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Résumé

La recherche et la détection de code smells est un sujet important dans la
maintenance et l’évaluation de la qualité des logiciels. En effet, depuis l’intro-
duction du terme par Martin Fowler et Kent Beck en 1999, il a été largement
adopté et de nombreuses recherches sur ces code smells ont été menées. Les
systèmes de gestion de bases de données orientés NoSQL (Not only SQL)
sont apparus il y a une dizaine d’années et commencent maintenant à susci-
ter l’intérêt des études scientifiques. En raison de l’émergence de nouveaux
systèmes de gestion de bases de données, de nouveaux types de code smells
doivent être étudiés afin d’éviter leur persistance dans ces nouveaux systèmes.
Cette thèse a pour but de présenter les techniques que nous avons définies et
implémentées pour détecter différents code smells dans les interactions entre
un programme Java et une base de données MongoDB. Nous avons d’abord
défini un catalogue pour regrouper et classer les code smells que nous avons
pu trouver dans la littérature. Ensuite, nous avons développé des méthodes
utilisant CodeQL, un outil d’analyse statique de code, pour détecter les ins-
tances de certains code smells que nous avions préalablement choisis dans
notre catalogue.

Mots-clés— Analyse statique, Code smells, MongoDB, CodeQL, Taxonomie, Détection, Anti-
patterns, NoSQL, Java

Abstract

The code smells research and detection is an important topic in software
maintenance and quality assessment. Indeed, since the introduction of the
term by Martin Fowler and Kent Beck in 1999, it has been widely adopted
and a lot of research about code smells has been conducted. NoSQL (Not
only SQL) oriented database management systems appeared about ten years
ago and now begin to be a subject of interest in scientific studies. Because
of the emergence of new database management systems, new types of code
smells need to be studied so that their persistence in these new systems can
be avoided. This thesis aims at presenting the techniques we have defined and
implemented to detect various code smells in the interactions between a Java
program and a MongoDB database. We first defined a catalog to group and
classify the code smells we could find in the literature. Then, we developed
methods using CodeQL, a static code analysis tool, to detect instances of
certain code smells that we had chosen in our catalog beforehand.

Keywords— Static code analysis, Code smells, MongoDB, CodeQL, Taxonomy, Detection,
Anti-patterns, NoSQL, Java
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Chapter 1

Introduction & Motivation

Given the significant growth of digital technology in recent years, the volume and ex-
change of data is becoming more complex to manage. Traditional Database Management
Systems (DBMS) are starting to show their limitations when it comes to systems working
with large volumes of data and in data-intensive applications. Indeed, this is especially
due to the restrictive character of relational schemas which prevents a greater dynamicity
and scalability of databases [28].

During the early 2010s, NoSQL (for “Not only SQL") DBMS emerged to offer a
strong solution to the dynamicity and scalability problems of these relational databases.
Indeed, NoSQL databases offer more flexibility in data management thanks to their
“schema-less" aspect [28, 41]. Nevertheless, this type of DBMS is relatively recent and
still poses many challenges, in terms of research and development, that could be further
explored [31].

With the emergence of this new database management system, code quality problems
may also occur in the interaction between projects and NoSQL databases due to the
lack of knowledge of these systems which leads to improper implementation of queries.
Besides, these quality problems could affect the ease of maintenance and evolution. The
analysis of NoSQL code smells and anti-patterns could highlight these quality issues
during system development and thus facilitate the treatment of these code smells as
soon as they are detected in the code.

1.1 Thesis context

Our thesis was conducted during our internship at the Università della Svizzera Italiana
(USI) as part of a larger research project conducted by this university and the Université
de Namur (UNamur). This project is the INSTINCT project that aims to develop tech-
niques to analyze and visualize interactions between applications and NoSQL databases.
This would provide developers and researchers tools to improve the quality of interactions
in applications using NoSQL databases.

The core objective of our internship was to develop a tool-supported approach to
detect several code smells in the interactions between Java projects and MongoDB
databases. Our project can be divided into two main steps. The first one is to find
existing code smells that could hide in Java projects and organize them in a catalog.
The next step consists in implementing the detection of the selected code smells from
the catalog.

This thesis enable us to describe the various steps which have lead us to establish
our code smells catalog and to create our techniques of code smells detection.

1



1.2 Code smells catalog

As we discussed in the previous section, we needed to start by defining a catalog of
code smells about the interactions between a Java project and a MongoDB database.
Since there is no exhaustive code smells catalog in Java applications interacting with a
MongoDB database, the idea is to create our own list grouping all these code smells.

However, as stated in the article by Mäntylä et al. [34], using only a simple list to
present a large number of code smells can be problematic for classifying and under-
standing them. The most efficient way is thus to classify them afterwards in a common
catalog with categories according to the different relations that can exist between these
code smells, which is what we will do in this thesis. Indeed, the use of this catalog makes
possible to have a better overview of the existing code smells and therefore to facilitate
the prioritization of their treatment.

In addition to the above-mentioned information, the article by Marticorena et al. [37]
suggests adding metrics and criteria to refine the classification of code smells. Indeed,
according to the article, current taxonomies do not use sufficient criteria to facilitate
their classification. Moreover, the article proposes different criteria that could be reused
in a taxonomy of code smells. Then, it is interesting to include some of these criteria in
our taxonomy to get a better overview of the code smells to be processed first.

1.3 Static code analysis

The second step in our process is the creation of methods for detecting code smells that
we chose from our previously created taxonomy. To detect these MongoDB code smells
in Java projects, it is interesting to use a code analysis technique. We also note that we
perform this analysis on open-source projects. For such projects, a production database
is usually not available, and the database connection needs additional configuration.
Therefore, dynamic code analysis is not relevant in this context. Indeed, according
to Ball [4], dynamic code analysis is done at program execution, but it is not always
possible in our context, so we use static code analysis. Indeed, static code analysis is
an alternative to the dynamic analysis which allow, according to Ayewah et al. [3] and
Jovanovic et al. [23], to analyze a source code without executing the program. This fits
perfectly to our context.
The idea is therefore to create MongoDB code smells detection methods based on a static
code analysis technique. Currently, there are many static code analysis tools for a large
number of languages and for various uses. In our thesis, we rely on one of these tools,
CodeQL, that provides us a framework to define detection rules instead of creating one
from scratch.

1.4 Thesis Structure

The next chapter provides an overview of the state-of-the-art in the field of code analysis
and code smells detection. This chapter aims to highlight the techniques used in code
smell detection and gives an overview of what a code smell is. The following chapter
is the “Background" which introduces the technologies we used in our thesis. Chapter
4 explains the methodology we created and followed to develop a taxonomy of code
smells. Chapter 5 talks about how we designed our detection tool. The sixth chapter
“Implementation" elaborates on the implementation details of our tool. The chapter
on applications, Chapter 7, gives the results obtained by applying our tool to a large
number of real-world Java projects. Chapter 8 discusses the different limitations we had
to deal with in the realization of our tool and the possible ways to overcome them. This

2



chapter also gives different future works that could be realized in the continuity of our
work. Finally, Chapter 9 concludes this thesis.
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Chapter 2

State of the art

The purpose of this chapter is to highlight and introduce the different research works
that have been conducted in the field of code smell analysis. We start by presenting
the existing code analysis techniques and then we present what a code smell is based
on the existing literature. Then, we present static code analysis tools in Java and code
smell detection tools in SQL. We conclude by showing the gap that exists regarding the
research on code smells in NoSQL.

2.1 Code analysis

This section aims to explain the different techniques that could be used to analyze a
program source code. We discuss their advantages, limitations, and how they work.

2.1.1 Dynamic analysis method

According to the article [4] by Ball, the definition of a dynamic analysis method is the
analysis of a program during its execution by deriving properties that hold for one or
more executions. The advantage of this technique is that it is looking at specific execution
scenarios or aspects by instrumenting the program, which provides a good precision of
the information.

Nevertheless, this technique has limitations. First, it has worse path coverage than
static code analysis (see Section 2.1.2) because, by definition, dynamic analysis focuses
on specific execution scenarios and only goes through the path defined by this scenario
[4]. Also, this technique is quite time-consuming due to the large number of required test
cases and due to the execution time [70]. Another limitation is the fact that dynamic
analysis needs to execute the program and thus sometimes needs to have access to the
potential databases it uses, which are not always available.

2.1.2 Static analysis methods

Since our work mainly focuses on the static analysis of the project, we define and explain
this concept on the basis of the existing literature.

A first interesting step is to define what static analysis is. According to the definitions
given by Ayewah et al. [3] and Jovanovic et al. [23], it is a methodology that consists
in analyzing abstraction of source code without executing the program and without any
particular input in order to detect bad programming practices such as vulnerabilities,
errors in this code. Jovanovic et al. [23] argues that the use of automatic static analysis
methods comes from the fact that software quality has become an important element
in software development. Therefore, manual code review is a rather expensive process.

5



1 public static int factorial(int number) {
2 int factorial = 1;
3 int i = 1;
4 while(i <= number){
5 factorial = factorial * i;
6 i = i + 1;
7 }
8 return(factorial);
9 }

10

Figure 2.1: Code snippet of a Java factorial method

Also, as computer systems get larger and more complex, weaknesses in these applications
due to poor programming practices can lead to maintainability and security problems,
which can become very expansive if not detected in time [23, 32].

How static code analysis works

Static code analysis enables error detection in a program through abstract graphs which
either represent source code information or the compiled byte code [32].

As described in the article by Novikov et al. [47], static code analysis needs different
types of information to find error patterns. Those are syntactic information, semantic
information, and a set of diagnostic rules.

Syntactic information: Syntactic information is mandatory in the static analysis
because it makes possible to represent the grammar of the language. Before each analysis,
an abstract representation of the source, or of the compiled code is produced in an AST
(Abstract Syntax Tree) which will be used in the analysis [47].

Figure 2.2: While expression AST from the code snippet in Figure 2.1

As we can see in Figure 2.2 the tree has nodes and leaves. This Figure represents the
AST derived from the code snippet presented in Figure 2.1. The nodes in AST represent
operators, statements, among others and the leaves represent variables and constants.

Semantic information: Semantic information is not mandatory in static analysis
but when combined with syntactic information it allows to obtain deeper analyses. This
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allows, for instance, to obtain information such as the type of an expression, the signature
of a method, the location of the declaration of a variable, or a method [47].

Diagnostic rules: Diagnostic rules are queries used in static analysis to detect errors
or patterns in code fragments according to different degrees of problems severity and
type [47].

Static analysis methods

There are many static code analysis methods but we will focus on the ones which seem
most relevant in the context of our thesis. These are the Control-flow analysis and the
Data-flow analysis [70].

Let us start with the Control-flow analysis the most used techniques in static
analysis. According to Zhioua et al. [70], the objective of this technique is to know
how the procedures in a program call each other and which ones are really called. This
technique allows to represent the flow of the program based on the source code or the
disassembled binary code in a directed graph: the CFG (Control-Flow Graph) [38, 70].

Figure 2.3: Factorial CFG from Figure 2.1

As represented on Figure 2.3, the graph is composed by nodes and edges where a node
represents a set of instructions or block of code, and an edge represents a conditional
instruction, loops, or branches [38, 70].

The next technique is the Data-flow analysis that aims to infer the possible values
of a variable at a given moment of the program execution [32, 70]. To do this, it relies
on an abstract representation of the program semantic to be analyzed by using a CFG.
It will thus represent the dependencies of the data in the source code and will track the
effect of the input data, which allows gathering information about the possible values of
this data [23, 70].

Strengths

• Full path coverage: Static analysis allows to get all the possible interactions
between modules or components to find rare pattern occurrences [32].

• Automated processing: Automated Static Analysis (ASA) can be developed to
automatically detect several types of software anomalies [69, 70].

• Fast: By definition, there is no execution time in static code analysis [38]. More-
over, there is the possibility to chose the effective nodes on which the diagnostic
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rules will be executed. Thanks to that, this limits the movement in the graph, the
access to unnecessary information, etc [47].

Limitation

• Undecidable and low precision [32] : it is due to the fact that there is no
execution so it is impossible to know every combination of execution scenarios that
could occur [38]. In fact, based on Louridas [32], static code analysis is performed
with an approximate model representing the program to analyze. Henceforth,
because of these approximations, the analysis may miss some cases – which are
called false negatives – and may report correct code fragments – which are called
false positives.

2.2 Code smells

Since this work aims at detecting code smells in NoSQL database accesses, it is important
to specify what exactly is a bad smell and why they are interesting to analyze. The term
code smell emerged and was popularized by Martin Fowler and Kent Beck [16] in 1999.
In their book on code refactoring, they define bad smells as “structures in the code
that suggest the possibility of refactoring" before suggesting a list of some common bad
smells they have discovered. A bad smell is a fragment of code that may be a source
of failures or performance issues in the program and that might be corrected with code
refactoring. Bad smells have since been studied for various languages and in different
contexts. They are often studied in order to measure maintainability and evolvability
[26, 48] or performance issues [20].

