhanced formal verification techniques and more
and more refined common practices (such as design patterns or, more gener-
ally, architectural styles), systems heavily on the ability and personal point of
view of the individual developer, architect or engineer.

What distinguishes therefore software engineering from other areas is this
balance between a structured, model-based development, and the intrinsic bi-
ased nature of the artifact that is developed. This bias comes from each indi-
vidual who has worked on creating the artifact and who has put his/her own
insights into developing the product. Software systems manifest this equilib-
rium at many levels, from the development process (e.g. Waterfall and Unified
Process vs. XP and SCRUM) to the way the systems are actually composed in
terms of design and architecture.

In this work we are concerned with the design of the system. In the context
of software reverse and re-engineering, the architectural structure and design of
a system are crucial to properly understand, improve and avoid its degradation.

The structure of a system, more often than not, reflects the perceived func-
tionality of the system that the software engineer had in mind during design
and development. It rarely represents the true internal structure and therefore
its decomposition into modules can be misleading. A major issue therefore arises
from this dichotomy between the intended structure of the system and its opti-
mal composition.

1

2 1.1 Outline / Structure of the Document

In this thesis we present an approach to analyze system architectures through
the use of coupling and cohesion metrics. We implemented the tool MARS which
exposes such analysis and is integrated in the Softwarenaut architecture recov-
ery tool. The approach is intended to provide to the recovery architect a “rec-
ommendation” engine which proposes a set of move operations based on the
amount of dependencies between entities in a (sub)system.

1.1 Outline / Structure of the Document
• In Chapter 2 we introduce the problem of system decomposition as well as

some terminology and pinpoint the aspects that will be discussed further
on.

• In Chapter 3 we present a brief overview of the object-oriented paradigm
and introduce the coupling and cohesion metrics that will be at the center
of the analysis.

• In Chapter 4 we describe the recommendations system and the proposed
solution as it has been implemented in the MARS tool

• In Chapter 5 we apply the tool on simple examples and on real software
systems and discuss the results as well as analyze the benefits and draw-
backs of each recommendation strategy.

• In Chapter 6 we conclude by summarizing the work and contributions and
point out some possible future work or improvements on the subject.

Chapter 2

Problem Description

There are several definitions of architecture such as [3]. For this work we are
going to adopt the definition provided by the IEEE 1471 standard ([9]) where
architecture is: “The fundamental organization of a system embodied in its compo-
nents, their relationships to each other and to the environment, and the principles
guiding its design and evolution..”

2.1 Absence of a silver bullet
It is a known fact that an incorrect modularization of software systems leads to
a fast and “ripple-effect” degradation of the architecture. This is true in other re-
search and development areas but is especially significant in the area of software
design.

This constant degradation is also known as architectural aging (initially de-
fined by [19]). The signs of architectural aging include:

Architectural drift increasing separation between the architecture (intended/
documented) and the as-is architecture. It leads to in-adaptability due to
the obscurity and non-coherence of the final architecture.

Architectural erosion increasing violations of the architecture which lead to
negative effects. Each violation contributes to the brittleness of the system.

Because of this, the “correct” partitioning and classification of functional
modules is of utmost importance.

However, as we analyze further on, there is no absolute metric for measuring
the correctness of a system decomposition. In fact, from this point of view,
correctness is actually unachievable due to the various layers of abstraction that
software systems present and that imply different “correct partitions” depending
on which level of abstraction is being considered.

3

4 2.2 Common practices for modularizing systems

2.2 Common practices for modularizing systems
Due to the lack of formal correctness proofs for decomposing software systems,
system architectures may follow various ad-hoc approaches (two of the most
common will be presented) which depend on the specific system.

2.2.1 Partitioning according to the architectural style

Architectural styles often impose and drive the way that processes are grouped
into modules. Simple or straightforward systems which make use of a single
architectural pattern often are constrained by the style. For example, a software
system which solely uses a Layered architectural style will most probably have a
partitioning of modules which reflects the various layers of the system whereas
a Pipe & Filter approach will produce modules based on the different stages of
the pipeline within the general process.
As we move towards more fine-grained patterns, more constraints will be ap-
plied to the partitioning approach (for example the MVC pattern dictates not
only the interaction between modules but also the clustering of processes into a
specific model, view or controller module).

2.2.2 Partitioning through high level logical properties

For larger systems which make use of more than a single architectural style, the
partitioning is not so straightforward, since the different styles may be compet-
ing in terms of how to modularize the system.
Therefore, a common practice for dividing the system is based on the high level
logical behavior of modules. This partitioning which is clear during development
is “imposed” by the architect and it should provide insights on the functionality
that each component provides.

According to Parnas the connections between modules are the assumptions
which the modules make about each other. In most systems we find that these
connections are much more extensive than the calling sequences and control
block formats usually shown in system structure descriptions.[18]

As an example, let us consider a process which is used to read from the lo-
cal filesystem and another process which is responsible of writing to the same
filesystem. These two components most probably will not share any data (al-
though they may have several similar structures) since they are responsible of
two highly different functionalities. From the abstract logical point of view that
is being considered the two components will probably be clustered together into
an IO module. However the same system may be partitioned differently, perhaps

5 2.3 Evolutionary issues

into two separate modules (especially if the two steps of input and output to the
filesystem are quite consistent).

The above example further clarifies the absence of an absolute measure of
correctness when dealing with the structure of modules in a system, since there
can be several different partitioning approaches, each (hopefully) based on a
different rationale.

2.3 Evolutionary issues

In the context of software evolution, correct modularization is of central impor-
tance to properly maintain and adapt the system throughout its lifecycle.

Although a logical partitioning of modules is perhaps the most “human un-
derstandable” form of dividing the system into subcomponents (which implies
an easier understanding of the functionality of a module), it lacks in provid-
ing a measurable quality of the partitioning and, more important, ignores the
dependencies between the different modules.

Therefore, despite its intuitiveness, the approach of dividing a software sys-
tem into subcomponents according to their high level logical functionality leads
to an entangled system, where, in the worst case, each module is dependent on
all other modules.

We must also consider the issues which may arise in the communication and
understanding of the architecture. Because of this, developers might place the
components in the wrong place.

For software evolution and maintenance therefore, such an approach implies
that the system is doomed to a continuous degradation.

2.4 Architecture Recovery

A key objective in reverse engineering is the recovery of the system architecture
[4]. Software Architecture Recovery (also known as Architecture Reconstruction
or Reverse Architecting) is based on extracting detailed data from a system and
returning a highly informative, condensed representation of the system to aid in
its understanding.

The process of reverse engineering and re-engineering of a system shares
similar characteristics with forward software engineering. It is therefore based
on standards and theoretic approaches but also on the intuition of the engineer.
However, the two have key differences in the starting point or input and in
objectives that they must achieve.The input to reverse engineering is composed

6 2.4 Architecture Recovery

of the final system and the recovery engineer must traverse backwards in the
lifecycle of the system to understand all of the design decisions that have been
made during development.

The difference in the initial input between the two engineering approaches,
where on one hand we have requirements for forward engineering and systems
for reverse engineering, implies that there is a wide difference in objectives be-
tween the two. Forward engineering is concerned with properly understanding
the requirements and reflecting the solution in the system, whereas reverse en-
gineering is interested in understanding the system and its design.

Understanding the system is however only the first goal and a means to ob-
tain the final objective of upgrading the architecture to avoid/reduce the signs
of architectural aging.

The architecture recovery method described by [10] concentrates on creating
higher-level views of the architecture through the following “extract-abstract-
present” process (depicted in figure 2.1).

Data extraction This phase consists in the retrieval of any kind of relevant in-
formation about the software system. Such informations may be given by
the source code, documentation, previous versions in the repository, de-
velopers or any stakeholder who where working on the project at the time
etc.

Knowledge organization This phase consists in organizing and abstracting the
information retrieved from the previous phase to a higher level (the ap-
proach proposed by Krikhaar is through Relational partition algebra rules
used to abstract to higher architectural levels).

Information presentation After having organized the extracted information,
the abstracted architecture must be presented in some sort thus requiring
a visualization.

7 2.5 Software Visualization

Figure 2.1: Software Architecture Recovery process

2.5 Software Visualization

A key point of the architecture recovery process is the presentation of the gath-
ered information which, given the high number of possible sources of data and
the amount of low-level information which can be extracted, can result in being
an additional problem on it’s own. However a proper visualization technique can
be used to greatly aid the recovery process by leveraging the intuitiveness and
pre-attentive responses of the reverse engineer. In fact visualization provides an
ability to comprehend huge amounts of data.[21].

We may distinguish between Scientific Visualizations (concerned with visu-
alizing physically-based objects), and Information visualization related instead
to abstract intangible data. Visualization of software systems clearly falls under
the second category and provides us a way to simultaneously see, compare and
analyze large pools of data.

Software visualization is important also in forward engineering since “the
motivation for visualizing software is to reduce the cost of software development
and its evolution. Software visualization can support software system evolution
by helping stakeholders to understand the software at various levels of abstrac-
tion and at different points of the software life cycle”.[1]. In the context of
Software evolution however, visualization is of fundamental importance, since
as systems evolve, they become more complex and more interconnected, thus
requiring more resources to be spent in maintenance. On top of that, since the
environment changes, software systems need to be continuously evolving oth-
erwise they become less and less useful in that environment. Because of this,
an automated tool support for visualizing the systems is important to assess the
architecture.

8 2.6 Goals & Problem statement

Classic and more recent state-of-the-art software visualization tools include
the program slices approach proposed by Ball and Eick [2], Rigi [17] and Code-
Crawler [11], as well as 3-dimensional-based approaches such as proposed by
Gall, Jazayeri and Riva ([8]), SourceViewer3D [16] and CodeCity [22].

In our work we augment Softwarenaut [13] by adding a recommendation
tool to the existing reverse engineering system.

2.6 Goals & Problem statement
From the architecture recovery point of view we are therefore interested in im-
proving the structural architecture of a system. To achieve this, we need a way
to explore and analyze the system and a way to offer and present some recom-
mendations on how to improve the architecture of the system under question.
Regarding this last point, as has been described earlier, the approach for pro-
viding recommendations should be based on an automated algorithm coupled
with the interaction, evaluation and confirmation of these recommendations on
behalf of the user.
Summarizing, given a software system as input:

1. obtain direct metrics (related to the source code) regarding the strength
and amount of dependencies between components of the system.

2. compute a series of recommendations by comparing the dependencies
within a module (cohesion of the module) with the dependencies exter-
nal of the module (coupling).

To this purpose we present the MARS plugin for the Softwarenaut reverse
engineering tool.

Chapter 3

Sotwarenaut & MARS

3.1 Softwarenaut
Softwarenaut is a tool aimed at visual architecture exploration. Its purpose is to
aid the reverse engineer in the analysis of a system by providing a top-down ex-
ploration of the modules and their dependencies and can scale to large software
systems.

The exploration metaphor used in Softwarenaut (depicted in figure 3.1) al-
lows the reverse engineer to proceed in the understanding of the system through
an iterative exploration (or expansion) of containing modules to reveal the struc-
ture of the subsystem. At each level of expansion, detailed information regard-
ing the entity and its dependencies towards other modules is provided. The tool
therefore follows a bottom-up approach to represent the system by gathering
various low level metrics and information and presenting them through an ex-
ploratory and informative view. The tool scales to large systems and can be used
to explore evolving systems as well as software ecosystems (for additional infor-
mation on the exploration of evolving systems or of the system decompositions
see [13], [14] and [15]).

9

10 3.1 Softwarenaut

src

com

org

io

model controller

gui
util

tests

module contents expansion

module contents collapse

Figure 3.1: Top-down exploration metaphor used in Softwarenaut

3.1.1 MARS component

The component that was developed as part of this dissertation was built in or-
der to assist the reverse engineer in the understanding of a system through the
exploratory approach offered by Softwarenaut.

The system makes use of the same underlying architecture and model used
by Softwarenaut. It was built with the Smalltalk environment and uses the
MOOSE re-engineering environment as well as the FAMIX meta-model to rep-
resent and extract direct metrics from software systems (see [5],[6]).

Our work therefore concentrates on providing suggestions which we are go-
ing to refer to as recommendations to the recovery architect. Such recommenda-
tions are based on an analysis of the system from a structural point of view and
are mostly based on the number of method invocations across different mod-
ules. Through these suggestions we aim at assisting the reverse engineer in
discovering the critical modules of the system at hand and possibly improve its
architecture by lowering/removing the number of cross-package dependencies.

11 3.2 Modularizing Object-Oriented systems

3.2 Modularizing Object-Oriented systems
Object-Oriented development provides concepts and means for having a more
structured design of the system. In the Object Oriented paradigm, the core
structure - the object, provides the functionality that is specified by its class (the
definition of the object’s behavior). Objects communicate between themselves
through message passing.

Objects therefore are intended to characterize a concept or a unit of data that
possibly has a concrete realization in the real world. They contain both the data
and the processes for manipulating information.

This first level of modularization, known as encapsulation or information hid-
ing provides a means for which objects can hide certain inner details (both re-
lated to their data structures or methods). Information hiding leads to objects
which respond only to a specific set of messages which is a subset of all the
possible messages and functionality that it provides.

The communication between objects therefore is based on the interface that
an object reveals to the rest of the system and through which other objects can
communicate. In some languages such as Java, interfaces are clearly defined
and separated from the rest of the structures of the language (such as classes
and methods).

This powerful mechanism, if followed properly, allows systems to be highly
structured, in accordance with the principles of single responsibility and separa-
tion of concerns.

These characteristics which distinguishes OO from other programming paradigms
requires a way to include genericity that for example other functional or imper-
ative languages provide. This is achieved through the use of inheritance and
subtyping which ultimately leads to polymorphism.
Through these mechanisms, the developer is able to create relations between
objects in the sense of grouping different classes into a common hierarchy.

12 3.3 Overview of coupling and cohesion

3.3 Overview of coupling and cohesion

3.3.1 Coupling

Coupling has been defined for the first time in the realm of procedure-oriented
systems by Stevens et al. as “the measure of the strength of association estab-
lished by a connection of one module to another.”[20].

Eder et al. state that: “Strong coupling complicates a system, since a module
is harder to understand, change, or correct by itself if it is highly interrelated
by other modules. Complexity can be reduced by designing systems with the
weakest possible coupling between modules.” [7].

Complexity of systems therefore is reduced by having weak (also known as
loose) coupling between components. Highly interrelated system on the other
hand manifest strong (or tight) coupling which implies that modules have many
mutual dependencies and communicate constantly.

Coupling categories

As we analyzed earlier in section 3.2 methods represent the communication
means through which objects interact with each other. Objects therefore, when
tied between each other in interaction, establish what is also known as invoca-
tion coupling.

The following list (ordered from best/loosest to worst/tightest) contains the
classical different known degrees of coupling (summarized also in table 3.1). In
object-oriented systems, these various types of coupling can be mapped directly
to the general class of invocation coupling, with slight differences according to
the peculiar characteristics of OO.

1. Invocation coupling

Message coupling
This the loosest type of coupling if we don’t consider the absence
of coupling at all (which for large systems with multiple modules
is anyways unachievable). Message coupling consists of dependen-
cies between modules which are based on communication through a
public interface. The various modules therefore do not share any of
their internal data or processes but instead reveal only the module’s
global functionality. An example of message coupling is the asyn-
chronous communication between modules through event dispatch-
ers and event handlers commonly used in User Interface toolkits.

13 3.3 Overview of coupling and cohesion

Data coupling
A common form of coupling in many systems, data coupling occurs
when modules share their internal data and expose it to other mod-
ules. This happens when we have parameter passing in messages
between modules. The atomic data belonging to a single module is
therefore “released” to the public or to the communicating module.
This coupling form is considered to be the best when joined with
message coupling since only the relevant information is passed as
parameter to the object being invoked and not any additional data
which may not be useful.

Stamp coupling
Similarly to data coupling, stamp coupling happens when compound
data or data structures are shared between modules. It represents a
higher degree of coupling not only because the data that is shared
is more complex and probably more useful and central to the system
functionality, but also because the whole data structure or record is
passed between modules even when only a subpart of it is required
leading to additional overhead in communication.

Control coupling
Control coupling occurs when the procedural flow of execution of a
module is controlled by another module(such as through the param-
eter passing of a boolean flag). The effect is to create a tight coupling
between the two modules, where one is directly dependent on the
output and the information provided by the other module. This de-
gree of coupling excludes other tighter forms of coupling (such as
external, common or content) since it is solely based on parameter
passing between objects. Control coupling, although it’s not consid-
ered as negatively as other forms of coupling, can lead to a ripple-
effect degradation of the system, since changes in a module affect
other modules through hidden changes in the control or in the be-
havior of the controlled module.
The OO paradigm does not prohibit control coupling but, subtyping,
dynamic binding and ultimately polymorphism, offer mechanisms to
avoid it.

External coupling
This kind of coupling reflects high and tight dependencies between
modules which share data which is not owned or internal to any of
the modules. The data is externally imposed and constrain the way
the modules can be constructed. Examples of external coupling are
data formats, communication protocols and pre existing interfaces. If

14 3.3 Overview of coupling and cohesion

we consider the method level as a module, external coupling is given
by the use of instance variables which do not represent the state of
the object or of the class. In case of classes and packages, external
coupling is given by the use of global data and variables.

Common coupling
Similarly to external coupling, common coupling is based on shared
data external to the communicating modules. In this case however,
the shared data is usually unstructured and is defined by a module of
the system (such as a global variable), and therefore modification of
such data implies that all modules dependent on it change function-
ality. Common coupling is forbidden by the OO paradigm since there
are no constructs for creating a globally shared space where objects
and classes connect to.

Content coupling
The highest level of coupling occurs when the encapsulation within
a module is ignored and other modules directly access (and possibly
modify) the internal functionality or data of the module. This implies
that the other modules must have knowledge of the internal details
of the package with the consequence that each module is highly de-
pendent on the others.
The object-oriented paradigm limits, through encapsulation and in-
formation hiding, the amount of direct access to the implementation
of a class or method. However, a low use of information hiding (pub-
lic visibility of the contents of a module), or, for example the use of
the friend modifier in C++ which allows to override the private or
protected data of a class, can easily lead to content coupling.

Classes and packages, being the container components which methods be-
long to, can also manifest the different degrees of interaction coupling that
have been described. On top of that, classes expose other forms of cou-
pling due to their more structural nature (as opposed to the behavioral
nature of methods) and to the additional OO properties which must be
considered.

Considering this last aspect we can define an additional type of coupling
based on the inheritance relationships between classes.

15 3.3 Overview of coupling and cohesion

2. Inheritance coupling
Can be clearly applied only to classes but the coupling between the class
modules propagates through the abstraction layers showing itself also at
the package level (this occurs when the module containing a child class is
different than the parent’s).

Inheritance coupling is of high importance because of the improvement
possibilities that it offers in terms of refactoring and generalization but
also due to the negative impact on reusability for hierarchies split among
different packages. The effects of inheritance coupling may reveal them-
selves in cases where we have large inheritance hierarchies and where a
super type definition/signature is modified. Such changes affect the whole
underlying hierarchy which means that the degree of coupling is directly
related to the extent of the inheritance hierarchy.

3.3.2 Coupling summary

Table 3.1 summarizes the different levels of coupling that we just described.

Coupling type Degree Description
inheritance - subtype relationship between class modules

message lowest message passing/interface communication
data medium shared data

stamp medium shared data structures
control high control of a module is yielded to another module

external high common protocols/interfaces/data format
common high shared global data
content highest full access to the internal details of a module

Table 3.1: Summary table of different coupling categories

16 3.3 Overview of coupling and cohesion

3.3.3 Using coupling as a quality metric

As described earlier in section 3.2, classes in object-oriented systems already
provide a modularization of the functionality. We therefore have different levels
of abstraction for what concerns the modules that are being analyzed (typically
classes and packages).

When the module is a class, the concept of coupling represents the number
of method invocations which are external to the class. In the model that is being
proposed, the class coupling refers instead only to the messages sent to classes
belonging to other packages (any outgoing messages within the same package
are instead treated as cohesive links, as will be described in 3.3.4).

Coupling provides a metric which can be used to describe and analyze soft-
ware systems and is directly mapped to the quality of the system. It can also be
used to analyze the lifetime of a system and to evaluate its maintainability. In
order to loosen the coupling of a system, two main approaches can be followed:

1. Reduce the coupling by refining and modify the code in order to lower the
degree of coupling. For example, such an approach would be based on
removing control coupling by making heavier use of polymorphism thus
obtaining the lower degree stamp coupling. After a further iteration the
stamp coupling would be reduced to message coupling. Such an approach
however is not applicable in the context of architecture recovery since it
requires a deep knowledge of the system and can be hardly automated.

2. The approach that we are considering instead is based on the extent and
amount of coupling that modules have. From this point of view, a method
invocation external to the package represents a dependency between the
two modules which increases the coupling between the two classes/packages.

Coupling can be applied at any layer of grouping, such as at the class or
package level. We can thus define the coupling of a class or package as the
number of dependencies towards other packages in the system.
More precisely:

external class coupling the number of dependencies which the class has to-
wards classes contained in other different packages.

coupi =
ki

ni
(3.1)

where k is the number of inter package dependencies relative to class ki

and n is the total number of dependencies.

17 3.3 Overview of coupling and cohesion

package coupling the coupling of the package represents the total number of
dependencies towards other packages.

coup j =
C j
∑

class

coupclass (3.2)

where C j is the total number of classes contained in the package.

Coupling therefore is used as a quantitative metric and encompasses all cat-
egories that have been described earlier and that are grouped as invocation cou-
pling with the exception of the inheritance coupling which is treated differently
(further described in 4.1).

We thus define two categories of coupling (table 3.2): Invocation and in-
heritance coupling where one reflects the number of dependencies that there
are between different modules and the other the number of subtype relations
between classes.

Coupling category Metric used Module level
Inheritance Definition location class, package

(top of inheritance tree)
Invocation quantitative method

(invocation counts) class, package

Table 3.2: Coupling categories associated with their main metric and abstraction
level

As has been described, due to the nature of OO systems, there are various
ways of interpreting a module based on the abstraction level. We limit our search
to the class and package levels since the method level is too fine-grained when
dealing with architecture recovery. Nonetheless it is worth mentioning that, as
equation (3.2) represents the summation of the class coupling obtained by (3.1),
this itself is composed by the coupling of the methods, therefore the coupling of
a class i can also be expressed as:

coupi =
Mi
∑

method

coupmethod =
M j
∑

method

kmethod

nmethod
(3.3)

where Mi is the total number of methods contained in class i, kmethod is the
number of method invocations external to the package and nmethod is the total
number of invocations.

18 3.3 Overview of coupling and cohesion

3.3.4 Cohesion

The concept of cohesion was also defined by [20] and is highly correlated with
coupling. Cohesion provides a measure of the focus of a module in the sense of
how strongly related are the components and responsibilities within the module.

Quality systems present a high cohesion which implies that the modules
within the systems are robust and maintainable as well as reusable. On the other
hand, low cohesive systems have modules that are not single-focused therefore
highly depending on others.

Cohesion categories

Similarly to coupling, there are different categories for cohesion (summarized in
table 3.3):

Functional cohesion
The highest and strongest level of cohesion is given by functional cohe-
sion in which all and only the module parts which contribute to the single
functionality of the module are grouped together. In case that there is
no coupling with other modules, functional cohesion allows the packages
to be treated completely independently and can be modified or removed
without the risk of affecting other modules or the whole system.

Sequential cohesion
This cohesion type can be found especially in systems which follow a Pipes
& Filter architecture or where a specific functionality of a module part
is directly related to the output of another module part. The cohesion
therefore is based on the sequential steps that are necessary to produce
the desired functionality (for example the preprocessing, lexical analysis
and syntax analysis of source code in a compiler process).

Communicational cohesion
Communicational cohesion is directly linked to the shared data of a mod-
ule and to the communication that module parts share between them-
selves. Module parts are therefore grouped based on the amount of inter-
action that they share.

19 3.3 Overview of coupling and cohesion

Procedural/Temporal cohesion
Procedural and temporal cohesion are similar in the sense that in both
cases, module parts are grouped according to the specific point in time or
execution when they are called. For example, we have procedural cohesion
when a part of a module (which is responsible of checking file permissions)
is grouped together with another part which handles the actual opening
of a file in case there are sufficient privileges.

Logical cohesion
Logical cohesion is the most common kind of cohesion and has been de-
scribed earlier in 2.2.2. Module parts are grouped therefore according to
their logical functionality (their perceived functionality) even if the parts
are very different in nature.

Coincidental cohesion
From its intuitive name, coincidental cohesion represents the grouping of
functionality into modules without any rationale therefore through an ar-
bitrary or random decision. An example of coincidental cohesion is a mod-
ule which contains commonly used “utility” functions, which may or may
not have some degree of cohesion.

Cohesion summary

Table 3.3 summarizes the cohesion categories that we just described.

Cohesion type Degree Description
coincidental lowest random grouping into modules

logical low grouping based on a logical categorization
procedural medium grouping based on execution time of module parts

communicational high module parts all operate on the same shared data
sequential high parts follow a well-defined sequence of execution
functional highest parts all contribute to a single responsibility

Table 3.3: Summary table of different cohesion categories

20 3.3 Overview of coupling and cohesion

3.3.5 Using cohesion as a quality metric

Given our definition of coupling we can already see that the dependencies that
are not to be considered as coupling fall under the category of cohesion and
vice-versa. We can therefore define cohesion in a similar way as:

external class cohesion the strength or amount of dependencies which the class
has towards classes within its same module.

cohi =
ki

ni
(3.4)

where k is the number of intra package dependencies and n is the total
number of dependencies.

package cohesion represents the total number of dependencies and communi-
cation links between the classes contained in the module.

coh j =
C j
∑

class

cohclass (3.5)

where C j is the total number of classes contained in the package

The cohesion categories can therefore be defined in the same way as for
coupling (see table 3.4).