2.2.1 Code smells in object-oriented programming

A first taxonomy of code smells in object-oriented programming has been proposed by
Mäntylä et al. [34] to bring together the smells presented by Fowler [16] into classes by
establishing similar characteristics between them. This taxonomy has been widely used
since then and has been refined by the author himself [35]. This taxonomy has also
been extended by others such as Marticorena et al. [37], who added several metrics for
a better understanding of the smells and of how to detect them. Another taxonomy has
later been proposed by Rasool and Arshad [54] based on more abstract concepts which
are shared by smells, classifying them into five groups.

The correlation between code smells in object-oriented programming and maintain-
ability of the system has been highlighted in several studies such as the one from Khomh
et al. [26] or Olbrich et al. [48] who established a significant correlation between the
presence of code smells in a class and the change-proneness of this class. However,
change-prone classes tend to produce more defects, and accumulate more technical debt
[1]. Empirical studies from Yamashita et al. [65–67] have also demonstrated in specific
cases that code smells density of a system can be a good indicator of its maintainability.

Another use of code smells is bug prediction. The influence of code smells on bug
proneness of a system has been empirically demonstrated by Khomh et al. [27] and
Palomba et al. [50]. A first model of bug prediction based on smells has also been
proposed by Taba et al. [61]. As classes containing codes smells are more prone to
change, and considering the fact that faults are more likely to occur in change-prone
classes [5], we can say that there is a relation between smells and faults.
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2.2.2 Code smells in SQL database interactions

Code smells have also been studied in the more specific context of data-intensive systems,
and more precisely in the interactions between the system and an SQL database. In 2010,
Karwin [24] published a book containing common SQL mistakes and anti-patterns he
gathered over time. Those anti-patterns are divided into the categories of logical database
design, physical database design, queries, and application development. Another booklet
published by Phil Factor [12] in 2014 gathers and describes 150 SQL code smells.

Unlike traditional code smells, SQL code smells are not significantly related to soft-
ware bugs [45] but have most of the time an impact on the performance of the queries
made on the database, and therefore on the system itself. This performance impact has
been studied by Lyu et al. [33] and Chen et al. [8]. Another study from Yang et al.
[68] analyzed the source of performance bugs in real-world systems and found that more
than half of them were caused by misuse of ORM APIs. Another common cause is a bad
database or application design. All three of these problems are often highlighted in the
program by code smells.

A recent empirical study has been made by Muse et al. [45] about the prevalence, the
impact and the evolution of those SQL code smells. They draw the following conclusions:
SQL code smells are prevalent in data-intensive software; they have a weak co-occurrence
with traditional code smells; they have a weaker association with bugs than traditional
code smells; they are more often introduced at the beginning of the software development
and they persist longer in the code than traditional smells.

2.3 Code smells and bugs detection in Java code using static
analysis

Static analysis has been used for code smells and bugs detection in several tools such
as FindBugs, developed by Ayewah et al. [3]. This tool allows programmers to detect
more than 400 Java bug patterns in different contexts like bad practice, correctness, in-
ternationalization, malicious code vulnerability, multithreaded correctness, performance,
security, and dodgy code. It also assigns a severity metric, from low to high, to each
bug pattern detected. FindBugs [3] is written in Java and uses various techniques such
as the visitor pattern for some simple bug detections or intraprocedural data-flow and
control-flow for more complex ones. Since FindBugs is no longer updated, it has been
superseded by SpotBugs in 2016.

In the meantime, Fokaefs et al. [14] presented JDeodorant: an Eclipse plugin using
the abstract syntax tree of the program to detect the ‘Feature envy’ code smell and
apply automatic refactoring to correct it. It has been improved over time to include
many other smells from Fowler’s book such as ‘Long methods’ [62], ‘God classes’ [15],
‘Duplicated code’ [39] and ‘Refused bequest’. [30] We can also cite, among others, PMD
[52], inCode or iPlasma [36] that are static detection tools based on software metrics.

Those tools and others have been compared and evaluated in several studies such as
Rasool and Arshad [53], Paiva et al. [49] or Hamid et al. [19]

2.4 Existing SQL code smell detection tools

Static code analysis has also been used in some tools for detecting SQL code smells.
Therefore, this section presents some of those tools, their purpose and a brief explanation
on the way they use static code analysis to find SQL code smells.
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2.4.1 PL/SQL, COBOL and Visual Basic static analyzer

A first tool that we could cite is the one created by Van Den Brink et al. [64] in 2007.
Its objective is to analyze the quality of the embedded SQL queries inside the systems
developed in PL/SQL, COBOL, and Visual Basic. The quality assessment is given by
some metrics about quality, reliability, and efficiency. In order to analyze the SQL
statement quality, they first extract SQL queries from the source code with control-
flow and data-flow analysis. This extraction is made on two types of queries: queries
constructed as a string in the host language and queries using a syntactic extension to the
host language. They justify this choice by explaining that some programming languages
provide a dialect of SQL as a sublanguage to embed SQL queries, while others construct
queries as textual strings in the host language. [64]

Once queries have been extracted from the code, they analyze the results to detect
bad and good practices in embedded SQL like duplication in the queries, the accesses
to different tables, the queries centralization level in the system, the queries number
and the number of input variables occurrence. All those elements provide quantitative
measures to estimate the quality of the system.[64]

2.4.2 SQLInspect

We can also mention SQLInspect which was developed by Nagy and Cleve [46] in 2018.
This tool works as an Eclipse extension that takes advantage of its features to find and
highlight common coding mistakes or problematic SQL statements embedded in Java
programs (using JDBC, MySQL or Apache Impala) by static query extraction [46]. The
creation of this tool is supported by the fact that SQL statements in code are often
dynamically constructed by string operations on variables from different locations, so it
is complicated to understand the statement that is really sent to the database and to
apprehend potential problems that may arise.

SQLInspect works with a static control-flow analysis that extracts SQL queries writ-
ten in Java. Those queries are, then, analyzed by an internal parser for the supported
SQL languages. From the previously extracted queries, the tool can detect SQL bad
smells or anti-patterns, as defined by Karwin [24] in his book, and provide SQL quality
metrics for those statements. This tool also allows to easily search in the source code for
specific queries based on a tree-matching algorithm [46].

2.4.3 ORM static analyzer

The last tool that we cite is a framework by Chen et al. [7]. The framework objective
is to detect and prioritize performance anti-patterns inside of systems using ORM1 for
database access by using static code analysis.
The main reason for this framework creation is that many developers use ORMs to ease
database access without considering the fact that they can have negative impacts on
database performance. Therefore, they track two common types of performance anti-
pattern: Excessive data – when data is retrieved from a database but never used and
One-by-One Processing – when operations are performed repeatedly for a single task on
similar databases.[7]
This framework uses a data flow and code-path analysis to extract database accesses
in the source code. Based on those accesses, the tool uses a set of rules to find ORM
performance anti-patterns depending on the type of problem to detect. After that, the

1Object-Relational Mapping allows to automatically translate database accesses by mapping appli-
cation objects to database tables.[7]
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tool evaluates the anti-pattern performance impact to provide a prioritization of the bugs
that should be fixed [7].

2.5 Code smells in NoSQL database interactions

Despite NoSQL databases becoming more and more common, we found very few studies
about the impact of code smells or bad practices on NoSQL databases. The importance
of data modeling in such databases has nevertheless been demonstrated by Gómez et al.
[17], who compared the performance of six MongoDB databases containing the same
data-set but with different data structuring choices. Imam et al. [21] also suggested a
list of 23 guidelines to design a document-oriented database. Such guidelines can also
be found in the book from Copeland [9] dedicated to design patterns for MongoDB
Databases.

If good practices exist for NoSQL databases, we have not found any list of code smells
or anti-patterns for such databases. Neither have we found tools aimed at verifying the
application of NoSQL good practices in source code.
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Chapter 3

Background

The purpose of this chapter is to introduce and explain the main technologies used in
our thesis, namely MongoDB and CodeQL.

3.1 MongoDB

As this work only focuses on MongoDB databases, it is necessary to present what Mon-
goDB is, to explain how it works, to give some usage examples and to describe the
different MongoDB drivers that exist.

MongoDB is one of the most used databases in the family of NoSQL (“Not only SQL")
databases. It is a document-oriented database, which means it stores data in JSON-like
documents. Each of these documents represents an object stored in the database and is
grouped in collections. Indeed, NoSQL databases do not use tables, columns, rows or
schemas for data accesses but use more flexible data models which allow to store a large
number of unstructured data [55, 56]. As an example, we can see in Figure 3.1 a simple
representation of a user in a MongoDB Database.

1 {
2 "_id": "1234",
3 "firstname": "Jane",
4 "lastname": "Wu",
5 "address": {
6 "street": "1 Circle Rd",
7 "city": "Los Angeles",
8 "state": "CA",
9 "zip": "90404"

10 },
11 "hobbies": ["surfing", "coding"]
12 }

Figure 3.1: Simple representation of a user in a MongoDB database (from MongoDB
website2)

3.1.1 MongoDB Server

In order to present how MongoDB works, we start with examples of INSERT and FIND
methods usages on the user collection illustrated in Figure 3.1. Note that the following

2https://www.mongodb.com/what-is-mongodb

13



queries are presented in the MongoShell3 language.

1 db.user.insertOne(
2 { firstname: "John", lastname: "Doe", address: { street: "123

Main St", city: "Anytown , USA", state: "Nowhere" ,zip: "000000"
} }

3 )

Figure 3.2: InsertOne example on collection user presented in Figure 3.1

Figure 3.2 shows an example of ‘insertOne’ that inserts a new user “John Doe" in
the collection under the same name. As can be seen, we have voluntarily omitted the
hobby field to represent the flexibility of NoSQL. In fact, fields in collections do not
need to conform to a fixed schema, so fields may differ from one document to another.
Therefore, we speak of schema-less databases.

1 db.user.find(
2 { state: "CA", hobbies: { $in: [ "surfing", "trekking" ] } }
3 )

Figure 3.3: Find example on collection user presented in Figure 3.1

Figure 3.3 illustrates a ‘find’ usage whose objective is to obtain all the users from
the state of California (CA) whose hobbies are “surfing" or “trekking".

As we can see, the MongoDB queries content is also written in JSON-like format.

3.1.2 MongoDB Drivers

This section is meant to quickly present the Java drivers, which will be analyzed in our
work.

Java MongoDB Driver

Java MongoDB Driver is the official driver for MongoDB. This is an API to connect
applications and databases by providing access methods on collections. To illustrate
how this driver works, we will transpose the selection and insertion methods that we
used as examples in Section 3.1.1.

1 collection.insertOne(user)

Figure 3.4: InsertOne example in Java MongoDB Driver

1 collection.find(and(eq("state","CA"), in("hobbies", ["surfing", "
trekking"])))

Figure 3.5: Find example in Java MongoDB Driver

As we can see in Figures 3.4 and 3.5, data accesses are made through the “collection"
object which represents the user collection. Also, in Figure 3.4, the ‘insertOne’ method
is called with a Java object “user" in which each field represents a JSON property from
this collection.

3https://docs.mongodb.com/manual/mongo/
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ODM

Like ORM for SQL databases, MongoDB has also a way to automatically translate
database accesses by mapping application objects to MongoDB documents. This is
called Object Document Mapper (ODM).

In the remaining of our thesis we will analyze three Java frameworks which are based
on ODM for database access: Spring Data MongoDB, MongoJack and Morphia.

3.2 CodeQL

CodeQL is a static code analyzer that uses queries to detect potential bugs, errors or
vulnerabilities in project source codes. CodeQL, in addition to its standard query library,
also offers the ability to create custom queries to identify new kinds of problems. Fur-
thermore, this tool supports various languages like C/C++, C#, Go, Java, JavaScript,
Python and TypeScript.[22]

As specified in the CodeQL documentation on GitHub [22], the CodeQL analysis
follows multiple steps.

Figure 3.6: Representation of the CodeQL analysis process

Figure 3.6 illustrates the different steps of the CodeQL analysis on Java source code.
These steps are represented in bold on the diagram and we describe them in more detail
in the following subsections.

Database creation: The first step is the code preparation which consists in the gen-
eration of a CodeQL database. For this, CodeQL extracts a relational data model
representing each source file in the program source code. The data extracted from the
source code is presented in a hierarchical way, including a representation of the abstract
syntax tree, the data flow graph and the control flow graph [22].