Cohesion category Metric used Module level
Inheritance Definition location class, package

(top of inheritance tree)
Invocation quantitative method

(invocation counts) class, package

Table 3.4: Cohesion categories associated with their main metric and abstraction
level

21 3.3 Overview of coupling and cohesion

3.3.6 Coupling-Cohesion correlation

The high correspondence between coupling and cohesion is given by the fact
that both positive and negative shifts on the quality scale of one measure, tend
to inversely affect in the same way the other measure.

Figure 3.2 depicts this correspondence. We can see that systems can have a
high external coupling and low cohesion but also high cohesion. These are the
candidates which will be considered later when providing recommendations.
The objective is to minimize the external coupling of an entity in order to push
it as far as possible under the curve which represents the ratio between coupling
and cohesion.

Note that the linearity between coupling and cohesion in systems is a sim-
plification used for explaining the relation between these two metrics and that
the actual curve may be different. The choice of whether to provide a move
recommendation of an entity depends on the point of the curve that the system
falls on.

high

highlow

mild

mild

external cohesion

ex
te

rn
al

 c
ou

pl
in

g

entangled system
(high coupling - high or low cohesion)

high communication between modules
modules with multiple responsibilities

modular system
(low coupling - high or low cohesion)

low interface-only communication
single responsibility modules

Figure 3.2: Correlation between coupling and cohesion

22 3.4 MARS tool

3.4 MARS tool

Figure 3.3: MARS tool op-
tions & parameters sidebar

The MARS tool is integrated into Softwarenaut
and presents a new window through the toolbar
button shown in figure ?? on each system model
change.

Figure 3.3 depicts the sidebar of the MARS
window where the recovery architect user can set
various parameters to restrict or widen the search
space.

A button, which is not depicted in the
figure, allows the user to export the rec-
ommendation results in csv format (comma-
separated entries for importing in a spread-
sheet application). Another “shortcut” but-
ton is provided for running all of the strate-
gies on the fully expanded system (i.e. flat
system scope). The qualitative results (i.e.
the subject, the source and target packages)
are grouped as before into an exportable csv
file.

Once the desired scope granularity, depen-
dency level and strategy have been selected, the
resulting recommendations are displayed in a side
view in a tabular form.

We will now present the approach for pro-
viding recommendations and describe in detail
each of the specific parameters that we just men-
tioned.

Figure 3.4: Softwarenaut toolbar

Chapter 4

Modularity recommendations

As has just been described and depicted in figure 4.1 we base our analysis from
the coupling perspective in the sense that we aim to reduce it when it is higher
than the cohesion. Of course, given our definition, the complementary approach
can also be taken by considering the cohesion and providing recommendations
in case it is lower than the external dependencies of the entity.

external cohesion

ex
te

rn
al

 c
ou

pl
in

g

recommendation candidate
 full coupling, no cohesion

recommendation candidate
 coupling > cohesion

rat
io th

res
hold

high

highlow

mild

mild

Figure 4.1: Recommendation threshold based on coupling/cohesion ratio

23

24 4.1 Types of Recommendation strategies

Recommendations therefore are the main structure of the MARS tool and
contain the information relative to the state of the system. This corresponds
to the current exploration view of the system decomposition which is provided
by Softwarenaut. Recommendations also hold the predicted improvement that
would arise from performing the recommended move.

In order to provide the recommendations, the system must undergo a further
expansion of its entities (which may be packages, classes, methods) in order
to extract the detailed internal state of the modules. Each child entity is then
processed as possible candidate for becoming a recommendation result based on
the specific setting parameters (described later in section 4.2) and according to
the main recommendation strategy which is being applied.

4.1 Types of Recommendation strategies
We propose two general strategies for producing recommendations. These re-
flect the two coupling/cohesion categories (inheritance and invocation) that
have been described earlier. We thus distinguish between a structure-based strat-
egy which perform an analysis of the inheritance hierarchies and dependency-
based strategies which are responsible of analyzing invocation dependencies be-
tween modules.

25 4.1 Types of Recommendation strategies

4.1.1 Inheritance strategy

The recommendations are based on an analysis of the structural properties of
the system. One of these properties are, in the case of object-oriented systems,
the inheritance and subtype hierarchy of the classes. Classes hold both behavior
as well as data (and data structures), therefore analyzing the inheritance hier-
archy allows to assess the stamp and data coupling of the system (as well as the
logical cohesion which is given by the structure of the hierarchy).

Several strategies for providing recommendations can be applied. These
strategies all have the common goal of reducing the coupling and increasing
cohesion at the package level. The direction that we chose as strategy is based
on grouping classes which extend a common superclass into the location of the
declaration of that superclass. This choice is due to the fact that the static dec-
laration of classes and their relationship to other classes is clearly a structural
design choice made by the developer. As such, the location of a class which has
subclasses is taken as the reference target of all subclasses since it represents the
global definition of the interface.

Package A

Package B

superclass A

subclass A1 subclass A2

superclass B

subclass B2

subclass B1

recommendation

Package A

Package B

superclass A

subclass A2subclass A1

superclass B

subclass B2

subclass B1

Figure 4.2: Example situation for a recommendation given by the inheritance
analyzer

26 4.1 Types of Recommendation strategies

The process can be found in Algorithm 1 and Algorithm 2. The output con-
sists of recommending a move of any subclass to the package of the root super-
class in case the two packages are different. This has the effect of grouping all
inheritance hierarchies into a single module. Figure 4.2 depicts the strategy that
is followed by the recommendation system and that has just been described.

Algorithm 1 inheritanceRecommender(Model M)
recommendations ← new List.
for each package module Pi in M do

for each contained class C j do
recommendations add(recursiveSuperClass(C j))

end for
end for
return recommendations

Algorithm 2 recursiveSuperClass(Class C j)

if C j hasSuperclass then
if superClass(C j) isInTheSubSystem then

C j ← superClass(C j)
recursiveSuperClass(C j)

end if
end if
return recommendations

27 4.1 Types of Recommendation strategies

4.1.2 Dependency-based strategies

The general recommendation strategy for the dependency based analysis is based
on obtaining the external coupling and cohesion for each entity (class) that is
being analyzed. This implies that each entity that is being analyzed, under-
goes a hidden expansion if the modules in order to gather metrics’ informa-
tion.Different strategies for obtaining and representing the coupling and cohe-
sion metrics will be discussed further on but for now we can distinguish two
cases where we can apply recommendations:

Entity with higher coupling than cohesion (coupling > cohesion)
We have seen that coupling and cohesion are complementary metrics there-
fore a recommendation strategy that would lower coupling would be equiv-
alent to one that increases cohesion (assuming that both metrics are rep-
resented in the same manner).
The direction that will be considered from here on points at reducing the
coupling of a system, therefore entities which are susceptible to recom-
mendations are those with a higher number of dependencies towards other
packages than towards its own package (an example can be found in figure
4.3).

recommendation

Package A

class A0

class A2class A1

Package B

class B0

class B1

Package A

class A0

class A2class A1

Package B

class B0

class B1

Figure 4.3: Example situation for a recommendation given by the dependency
analyzer (in case the coupling > cohesion)

28 4.1 Types of Recommendation strategies

Entity with no cohesion (cohesion = 0)
From this point of view we can also consider entities with no cohe-
sion but with some degree of coupling (see figure 4.4). This specific
case of the generalized approach described earlier is noteworthy since
there is little need to perform an in-depth analysis because the entity
has no measurable reason to be contained where it is. Because of this,
any movement towards one of its coupled neighbors would lower the
coupling of the system.

recommendation

Package A

class A0

class A2class A1

Package B

class B0

class B1

Package A

class A0

class A2class A1

Package B

class B0

class B1

Figure 4.4: Example situation for a recommendation given by the dependency
analyzer (in case the cohesion = 0)

Other situations or states that the system may show do not require recom-
mendations since the ratio between coupling and cohesion is sufficient (meaning
that entities have more cohesion that coupling) and cannot be improved. More
specifically we can distinguish the following sub-states:

Entity with loose coupling and strong cohesion (coupling < cohesion)

Balanced entity (coupling = cohesion)
Specific situations of this general state include the cases when we
have a balanced class, therefore when the two metrics are equal. We
take a conservative approach on this situation since a move recom-
mendation would not bring any improvement.

29 4.2 Structure of recommendations

Orphan class (coupling = cohesion = 0)
Another case when recommendations are not provided is when there
isn’t enough information relative to the metrics such as when there
are orphan classes with no dependencies towards any entity.

Entity with no coupling (coupling = 0)
As for the previous case we do not have enough information regard-
ing the possible targets of a recommendation since there are no de-
pendencies towards other modules. This situation represents the op-
timal desired situation where a module component contributes only
to its module functionality.

Now that the condition for providing a recommendation has been defined
we can distinguish various strategies for calculating the coupling and cohesion
metrics.

4.2 Structure of recommendations
The output recommendations are object structures which contain the following
fields:

subject an entity which is susceptible to a recommendation
from a package

(which contains the subject of the move)
to a target package
strategy the strategy used by the recommender
dependencyLevel high-level (a dependency edge implies an increase

of 1 in the coupling) or low-level dependencies
(the coupling is the sum of all invocation edges)

scope next expansion (contents of the viewed system)
or flat system (full expansion of the packages)

rank couplingImprovement · subjectMobility
subjectMobility a number (the coupling of the subject over its

total number of dependencies).
systemCoupling number representing the total coupling of a system

(relative to the strategy being used)
couplingImprovement a number (the gain in terms of decreased coupling

that a move would produce)
description textual description of the reason for the move

30 4.2 Structure of recommendations

The main fields are the subject, from, and to which define the recommen-
dation. Recommendations are given based on a particular strategy which is
applied to the system under analysis.

Recommendations contain parameters which can be modified through the
graphical user interface to restrict or widen the search space. These are the
subjectMobility, dependencyLevel and scope which we will describe in de-
tail in the following section.

Other fields provide information such as couplingImprovement and
systemCoupling which are numerical metrics which provide information on the
improvement of the recommended move and on the full (sub)system respec-
tively. The rank is represented as the product between the mobility ratio and
the coupling improvement.

31 4.2 Structure of recommendations

4.2.1 High level vs. Low level dependencies

The first difference which distinguishes the recommendation strategies is the
dependency level. We refer to it as high or low based on the following definitions:

High level Coupling and cohesion are based on the sheer number of dependen-
cies between classes. Only the high level dependencies between modules
are considered therefore only the existence or absence of connections be-
tween packages.

Low level The low level view instead counts the true number of dependencies
between modules. In this case the coupling and cohesion of a module is
given by the cardinality of its dependencies (therefore by the cumulative
number of method invocations). This view is different from the previous
since it counts the weight of dependencies between modules instead than
the existence of dependency links between modules..

Referring to figure 4.5, the number of high level dependencies is 3, whereas the
low level dependencies based on number of method invocations amounts to 40.
We leverage these different views of the metrics in the scenarios discussed in
4.2.

Figure 4.5: Example system for the dependency level

32 4.2 Structure of recommendations

4.2.2 Subject mobility ratio

Referring to the initial description on how to use coupling as a quality metric
(see equation 3.1), the mobility of a class represents an important parameter
which can be used as threshold for the recommendation solution.
First of all, such a metric represents the balance between coupling and cohesion,
and since we are considering the problem from the coupling point of view, this
ratio must be > 0.5 in order to have any improvements. Anything less would
imply that the entity has more dependencies within its module than towards the
external modules.
The mobility ratio can be therefore seen as the coupling “over”/divided by the
coupling and cohesion. The ratio is thus equal to 1 when the cohesion is zero,
which means that the entity has no absolutely no reason of being where it is
(from the structure point of view).
The mobility of an entity is therefore enclosed between 0 and 1 where, when
such a value is ≤ 0.5 we have a stable (more cohesed than coupled) entity
whereas any values > 0.5 represent a high mobility of the subject which there-
fore becomes a candidate entity to be recommended (see figure 4.6).

1

0

0.5

external cohesion

ex
te

rn
al

 c
ou

pl
in

g

0.75

0.25

10 0.5 0.750.25

mobility ratio = 0.5

rat
io th

res
hold

mobility ratio = 0.75

Figure 4.6: Recommendation threshold based on the subject mobility ratio

33 4.2 Structure of recommendations

Such an approach can be used to perform an initial overview of the state of
the system by setting the mobility ratio to 1 which would result in recommen-
dations with a high confidence on which entities are wrongly placed and should
be moved.

34 4.2 Structure of recommendations

4.2.3 Granularity of module expansion

This setting (which we also referred to as “scope”) allows the recommendation
tool to expand the system under analysis down to the individual class level.
Given for example a system modularized in nested packages (such as in the
example in figure 4.7) the default behavior which we assumed up to now (i.e.
performing a hidden expansion of all of the modules to extract the metrics)
corresponds to the next expansion setting. The alternative option is the flat
system which performs the hidden expansion recursively down to the class level.

Figure 4.7: Current view of the explanatory system for the scope parameter

1. next expansion:
This is the default setting for the recommendation tool and corresponds
to obtaining the recommendations for the current exploration view given
by Softwarenaut. This option allows the system to be inspected in a step-
wise manner by expanding modules or modifying the system through the
exploration and metric filters which are provided by Softwarenaut. The
returned results therefore contain as recommendation subjects the entities
which are contained in the current modules being explored. Figure 4.8
depicts how the system viewed in figure 4.7 is seen by the tool

35 4.2 Structure of recommendations

Figure 4.8: System as viewed by the next expansion scope

2. flat system:
This option which naturally returns more recommendation results is based
on recursively expanding the contents of the packages which are being ex-
plored on the current Softwarenaut view. It therefore corresponds to a
full expansion of the modules down to the class level and returns recom-
mendations on those subjects. Referring to the example system, figure
4.9 depicts how it is seen by the tool in the flat system expansion. Pack-
ages level2band level2a (which itself contains package level3) are
expanded down to revealing the classes F,G,H,I and A,B,C.

Figure 4.9: System as viewed by the flat system expansion scope

36 4.2 Structure of recommendations

4.2.4 Informational metrics

System and improvement coupling
Additional information which is provided by the recommendation sys-
tem contains the amount of coupling of the whole system, as well as the
discount coupling / gained cohesion which would follow from perform-
ing the recommended move. These two metrics are provided only with
invocation-based strategies and provide two measurable values for com-
paring recommendations.

For each dependency-based strategy, the improvement which is given by
a recommendation represents the number of dependencies that would be
eliminated by performing the recommended move operation. The number
of dependencies is relative to the strategy that is being used (therefore ei-
ther high-level or low-level dependencies).

All the dependency strategies compute the improvement given by moving
an entity j to the most coupled package pmax as follows:

improvement j = dt+1− dt

Where dt+1 is the amount of inter package dependencies there would be
after performing the recommended move and dt is the value representing
the current number of dependencies.
The value of dt+1 which again represents the coupling of the entity after
performing the move is given by:

dt+1 = dt − (d → pmax)t + it

where (d → pmax)t is the amount of dependencies towards the most cou-
pled package. Thus dt−(d → pmax)t represents the remaining coupling/number
of external dependencies there would after the move and it is the co-
hesion/amount of package-internal dependencies of the entity. We need
to consider also this since performing atomically the recommended move
would imply that all of the internal dependencies would become external
to the package after the move.

rank
The rank represents the product between the improvement of the recom-
mended move and the mobility ratio of the subject. This value is thus
directly proportional to both the gain in terms of coupling and to the mo-
bility ratio (which is highly influence by the cohesion).

37 4.2 Structure of recommendations

4.2.5 Strategies

As described earlier, strategies can be applied at the high or low dependency
level. As such, each of the following strategies will have a high and a low level
version.

Local strategy

This corresponds to a greedy strategy which restricts the scope of the
search to the package the entity under analysis is most coupled with. We
therefore analyze a subsystem composed of two packages and the depen-
dencies between them. We thus refer to it as a Local strategy.

The process and behavior are defined in algorithm 3 and depicted in figure
4.10 for the high level local strategy, and in algorithm 4 and figure 4.11
for the low level local strategy, respectively.

Algorithm 3 dependencyRecommender - High Level Local Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,highlevel)
N Pj ← getMostCoupledPackage(C j, highlevel)
interDepList ← getExternalDependencies(C j,N Pj,highlevel))

coupling j ← length(interDepList)
cohesion j ← length(int raDepList)

if coupling j > cohesion j then
sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for
return recommendations

38 4.2 Structure of recommendations

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling to A = 2
cohesion = 2

ratio = 0.5

Figure 4.10: Example state as seen by the High-level Local Strategy

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling to C = 5
cohesion = 3 + 1 = 4

ratio = 0.55

move to:
 package C
improvement:
 -1 invocations

Figure 4.11: Example state as seen by the Low-level Local Strategy

39 4.2 Structure of recommendations

Algorithm 4 dependencyRecommender - Low Level Local Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,lowlevel)
N Pj ← getMostCoupledPackage(C j, lowlevel)
interDepList ← getExternalDependencies(C j,N Pj, lowlevel))

for each dependency dk of interDepList do
{dk is the sum of the number of invocations}
coupling j ← coupling j + dk

end for
for each dependency dk of int raDepList do

cohesion j ← cohesion j + dk

end for

if coupling j > cohesion j then
sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for

The assumption here is that any external coupling not directly related to
the subsystem which we are analyzing will remain the same after the rec-
ommended move operation. We are therefore able to reduce the external
coupling of the whole system if we lower the coupling of the subsystems
which compose it.

With respect to the high level view, since it looks only at the existence of
dependency links, this strategy tries to remove the dependencies between
modules without making distinction on their weight. This means that if
we have an entity depending on two modules and another entity heavily
relying on another module (as in figure 4.10), the first entity will be cho-
sen as recommendation candidate since it has a higher degree of coupling
than the second. We have instead the opposite situation if we consider the
low level dependencies as in figure 4.11.

40 4.2 Structure of recommendations

Global strategy

The global strategy, contrasted with other strategies, considers the full
number of dependencies of a class, both internal and external to the pack-
age, as coupling and cohesion respectively. This means that, as can be
seen in figures 4.12 and 4.13, because a move can be done to one and
only one package, the external coupling is overestimated by considering
all the external couplings of an entity. This strategy however has been im-
plemented (refer to algorithms 5 for the high-level global strategy and 6
for the low-level global strategy) to provide an upper bound on the num-
ber of returned results in order to get an overview of all the potential
candidates for move operations.

Algorithm 5 dependencyRecommender - High Level Global Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,highlevel)
N Pj ← getMostCoupledPackage(C j, highlevel)
N P List j ← getCoupledPackages(C j)
for each package N Pk do

interDepList ← getExternalDependencies(C j, N Pk, highlevel))
end for

coupling j ← length(interDepList)
cohesion j ← length(int raDepList)

if coupling j > cohesion j then
sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for
return recommendations

41 4.2 Structure of recommendations

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

move to:
 package A
improvement:
 -1 links

recommendation

coupling = 3
cohesion = 2

ratio = 0.6

Figure 4.12: Example state as seen by the Low-level Global Strategy

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling = 2 + 1 + 5 = 8
cohesion = 3 + 1 = 4

ratio = 0.6

move to:
 package C
improvement:
 -1 invocations

Figure 4.13: Example state as seen by the Low-level Global Strategy

42 4.2 Structure of recommendations

Algorithm 6 dependencyRecommender - Low Level Global Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,lowlevel)
N Pj ← getMostCoupledPackage(C j, lowlevel)
N P List j ← getCoupledPackages(C j)
for each package N Pk do

interDepList ← getExternalDependencies(C j, N Pk,lowlevel))
end for

for each dependency dk of interDepList do
{dk is the sum of the number of invocations}
coupling j ← coupling j + dk

end for
for each dependency dk of int raDepList do

cohesion j ← cohesion j + dk

end for

if coupling j > cohesion j then
sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for
return recommendations

Since the global strategies compute the coupling of the entity as the full
number of dependencies of that entity, the mobility ratio (recalling: the
external dependencies of the entity over the total dependencies) is over
estimated implying a higher mobility ratio and thus a higher chance to
become a recommendation candidate.

43 4.2 Structure of recommendations

Conservative strategy

The conservative strategy analyzes the system in the same way the Local
strategies do. It is therefore a special case of the local strategy. The differ-
ence is the higher weight which is given to the cohesion of a class which
is set to twice as much as the external coupling. This directly influences
the mobility ratio of the class by lowering it, thus following a conservative
approach and returning less results compared to other recommendation
strategies.

The approach is depicted in figures 4.14 for the high level conservative
strategy and in 4.15 for the low level conservative strategy (and defined
in algorithms 7 and 8 respectively).

Algorithm 7 dependencyRecommender - High Level Conservative Strategy
...
{same as High Level Local Strategy with multiplier (=2) check}
if coupling j > (mul tipl ier ∗ cohesion j) then

...
end if
...
return recommendations

Algorithm 8 dependencyRecommender - Low Level Conservative Strategy
...
{same as Low Level Local Strategy with multiplier (=2) check}
if coupling j > (mul tipl ier ∗ cohesion j) then

...
end if
...
return recommendations

44 4.2 Structure of recommendations

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling to A = 2
cohesion = 2*(2) = 4

ratio = 0.3

Figure 4.14: Example state as seen by the High-level Conservative Strategy

recommendation

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

coupling to C = 5
cohesion = 2*(3 + 1) = 8

ratio = 0.4

Figure 4.15: Example state as seen by the Low-level Conservative Strategy

45 4.2 Structure of recommendations

Alternative strategy

This strategy differs in the view of the coupling of an entity. In this case
we observe the local best candidate and compare it to the rest of the de-
pendent entities. We therefore use such an “alternative” view in the sense
that only if the dependencies towards the most coupled package (the best
candidate) is higher than the rest of the dependencies then such an entity
can be considered as a candidate (with the following analysis of whether
its coupling is greater or less than its cohesion).

Again, the depictions of the high-level and low-level variant of the alter-
native strategy just described can be found in figures 4.16 and 4.17. For
the algorithms refer to the pseudocodes defined in 9 and 10.

Algorithm 9 dependencyRecommender - High Level Alternative Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,highlevel)
N Pj ← getMostCoupledPackage(C j, highlevel)
interDepList ← getExternalDependencies(C j,N Pj,highlevel))
N P List j ← getCoupledPackages(C j)
for each package N Pk do

f ul l InterDepList ← getExternalDependencies(C j, N Pk, highlevel))
end for

coupling j ← length(interDepList)
cohesion j ← length(int raDepList)
totalCoupling j ← length(f ul l InterDepList)

remaining j ← (totalCoupling j − coupling j)
if coupling j > cohesion j & coupling j > remaining j then

sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for
return recommendations

46 4.2 Structure of recommendations

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling to A = 2-1 = 1
cohesion = 2

ratio = 0.5

Figure 4.16: Example state as seen by the High-level Alternative Strategy

Package B

Package A

class A2class A1

class B1

class B3

2

class B2

3 1

class A3

1

Package C

class C1

5

recommendation

coupling to C = 5-3 = 2
cohesion = 4

ratio = 0.5

Figure 4.17: Example state as seen by the Low-level Alternative Strategy

47 4.2 Structure of recommendations

Algorithm 10 dependencyRecommender - Low Level Alternative Strategy
for each package module Pi do

for each contained class C j do
int raDepList ← getInternalDependencies(C j,lowlevel)
N Pj ← getMostCoupledPackage(C j, lowlevel)
interDepList ← getExternalDependencies(C j, N Pj,lowlevel))
N P List j ← getCoupledPackages(C j)
for each package N Pk do

f ul l InterDepList ← getExternalDependencies(C j, N Pk, lowlevel))
end for

for each dependency dk of interDepList do
cohesion j ← cohesion j + dk

end for
for each dependency dk of int raDepList do

cohesion j ← cohesion j + dk

end for
for each dependency dk of f ul l InterDepList do

totalCoupling j ← totalCoupling + dk

end for

remaining j ← (totalCoupling j − coupling j)
if coupling j > cohesion j & coupling j > remaining j then

sub jec t ← C j

f rom← Pi

to← N Pj

add new Recommendation(sub jec t, f rom, to) to recommendations
end if

end for
end for
return recommendations

48 4.2 Structure of recommendations

This strategy is similar to the global strategy in the sense that the exter-
nal coupling metric (towards the target package) does not reflect the true
value. This strategy has been added in order to provide an alternative view
of the critical modules offered by the global strategy. In fact the result of
this strategy is that in order for an entity to be added to the recommen-
dations, its external coupling towards the package it’s most coupled with
must be greater than its cohesion (as usual). On top of that, it has to
be greater than the added sum of the remaining external coupling of the
entity therefore tending towards a conservative approach.

Strategy Method metric used scope of analysis
Inheritance - class inheritance full system

Global High-level dependency links full neighborhood
Low-level n. of invocations full neighborhood

Local High-level dependency links best neighbor
Low-level n. of invocations best neighbor

Conservative High-level dependency links best neighbor
Low-level n. of invocations best neighbor

Alternative High-level dependency links best - remaining neighbors
Low-level n. of invocations best - remaining neighbors

Table 4.1: Overview of the recommendation strategies

49 4.3 Scenarios

4.3 Scenarios
Based on the two recommendation categories and the strategies which can be
applied, we can define a number of scenarios of usage of the tool which are
meant to represent the different aims and approaches of the reverse architect.