It should also be noted that for compiled languages, such as Java, the extraction of
the database is done directly on the source code. However, the project requires to be
build as it relies on the normal project building process to collect each source file and
resolve dependencies. This allows a better representation of the program under question
[22] .

Query execution: Once the databases are generated, different queries can be executed
on them. Those queries are written in a language called QL that we describe in Section
3.2.1 [22]. As shown in Figure 3.6, these queries are made of different elements which
are illustrated in Section 3.2.2.

Query results: This step consists in the interpretation of the results obtained after the
queries execution, in order to highlight the errors potentially detected by these queries.
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Queries contain metadata properties that indicate how the results should be interpreted.
Those queries are used to display a message for a single location in the code, or to
display several locations that represent steps from a Data-flow or a Control-flow path
[22]. The generated results can be represented in output files of different formats such as
CSV (Comma-Separated Values) or SARIF (Static Analysis Results Interchange Format)
among others [22].

3.2.1 QL language

In order to analyze the complex data structures encoded in the extracted database,
CodeQL uses a declarative, object-oriented query language named QL (Query Language).
This language has a similar syntax to SQL because they are both query languages. The
main difference resides in the semantics of those languages. QL is based on a simple form
of logic programming language named “Datalog" which allows to create recursive queries
which are called predicates [2, 22, 44]. QL is also an object-oriented language that allows
to create reusable queries and to increase modularity without losing its logical aspect.
QL allows to define classes that can be inherited: these classes can be considered as
predicates and the inheritance can be considered as an implication [22, 44].

3.2.2 Example

As CodeQL is an important part of our work, it seems necessary to present how it works
by a simple query example4.

1 /**
2 * @id java/println -method
3 * @kind problem
4 * @description Println method
5 * @problem.severity error
6 */
7 import java
8

9 private class PrintlnMethod extends MethodAccess {
10 PrintlnMethod (){
11 this.getMethod ().hasName("println")
12 }
13 }
14

15 predicate isArgumentLiteral(PrintlnMethod method){
16 method.getAnArgument () instanceof StringLiteral
17 }
18

19 from PrintlnMethod printlnMethod
20 where isArgumentLiteral(printlnMethod)
21 select printlnMethod , "Is a println method access"

Figure 3.7: CodeQL query that retrieves all accesses to println methods

Figure 3.7 illustrates a CodeQL query written in QL. The objective of this query is
to obtain all the accesses to the “println" methods whose arguments are strings.

As we said before, QL is an object-oriented language. Therefore, we can see, on
lines 9 to 13, that the access to the “println" methods is represented by a private class

4This example has been realized on the LGTM website. The query and its results can be consulted
on the site at the following address: https://lgtm.com/query/3380129713944661860/

16



which extends another class to inherit its properties. In our example, we can see that
the “PrintlnMethod" class extends the “MethodAccess" class to specify that the data to
be retrieved has to be methods accesses only. Moreover, on lines 10 and 11, the “println"
class constructor has been redefined to obtain only the accesses whose method name is
“println".

CodeQL also allows the reusability of libraries or modules thanks to import state-
ments, as illustrated in Figure 3.6. In our example, on line 7, we can see that we import
the “java" library, which is a standard library provided by CodeQL. In addition, we could
also have imported some modules or libraries that we have defined.

We also provided a simple predicate, on line 15, which defines a condition that eval-
uates whether a method argument is of StringLiteral type. As we said before, predicates
represent the logical part of CodeQL.

Finally, CodeQL queries are composed of three important parts: from clauses, where
clauses and select clauses.

From clauses: The ‘from’ clause declares the variables in a specified type that will be
used in the query [22]. In our example, on line 19, we defined a variable with the type
that we created earlier. Thus, in this query, we only use elements of type PrintlnMethod.

Where clauses: The ‘where’ clause is the logical part of the query which generates
results that only match the logical conditions defined in this clause. These conditions
are applied to the variables defined in the ‘from’ clause [22]. In our example, on line 20,
we restrict the results that match with predicates that we have defined before.

Select clauses: The ‘select’ clause is used to display the results that match the logical
conditions defined in the ‘where’ clause [22]. In our example, on line 21, we display the
object representing the method access and a message. This structure is specified by the
@kind property (on line 3) in the metadata. Here, the property states that the ‘select’
clause must always contain an element to display and a string to provide an explanation.
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Chapter 4

Defining code smells

The aim of this chapter is to suggest a taxonomy of the MongoDB code smells that we
gathered and defined from different sources. To do so, we first present the methodology
we followed to find these code smells. Then, we present and explain the different code
smells we found. Finally, we explain how we implemented our taxonomy.

4.1 Methodology to define code smells taxonomy

This section explains in detail the methodology we developed and used to create our
code smells taxonomy. The process we defined and followed for this purpose is presented
in Figure 4.1.

Figure 4.1: Methodology diagram to define a taxonomy of code smells

4.1.1 Define a list of code smells and anti-patterns

To come up with a taxonomy as complete as possible, it is first necessary to define a list
of code smells based on different types of sources. Therefore, we decided to explore
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five types of sources:

Scientific research: Scientific literature is one of the best sources of inspiration for
finding information on various scientific topics. Therefore, we first decided to search in
the literature to see if some code smells or anti-patterns have already been defined by
someone for NoSQL or MongoDB. Despite the many searches we have done, we did not
find any.

Online forums and blogs: Online forums and blogs have been a great source of
inspiration. Indeed, Mark Kenig, an IBM employee, posted an article [25] on LinkedIn
in which he defines a list of Big Data anti-patterns. This post will be our main source
for the list of code smells presented in this section. The official website for MongoDB
also contains a series of articles dedicated to anti-patterns. They develop six different
anti-patterns and explain how to detect them inside a database. Another article posted
on InfoQ [13] under the pseudonym of Phil Factor contains a list of some mistakes to
avoid while designing or using a MongoDB Database.

Opposition to MongoDB good practices: To complete our list of code smells we
also searched for recommended MongoDB good practices. We then investigated whether
ignoring those good practices could lead to performance or maintainability issues or not
and therefore could be considered as a code smell.

Opposition between SQL and MongoDB: Some other code smells have been de-
fined by searching for errors that programmers used to SQL databases could make when
designing or using a NoSQL database the same way they would have done for a SQL
database.

Transposition of SQL anti-patterns: Finally, we searched for code smells or anti-
patterns already defined for SQL database usages which can be extended to NoSQL
databases. This is for example the case for most of the smells based on the architecture
of the application using the database rather than on the use of the database itself.

4.1.2 Analyzing the detection level and translating anti-patterns to
code smells

The second step, after obtaining a first list of code smells and anti-patterns, is to deter-
mine, for each smell, the level at which they can be detected. For this, we have defined
three detection levels:

Code Level: The anti-pattern is directly related to the interaction with the database
and can be detected inside the source code without inferences about schema or data.
Those anti-patterns are the easiest to detect with static analysis.

Schema Level: The anti-pattern is related to the database schema conception. It is
then necessary to infer information about the schema to detect those anti-patterns with
static analysis.

Data level: The anti-pattern is related to the data that is stored just inside of the
database. To detect it, we need information about the database content. For this
purpose, we often need either a direct access to the database or a dynamic analysis.
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As our objective is to provide a taxonomy of code smells, we converted the anti-
patterns from our list to code smells by looking for code fragments that could hint the
presence of these anti-patterns. By doing so, we excluded some anti-patterns without a
corresponding code smell which, therefore, can not be detected from the source code.

4.1.3 Classify code smells into groups

In order to better classify and understand the code smells that were defined earlier, it
is necessary to group them into families within the taxonomy. To do this, it would
be interesting to explore two characteristics of code smells: their origin and impact.
Indeed, we noticed that most of the time, code smells with the same origin lead to
the same impact. Therefore, a good approach to classify code smells is to group them
according to their origin and to give a suitable name to these groups. It allows to have
a first draft of the taxonomy that can be completed later.

4.1.4 Provide additional detection features and information

The final step in the development of the taxonomy is to provide additional information
about the code smells. Indeed, this information would help to prioritize the processing
of code smells to know which ones should be handled before others, and to ease their
detection. This information can be about the type of impact of these code smells on the
system, the way to detect them, if they violate a basic principle of MongoDB, the degree
of difficulty of their detection, or others. All this information can come from personal
research or from external sources.

4.2 Our list of code smells

This section contains the list of code smells we have gathered and derived from the sources
previously mentioned in Section 4.1.1. For each smell, we provide a short description
and an instance of the smell in Java with an explanation.

4.2.1 Separating data accessed together

Description: If normalizing data is the way to go in relational databases, in document-
oriented databases like MongoDB, separating data accessed together is most of the time
an anti-pattern [58]. Rather than separating data into different collections, MongoDB
allows to embed documents to represent one-to-one relationships and to embed arrays of
documents for one-to-many relationships. This allows better performances by avoiding
using the $lookup operator (similar to a left outer join in SQL) which induces slow and
resource-intensive queries [58].

In-code symptoms: Accessing data separated in two collections requires the use of
the $lookup operator. The code on Figure 4.2 contains a simple example of a lookup
operation written with the official MongoDB Driver for Java. If we can detect several
lookups between the same collections, it means that the data from those collections
should probably be stored inside the same collections. An example of query using a
lookup operation is provided in Figure 4.2.

Discussion: In some cases, separating data in several collections can be justified in
order to avoid embedding huge arrays in documents or exceed the 16MB size limit of
MongoDB Document. There also exist design patterns such as the subset pattern [10]
or the extended reference pattern [11] that combines embedding and separating data in
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1 Bson pipeline =
2 Aggregates.lookup("joinedColl", "localField", "foreignField",

"as");
3 List <Document > articles = collection
4 .aggregate(singletonList(pipeline))
5 .into(new ArrayList <>());

Figure 4.2: Example of operation using lookup in Java MongoDB Driver

several collections to avoid performance and document size issues. The final decision
must be taken regarding how the data will be accessed by the program.

4.2.2 Use of relational collections

Description: For the same performance reasons as the previous smell (Separating data
accessed together), the use of relational collection to represent many-to-many relation-
ships is considered as a bad practice in MongoDB [63]. This data modeling pattern
requires a “join" between three collections to retrieve the information about the relation
and therefore requires the use of two lookup aggregations.

In-code symptoms: The use of relational collections can be detected in code by
looking for a lookup between three collections (see Figure 4.4), or more easily if the
program uses an ODM to access the database. It is indeed easy to detect entity classes
including only two properties with a name containing “id" or annotated as a reference
to another collection. (Figure 4.3)

1 @Document(collection = "authorsBooks")
2 public class AuthorsBooks {
3 private String _id;
4 private String authorId;
5 private String bookId;

Figure 4.3: Example of entity class corresponding to a relational collection in Spring
Data MongoDB

1 List <Document > authorsAndBooks = collection.aggregate(Arrays.
asList(new Document("$lookup",

2 new Document("from", "authorBook")
3 .append("localField", "_id")
4 .append("foreignField", "authorId")
5 .append("as", "authorBook")),
6 new Document("$lookup",
7 new Document("from", "books")
8 .append("localField", "authorBook.bookId")
9 .append("foreignField", "_id")

10 .append("as", "books")),
11 new Document("$unset", "authorBook")));

Figure 4.4: Example of query using MongoDB Java Driver that might suggest the use
of relational collections
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Discussion: Instead of using a relational collection, we found two possible patterns
to implement many-to-many relationships [29]. Two way embedding which consists in
maintaining a list of references in both collections. For example, in the situation pre-
sented in Figure 4.3 we would maintain the list of books written by every author in the
author document and in every book document the list of its authors. The second one,
called One way embedding consists in maintaining such a list in only one of the two col-
lections related – generally in the one “performing" the action associated to the relation.
In our example, the authors write the book so the list of books should be embedded
in the author document. Once again the decision of embedding only the reference, the
complete entity, or just a part of it must depend on the way data will be accessed in the
program using the database.

4.2.3 Abusive use of indexes

Description: Indexes in MongoDB are powerful and necessary to improve the perfor-
mance of queries. Therefore, it is sometimes tempting to create a lot of indexes, even
some that are not necessary in prevision of future queries. But creating too many indexes
might have the opposite effect and slow down a database. Indexes can take a lot of disk
space, especially for the collections having a large number of documents. Indexes also
consume RAM as indexes are loaded in memory by the MongoDB engine. Furthermore,
as indexes need to be updated by the MongoDB engine, every time the indexed field is
changed, they will also consume CPU and increase the duration of field updates. There-
fore, it is important to use indexes wisely and only when necessary – for example, on
frequently queried data. Creating too many indexes can then be considered as a bad
smell [25, 40, 59].

In-code symptoms: Detecting indexes already created in the database might not be
possible from the source code but indexes can be created easily inside the program with
the “createIndex" method from the MongoDB driver (see Figure 4.5). It is then possible
to detect indexes that are created in the code before executing a query and that are not
deleted. In projects using ODM mapping, indexes can be defined in the entity classes
and then easily detected (see Figure 4.6).

1 booksCollection.createIndex(Indexes.ascending("title"));

Figure 4.5: Example of index creation with MongoDB Java Driver

1 @Document(collection = "books")
2 public class Book {
3 @Id
4 private int _id
5 @Indexed
6 String title;
7 ...
8 }

Figure 4.6: Example of indexed field in Spring Data MongoDB entity class

Discussion: It is difficult to determine how many indexes should be considered as too
many indexes. It may depend on the number of fields in the documents or on the size of
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the collection. The maximal number of indexes that one can create in MongoDB is 64.
However, in a video posted by MongoDB employees1, they recommend not exceeding 50
indexes per collection. To validate this number, it is interesting to evaluate empirically
the impact of the number of indexes on a database performance. To avoid impacts
from the number of indexes as much as possible and to warn the developer before the
situation worsens, we decided to set a threshold of 40 indexes per collection, above which
we consider there are potentially too many indexes. As each database is different, the
final decision for the appropriate number of indexes for a specific collection still belongs
to the person designing it.

4.2.4 Storage of easily calculated values

Description: As in SQL databases, storing easily calculated values is an anti-pattern.
Such data will indeed take disk space in the database while they could be easily calculated
in the query or in the program.

In-code symptoms: Storage of easily calculated values is more difficult to detect
from the code, at least in an automated way because we would have to understand the
semantic of the program to know which information is stored in the database and how it
is computed. With a manual code review, however, we could detect fields that contains
easily calculated values from their name, for example.

4.2.5 Too long document keys

Description: In MongoDB, document keys (ids) are automatically indexed. Therefore,
using too long ids will take a lot of space in indexes files in addition to the space they take
in each document. A common example is the use of UUIDs. If they are convenient to use,
they will rapidly generate large indexes files as the collection will grow. As explained in
Section 4.2.3, large index files will induce performance and space consumption problems
[25, 63].

In-code symptom: The use of long document keys can be detected by looking for
UUIDs. We can look at the declared type for the identifier in entity classes or at the
inserted value for the id field of a new document. Figure 4.7 and Figure 4.8 present
respectively an example of a Spring Data entity class with an UUID as document key,
and the insertion of a new document with an UUID key using the MongoDB Java driver.

1 @Document(collection = "books")
2 public class Book {
3 @Id
4 private UUID _id
5 ...
6 }

Figure 4.7: Example of UUID as id in Spring Data MongoDB entity class

4.2.6 Storage of empty values

One of the main advantages of MongoDB is schema flexibility [18]. Unlike in SQL
databases, the structure of documents inserted in a collection is not fixed, and, therefore,

1https://www.youtube.com/watch?v=mHeP5IbozDU
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1 booksCollection.insert(
2 new Document(_id , new UUID())
3 .append (...)
4 ...
5 );

Figure 4.8: Example of an UUID inserted as id in a new document

it is not necessary to store empty values if the document does not have an attribute.
Not using this possibility may be considered as a code smell as it goes against one
fundamental principle of NoSQL databases. Furthermore, storing empty or null values
in documents will take unnecessary disk space [25].

In-code symptoms: This anti-pattern is detectable in the insertion of new documents
in the database. For instance, if a null value or an empty string is assigned to a field.
An example is presented in Figure 4.9.

1 booksCollection.insertOne(
2 new Document("_id", 12345)
3 .append("title", "NoSQL code smells")
4 .append("publication_date", null)
5 );

Figure 4.9: Example of null value inserted in database using MongoDB Java Driver

4.2.7 Human readable values

Description: These code smells consist in storing values in a human-readable format
rather than in an optimized format that will take less space in databases. They will
take more space, not only in the documents but also in the indexes if those values are
indexed. Larger data also induce more network consumption when retrieving it [25].

In-code symptoms: Human readable data is not easy to detect automatically because
you have to understand the meaning of the data independently from its type. To detect
this code smell, a manual code review would probably be necessary to recognize data
stored in a way that could be improved. However, some really basic cases might be
possible to discover such as string values like “yes" or “no" used to represent a boolean
value, or a sate stored in a string format. The example in Figure 4.10 shows the storage
of such values for the “in_stock" and “publication_date" fields.

1 booksCollection.insertOne(
2 new Document("_id", 54321)
3 .append("title", "SQL Antipatterns")
4 .append("publication_date", "Tuesday , August 03, 2010"
5 .append("in_stock", "yes")
6 );

Figure 4.10: Example of human readable values inserted in database using MongoDB
Java Driver
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4.2.8 Too long attribute names

Description: Due to the use of JSON-based documents to store data in MongoDB,
the name of every attribute will be stored for each document. Using long attribute names
can then consume a lot of storage [25].

In-code symptoms: The name of the document fields can easily be detected in the
program like in the queries accessing the database or inside of entity classes if the program
uses an ODM. Depending on the ODM used, the name of the field might be the name of
the corresponding entity class attribute or might be defined with an annotation. Figure
4.11 shows an example of a too long field name.

1 @Document(collection = "books")
2 public class Book {
3 @Id
4 private int _id
5 ...
6 @Field("international_standard_book_number")
7 private int isbn
8 }

Figure 4.11: Example of long field name in Spring Data MongoDB entity class

Discussion: Having meaningful attribute names is important for maintainability and
human understanding, but it is important to find a balance between human readability
and conciseness. Once again, there is no real consensus about the maximal length a field
name should have, and there is no technical limitation for the size of a field name in
BSON documents. In order to suggest an ideal length, we examined the document fields
used in 250 projects using MongoDB2. We compared their name length and choose the
95th percentile as a maximal value. Consequently, we suggest that a field name longer
than 20 characters is considered as too long.

4.2.9 Database accesses spread across the system

Description: System maintainability is an important characteristic in software devel-
opment. Separating access in the database greatly affects the maintainability of the
system. For instance, if a change is made to one collection in a NoSQL database, all the
accesses to this collection in the system will have to be changed as well. Also, if these
accesses are separated in many files, then this can complicate maintenance and impact
maintainability.

In-code symptoms: The easiest way to detect the database access distribution in the
system is to compare the number of methods that have one or more database accesses
to the total number of methods in a system. Another way would be to get the whole
database calls locations and compare these locations to ensure that they are grouped in
the same place within the file system.

4.2.10 Inconsistent order of attributes inside a collection

Description: Schema flexibility does not mean that there is no need to keep a certain
coherence between the documents inside of a collection. It is important to keep the

2See Section 7.1.1 for more information about the projects
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document fields in the same order because MongoDB accords importance to this order
when searching for embedded documents. For instance, the query presented in Figure
4.12 would not match the document presented in Figure 4.13 because the field order is
not the same in the query as in the document. Having a different order inside the same
collection could then lead to incomplete results.

1 db.books.find(author :{name:"Doe", firstName:"John"}});

Figure 4.12: Example of query in MongoDB Shell

1 {
2 "_id" : 12345,
3 "title" : "NoSQL Code smells",
4 "author" : {
5 "firstName":"John",
6 "name":"Doe"
7 }
8 }

Figure 4.13: Example of embedded document

In-code symptoms: This code smell then consist in inserting documents in the same
collection but with a different field order. For example, we could see a code like the one
presented in Figure 4.14

1 Document author1 = new Document("name", "Bernard")
2 .append("firstName","Jehan");
3 Document author2 = new Document("firstName", "Thomas")
4 .append("name","Kintziger");
5 authors.insertOne(author1);
6 authors.insertOne(author2);

Figure 4.14: Insertion of documents with an inconsistent field order with the Java Mon-
goDB Driver

4.2.11 Relying on transactions

Description: MongoDB has been implementing multi-document transactions since its
version 4.0. However, it does not mean that transactions should always be used while
interacting with the database. In fact, relying on transactions to ensure data integrity
could in some cases be a code smell. Indeed, the need to use transactions frequently may
indicate that one of the fundamental rules of MongoDB design – data that is accessed
together should be stored together – is not respected [57]. If data accessed together are
stored together, there would be no need to use transactions.

In-code symptoms: Figure 4.15 contains an example of transaction use that we found
on the MongoDB official website3. This code smell can be detected if the same collections
are often accessed between the start and the commit of a transaction.

3https://www.mongodb.com/transactions
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1 try (ClientSession clientSession = client.startSession ()) {
2 clientSession.startTransaction ();
3 collection.insertOne(clientSession , docOne);
4 collection.insertOne(clientSession , docTwo);
5 clientSession.commitTransaction ();
6 }

Figure 4.15: Example of transaction with MongoDB Java driver

Discussion: Like for most of the code smells presented, if the use of transactions can
be a code smell, it does not mean it is always bad to use them. The frequency and
reason for using a transaction should be considered to determine if there is a conception
problem in the database. MongoDB published a whitepaper available online that helps
to decide when transactions should be applied or not [43].

4.3 Our MongoDB code smells taxonomy

As stated by Mäntylä et al. [34], code smells presented in a flat list might be difficult
to apprehend. To provide a better understanding of the MongoDB code smells defined
above, we decided to elaborate a first taxonomy. As explained in Section 4.1, the taxon-
omy must group smells into categories based on their origin and shared properties. We
also provide several features inspired by the taxonomy from Marticorena et al. [37] to
improve the understanding of their localization and their impact.

4.3.1 Classify code smells into groups

‘Relational design ghosts’

The code smells in this category are: ‘Separating data accessed together’, ‘Use of rela-
tional collections’, ‘Storage of empty values’ and ‘Relying on transactions’. All those
smells share their origin in a misunderstanding of the NoSQL and MongoDB design
principles and especially in the use of design patterns that are specific to relational
databases. Those smells are common when the programmer is used to designing and
query SQL databases and recently switched to MongoDB. All of these code smells, ex-
cept Storage of empty values, violate one of the fundamental rules of MongoDB database
design, which is “data that is accessed together should be stored together". As explained
before, breaking this rule can lead to performance issues.

Human-oriented decisions

The code smells in this category are: ‘Human readable values’, ‘Too long attribute names’
and ‘Too long document keys’. Those three code smells are all data modeling choices that
are made to improve the understanding of the database or the ease of use by humans.
Those design choices result in data that is not optimized and that may consume more
storage, RAM or network bandwidth, and therefore also decrease the performance of the
database.

Design oversights

The code smells in this category are: ‘Storage of easily calculated values’, ‘Abusive use
of indexes’, ‘Databases accesses spread across the system’ and ‘Inconsistent order of
attributes inside a collection’. All of those smells result from choices made to accelerate
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the development or from skipping the design phase, for the database or the system
accessing it. They lead to various problems like a decreased maintainability, bugs, storage
waste and performance issues.

Smell type Code smell
Relational design ghosts Separating data accessed together

Use of relational collections
Storage of empty values
Relying on transactions

Human oriented decisions Too long attribute names
Human readable values
Too long document keys

Design oversights Inconsistent order of attributes inside a collection
Databases accesses spread across the~system
Storage of easily calculated values
Abusive use of indexes

Table 4.1: Code smells classification

4.3.2 Provide additional detection features and information

As explained earlier when defining the taxonomy, the objective here is to give additional
information on the code smells in order to facilitate the prioritization of their treatment.

Define the impact on the system

For each code smell in the taxonomy, we also assess the kind of impact it might have
on the system. We have listed the following kinds of impacts among our code smells:
‘Performance’, ‘Maintainability’, ‘Storage waste’ and ‘Incomplete results’.
This information about the code smells impact on the system is derived or is deduced
either from what we could find in our sources, or from personal knowledge.

Other features

To complete our taxonomy, we reuse some of the additional features proposed by Mar-
ticorena et al. [37] in their taxonomy that we found pertinent to detect MongoDB code
smells.

Granularity (Gran.): Granularity, as defined by Marticorena et al. [37], is “the size
of the component that suggests bad code smell". As we aim to detect MongoDB code
smells in Java programs, we will reuse the same object-oriented levels, which are: system,
class and method.

Intra/Inter-relations (Intra.): The Intra/Inter-relation is a Boolean feature that
indicates if the code smell can be detected without having information about other
related components of the same granularity.

4.3.3 Complete taxonomy

With all the information we have collected from the previous sections, we were able to
define a table containing the complete taxonomy and classifying the code smells presented
in Section 4.2. This taxonomy is available in the Appendix A.
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Chapter 5

A tool-supported approach for code
smells detection

This chapter aims to explain the theoretical approach that we intend to follow to imple-
ment a tool-supported approach for detecting MongoDB code smells in Java programs.