First impression
This usage scenario corresponds to the proposed way to tackle a system for
the first time. We define two opposite approaches as based on the desire
to assess the state of the system from a greedy approach which would re-
turn recommendations with high confidentiality or from a softer approach
based on obtaining an overview of all the critical modules and entities.

1. Greedy
In order to quickly receive a list of true candidates that reflect classes
which are wrongly packed due to their number of external dependen-
cies we can apply global strategies with the highest mobility ratio.
This would return all classes that have no cohesion within their pack-
age (we thus avoid the issue with the global strategies which may
lead to spurious results).

2. Soft
By applying the Inheritance strategy and the Global strategies we
receive a larger set of results that would represent the noteworthy
classes which have an inheritance relationship between each other or
a higher coupling than cohesion. As discussed previously, by using the
global dependency strategies what we obtain in return is an informa-
tive set of results which may not contain improvements but that are
useful for identifying the critical elements (from our inter and intra
package dependencies point of view). Also the Inheritance strategy
is intended for this use since inheriting from an external package, al-
though clearly increasing the coupling of the entity, does not mean
that the entity is in the wrong module.

50 4.3 Scenarios

Decoupling optimization
This usage scenario corresponds to the attempt to reduce the number of in-
ter module dependencies. We therefore use high-level dependencies only
and again we can follow two directions: a greedy way based both on local
and global information (and with a mobility ratio = 1), which would re-
turn the modules that have no cohesion (as for the First impression greedy
scenario), or a softer approach based on the same strategies but with a
lower mobility ratio threshold.

1. Greedy
If our interest is to completely decouple as much as possible the pack-
ages, then the Inheritance informative strategy would be useful to
assess all of the inheritance relationships which span across different
packages. Also, using the Local High level strategy we would obtain
all of the moves which would reduce the overall number of depen-
dencies. Also global strategies could be applied if the result set is
manageable in order to individually inspect each result and assess
the validity of the recommendation.

2. Soft
Always using high-level dependencies, the Local strategy could be
applied or, depending on the complexity of the system under analysis,
if the result set is too large, the High-level Conservative strategy could
be used to reduce the size of the returned results.

Weighted optimization
The architecture recovery process can also be aimed at reducing the global
number of invocations (thus low-level dependencies). This is thus a weighted
optimization since it tries to reduce the number of invocations between
packages rather than eliminate the dependency links.

Also here we propose a greedy and soft approach which use the same Low-
level Local and Conservative strategies to obtain the recommendations.

1. Greedy
The mobility ratio is raised to 0.7 to limit the number of results.

2. Soft
The mobility ratio is left to the default (0.5).

Also here as for the Decoupling optimizations, the local strategy could be
applied.

Table 4.2 summarizes the three usage scenarios which we just described.

51 4.3 Scenarios

First impression:

Approach Strategies High-level Low-level Subject
dependencies dependencies Mobility

greedy G Ø Ø 1
soft I G L Ø Ø 0.5

Decoupling :

Approach Strategies High-level Low-level Subject
dependencies dependencies Mobility

greedy I L Ø 1
soft L C Ø 0.5

Weighted:

Approach Strategies High-level Low-level Subject
dependencies dependencies Mobility

greedy L C Ø 0.7
soft L C Ø 0.5

(where C : Conservative, I : Inheritance, G : Global, L : Local)

Table 4.2: Proposals for usage scenarios

52 4.3 Scenarios

Chapter 5

Validation

We evaluated the tool on various software architectures ranging from simple
corner case examples used for testing to larger case studies with real systems. We
will present now our findings first in two simple example systems to depict the
functionality and describe the recommendations, followed by two other systems,
namely Softwarenaut and CodeCity which have been used as subjects for the
recommendations evaluation.

5.1 AICup
This initial simple system can be used to describe the application of a scenario
and the corresponding results. When the system is loaded in Softwarenaut, the
default view which is presented is the top level module containing the system.
By expanding such package we are presented with the top level architecture of
the system (a depiction can be found in figure 5.1). This corresponds to the cur-
rent level of exploration of the system. Figure 5.2 depicts instead the additional
hidden expansion of the modules done by the recommendation system to gather
the metrics.

53

54 5.1 AICup

helpers
aicup

tsp

setup

1
35

2

Figure 5.1: Current exploration view for the simpleSample example system

TourCity

Tester

FourOpt

Ant LocalSearch

AntColony

Setup

helpers

aicup

tsp

setup

2

3

2 3

3

6
13

2
4

32

Figure 5.2: Internal dependency details for the AICup example system

55 5.1 AICup

5.1.1 First impression

greedy approach

1. Global strategy, high-level dependencies, subject mobility=1
As depicted in figure 5.3 the result is a single recommendation. In
fact, referring back to figure 5.1, class FourOpt has no internal depen-
dencies within the package tsp. The high level improvement which
would be obtained by performing this move would be to remove the
two dependency links that tie FourOpt to package helpers.

Figure 5.3: AI Cup example - Recommendation results returned by the High
Level Global Strategy

2. Global strategy, low-level dependencies, subject mobility=1 (results
depicted in figure 5.4)
Same as previously but from a low level dependencies point of view
(the improvement would be to remove the six method invocations
towards classes in package helpers .

56 5.1 AICup

Figure 5.4: AI Cup example - Recommendation results returned by the Low Level
Global Strategy

soft approach

1. Local strategy, high-level dependencies, subject mobility=0.5
As depicted in figure 5.5 the results set grows when the mobility ra-
tio is set to the lowest value. What stands out is the classes City and
Tour which have a high mobility ratio and provide the best improve-
ment in terms of dependency links removed.

2. Local strategy, low-level dependencies, subject mobility=0.5 (figure
5.6)
When using the low-level dependencies we can see that the two
classes City and Tour which in the previous case where undistin-
guishable now are in relation and we can see that performing the
recommended move Tour, from: helpers, to: tsp gives a double
improvement than performing the one for City. Another notice-
able result is to move Ant which would also provide a good im-
provement. This last recommendation is the one which could be
followed since it would provide a clear separation between model
classes such as Ant,City,Tour and algorithms and procedure-based
classes (FourOpt,LocalSearch,AntColony).

57 5.1 AICup

Figure 5.5: AI Cup example - Recommendation results returned by the High
Level Local Strategy

Figure 5.6: AI Cup example - Recommendation results returned by the Low Level
Local Strategy

58 5.2 SimpleSample

5.2 SimpleSample
The SimpleSample system is composed of 6 packages and 14 classes. It contains
two inheritance hierarchies and is partitioned according to an MVC pattern into
controller, ui and model packages plus a util package. The current explo-
ration level of the system is the top level of the architecture (depicted in figure
5.7).

In this example (the internal state as seen by the recommendation tool is
depicted in figure 5.8) we apply all of the strategies and compare the results.

ui

controller

model

things

7

6
ModelFacade

3

5

2

beings

inherits

util

Figure 5.7: Current exploration view for the simpleSample example system

59 5.2 SimpleSample

ui

patent Generator

TextUIKebab

Being

Animal

DogInformaticsPHD

Laptop

Human

utilmodel
beings

things

4

inheritsinherits

inherits

3

32

inherits

CarbonUI

Controller

3 3

Plant

inherits

controller

ModelFacade

2

Thing

inherits inherits
22

Figure 5.8: Internal dependency details for the simpleSample example system

60 5.2 SimpleSample

5.2.1 Decoupling optimization

We define the correct partitioning of the system in figure 5.9 and apply all of the
strategies first taking a high level view of the dependencies and then from a low-
level view with a higher mobility threshold (as for the soft weighted optimization
scenario).

patent Generator

ui

TextUIKebab

Being

Animal

Dog
InformaticsPHD

Laptop

Human

utilmodel
beings

things

4

inheritsinherits

inherits

3
32

inherits

CarbonUI

Controller

3
3

Plant

inherits

controller

ModelFacade

2

Thing

inherits inherits
22

Figure 5.9: simpleSample example: Valid moves

61 5.2 SimpleSample

1. Inheritance strategy
The inheritance strategy correctly returns a single result (figure 5.10) which
corresponds to moving class Plant from: things to the beings package.

2. Global strategy, high-level dependencies, subject mobility=0.5 (figure 5.11)
The global strategy recommends all of the classes which have a high num-
ber of external dependencies among which we have the Controller and
InformaticsPHD classes.

3. Local strategy, low-level dependencies, subject mobility=0.5
As we take a more restricted view, the incorrect recommendations are
eliminated (such as InformaticsPHD,see figure 5.12).

4. Conservative & Alternative strategy, low-level dependencies, subject mo-
bility=0.5 (figure 5.13)
The conservative and alternative strategies do not recommend to move the
Controller class and only return the single PatentGenerator.

Figure 5.10: Inheritance Strategy applied to SimpleSample

62 5.2 SimpleSample

Figure 5.11: High Level Global Strategy applied to SimpleSample

Figure 5.12: High Level Local Strategy applied to SimpleSample

63 5.3 Considerations on the strategies

Figure 5.13: High Level Conservative Strategy applied to SimpleSample

5.3 Considerations on the strategies
As shown previously, the different strategies compute the amount of dependen-
cies in different ways and under different scopes. Specifically:

Global Strategies
Global strategies tend to provide more recommendations on average since
they compare the full coupling of the subject against its cohesion. Clearly,
if an entity has many external dependencies it will become a recommen-
dation candidate even if those dependencies are highly scattered among
many targets. Since one can move an entity to only place, the improve-
ment would be rather small (if not even a degradation if it’s < the cohe-
sion of the entity). The previous external dependencies of the entity would
remain external with the exception of the ones towards the package the
entity was just moved.
Global strategies therefore provide relatively many results which indicate
noteworthy entities in the sense of classes with fewer dependencies within
their module with respect to other modules.

64 5.3 Considerations on the strategies

Local Strategies
Local strategies are not concerned with the previous issue since their view
of the system is limited to the subject and a target package only. The
assumption here is that even if we are not considering all of the system,
any external dependency would still remain external after the move.

These strategies first perform a local analysis of the best target and then
compare the amount of dependencies towards that target with the depen-
dencies within the entity’s package (and of course propose a candidate
only in the case of the first being greater than the second).

Having solved the issue with the global strategies returning low or non-
improvement results, the local strategies, give the assurance that moving
the entity towards the proposed target would reduce the coupling because
it would remove more external dependencies than the ones it would intro-
duce (which is the previous cohesion which would become coupling after
the move).

Conservative & Alternative strategies
Conservative strategies are based on local strategies and naturally return
fewer results since, in order to ensure a low mobility of classes, the cohe-
sion of a class is boosted (as in the conservative strategy with a multiplier
= 2), or a further comparison is done between the amount of dependencies
towards the target package and all of the other targets (as in the alterna-
tive strategy). In this way we enforce that only if a class has a much higher
coupling than cohesion or if it is highly coupled with a module and basi-
cally only with that module then we propose a recommendation.

The alternative strategies have not shown improvements when compared
with other strategies due to the chance that it will return false positives
(as for the global strategies).

Multiple rounds of recommendation strategies
As described in the proposed usage scenarios the strategies can be applied
sequentially to obtain a narrower view of the system (meaning less results)
starting from a wide view of the critical entities. We therefore propose to
use the global and alternative strategies to obtain an upper and a lower
bound on the number of returned recommendation results. The local and
conservative strategies can then be applied to obtain more precise results.

65 5.3 Considerations on the strategies

On top of that, given the exploratory nature of Softwarenaut, the size of
the recommendation results may vary considerably depending on the pa-
rameters, exploration views and filters which can be applied in Software-
naut (refer to [12] and [13] for full details).

The operations which influence the recommendations returned by the tool
are the filtering (removal/hiding of dependency edges or node entities)
and the level of exploration of the system which starts from a high level
package-only view and can be explored down to the individual classes and
methods.

66 5.4 Softwarenaut

5.4 Softwarenaut
The first system which will be used to validate the recommendation tool is Soft-
warenaut. Since we are dealing with real systems the complexity of their archi-
tecture cannot be depicted as for the previous simple examples.

Therefore we have applied all of the strategies on both the high-level and
low-level dependency views and evaluated the returned recommendations based
on our knowledge of the system and about its correct structure. The current
exploration view is however depicted in figure 5.14. We apply the recommenda-
tions to the subsystem composed of the MARS package and Softwarenaut names-
pace which itself contains several packages.

Figure 5.14: Current exploration level and considered modules for Softwarenaut

The detailed results can be found in figure 5.15 which contains the recom-
mended targets for each recommendation candidate in a spreadsheet. For rea-
sons of space, the quantitative information (such as the mobility ratio, improve-
ment and system coupling) are not included although, as stated several times,
that information would provide valuable insights on the importance/confidence
in the returned recommendation and therefore on the level of “trust” that the
reverse engineer should put into it.

67 5.4 Softwarenaut

SU
B

JE
C

T
FR

O
M

TO

 (H
IG

H
 L

EV
EL

LO

C
A

L)
TO

 (L
O

W
 L

EV
EL

LO

C
A

L)
TO

 (H
IG

H
 L

EV
EL

G

LO
B

A
L)

TO
 (L

O
W

 L
EV

EL

G
LO

B
A

L)
TO

 (H
IG

H
 L

EV
EL

C

O
N

SE
R

VA
TI

VE
)

TO
 (L

O
W

 L
EV

EL

C
O

N
SE

R
VA

TI
VE

)
TO

 (H
IG

H
 L

EV
EL

A

LT
ER

N
A

TI
VE

)
TO

 (L
O

W
 L

EV
EL

A

LT
ER

N
A

TI
VE

)
EV

A
LU

A
TI

O
N

C
om

po
si

te
Fi

gu
re

 S
N

-U
I

 S
N

-M
ap

-P
ov

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
YE

S
(T

o
SN

-M
od

ul
eF

ig
ur

es
)

U
nd

oS
ta

ck
 S

N
-O

th
er

s
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-U

I
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-U

I
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-U

I
 S

N
-U

I
 S

N
-U

I
YE

S
(T

o
SN

-E
xp

lo
ra

tio
n-

Po
v)

M
od

ul
eS

ha
di

ng
Sc

he
m

e
 S

N
-U

I
 S

N
-M

od
el

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

el
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-M

od
el

 S
N

-E
xp

lo
ra

tio
n-

Po
v

YE
S

(T
o

SN
-E

xp
lo

ra
tio

n-
PO

V)
M

ul
tiE

dg
eF

ig
ur

e
 S

N
-U

I
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-M

od
el

 S
N

-E
xp

lo
ra

tio
n-

Po
v

YE

S
(T

o
SN

-E
xp

lo
ra

tio
n-

PO
V)

N
am

ed
Fi

gu
re

 S
N

-U
I

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

ap
-P

ov
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
ap

-P
ov

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

ap
-P

ov

YE

S
(T

o
SN

-M
od

ul
eF

ig
ur

es
)

Lo
ad

Sa
ve

Vi
ew

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S

N
-U

I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

YE
S

Pa
rti

tio
ne

dF
ig

ur
es

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

YE
S

So
ftw

ar
en

au
tW

el
lc

om
er

 S
N

-O
th

er
s

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

YE
S

N
am

es
pa

ce
N

am
e

 S
N

-O
th

er
s

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

YE
S

U
se

rP
re

fs
 S

N
-O

th
er

s
 S

N
-M

ap
-P

ov
 S

N
-M

ap
-P

ov
 S

N
-M

ap
-P

ov
 S

N
-M

ap
-P

ov
 S

N
-M

ap
-P

ov
 S

N
-M

ap
-P

ov

M

AY
BE

In

te
rn

al
M

od
ul

es
Fi

gu
re

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S

N
-M

od
el

 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

M
AY

BE
 (b

ut
 n

ot
 to

 m
od

el
)

Sh
ad

eO
f

 S
N

-U
I

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

M
AY

BE
 (b

ut
 to

ge
th

er
 w

ith
 S

ha
de

dF
ig

ur
eB

ui
ld

er
)

R
ec

om
m

en
de

rW
in

do
w

2
 M

AR
S

 S
N

-U
I

M

AY
BE

M
et

ho
dS

ta
tis

tic
sF

ig
ur

e
 S

N
-D

et
ai

l-P
ov

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

M
AY

BE
Sh

ad
ed

Fi
gu

re
Bu

ild
er

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

M
AY

BE
Pa

rti
tio

ne
dF

ig
ur

eB
ui

ld
er

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-M

od
ul

eF
ig

ur
es

M
AY

BE
D

ot
Fi

gu
re

Bu
ild

er
 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
M

AY
BE

M
od

ul
eT

re
eF

ig
ur

e
 S

N
-M

ap
-P

ov
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
M

AY
BE

M
ul

tiT
re

eF
ig

ur
e

 S
N

-M
ap

-P
ov

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

M
AY

BE
M

ea
su

re
m

en
tN

or
m

al
iz

er
 S

N
-M

od
el

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S

N
-M

ap
-P

ov

M

AY
BE

Po
liD

ra
w

in
g

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

ul
eF

ig
ur

es

N
O

H
ig

ra
ph

 S
N

-M
od

el
 S

N
-E

xp
lo

ra
tio

n-
Po

v

N
O

El

lip
se

W
ith

Ti
p

 S
N

-M
ap

-P
ov

 S
N

-U
I

 S
N

-O
th

er
s

N
O

D

TD
ep

en
de

nc
yF

lo
w

 S
N

-D
et

ai
l-E

xp
er

im
en

ts
 S

N
-D

et
ai

l-P
ov

 S
N

-D
et

ai
l-P

ov
 S

N
-D

et
ai

l-P
ov

 S
N

-D
et

ai
l-P

ov
 S

N
-D

et
ai

l-P
ov

 S
N

-D
et

ai
l-P

ov

N

O
 (e

xp
er

im
en

ts
 p

ac
ka

ge
)

C
irc

le
La

yo
ut

 S
N

-L
ay

ou
ts

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

 (c
ol

le
ct

io
n

of
 la

yo
ut

s)
Vi

ew
Pa

ra
m

et
er

sT
ab

 S
N

-D
et

ai
l-P

ov
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

C
on

te
nt

sC
ol

or
in

gD
ec

or
at

io
n

 S
N

-D
ec

or
at

io
nF

ig
ur

es
 S

N
-U

I
 S

N
-O

th
er

s

 S
N

-O
th

er
s

 S

N
-O

th
er

s

N

O
 (c

ol
le

ct
io

n
of

 d
ec

or
at

io
ns

)
C

on
te

nt
sN

am
in

gD
ec

or
at

io
n

 S
N

-D
ec

or
at

io
nF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
N

O
 (c

ol
le

ct
io

n
of

 d
ec

or
at

io
ns

)
D

et
ai

lT
ab

H
IT

S
 S

N
-D

et
ai

l-P
ov

 S

N
-M

od
el

 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

D
et

ai
lT

ab
Pa

rti
tio

ne
d

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
ul

eF
ig

ur
es

N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lT
ab

Li
st

In
he

rit
an

ce
s

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lT
ab

R
ec

ur
si

ve
C

la
ss

es
 S

N
-D

et
ai

l-P
ov

 S

N
-M

od
el

 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

D
TI

nt
er

ac
tio

nP
at

te
rn

s
 S

N
-D

et
ai

l-P
ov

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 p

at
te

rn
s)

D
et

ai
lT

ab
In

vo
ca

tio
nP

at
te

rn
s

 S
N

-D
et

ai
l-P

ov

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lT
ab

In
vo

ca
tio

ns
To

p
 S

N
-D

et
ai

l-P
ov

 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

D
et

ai
lT

ab
Li

st
In

vo
ca

tio
ns

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lP
an

el
 S

N
-D

et
ai

l-P
ov

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

D
et

ai
lT

ab
M

et
ric

D
is

tri
bu

tio
n

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

el
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

el

 S
N

-M
od

el

N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lT
ab

_I
nv

ok
ed

Tr
ee

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
D

et
ai

lT
ab

R
ec

ur
si

ve
M

et
ho

ds
 S

N
-D

et
ai

l-P
ov

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

In
vo

ca
tio

nP
at

te
rn

D
ra

w
in

g
 S

N
-D

et
ai

l-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

N
O

 (c
ol

le
ct

io
n

of
 p

at
te

rn
s)

D
et

ai
lT

ab
D

en
dr

og
ra

m
 S

N
-D

et
ai

l-P
ov

 S
N

-M
ap

-P
ov

 S
N

-M
ap

-P
ov

 S

N
-M

ap
-P

ov

 S
N

-M
ap

-P
ov

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

D
et

ai
lT

ab
In

vo
ca

tio
nS

ha
pe

 S
N

-D
et

ai
l-P

ov
 S

N
-M

od
el

N

O
 (c

ol
le

ct
io

n
of

 ta
bs

)
Ex

pl
oD

ra
w

in
g

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-U
I

 S
N

-M
od

el

N

O
 (c

ol
le

ct
io

n
of

 p
at

te
rn

s)
Sp

rin
gL

ay
ou

t
 S

N
-L

ay
ou

ts
 S

N
-E

xp
lo

ra
tio

n-
Po

v

N
O

 (c
ol

le
ct

io
n

of
 la

yo
ut

s)
M

ap
Pa

ne
l

 S
N

-M
ap

-P
ov

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S

N
-O

th
er

s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

 S
N

-O
th

er
s

N
O

 (c
ol

le
ct

io
n

of
 ta

bs
)

Bo
un

de
dF

ig
ur

e
 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
N

O
 (c

ol
le

ct
io

n
of

 p
at

te
rn

s)
In

vo
cS

um
m

ar
yT

re
eF

ig
ur

e
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

 (c
ol

le
ct

io
n

of
 fi

gu
re

s)
Tr

ee
H

in
od

eF
ig

ur
e

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-U
I

 S

N
-U

I

 S

N
-U

I
 S

N
-U

I
N

O
 (c

ol
le

ct
io

n
of

 fi
gu

re
s)

Pa
rti

tio
ne

dF
ig

ur
e

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v

N

O
 (c

ol
le

ct
io

n
of

 fi
gu

re
s)

Tr
ee

m
ap

Fi
gu

re
s

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
N

O
 (c

ol
le

ct
io

n
of

 fi
gu

re
s)

In
te

rn
al

C
la

ss
es

Fi
gu

re
 S

N
-M

od
ul

eF
ig

ur
es

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

 S
N

-U
I

N
O

 (c
ol

le
ct

io
n

of
 fi

gu
re

s)
H

in
od

eF
ig

ur
e

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

 (c
ol

le
ct

io
n

of
 fi

gu
re

s)
Tr

ee
Fi

gu
re

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-D

et
ai

l-P
ov

 S
N

-M
od

el

 S
N

-M
od

el

N

O
 (c

ol
le

ct
io

n
of

 fi
gu

re
s)

So
ftw

ar
en

au
tL

au
nc

he
r

 S
N

-U
I

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

D
en

dr
oD

ec
or

at
io

n
 S

N
-D

ec
or

at
io

nF
ig

ur
es

 S
N

-M
od

ul
eF

ig
ur

es
 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-M

od
ul

eF
ig

ur
es

 S

N
-M

od
ul

eF
ig

ur
es

N
O

 (c
ol

le
ct

io
n

of
 d

ec
or

at
io

ns
)

D
ec

or
at

io
nF

ig
ur

e
 S

N
-D

ec
or

at
io

nF
ig

ur
es

 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

 (c
ol

le
ct

io
n

of
 d

ec
or

at
io

ns
)

Bo
un

de
dD

ec
or

at
io

n
 S

N
-D

ec
or

at
io

nF
ig

ur
es

 S

N
-E

xp
lo

ra
tio

n-
Po

v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
N

O
 (c

ol
le

ct
io

n
of

 d
ec

or
at

io
ns

)
Sh

al
lo

w
D

ep
en

de
nc

yF
ilt

er
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-M

od
el

N

O
Ed

ge
Fi

gu
re

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

D
ee

pD
ep

en
de

nc
yF

ilt
er

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S

N
-M

od
el

 S

N
-M

od
el

 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

H
eu

ris
tic

 S
N

-H
eu

ris
tic

s
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el

N

O
H

eu
ris

tic
sL

eg
en

d
 S

N
-H

eu
ris

tic
s

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

Tr
ee

La
yo

ut
 S

N
-L

ay
ou

ts
 S

N
-M

od
el

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

N

O
 (c

ol
le

ct
io

n
of

 la
yo

ut
s)

D
en

dr
og

ra
m

M
ap

Ta
b

 S
N

-M
ap

-P
ov

 S
N

-D
et

ai
l-P

ov
 S

N
-U

I

N

O
M

ap
D

ra
w

in
g

 S
N

-M
ap

-P
ov

 S

N
-O

th
er

s

 S
N

-O
th

er
s

 S

N
-O

th
er

s
 S

N
-O

th
er

s
 S

N
-O

th
er

s
N

O
M

ap
Ta

bD
ep

en
de

nc
yP

at
te

rn
s

 S
N

-M
ap

-P
ov

 S
N

-M
od

el
 S

N
-M

od
el

 S
N

-M
od

el
 S

N
-M

od
el

N
O

M
ap

Ta
bS

im
pl

eH
ie

ra
rc

hy
 S

N
-M

ap
-P

ov
 S

N
-U

I
 S

N
-U

I

N

O
Si

m
pl

eH
ie

ra
rc

hy
D

ra
w

in
g

 S
N

-M
ap

-P
ov

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N

O
H

iN
od

e
 S

N
-M

od
el

 S
N

-M
od

ul
eF

ig
ur

es

 S
N

-M
od

ul
eF

ig
ur

es

N
O

Tr
ee

N
od

e
 S

N
-M

od
el

 S
N

-M
od

ul
eF

ig
ur

es

N
O

H
iD

ep
en

de
nc

y
 S

N
-M

od
el

 S
N

-D
et

ai
l-P

ov

N
O

H
iE

dg
e

 S
N

-M
od

el
 S

N
-D

et
ai

l-P
ov

 S

N
-D

et
ai

l-P
ov

 S

N
-D

et
ai

l-P
ov

N

O
D

ep
en

de
nc

yC
ol

le
ct

io
n

 S
N

-M
od

el
 S

N
-D

et
ai

l-P
ov

N

O
Vi

ew
R

ep
os

ito
ry

 S
N

-S
er

ia
liz

at
io

n
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
 S

N
-E

xp
lo

ra
tio

n-
Po

v
N

O
Pa

tte
rn

Br
ow

se
rD

ra
w

in
g

 S
N

-U
I

 S
N

-M
od

ul
eF

ig
ur

es

N
O

So
ftw

ar
en

au
t

 S
N

-U
I

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

 S
N

-E
xp

lo
ra

tio
n-

Po
v

N
O

Te
xt

Figure 5.15: Summary table with the returned results given by different strate-
gies applied to Softwarenaut

68 5.4 Softwarenaut

The evaluated results can be summarized through the known precision and
recall measures as follows:

precision =
t rue posi t ives

total ret r ieved posi t ives

recal l =
t rue posi t ives

total t rue posi t ives

where total t rue posi t ives = t rue posi t ives+ f alse negatives
and total ret r ieved posi t ives = t rue posi t ives+ f alse posi t ives

However, since the true number of move recommendations is not known,
we cannot compute the precision of the tool. Regarding the recall however the
tool returns 20 correct results over the 101 total returned thus obtaining a value
slightly lower than 20%.