Figure 5.1: MongoDB code smells detection methodology

The schema presented in Figure 5.1 illustrates the methodology of our approach. The
realization of this schema was also inspired by the work of Meurice et al. [42] because
our detection approach is relatively close to theirs.
As can be seen from the diagram, our detection methodology is divided into several
consecutive phases. We discuss each phase in the following sections. We also explain the
choice of static analysis for code smells detection.

5.1 Analysis method choice

The code smell detection is based on a static code analysis of Java source code. We
preferred this analysis technique to dynamic code analysis for two reasons that we expose
in this section.

First, static analysis has the advantage of allowing a quick analyse of the entire source
code of a project and an identification of all possible interactions.

Secondly, static analysis does not require the program to be executable and does not
require its environment to be configured (e.g. the database connection).
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5.2 MongoDB accesses extraction

The first step of our static analysis is to extract from the source-code artifacts where
the Java program interacts with the MongoDB database. Since we aim at detecting
interactions made with the official MongoDB driver and several ODMs, these interactions
may take several forms.

MongoDB Driver and ODM methods: The first code artifacts we want to extract
from the source code is the call to methods from the ODMs or the MongoDB driver
API, and especially the calls that interact with collections. We can quote, for example,
CRUD operations such as insertOne, findOne, updateOne or deleteOne from which we
extract the collection, the fields and in some cases the type of data. We also need to
extract methods used to build queries and methods modifying the collection schema such
as index creations.

ODM entity classes declarations and annotations: ODM entity classes can pro-
vide a lot of information about the collection schema like the name of the collection, the
number of fields, their names and types. It is then important for us to extract them
as this information will also be useful for code smells detection. All of the ODMs we
want to include in our analysis also use annotations, which makes possible to specify
additional information about the database, for example, the fields of the collection that
are indexed or if the name of the collection and fields differ from the ones used in the
entity class.

String queries: The last artifact we detect are string queries encoded in the source
code. In addition to the access methods provided by ODMs and the MongoDB Java
Driver, it is possible to execute string queries directly on the database by using BSON
(the JSON-based language used by MongoDB). Like for the query methods from ODMs
and the MongoDB driver, we extract the collection, the fields and the type of data stored
in the fields.

5.3 Code smell detection

The next step of our static analysis is to detect code smells based on the MongoDB
accesses – obtained from the previous phase – and on the MongoDB code smell detection
rules. To create the detection rules, we took inspiration from the methodology proposed
in the article of Novikov et al. [47], who describe an approach to develop these rules in
several steps which we will discuss in detail in this section.

5.3.1 Code smells choice

We only had a limited time to realize our work, so we had to choose which code smells we
would first detect from the previously defined taxonomy (see Section 4.2). To facilitate
our choice, we have defined a set of inclusion and exclusion criteria for the code smells
selection below.

Inclusion criteria:

• One smell per type: This ensures that we have an example for each smell type.

• Positive result: It aims at smells which are present in at least one project. To
make sure that these smells are present in the projects, we made a preliminary
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manual inspection, and searched for signs or traces of each smell in various projects
and we placed our results in Table 5.1.

• Violating Basics MongoDB Principles (VBMP): It ensures that the code
smell violates one of MongoDB’s core principles. Indeed, we want to detect smells
by degree of importance.

Exclusion criteria

• Implementation Obstacles (IO): This is the case if the detection rule – which
is designed to find the code smell – requires to understand the meaning of the data
that is stored inside of the database. Indeed, such a comprehension is too complex
to implement.

• Non Reproducible (NR): This is the case if it is difficult to find occurrences of
this smell in the code and if it would be difficult to reproduce this smell in unit
tests.

Smell type Code smell Detected manually
Relational design ghosts Separating data accessed together Yes

Use of relational collections No
Storage of empty values Yes
Relying on transactions No

Human oriented decisions Too long attribute names Yes
Human readable values No
Too long document keys Yes

Design oversights Inconsistent order of attributes inside a
collection No

Databases accesses spread across
the system No

Storage of easily calculated values No
Abusive use of indexes No

Table 5.1: Results of the manual detection in our project list

We decided to apply these criteria to the taxonomy previously defined in order to
make a relevant choice. For each smell, we marked in the taxonomy in A if it meets
the criteria or not. By doing so, we were able to rank the smells based on the number
of inclusion and exclusion criteria they meet, without omitting the criterion stipulating
that we want at least one smell per type.

With this rank defined, we chose the code smells we want to detect: Too long attribute
names, Too long document keys, Separating data accessed together, and Abusive use of
indexes.

5.3.2 Test project creation

We developed a set of tests to ensure the behavior of detection rules. For this, we created
a test project divided into different parts depending on the code smells to test. Each
test is designed to produce positive and negative results. The positive results are the
code artifacts that should trigger the detection rule. Likewise, the negative results are
the ones that should not trigger the detection rule.

In the following section we describe, for each detection rule, all the cases where the
code artifact matches a rule and we provide a simplified logical diagram that represents
the rule.
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5.3.3 Detection rules implementation

Once the tests are created, the next step is to implement the detection rules based on the
smells in the test project. In this section, we will theoretically describe how we intend
to detect code smells, in our tool, based on the code artifacts we obtained in the data
extraction part. To do this, we discuss the different steps to detect code smells based on
a logical schema.

Separating data that is accessed together

As already explained in Section 4.2.1, the access of data separated in two different
collections requires the use of $lookup aggregations to join them. We then decided to
search for the use of those lookups to detect the code smell “Separating data that is
accessed together". The detection rule designed to detect this code smell is represented
by a logical schema in Figure 5.2 and described in the following section.

Figure 5.2: Logical schema of the rule to detect accesses to data separated in different
collections

First step: detecting a lookup aggregation creation A lookup can be constructed
by several code artifacts that we extract from the source code. It can be created, for
example, in a string query used as a command on the database. This string query
contains a key-value representation of an object in BSON. It will contain two important
keywords to detect: “$lookup", which is the key for a lookup object, and “from" which
is the key for the collection we want to join, inside the lookup object.

Another way to create a lookup is by using BSON objects constructors. Those
constructors take two arguments: the key and the value. Properties can then be added
to the BSON object with a method also requiring a key and a value. We can then detect
the same “$lookup" key to know that a lookup is created and seek for the value inserted
with the key “from" to detect the joined collection.

ODMs and drivers also often provide specific methods to simplify the creation of
aggregations. We can then detect calls to the methods, which are specific to lookup
creation and obtain the joined collections from the arguments of this method call. For
example, Figure 4.2 uses the Aggregates.lookup method from the Java MongoDB driver
and the collection joined can be extracted from the first argument.
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Second step: detecting the collection on which the lookup is executed We
then have to detect the collection on which the lookup is executed. For this, we have two
possibilities. In some string queries, the collection is specified with the “aggregate" or
the “collection" key. The other way is to find with which collection name the collection
object on which we execute the query has been instantiated.

Third step: looking for other lookups between the same collections Finally,
when we have found the lookup creation in the code and the two collections joined, we
check if there exist other lookups between the same collections. If yes, it means that
the data from the two collections is accessed together in several ways and that it should
probably be stored together. The number of lookups between the two collections can
also be used to assess the probability that the two collections should indeed be merged.

Too long field names

The design of the detection rule for too long field names is quite simple and can be
explained in two steps: detecting the field names in the source code and verifying their
length. Those two steps are explained in more details in this section and are represented
by a logical schema in Figure 5.3.

First step: detecting the field names Attribute names can be detected from several
code artifacts that we extracted from the source code. The first possibility is to look
for BSON objects created in the program and find the keys used for every field. The
keys can be detected as explained in Section 5.3.3. However, BSON objects can either
represent a document or any MongoDB command or a search filter. To ensure the BSON
object we detected is indeed representing a database document, we decided to only keep
the objects that are given in arguments to a document insertion method. Field name
detection is also possible by analyzing the ODM entity classes. Indeed, an instance of
those classes represents database documents. They can provide the field names either
from annotations on the class attributes that define the field name in the database,
such as @Field or @JsonProperty annotations, or directly from the name of the class
attributes, if they are not annotated.

Second step: filtering names that exceed 20 characters in length This step
simply consists of verifying for each field names if they exceed the length limit of 20
characters.

Long ID types

To detect the use of large data types as identifiers, we decided to focus on the use of
UUID. They are quite popular because they are simple to create and to manage for the
programmer as they do not have to search for a meaningful and unique value for their
identifiers. They should therefore be the most common large type used as an identifier.
Figure 5.4 present the logical schema to detect the use of UUID as document identifier.
We can also describe the rule with the following steps:

First step: Detection of the document identifiers Our detection of document
identifiers relies on three code artifacts that we will extract. The first artifact covers
the BSON creation methods, in which we detect the fields that are inserted with a key
ending by “id". The second possibility is to check the ODM entity class fields that are
annotated with annotations that declare the document identifier (@Id or @ObjectID) or
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Figure 5.3: Logical schema of the rule to detect long field names

the ones that have a name that ends by “id". The third possibility is to use the MongoDB
access methods, by looking for the arguments of methods such as “findById".

Second step: Verification of the identifier type Once we have found the document
identifiers, we need to verify if they are UUIDs. For this, we detect two possible cases.
The first one is the use of the java.util.UUID class. The second case is the use of string
identifiers that are assigned in the program with a string representation of a UUID. If the
detected artifact corresponds to an identifier, as explained in the first step, and matches
one of these two conditions, it will be considered as an instance of the “Long ID Type"
code smell.

Figure 5.4: Logical schema of the rule to detect too long document keys
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Abusive use of indexes

As we said before, the indexes created in the database are not detectable from the code.
However, as illustrated on Figure 5.5, the creation of new indexes on a collection can be
detected in two ways in the code.

Figure 5.5: Logical schema of the rule to detect too many indexes usage

First step: detection of the index creation The first way, represented on the top
of the diagram, is by looking at the use of the index creation methods offered by the
MongoDB driver APIs in the code. Indeed, MongoDB Java driver and MongoJack offer
methods to easily create indexes on a collection. Those methods are createIndex and
createIndexes. Therefore, the easiest way to detect the index creation would be to find,
based on a collection X, all the database accesses that use the index creation methods
on this collection.

The other way is by looking at the ODMs, as represented on the bottom of the
diagram. In this case, MongoDB collections are represented by application objects –
necessarily based on entity classes – on which operations can be performed. Therefore, for
Spring Data MongoDB, there are different ways to detect index creation on a collection
X :

• by looking at class fields annotated with the annotation @Indexed ;

• by looking at entity classes annotated with the annotation @CompoundIndex which
is an index structure composed with a name and all the referenced fields;

• by looking at ensureIndex method which allows to create a new index on the
collection if it does not exists.

Second step: filtering collections with 40 or more indexes With this set of
ways to detect the index creation on collection X, we can calculate its total number of
indexes. The code smell should be detected if this number reaches or exceeds 40.
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Third step: obtaining additional information about indexes Counting the num-
ber of indexes and, when this number exceeds 40, indicating that too many indexes have
been created is not always enough. Some collections may have a large number of fields
and could, therefore, have a large number of indexes which is not necessarily a design
problem. Therefore, it would be interesting to know the exact number of collection fields
used to create an index as well as the most used field in these indexes. Thus, one can
assess whether the number of indexes reported is problematic or not.

5.3.4 Validating the rules on real projects

To improve the rule quality, we test them on real projects. Indeed, we could discover
particular cases that we had not thought of initially and increase the detection of positive
results. Therefore, with the knowledge of these new particular cases, it is necessary to
readjust the detection rules and the test project.
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Chapter 6

Implementation

The purpose of this chapter is to describe how we implemented the approach presented
in the previous chapter to detect MongoDB code smells in Java programs. The diagram
in Figure 6.1 illustrates the approach we use to detect code smells.

Figure 6.1: MongoDB code smells detection implementation diagram

As can be seen from the diagram, the static analysis method is different from the
one theoretically presented in the previous chapter. This is due to the tool we used to
perform the static analysis that required us to redesign our approach to fit better with
the specificity of this tool. Therefore, we start by presenting the possible alternatives,
the reasons why we chose this tool and some technical constraints of it.

After that, we will present each step of our implementation by explaining our choices
and illustrating them with various examples.

6.1 Static analysis with CodeQL

Before we start discussing the detection implementation, it is necessary to talk about the
tool that we used to develop them. This tool is CodeQL that we have already presented
in Section 3.2.

In this section we discuss the different alternatives to CodeQL and the reasons why
we chose it rather than the others.

6.1.1 Possible alternatives

Before presenting the advantages and constraints of CodeQL, we highlight the possible
alternatives to this static analysis tool. We briefly present such tools by showing their
advantages and limitations.
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SpotBugs

As we already explained in Section 2.3, SpotBugs is the successor of FindBugs. As
explained on the official documentation on GitHub [60], SpotBugs is a static code analysis
tool whose objective is to find bugs in Java source code.