5.4.1 Considerations on the results

The results contained in figure 5.15 show that a high number of false positive
results are given for subjects which have a high external coupling but which
logically belong where the developer had originally placed them. Such entities
are for example, in the case of Softwarenaut, the figures, layouts, decorations
and panel classes which are grouped in the SN-ModuleFigures, SN-Layouts, SN-
DecorationFigures, and SN-Detail-POV packages. These packages in fact repre-
sent collections of their contained classes, all of which are grouped according
to their main logical functionality. Almost half of the recommendations are re-
lated to moving such highly linked classes to the package they are most coupled
with. We can therefore say that a possible improvement on the recommenda-
tions would consist in analyzing the naming conventions which are used for
packages and classes and exclude any entities that have some degree of match-
ing with their parent package. However, implementing this solution would imply
that we assume that the system follows a “proper” naming convention which of
course may not be the case. We therefore keep the approach as it is and return a
higher number of (possibly redundant or wrong) recommendations since other-
wise some entities could be mistakingly ignored on the basis of a similar pattern
between classes and their package.

69 5.4 Softwarenaut

With respect to the correct results (marked as YES in the table), these con-
tain conflicting recommendation targets (which mostly depend on the specific
high-level or low-level dependency views). On the other hand, results which
are partially correct (meaning that the recommendation is not incorrect but that
the specific choice of whether to perform the recommended move depends on
the amount of improvement that would result from that move), have a higher
agreement about the target package among the different strategies.

Finally, an unexpected result arises from the fact that the low-level depen-
dency based strategies apparently perform worse than their high level counter-
parts. This result was unexpected since the low level strategies naturally have
more material to work with and should therefore return more precise results or
at least the same as the ones returned by the high level views.

70 5.5 CodeCity

5.5 CodeCity
The CodeCity system [22] which has been mentioned previously in 2.5 is an-
other architecture recovery tool developed in Smalltalk which instead uses a
3-dimensional visualization and a city metaphor to represent the modules of a
system.

Figure 5.16 depicts the current exploration view for the system. It corre-
sponds to the first expansion of the CodeCity main module (the other module
which is the CodeCitySandbox is not taken into consideration as part of the
system).

Figure 5.16: Current exploration level for CodeCity

As for Softwarenaut, such system is too large to depict it in full details, there-
fore we follow the same approach used for Softwarenaut. We summarize the
results of running the full battery of strategies on the subsystem in figure 5.17.

71 5.5 CodeCity

SU
B

JE
C

T
FR

O
M

TO

 (H
IG

H
 L

EV
EL

LO

C
A

L)
TO

 (L
O

W
 L

EV
EL

LO

C
A

L)
TO

 (H
IG

H
 L

EV
EL

G

LO
B

A
L)

TO
 (L

O
W

 L
EV

EL

G
LO

B
A

L)
TO

 (H
IG

H
 L

EV
EL

C

O
N

SE
R

VA
TI

VE
)

TO
 (L

O
W

 L
EV

EL

C
O

N
SE

R
VA

TI
VE

)
TO

 (H
IG

H
 L

EV
EL

A

LT
ER

N
A

TI
VE

)
TO

 (L
O

W
 L

EV
EL

A

LT
ER

N
A

TI
VE

)
EV

A
LU

A
TI

O
N

P
re

fe
re

nc
es

_c
la

ss
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

Y

E
S

P
re

fe
re

nc
es

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

Y
E

S
C

ity
E

as
el

 C
od

eC
ity

S
cr

ip
tin

g

 C
od

eC
ity

M
V

C
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

M
A

Y
B

E
D

is
ha

rm
on

yM
ap

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

M
A

Y
B

E
A

lp
ha

S
el

ec
tio

nD
ia

lo
g_

cl
as

s
 C

od
eC

ity
G

U
I

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

M
A

Y
B

E
V

ie
w

C
on

fig
ur

at
or

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

M

A
Y

B
E

Li
ne

ar
C

on
ve

rt
er

_c
la

ss
 C

od
eC

ity
Tr

an
sf

or
m

at
io

ns
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

M
A

Y
B

E
R

el
at

io
nC

ol
le

ct
or

 C
od

eC
ity

U
til

s
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
M

A
Y

B
E

V
ie

w
C

on
fig

ur
at

io
n

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

M

A
Y

B
E

D
is

ha
rm

on
yM

ap
G

U
I_

cl
as

s
 C

od
eC

ity
G

U
I

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

M
A

Y
B

E
V

er
si

on
C

ho
os

er
D

ia
lo

g_
cl

as
s

 C
od

eC
ity

G
U

I
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C

 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
M

A
Y

B
E

C
on

fig
ur

at
io

nR
ep

os
ito

ry
_c

la
ss

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs

N

O
C

on
fig

ur
at

io
nE

xc
ha

ng
er

_c
la

ss
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
N

O
B

ou
nd

in
gB

ox
_c

la
ss

 C
od

eC
ity

La
yo

ut
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

N
O

S
na

p
sh

ot
N

od
eB

ui
ld

er
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig

N

O
S

na
p

sh
ot

N
od

eP
la

ce
r

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

N
O

S
na

p
sh

ot
V

ie
w

B
ui

ld
er

_c
la

ss
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I

N

O
Ti

m
eT

ra
ve

lD
is

p
la

yM
od

el
 C

od
eC

ity
M

V
C

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

N

O
A

b
st

ra
ct

La
yo

ut
 C

od
eC

ity
La

yo
ut

s

 C
od

eC
ity

G
U

I

N

O
S

na
p

sh
ot

V
ie

w
B

ui
ld

er
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig

N

O
Fu

nc
tio

na
lM

ap
p

er
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs

 C
od

eC
ity

V
ie

w
C

on
fig

N
O

B
lu

eG
re

en
Y

el
lo

w
C

ol
or

S
ch

em
e

 C
od

eC
ity

C
ol

or
S

ch
em

es

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C

 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
N

O
C

ol
or

Li
ne

ar
M

ap
p

er
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

N
O

M
ap

p
er

D
ia

lo
g

 C
od

eC
ity

G
U

I
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

N
O

B
ox

P
lo

tC
on

ve
rt

er
 C

od
eC

ity
Tr

an
sf

or
m

at
io

ns

 C
od

eC
ity

U
til

s

 C
od

eC
ity

U
til

s

 C

od
eC

ity
U

til
s

 C
od

eC
ity

U
til

s
N

O
A

b
st

ra
ct

N
od

eG
ly

p
h

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

La
yo

ut
s

 C

od
eC

ity
La

yo
ut

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

N

O
Ti

m
el

in
eD

is
p

la
yM

od
el

 C
od

eC
ity

M
V

C
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
G

ly
p

hs
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
G

ly
p

hs

N

O
B

lo
ck

M
ap

p
er

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

 C

od
eC

ity
V

ie
w

C
on

fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

N
O

P
ho

to
gr

ap
he

rD
ia

lo
g_

cl
as

s
 C

od
eC

ity
G

U
I

 C
od

eC
ity

M
V

C

 C
od

eC
ity

M
V

C

N
O

Ti
m

el
in

eV
ie

w
B

ui
ld

er
_c

la
ss

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

 C
od

eC
ity

M
V

C
 C

od
eC

ity
M

V
C

N
O

S
na

p
sh

ot
D

is
p

la
yM

od
el

 C
od

eC
ity

M
V

C

 C

od
eC

ity
G

ly
p

hs

N
O

S
ea

rc
hT

er
m

D
ia

lo
g

 C
od

eC
ity

G
U

I

 C

od
eC

ity
G

ly
p

hs
 C

od
eC

ity
G

ly
p

hs

N

O
A

b
st

ra
ct

La
yo

ut
_c

la
ss

 C
od

eC
ity

La
yo

ut
s

 C

od
eC

ity
V

ie
w

C
on

fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

N

O
Ti

m
eT

ra
ve

lV
ie

w
B

ui
ld

er
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

La
yo

ut
s

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

N

O
C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
N

O
Ti

m
el

in
eV

ie
w

B
ui

ld
er

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

La
yo

ut
s

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

La
yo

ut
s

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

N

O
C

ity
S

cr
ip

tE
xa

m
p

le
s_

cl
as

s
 C

od
eC

ity
S

cr
ip

tin
g

 C
od

eC
ity

V
is

ua
lM

ap
p

in
gs

N

O
S

p
ac

eM
an

ag
er

 C
od

eC
ity

La
yo

ut
s

 C

od
eC

ity
G

ly
p

hs
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
G

ly
p

hs

N

O
A

b
st

ra
ct

G
ly

p
h

 C
od

eC
ity

G
ly

p
hs

 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

N

O
D

is
p

la
yM

od
el

 C
od

eC
ity

M
V

C
 C

od
eC

ity
G

U
I

 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
ly

p
hs

N
O

Ti
m

eT
ra

ve
lE

d
ge

B
ui

ld
er

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

N
O

P
ho

to
gr

ap
he

r
 C

od
eC

ity
U

til
s

 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

 C

od
eC

ity
G

U
I

 C
od

eC
ity

G
U

I
 C

od
eC

ity
G

U
I

N
O

S
na

p
sh

ot
E

d
ge

B
ui

ld
er

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

G
ly

p
hs

 C

od
eC

ity
G

ly
p

hs

N

O
P

ho
to

gr
ap

he
rD

ia
lo

g
 C

od
eC

ity
G

U
I

 C
od

eC
ity

U
til

s
 C

od
eC

ity
U

til
s

 C
od

eC
ity

U
til

s
 C

od
eC

ity
U

til
s

 C

od
eC

ity
U

til
s

N
O

H
is

to
ry

In
fr

as
tr

uc
tu

re
B

ui
ld

er
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig

N

O
C

on
st

an
tM

ap
p

er
 C

od
eC

ity
V

is
ua

lM
ap

p
in

gs

 C
od

eC
ity

V
ie

w
C

on
fig

 C
od

eC
ity

G
ly

p
hs

 C
od

eC
ity

V
ie

w
C

on
fig

 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
N

O
P

ho
to

A
ut

om
at

or
 C

od
eC

ity
U

til
s

 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig
 C

od
eC

ity
V

ie
w

C
on

fig

N

O
S

p
ac

eM
an

ag
er

_c
la

ss
 C

od
eC

ity
La

yo
ut

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s
 C

od
eC

ity
V

ie
w

B
ui

ld
er

s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

 C
od

eC
ity

V
ie

w
B

ui
ld

er
s

N
O

Figure 5.17: Summary table with the returned results given by different strate-
gies applied to CodeCity

72 5.6 Improvements

The recall in this case reaches 25%. As for Softwarenaut, the majority of
negative results are related to parts of the system which represent collections or
groupings of classes which all follow a common logical goal and purpose.

5.6 Improvements
The main issues and problems on the results that are provided by the recom-
mender are related to the recommendations which have a mobility ratio of 1.
These entities, from the dependency point of view that we are considering, have
zero dependencies within their containing module and therefore have no reason
to be packed in the module in which they are. However, as has been found both
for Softwarenaut and CodeCity, several of these entities are grouped together
because of their high level logical properties. Because of this, although per-
forming the recommended move would reduce the coupling and therefore the
complexity in the communication in the system, the move would actually de-
grade the architecture by moving entities which are supposed to have a single,
well-defined purpose (such as a View/UI entity) to other packages which define
other different high level responsibilities.

Because of this, referring back to the problem which we introduced in sec-
tion 2.2.2, the issue of modularizing systems is composed of two opposite forces:
from the “system point of view”, the dependencies metrics describe the amount
of communication with other modules and the amount of single responsibility of
the subject module. Through these metrics we are able to remove the coupling
between pairs of modules thus improving the general architecture. However,
modularizing the system according to the other direction, represented by the ar-
chitects point of view, would lead to a system which is more understandable and
“human-readable” but less close to how the system really is (in terms of commu-
nication of the modules). Because of this, we repeat and enforce the suggestion
of using the recommendation system in parallel with the exploration of the sys-
tem through Softwarenaut (therefore using the nextexpansion scope). Not only
does this approach return a fewer number of results which are more manageable
for the reverse engineer, but also allows the recovery architect to observe simul-
taneously the system and evaluate if a specific returned recommendation should
be taken into consideration or not (by deciding, based on the improvement and
mobility ratio of the recommended subject, whether the improvement gain is
worth the breaking of the naming conventions used throughout the system).

Chapter 6

Conclusions

6.1 Contributions

In this work we have proposed an approach to improve the architecture of the
system based on two metrics which correspond to the external and internal de-
pendencies of a module or package. Such a direction is aimed at lowering the
total number of dependencies within the (sub)system under analysis. We pre-
sented two general approaches for providing recommendations - one, just men-
tioned, based on the dependencies between entities, and the other based on the
inheritance relationships between classes.

For the dependency-based recommendations we distinguished between high
and low level dependencies to specify two different degrees of granularity for
the metrics (one based on the existence of communication between entities and
the other on the weighted method invocation counts).

Additionally we developed a set of dependency-based strategies for analyzing
the system from different points of view (such as the global and alternative
strategies which concentrate on the coupling of an entity or the conservative
strategy which stresses the cohesion of the subject).

Finally, we included in the recommendation results a number of additional
parameters and data to better inform the recovery architect user about the spe-
cific situation of a candidate. This additional information is provided mainly by
the mobility ratio and by the coupling improvement fields which indicate the
cohesion of the entity and the quality of the returned recommendation in terms
of discounted dependencies.

Through the proposed approach we are able to reduce the complexity of the
system in terms of cross-package dependencies and inheritance relationships.

73

74 6.2 Reflections

6.2 Reflections
The two metrics on which the recommendation tool is based, provide valuable
information on the strength of connections between modules and on the degree
of single responsibility that a module has.

Given that these two values provide important insights in the quality of the
system under analysis, we must say that software architecture is a much more
complex problem which cannot be reduced to the simple degree of coupling or
cohesion. The problem is therefore inherently intricate and two metrics, despite
their expressiveness, cannot fully grasp the complexity of the problem, let alone
solve it.

The approach that we have proposed therefore is inherently based on a con-
stant and iterative evaluation of the recommendations done by the user, which
has the arduous task of assessing and judging the results in order to identify
the critical entities (based on the additional numerical information which is re-
turned).

As has been mentioned several times, since the recommendations are based
solely on the two external coupling and cohesion metrics, the proposed candi-
dates represent entities which, from an external dependencies point of view, are
incorrectly placed. However, there are several other reasons which may interfere
with following such recommendations. We already discussed the cases where
the naming conventions and high level logical properties become of higher im-
portance than the improvements which would follow from moving an entity to
the recommended location. On top of that we may have situations where the
architectural style imposes a clear modularization and thus any recommended
moves would break the architecture. Finally we should also consider that, since
the tool is integrated in an architecture recovery system, there may not be the
possibility to arbitrarily move certain parts of the system.

However, as we claimed before, the tool is intended as a recommender which
can range from conservative to quite generous in terms of dependency thresh-
olds. Through the different views and parameters we can assess the architectural
disharmonies and pinpoint the critical modules which are at the center of these
issues thus aiding the reverse engineer in the recovery process.

75 6.3 Future Work

6.3 Future Work
We briefly outline some possible roads that can be taken and future improve-
ments to the tool.

Improved Inheritance analysis:
The single strategy which is concerned with the Inheritance analysis could
be improved in order to return better and more informative results. It
would also reduce the number of recommendation results which are re-
turned which, at the moment can be very high for systems which make
heavy use of inheritance hierarchies.
A possible improvement would be to consider the type of relationship be-
tween child and parent classes. If a child class simply extends a parent
class, this would be considered as the lowest form of coupling between
the two modules. In case a class instead, refines the definition of the su-
perclass, by changing the signatures or adding by adding new definitions,
then the coupling would be more intense.
A more refined recommendation strategy could analyze this fact and in-
clude in the candidate list only the classes which have a refinement inher-
itance relationship between each other.

Evolutionary timeline:
If data regarding the lifetime of the software system is incorporated in the
analysis, then several recommendation strategies could be devised based
on this added information. For example, the mobility ratio of a class could
be proportional to its age since each version release which has a specific
class left in the same location would strengthen the fact that the class
should be left untouched.

Advanced visualization:
The recommendation system in MARS returns information through a ta-
ble and adds visual cues regarding the selected recommendation (such as
changing the text color of the selected subject class, origin and target pack-
ages).
However, more advance visualization techniques can be added which aid
the exploration especially for large systems. For example a simple enlarg-
ing / border stroke on the shape under inspection would clearly make the
subject identifiable. In order to indicate the direction of the move, a clear
large arrow pointing to the target package region could be used or also an
animation effect.

76 6.3 Future Work

Feedback to the system model:
The recommendation system is always based on the model of the system
which is provided by the user. To further integrate the tool and to aid
the reverse engineer, the returned recommendations could be selectively
chosen by the user as correct or not after which the selected recommended
moves could be actually applied to the system. This would change the
structure of the software system and could be used in order to iteratively
modify it based on the returned recommendations.

It is important to note that this last addition would require careful plan-
ning and probably the inclusion of other metrics or heuristics to improve
the recall. Detailed logs, visualizations or even further a timeline-based
navigation of the performed moves would also need to be developed to
indicate the changes to the system and control them.

Figures

2.1 Software Architecture Recovery process 7

3.1 Top-down exploration metaphor used in Softwarenaut 10
3.2 Correlation between coupling and cohesion 21
3.3 MARS tool options & parameters sidebar 22
3.4 Softwarenaut toolbar . 22

4.1 Recommendation threshold based on coupling/cohesion ratio . . 23
4.2 Example situation for a recommendation given by the inheritance

analyzer . 25
4.3 Example situation for a recommendation given by the dependency

analyzer (in case the coupling > cohesion) 27
4.4 Example situation for a recommendation given by the dependency

analyzer (in case the cohesion = 0) 28
4.5 Example system for the dependency level 31
4.6 Recommendation threshold based on the subject mobility ratio . . 32
4.7 Current view of the explanatory system for the scope parameter . 34
4.8 System as viewed by the next expansion scope 35
4.9 System as viewed by the flat system expansion scope 35
4.10 Example state as seen by the High-level Local Strategy 38
4.11 Example state as seen by the Low-level Local Strategy 38
4.12 Example state as seen by the Low-level Global Strategy 41
4.13 Example state as seen by the Low-level Global Strategy 41
4.14 Example state as seen by the High-level Conservative Strategy . . 44
4.15 Example state as seen by the Low-level Conservative Strategy . . . 44
4.16 Example state as seen by the High-level Alternative Strategy . . . 46
4.17 Example state as seen by the Low-level Alternative Strategy 46

5.1 Current exploration view for the simpleSample example system . 54
5.2 Internal dependency details for the AICup example system 54

77

78 Figures

5.3 AI Cup example - Recommendation results returned by the High
Level Global Strategy . 55

5.4 AI Cup example - Recommendation results returned by the Low
Level Global Strategy . 56

5.5 AI Cup example - Recommendation results returned by the High
Level Local Strategy . 57

5.6 AI Cup example - Recommendation results returned by the Low
Level Local Strategy . 57

5.7 Current exploration view for the simpleSample example system . 58
5.8 Internal dependency details for the simpleSample example system 59
5.9 simpleSample example: Valid moves 60
5.10 Inheritance Strategy applied to SimpleSample 61
5.11 High Level Global Strategy applied to SimpleSample 62
5.12 High Level Local Strategy applied to SimpleSample 62
5.13 High Level Conservative Strategy applied to SimpleSample 63
5.14 Current exploration level and considered modules for Softwarenaut 66
5.15 Summary table with the returned results given by different strate-

gies applied to Softwarenaut . 67
5.16 Current exploration level for CodeCity 70
5.17 Summary table with the returned results given by different strate-

gies applied to CodeCity . 71

Tables

3.1 Summary table of different coupling categories 15
3.2 Coupling categories associated with their main metric and ab-

straction level . 17
3.3 Summary table of different cohesion categories 19
3.4 Cohesion categories associated with their main metric and ab-

straction level . 20

4.1 Overview of the recommendation strategies 48
4.2 Proposals for usage scenarios . 51

79

80 Tables

Bibliography

[1] K. Babu, P. Govindarajulu, and A. Kumari. Development of the concep-
tual tool for complete software architecture visualization: Darch. IJCSNS,
2009.

[2] T. Ball and S. Eick. Software visualization in the large. IEEE Computer, Vol.
29, No.4, pp. 33-43, April 1996.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison Wesley Professional, 2003, 2003.

[4] E. Chikofsky and J. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE sotware, 1990.

[5] S. Ducasse, M. Lanza, and S. Tichelaar. The moose reengineering environ-
ment. Smalltalk Chronicles, Aug 2001.

[6] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: An extensible language-
independent environment for reengineering object- oriented systems. Proc.
Second Int’l Symp. Constructing Software Eng. Tools (CoSET 2000), June
2000.

[7] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-
oriented systems. 1994.

[8] H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histories:
The use of color and third dimension. Proceedings of the International Con-
ference on Software Maintenance, pp. 99Ð108, 1988.

[9] IEEE. Ieee recommended practices for architectural description of software
intensive systems. IEEE technical report, 2000.

[10] R. Krikhaar. Software architecture reconstruction. PhD thesis, Universiteit
van Amsterdam, 1999.

81

82 Bibliography

[11] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering, 2003.

[12] M. Lungu and M. Lanza. Softwarenaut: Cutting edge visualization. Pro-
ceedings of Softvis 2006 (3rd International ACM Symposium on Software
Visualization), pp. 179-180, 2006.

[13] M. Lungu and M. Lanza. Softwarenaut: Exploring hierarchical system
decompositions. Proceedings of CSMR, 2006.

[14] M. Lungu and M. Lanza. Exploring inter-module relationships in evolving
software systems. Proceedings of CSMR, 2007.

[15] M. Lungu, M. Lanza, and T. Gîrba. Package patterns for visual architecture
recovery. Proceedings of CSMR, 2006.

[16] J. I. Maletic, A. Marcus, and L. Fen. Source viewer 3d (sv3d): a framework
for software visualization. Proceedings of the 25th International Conference
on Software Engineering, pp. 812-813, 2003.

[17] H. A. Mueller and K. Klashinsky. Rigi - a system for programming-in-the-
large. Proceedings of the 10th International Conference on Software Engi-
neering, pp. 80Ð86, 1988.

[18] D. L. Parnas. Information Distribution. Aspects of Design Methodology.
North-Holland Publishing Company, 1972.

[19] D. Perry and A. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 1992.

[20] W. Stevens, G. Myers, and L. Constantine. Structured Design. Yourdon
Press, 1979.

[21] C. Ware. Information Visualization. Morgan Kaufmann, 2000.

[22] R. Wettel and M. Lanza. Visualizing software systems as citites. Proceedings
of VISSOFT, 2007.

	Abstract
	Acknowledgments
	Contents
	Introduction
	Outline / Structure of the Document

	Problem Description
	Absence of a silver bullet
	Common practices for modularizing systems
	Partitioning according to the architectural style
	Partitioning through high level logical properties

	Evolutionary issues
	Architecture Recovery
	Software Visualization
	Goals & Problem statement

	Sotwarenaut & MARS
	Softwarenaut
	MARS component

	Modularizing Object-Oriented systems
	Overview of coupling and cohesion
	Coupling
	Coupling summary
	Using coupling as a quality metric
	Cohesion
	Using cohesion as a quality metric
	Coupling-Cohesion correlation

	MARS tool

	Modularity recommendations
	Types of Recommendation strategies
	Inheritance strategy
	Dependency-based strategies

	Structure of recommendations
	High level vs. Low level dependencies
	Subject mobility ratio
	Granularity of module expansion
	Informational metrics
	Strategies

	Scenarios

	Validation
	AICup
	First impression

	SimpleSample
	Decoupling optimization

	Considerations on the strategies
	Softwarenaut
	Considerations on the results

	CodeCity
	Improvements

	Conclusions
	Summary
	Reflections
	Future Work

	List of Figures
	List of Tables
	Bibliography