Advantages: One of the advantages of SpotBugs is that it is extensible with plugins
to create its own detection rules.
SpotBugs fits well to our domain because it also supports the frameworks we intend to
analyze like Maven or Gradle [60].

Limitations: A limitation of SpotBugs is that it is restricted to the analysis of source
code written in Java. Therefore, it would not be suitable if we wanted to extend our
research to other programming languages like Python or JavaScript for instance.

As explained in the SpotBugs documentation, another limitation is the fact that it
only fully supports Java versions up to version 11. The most recent ones are still in
experimental version [60].

Spoon

According to the article by Pawlak et al. [51], Spoon is a library for transformation and
static analysis of Java source code based on an AST analysis. Indeed, Spoon allows to
directly edit the source code by manipulating the previously generated AST in order to
add various code analyzers and to refactor the code.

Advantages: An advantage of Spoon is the fact that it allows to write its own domain-
specific analyses and transformations in a simple way. Moreover, thanks to the technique
of transformation and manipulation of the AST, Spoon allows to automatically transform
the source to ease the instrumentation or the refactoring [51].

Limitations: Despite the advantages of Spoon, there is still a limitation related to the
fact that the only possible analysis is the AST analysis. In our research, it would be
necessary to perform control flow or data flow analysis. Indeed, database accesses can
be quite dynamic and data values can vary from one execution to another. Our analysis
requires to infer how the components act together and to know which values the data
could have during the execution for instance.
The other problem, which is the same as SpotBugs, is that the tool only supports the
Java language.

Other tools

Considering the large number of static code analysis tools that exist, we cannot cover
all possible alternatives to CodeQL. However, an interesting repository on GitHub1 lists
various static analysis tools for different programming languages. Indeed, it could be a
good indicator of other possible alternatives to CodeQL.

6.1.2 Tool selection reasons

Although there are alternatives to CodeQL as mentioned above, we decided to work with
this tool for various reasons that we will explain here.

1https://github.com/analysis-tools-dev/static-analysis#programming-languages-1
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The first reason why we chose to use CodeQL is that it is a very powerful and
efficient tool that allows us to easily and rapidly perform different types of analysis
on source code such as data-flow analysis, control-flow analysis, AST analysis, or taint
tracking. The scalability and the precision of the CodeQL analysis can also be justified
by the fact that it is officially used in production by GitHub to detect vulnerabilities.

Another advantage of CodeQL is that it provides many libraries that can be easily
extended to facilitate query development. Indeed, being able to extend these libraries
would allow us to save considerable time in the development of detection rules.

Then, as we specified in Section 3.2, thanks to its object-oriented aspect, CodeQL
allows to reuse components like custom classes, predicates or queries. Indeed, this
specificity allows us to develop unique components that can be easily integrated into
other queries, which will facilitate the maintenance and evolution of these queries.

Another important feature of CodeQL is the fact that it supports various common
languages like Python, Java, C/C++ among others. Indeed, the advantage here is that
it would be possible to easily extend our tool to integrate new code smells detection
queries for other languages in the future. All of this would be done without changing
the static analysis tool for each new language.

CodeQL also provides an extension for Visual Studio Code which allows to
directly execute queries on the CodeQL database and to directly display the results in a
tab. This saves a lot of time when testing queries on the source code.

Finally, the GitHub site offers a detailed documentation of CodeQL operation
and features to realize custom queries.

6.1.3 Technical constraints

Despite the undeniable advantages of CodeQL, it has some technical constraints that
must be taken into consideration for our purposes.

The most important constraint comes from the fact that the static analysis is done
on databases generated by CodeQL. Indeed, as a reminder, the analysis performed by
CodeQL requires the extraction of relational data from the source code to generate a
database.
Moreover, as we also explained in Section 3.2, the database extraction of Java source code
requires that it must be compilable in order to generate the databases. However, this
compilation can fail for various reasons that must be taken into account in the database
extraction.

The first reason is that some open-source project versions are still under develop-
ment and may potentially contain errors. Therefore, due to those errors, it is possible
that the compilation of these versions fails and thus does not generate databases.

Another reason is that build systems like Maven or Gradle allow to use dependencie
which are external code libraries usable in the code. Therefore, some dependencies
can cause compilation errors if they are not up to date or if some are not compatible
with each other.

Then, Java projects are written and configured in a specific version of this language.
Moreover, there are many Java versions and many projects developed with one of these
versions. Therefore, it is possible that the Java compiler version might not be compatible
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with the one used in the project, which will also lead to a compilation error.

The last reason concerns the Lombok dependency that is used in some projects. In
this case, the projects can be compiled but Java classes that use Lombok features are not
taken into account in databases generation by CodeQL. Lombok provides annotations
that allow to generate parts of codes without writing them directly thanks to a processor
hooked to the Java compiler. However, the analysis performed by CodeQL does not allow
to process the Lombok annotations and these classes are simply skipped. This is a known
problem that has been addressed in a GitHub issue on the CodeQL repository2.

6.2 CodeQL database extractor

In this section, we will present the different steps of the extraction process, which we
implemented in Python scripts for the thesis. For that, we will base ourselves on the
steps illustrated on the diagram in Figure 6.2.

Figure 6.2: CodeQL database extractor process schema

Java version extractor: From the Java source code to be analyzed, the script re-
trieves the Java version used by the program. To do this, the script first checks if the
code is written with Maven or Gradle by looking for a pom.xml or a build.gradle file.
Once the configuration file is known, we can find the Java version by observing the tags
in these files. The limitation is that developers may use custom tags to define the Java
version, which can hinder the detection. For the cases where the Java version cannot be
retrieved, we set the output version to Java 8, because it is one of the most frequently
used versions.

CodeQL database command execution: The next step of the script is to execute
the command to generate the database representing the source code. For that, the
script uses the Java version previously obtained and the source code to transform. The
executed CodeQL script then automatically detects the project framework in order to
execute the right compilation command. If the execution of the command is successful,
the database is generated and can be used for the static analysis with CodeQL.

Next Java version choice: If ever the command execution was a failure, all the Java
versions between 5 and 16 would be used until we find the one leading to the execution
success. However, if all versions have been tested – which means that the entire list has
been parsed – and the execution still fails, then the script returns a file containing the

2https://github.com/github/codeql/issues/4984
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error message log. In that situation, the static analysis is thus not performed for the
project.

6.3 MongoDB accesses classes

As explained in our approach (see Section 5.2), the first step of our analysis consists in
the extraction of MongoDB accesses by the means of three artifacts in the code:

• MongoDB Driver and ODM methods;

• ODM entity classes declarations and annotations;

• String queries.

To take full advantage of the object-oriented aspects of CodeQL, we created classes that
represent each of these code artifacts. By doing this, we extend the CodeQL library,
which allows us to query the artifacts represented as easily as any basic program element.

In this section, we present our design and implementation choices for the extraction of
MongoDB accesses by using CodeQL classes. We explain the functioning of our classes,
justify our choices and provide examples to support our statements.

6.3.1 Use of inheritance and polymorphism

CodeQL being object-oriented means it also provides inheritance and polymorphism. By
using these two characteristics, we extended classes from the CodeQL API and created
a hierarchy of classes for every artifact we wanted to detect. As illustrated on Figure

Figure 6.3: Inheritance between MongoDB access classes

6.3, the top classes of our hierarchy are generic classes that match every instance of the
artifact, no matter the database driver used. These generic classes define predicates that
return information about the artifact that will be necessary for our code smell detection.
For example, the generic class that matches MongoDB method calls provides a predicate
to obtain the name of the collection accessed by this method call.
However, most of the time the methods defined in the top classes only act as default
cases and return basic values, as the way the information needs to be retrieved depend-
ing on the driver used, the context and other artifacts characteristics. The objective of
our class hierarchy is to match specifically each possible way our artifact can be imple-
mented, and override the predicates declared in the top classes to adapt them to the
artifact characteristics. Figure 6.3 represents in an abstract way the structure of our
class hierarchy. Inside each driver-specific group, there exists another class hierarchy for
more specific characteristics.

Another important mechanism of CodeQL we used at our advantage here is the fact
that it determines the most specific class to match when executing a query. A query
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1 from MongoMethodCall call
2 select call , call.getCollectionName ()
3

Figure 6.4: Example CodeQL query that detects calls to MongoDB methods and the
name of the collection they access

selecting the top class will then automatically return the right child class depending
on the context, and therefore execute the right predicate to obtain information. For
example, the simple query presented in Figure 6.4 is enough to detect every MongoDB
access method call in a program and to determine the collection accessed by each call,
regardless of the driver used and how the collection name needs to be retrieved.

6.3.2 Extraction of the name of the collection accessed

Once we are able to detect accesses to the database by the means of drivers in the source
code, we still need to know more precisely the collection accessed inside the database to
potentially detect the code smells we defined. This can be achieved depending on the
type of access.

MongoDB methods on collection objects

In the drivers we analyzed, methods that access a MongoDB collection are called on an
instance of a class representing the collection. With the CodeQL library, we are able to
access this instance, but the name of the collection can only be found as an argument of
the constructor that creates this instance. To obtain this value, we need to do an analysis
of the data flow and find string values that flow to the correct argument in the method
that obtains or creates our collection object. In CodeQL, this requires to implement a
data-flow configuration. Figure 6.5 provides as an example the data-flow configuration
explained above, also used to retrieve the name of the collection accessed by a method
from the official MongoDB driver.

In this code example, we can see that we need to define a source and a sink to our
data-flow path. In our case, respectively a string value and an instance of a collection on
which a MongoDB method is called. We also need to define potential additional steps
in our data-flow path. For example, in our case, we need to specify that the string value
is used as the first argument of the method returning a collection instance.

ODM annotations and classes

When accesses to the database are made through ODM annotations or ODM entity
classes, there exist several possibilities to obtain the name of the collection depending on
choices made by the programmer. Figure 6.6 represents a flowchart of how the collection
name was obtained from an ODM entity class or an ODM annotation. The first step,
if we have an annotation, is to find the ODM class in which this annotation is used.
Once we have the entity class, we must verify if there is an annotation that defines the
name of the collection represented. If not, then it means the ODM automatically uses
a collection in the database that has the same name as the class. If yes, we obtain the
value specified in the annotation. This value can either be a string literal or a variable
or a constant. If it is a string literal, then we have the name of the collection. If it is a
variable, we then use the data-flow analysis of CodeQL to trace the value.
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1 class MongoDriverCollNameFlowConfig extends DataFlow ::
Configuration {

2 MongoDriverCollNameFlowConfig () { this = "
MongoDriverCollNameFlowConfig" }

3

4 override predicate isSource(DataFlow ::Node source) { source.
asExpr () instanceof StringLiteral }

5

6 override predicate isAdditionalFlowStep(DataFlow ::Node node1 ,
DataFlow ::Node node2) {

7 exists(GetCollectionCall call |
8 node2.asExpr () = call and
9 call.getArgument (0) = node1.asExpr ()

10 )
11 }
12

13 override predicate isSink(DataFlow ::Node sink) {
14 exists(MongoDriverOperationOnCollectionCall call | sink.
15 asExpr () = call.getQualifier ())
16 }
17 }
18

Figure 6.5: Example CodeQL data-flow configuration to obtain a collection name

Figure 6.6: Flowchart of the retrieval of collection name from an ODM entity class or
annotation

String queries

String queries in the code usually contain the collection on which they are executed. In
this case, we use regular expressions to match and extract the value corresponding to
the collection name. Some string queries are also executed directly by a method on a
collection object. So, we use the method presented above for MongoDB methods.

6.3.3 Extraction of the operation type

Another information we needed to extract about the MongoDB accesses for our code
smell detection is their CRUD type. We decided to infer this information from their name
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because the methods in the drivers we analyzed follow the same naming conventions.
They all start by “insert" or “create" for creation methods, “find" for reading methods,
“update" or “replace" for methods that update documents, and “delete" for methods used
to delete documents.

6.3.4 Notes about data-flow analysis in CodeQL

While implementing and testing our data-flow analysis, we noticed that CodeQL requires
the code to be explicitly called from inside the source code to perform data-flow analysis
on it. This can lead to very few results in the case of programs such as APIs that
contains methods that are called by the framework only when receiving a request. To
improve the recall of our queries, we added multiple ways to detect or infer information
when CodeQL was not able to use data-flow. For example, we searched in the AST for
initialization or assignations of a variable when CodeQL could not find its value with
data-flow analysis. This method being less precise, it is only used in second choice, but
from our observations it still provides a decent precision.

6.4 MongoDB code smell detection rule class

Just like the MongoDB database accesses, the code smells detection rules have been rep-
resented with CodeQL classes, with the use of inheritance to represent all the possible
instances while having one abstract. For each smell, we have an abstract class represent-
ing a general instance of the code smell to find and we have classes that inherit from this
abstract class representing more specific instances of the code smell.

To illustrate our statements, the example shown in Figure 6.7, represents the hierar-
chy used for the code smell detection class concerning “TooLongDocumentKeys".

Figure 6.7: Class diagram for TooLongDocumentKeys detection rule

6.5 Code smell detection

The objective of this section is to define and justify the way we have implemented each
step, described in Section 5.3. Those steps are: “Test project creation", “Detection rules
implementation", and “Test of the rules on a real project".
Indeed, since we have already selected which code smells we wanted to detect in Section
5.3, we omit the step concerning the choice of code smells in this section.

6.5.1 Test project creation

As a reminder, the first step in the development of detection queries was to create a test
project. For each test, there is at least one positive and one negative result. To do this,
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we created a test project in Java and Maven.

The test project interacts with a MongoDB database, illustrated on Figure 6.8, using
the drivers or ODMs, namely MongoDB, MongoJack and Spring Data. For each, we have
created a class representing a collection of the database. Hence we can test different cases
for all the drivers or ODMs.

Figure 6.8: Database diagram of the test project

Finally, we created a package for each code smell, containing some instances which
were represented in Java classes. We have at least one part of the source code that should
trigger the query to detect the code smell and another one that should not.

6.5.2 Detection rules implementation

The next step in the development of code smells detection queries is their implementation
in CodeQL. As shown in Figure 6.1, we created a query for each code smell in a .QL file,
which uses the code smells detection classes, already discussed in Section 6.4. During
our static analysis, performed by CodeQL, these queries are called to find the instances
of the chosen code smell, based on the extracted CodeQL databases.

To illustrate how our detection queries work, Figure 6.9 presents a query that is
called to find occurrences of the “Abusive use of indexes" code smell.

As a reminder, in Section 3.2.2 we explained that queries written in CodeQL are
composed of 3 important parts: the from, where and select.

The from clause allows us to use the imported CodeQL Libraries with the MongoDB
code smells detection classes. In this case, we use the CreateIndexMethodCall class that
finds every occurrences of an index creation.

The where clause is the part where we can write the search conditions. In our
example, the collection name, on which the index is created, must not be “unknown" –
which is the default value returned when we cannot obtain the collection name – and
the number of indexes created for this collection must equal or exceed 40, as defined in
the “isTooMuchIndex" predicate.
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1 /**
2 * @id AbusiveUseOfIndexes
3 * @kind problem
4 * @description Detect instances of the Abusive Use of Indexes

code smell
5 */
6

7 import codeql_queries.java.CodeSmells.TooManyIndexes.
TooManyCreateIndex

8

9 from CreateIndexMethodCall createIndex , string collectionName ,
string attributeName

10 where
11 collectionName = createIndex.getCollectionName () and
12 attributeName = getMostUsedAttribute(collectionName) and
13 not collectionName.matches("Unknown") and
14 isTooMuchIndex(collectionName)
15 select
16 createIndex , "This index creation could cause performance

issues because too many indexes ("
17 + getTotalCreateIndex(collectionName)
18 + ") have been created for the collection ’$@ ’. This

collection has "
19 + getNumberOfField(collectionName)
20 + " fields and the most used field is ’$@’ ("
21 + getTotalUseAttribute(collectionName , attributeName)
22 + " times)."
23 +"\nTry to get less than 40 indexes by collection !",
24 createIndex , collectionName ,createIndex.getArgument (0),

attributeName
25

Figure 6.9: CodeQL query to detect the creation of too many indexes

Finally, the select clause is used to display the problematic code artifacts that
matches with the conditional clause, and a message to explain the code smell. In the
example, we display the code fragment that caused the creation of the index and a mes-
sage. This message explains why having too many indexes is problematic and describes
the context of the smell: the total number of indexes for the collection, the number of
fields in the collection, and the field most used to create indexes.

6.5.3 Test of the rules on a real project

The final step is to test our queries on real-world Java projects.
To do this, we first check the project manually to find potential code smells that

could be hidden in the code. Then, we run the smell detection queries on the project.
If a code smell artifact, that we discovered manually, does not triggers the detection
query, then we add this case to the test project and modify the detection query to
consider this case during the detection.

Examples

This methodology allowed us to discover, for example, that the official MongoDB driver
allows the user to directly execute a query on the database by sending the query as
a string literal. This way of interacting was not presented in the documentation we
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read, but by looking manually for the “$lookup" string in the program in order to find
instances of the code smell Separating data accessed together, we discovered that this
method was used in some of the projects in our dataset.

A second example of usage that we discovered like this is the fact that older versions
of MongoJack did not obtain the MongoDB collections the same way as the newest
version for which we read the documentation.
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Chapter 7

Application of the analysis on open-
source projects and results

In this chapter, we present the application of our tool on real-world Java projects. First,
we present the selection process of the projects, introduce some statistics on those
projects and their usage of MongoDB databases. Then we present the application of
our analysis method to this large set of programs and the results we obtained from
this analysis. Finally, we draw our conclusion about these results and the prevalence of
MongoDB code smells.

7.1 Context: open-source projects

7.1.1 Projects dataset

To validate our queries and the existence of code smells, we tested our analysis methods
on open-source projects. Our thesis being part of a larger research project led by the
University of Namur (UNamur) and the Università della Svizzera italiana (USI), we had
access to a large dataset that identifies projects and their GitHub repositories. Further-
more, the dataset contained other information such as their programming language, the
kind of database they used and their rating on GitHub.
This dataset has been created by [6] for their research about multi-database models in
open-source projects. It is based on data provided by Libraries.io1, an open-source web
service that helps software developers to keep track of the dependencies they are using
inside of a project Therefore it provides an extensive list of projects with their depen-
dencies. The dataset we used contains around 42k projects that rely on one or several
database technologies. To ensure a representative sample, Benats et al. excluded smaller
or “low-quality" projects and only kept the projects that have a minimum size of 100kB,
at least two contributors and that have been starred at least twice. The exact filtering
process is explained in greater detail in their paper [6].

7.1.2 Selection of the projects

The selection criteria we used to choose our set of programs are quite simple because we
wanted to include as many projects as possible in our test sample. The project had to
use Java as a main programming language and use a MongoDB database as one of its
database management systems. As explained in Section 7.1.1, the quality of the projects
has already been addressed by the filtering criteria of the dataset we used. After this

1Libraries.io – https://libraries.io
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second filtering, where the objective was to only keep Java projects using MongoDB, we
ended with a sample of 693 project repositories.

Figure 7.1: First filtering of the projects

7.2 Results

This section presents the results we obtained by applying our analysis method to the
projects. First, we analyze the results of the database generation phase in terms of success
rate for the compilation of the projects and the generation of the CodeQL database.
Then, we analyze results concerning the use of different MongoDB drivers in the selected
projects. Finally, we analyze the final results of our code smell detection.

7.2.1 Projects compilation and database creation

Despite the use of the script that automatically extracts the CodeQL databases for the
projects, not all the projects were successfully compiled and they did not result in a
complete and usable CodeQL database. This was mainly due to the open-source nature
of the dataset we analyzed and the fact that each project was cloned from the last
commit of the main branch of the repository. Indeed, for some projects, the version
pushed to the master branch of a repository contains errors. For others, the resolution
of the dependencies leads to errors during the compilation.

Figure 7.2 compares the number of projects that succeeded to the total number of
projects. In this figure, we present numbers in terms of subprojects as well as in terms
of projects. The previously mentioned projects often contain several programs that need
to be generated separately and that are defined by their own project file (pom.xml for
Maven projects, build.gradle for Gradle projects, etc.). This means that some projects
can contain subprojects that build correctly, and others that do not. So, the analysis
has been performed on those subprojects and not on the projects as a whole. To provide
a better understanding, we report the subprojects results to projects and provide both
numbers.
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Figure 7.2: Second filtering of the projects

7.2.2 Analysis of the usage of MongoDB drivers

Before presenting our code smell detection results, we provide some numbers about the
different drivers that are imported and used by the projects we analyzed. This provides
a better understanding of the sample we used. Considering the size and the nature
of our projects sample, these numbers could also provide an interesting adoption rate
estimation of all the different drivers available.

Import of MongoDB drivers and ODMs

The first analysis we made about the use of MongoDB drivers and ODMs was to check
how many programs imported them from our projects, and which drivers/ODMs were
imported together. Those results have been reported on the Venn diagrams of Figures
7.3 and 7.4. Those figures respectively present the number of subprojects and projects
that import each driver we analyzed. To present all of the most used MongoDB drivers,
we also included Morphia, even though we did not implement access and code smell
detection for this driver.

Figure 7.3: Import of MongoDB drivers in projects
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Figure 7.4: Import of MongoDB drivers in subprojects

As we can see in Figure 7.4, a large proportion of subprojects (497/846 subprojects,
or 58.75%) are not importing any of the drivers we analyzed. This is probably due to the
fact that we considered that every subproject of a project that declared MongoDB in its
dependencies is likely to import a MongoDB driver and that all these subprojects should
be analyzed. Indeed, when we look at the same number for projects, only 65 projects
(18.16%) do not import any of our drivers. This can be explained in two ways. Either
they were using MongoDB in a previous version and then changed to another database
system, or they are using a driver that we did not include in our research.

When we look at the number of projects that are importing each driver, we can see
that the official MongoDB driver is by far the most used, being imported in 258 projects.
The second most used driver is Spring Data MongoDB with 104 imports, followed by
Morphia with 24 imports and MongoJack with only 6 imports.

It is also interesting to notice that the official MongoDB driver is imported in almost
every project that imports Morphia (23/24) and in every projects that imports Mon-
goJack. This might suggest that Morphia and MongoJack both require some access to
be done with the MongoDB driver first, or maybe that they reuse some of the classes
provides by the official MongoDB driver API. The official MongoDB driver is also im-
ported in projects using Spring Data but in a smaller proportion. We can see that it is
imported in two-third of these projects.

Usage of MongoDB drivers and ODMs

A second set of numbers we collected during our study is the number of projects and sub-
projects in which we detected calls to driver or ODM methods that access the database.
As we can see in Figure 7.5 and Figure 7.6, Morphia has not been included in this anal-
ysis as we did not implement the accesses extraction for this driver. When comparing
Figure 7.5 with 7.3 and Figure 7.6 with Figure 7.4, we can see that the numbers are
similar. All the projects that are calling MongoJack methods are also calling methods
from the official MongoDB Driver. This confirms that MongoJack requires the use of
MongoDB Driver methods to access the database. However, we notice that there are
much fewer projects that use Spring Data MongoDB and the official MongoDB driver
methods together than projects importing them together. This suggests that Spring
Data MongoDB can reuse some classes defined inside the MongoDB driver API but also
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that it does not require the developer to use methods from this driver.
We can also notice in Figures 7.5 and 7.6 that we have a larger proportion of projects

in which we did not detect any access through our list of MongoDB drivers (30.17%) than
projects that did not import any of them (18.16%). This is probably due to the fact that
we did not extract accesses made with Morphia. It is also possible that some projects
contain unnecessary imports due to a change of database system. Finally, it may also
mean that the recall of our access extraction phase could be improved by detecting more
drivers or more ways of using the drivers for which we already implemented the access
extraction.

Figure 7.5: Usage of MongoDB drivers in projects

Figure 7.6: Usage of MongoDB drivers in subProjects

7.2.3 Code smells detection

In this section, we present the results we obtained during the code smell detection phase.
First, we present our results from a more global point of view, then we give for each code
smell an instance example we detected in the open-source projects.

As we can see in Figure 7.7, we detected at least one instance of each code smell
in our projects dataset, except for the Abusive use of indexes. We can also notice that,
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except for the Too long field names code smell, for which we detected 162 instances, the
number of instances detected remains quite low, with respectively one and four instances.
This indicates that the principles of MongoDB that are concerned by the code smells we
analyzed were globally well respected for those projects. This low number of detected
smells is probably due to the filtering criteria used by Benats et al. [6] while creating
their dataset. They indeed focus on good quality projects (see Section 7.1.1). Using less
restrictive quality criteria could probably increase the number of smell occurrences and
lead to the discovery of new types of code smells.

Figure 7.7: Instances detected for each code smell

The graph presented in Figure 7.8 represents the number of projects and subprojects
in which we discovered each code smell. As we can see, the number of projects containing
the code smell Too long field names is significantly lower than the number of code
smells instances we discovered. Indeed, most of the instances were contained in only
two projects.

Separating data accessed together

With only one project containing this code smell, it is one of the least widespread code
smell of our analysis, excluding the Abusive use of indexes code smell. This is actu-
ally a good sign because this code smell breaks one of the fundamental design rules of
MongoDB databases. This means that at least in the projects we analyzed, almost all
MongoDB databases are designed and used differently from relational databases. All of
the four instances we discovered have been found in the project Mongodbuserstore from
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Figure 7.8: Number of projects containing each code smell

asanthamax.2 This project provides a user-store implementation for MongoDB.

Table 7.1 contains the four instances of collections accessed together by using lookup
aggregations. For each instance, it contains the two collections and the number of queries
joining them. From the name of the collections and the fact that they are accessed
together, we can immediately infer that the database has been designed like a relational
database, with collections for users, roles and user attributes, and a relational collection
to represent many-to-many relations between roles and users.

Nb Lookups Collection A Collection B
7 UM_USER UM_USER_ATTRIBUTE
7 UM_USER UM_SHARED_USER_ROLE
2 UM_USER UM_USER_ROLE
3 UM_ROLE UM_USER_ROLE

Table 7.1: Separating data accessed together instances detected in asanthamax/mongod-
buserstore

Figure 7.9 presents one of the instances detected. This instance, as well as the others,
consist of a string query where the parameters have been replaced by question marks.
Those queries are stored in constants to be reused in the program. We can see here that
the query uses a lookup aggregation between the collection UM_ROLE, specified with
the collection attribute, and the collection UM_USER_ROLE, specified in the from

2https://github.com/asanthamax/mongodbuserstore
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attribute of the lookup object.

43 private static void setAdvancedProperty(String name , String
value) {

44 Property property = new Property(name , value , "", null);
45 CUSTOM_UM_ADVANCED_PROPERTIES_TEMP.add(property);
46 }

. . . ...
94 setAdvancedProperty("UserRoleMONGO_QUERY", "{’collection ’ : ’

UM_ROLE ’,$match : {’UM_TENANT_ID ’ : ’?’,’userRole.UM_TENANT_ID ’
: ’?’,’users.UM_TENANT_ID ’ : ’?’,’users.UM_ID’ : ’?’},’

$project ’ : {’UM_ROLE_NAME ’ : 1,’_id’ : 0},’$lookup ’ : {’from’
: ’UM_USER_ROLE ’,’localField ’ : ’UM_ID ’,’foreignField ’ : ’
UM_ROLE_ID ’,’as’ : ’userRole ’},’$unwind ’ : {’path’ : ’$userRole
’,’preserveNullAndEmptyArrays ’ : false},’$lookup_sub ’ : {’from’
: ’UM_USER ’,’localField ’ : ’userRole.UM_USER_ID ’,’foreignField

’ : ’UM_ID ’,’as’ : ’users ’,’dependency ’ : ’userRole ’},’
$unwind_sub ’ : {’path’ : ’$users ’,’preserveNullAndEmptyArrays ’
: false}}");

95

MongoDBUserStoreConstants.java

Figure 7.9: Example of a detected instance of the separating data accessed together smell
in asanthamax/mongodbuserstore

1 {
2 "ruleId" : "SeparatedDataAccessedTogether",
3 "ruleIndex" : 0,
4 "message" : {
5 "text" : "You have 3 queries that perform a lookup

operation between the collections UM_ROLE and
UM_USER_ROLE. Maybe you should consider storing data in
the same collection to avoid performance issues ."

6 },
7 "locations" : [ {
8 "physicalLocation" : {
9 "artifactLocation" : {

10 "uri" : "src/main/java/org/wso2/carbon/mongodb/
userstoremanager/MongoDBUserStoreConstants.java",

11 "uriBaseId" : "%SRCROOT%",
12 "index" : 1
13 },
14 "region" : {
15 "startLine" : 94,
16 "startColumn" : 9,
17 "endColumn" : 629
18 }
19 }
20 }],

. . . ...
26 }

Figure 7.10: Analysis output for the smell detected in Figure 7.9

The SARIF output of our analysis corresponding to this instance is presented in
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Figure 7.10. The whole object represents the result. The ruleId attribute gives the
name of the code smell. The message property contains information for the user about
the code smell detected. It gives the name of the collections that are accessed together
as well as the total number of queries accessing those collections. The location property
provides information about the position of the code smell in the source code, with the
path to the file, the line and the column at which the code smell is located. One result
object is generated for each query in order to be able to highlight in a potential tool the
position of each problematic query.

Too long field names

As mentioned before, the Too long field names code smell is the code smell we detected
the most in our analysis, with 169 instances in 25 projects. Figure 7.11 shows the
number of instances found per project. Projects containing two or fewer instances have
been grouped in “Other projects". We can see that four projects contain a large majority
of all the detected instances.

Figure 7.11: Too long field name instances per project

A representative example is presented in Figure 7.12. In this case, it has been de-
tected in a class mapped to a collection using Spring Data MongoDB. As we can see,
the class is annotated with the @Document annotation and mapped with the collection
“article_info". Inside this class, there is an attribute named “articleSecondaryArticle-
CategoryList" which is not renamed with any annotation. This means the name of this
attribute corresponds to the name of the field in the collection. This example is relevant
because the name of this field could have been easily reduced to “secondaryCategories".
Furthermore, this class contains information about articles in a web shop, which can
quickly represent a long list of documents. The SARIF result object corresponding to
this instance is presented in Figure 7.13.
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22 @Document(collection = "article_info")
23 public class ArticleView extends BaseView {

. . . ...
243 @NotNull(message = "...")
244 private JSONArray articleSecondaryArticleCategoryList;
. . . ...
472 }
473

ArticleView.java

Figure 7.12: Example of a detected instance of the too long field name smell in
ChuangShiTeam/NowUI-Cloud

1 {
2 "ruleId" : "LongFieldName",
3 "ruleIndex" : 0,
4 "message" : {
5 "text" : "Avoid using long Field names as they are stored

in DB for every document and may waste a lot of space (
articleSecondaryArticleCategoryList)"

6 },
7 "locations" : [ {
8 "physicalLocation" : {
9 "artifactLocation" : {

10 "uri" : "module -cms/module -cms -sys/src/main/java/com/
nowui/cloud/cms/article/view/ArticleView.java",

11 "uriBaseId" : "%SRCROOT%",
12 "index" : 0
13 },
14 "region" : {
15 "startLine" : 244,
16 "startColumn" : 23,
17 "endColumn" : 58
18 }
19 }
20 } ],

. . . ...
26 }

Figure 7.13: Analysis output for the smell detected in from Figure 7.12

Too long document keys

The only instance of the Too long document key code smell has been discovered in the
EUMSSI/EUMSSI-platform project. As we can see in the code from Figure 7.14, it
consists of the creation of a UUID which is then appended to a BSON document with
_id as the key, making it the identifier of this document. Because this document is
inserted in the “content_items" collection later in the source code, it is then considered
as an instance of the Too long document keys code smell. The SARIF output for this
instance is presented in Figure 7.15.
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47 public static MongoClient mongoClient = new MongoClient ();
48 public static MongoDatabase db = mongoClient.getDatabase("

eumssi_db");
49 public static String _collection = "content_items";

. . . ...
208 Document mdoc = new Document ();
209 UUID id = UUID.randomUUID ();
210 mdoc.append("_id", id);
. . . ...
247 db.getCollection(this._collection).insertOne(mdoc);
248

EUMSSI_DBQ.java

Figure 7.14: Too long document keys instance detected in EUMSSI/EUMSSI-platform

1 {
2 "ruleId" : "LongTypeIndexes",
3 "ruleIndex" : 0,
4 "message" : {
5 "text" : "Using UUIDs as a document ID or in an indexed

field could cause performance issues and large indexes.
You should consider using a more simple id or an

ObjectID"
6 },
7 "locations" : [ {
8 "physicalLocation" : {
9 "artifactLocation" : {

10 "uri" : "src/de/l3s/eumssi/news/EUMSSI_DBQ.java",
11 "uriBaseId" : "%SRCROOT%",
12 "index" : 0
13 },
14 "region" : {
15 "startLine" : 210,
16 "startColumn" : 8,
17 "endColumn" : 30
18 }
19 }
20 } ],

. . . ...
26 }

Figure 7.15: Analysis output for the smell detected in Figure 7.14

Abusive use of indexes

For this last code smell, our analysis returned one positive result in the bwaldvogel/mongo-
java-server project. However, this case cannot be considered as an instance of the code
smell. After a manual verification, we discovered that the project in question is an in-
memory MongoDB simulation and that the instance came from a test class. Such cases
were anticipated by excluding test packages from the analysis, but in this case, the whole
subproject was dedicated to testing, and therefore not the package only. Even if it cannot
be considered as an instance of the code smell, we still present this result to provide an
example of what our implementation is able to detect and the output it generates.
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22 public abstract class AbstractBackendTest extends AbstractTest
{

. . . ...
3801 public void testCompoundSparseUniqueIndexOnEmbeddedDocuments

() throws Exception {
3802 collection.createIndex(json("’a.x’: 1, ’b.x’: 1"), new

IndexOptions ().unique(true).sparse(true));
. . . ...

3832 }
. . . ...

6306 }
6307

AbstractBackendTest.java

Figure 7.16: Example of an index creation detected in bwaldvogel/mongo-java-server

1 {
2 "ruleId" : "TooManyCreateIndex",
3 "ruleIndex" : 0,
4 "message" : {
5 "text" : "This index creation could cause performance

issues because too many indexes (47) have been created
for the collection ’[testcoll ](1) ’. This collection has
135 fields and the most used field is ’[c](2)’ (6

times).\nTry to get less than 40 indexes by collection
!"

6 },
7 "locations" : [ {
8 "physicalLocation" : {
9 "artifactLocation" : {

10 "uri" : "test -common/src/main/java/de/bwaldvogel/mongo
/backend/AbstractBackendTest.java",

11 "uriBaseId" : "%SRCROOT%",
12 "index" : 0
13 },
14 "region" : {
15 "startLine" : 3802,
16 "startColumn" : 9,
17 "endColumn" : 105
18 }
19 }
20 } ],

. . . ...
60 }

Figure 7.17: Analysis output for the example from Figure 7.16

Figure 7.16 presents one of the 47 indexes creations on the same collection detected
in bwaldvogel/mongo-java-server. The SARIF analysis output for the first of these index
creations is presented on Figure 7.17. As we can see in the message object, we warn the
programmer that there might be too many indexes on this collection. In addition to this,
we also give information about the number of fields in this collection and the most used
one. The objective of giving these details is to help the developer making the decision
himself if there are really too many indexes. The collection on which the index is created
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is automatically initialized before each test with the name testcoll thanks to a method
declared in the AbstractTest method that the AbstractBackendTest class extends.
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Chapter 8

Limitations, improvements and future
works

In this chapter we list limitations we have identified in our thesis, as well as the potential
improvements and some future works to be realized in the field of NoSQL code smells.
The objective is to provide different tracks to enrich our taxonomy and to improve the
tool that we have implemented.

8.1 Improvements of the code smell taxonomy

In this section, we discuss potential improvements for our taxonomy.

8.1.1 Discover more code smells

First of all, our taxonomy does not pretend to be exhaustive. Indeed, we did not consider
all the code smells that exist in MongoDB since our work also involved the creation of
code smells detection methods and we only had a limited time available.

Moreover, MongoDB is a relatively recent DBMS and, to our knowledge, there is cur-
rently no scientific research made on code smells in MongoDB. Nevertheless, as NoSQL
becomes a DBMS that starts to be more widespread and takes a more important place in
scientific research, maybe some more research on code smells in MongoDB will start to
emerge. Therefore, with the help of this new research and other blogs or forums, it will
be interesting to extend the search to find other code smells based on the methodology
we provided in Section 4.1.

We also thought of another approach to find new code smells in MongoDB. This one
would consist in the realization of performance tests on the interactions of Java project
with a MongoDB database. Indeed, the very principle of NoSQL databases is to optimize
the speed of queries. However, if some queries seem to be less efficient than others, then
it could mean that we are dealing with code smells in MongoDB.

Whatever approach is used, we consider that the taxonomy we have provided in
Appendix A could be a good starting point to continue the research on code smells in
MongoDB.

8.1.2 Impact severity metrics

Currently, our taxonomy does not provide information about the severity of code smells.
Indeed, if we deduced logically the kind of impact they would have on a system, their
real impact has not been measured yet. Such information could help the programmer to
prioritize the code smells he should address as a priority.
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8.2 Improvements of the analysis tool

In this section, we explain the different limitations of our code smells analysis tool and
the improvements that could be done to resolve them. These improvements include the
creation of an executable tool, the use of schema inference to detect other code smells,
the improvement of the CodeQL database extractor, and the inclusion of other ODMs
or drivers for analysis.

8.2.1 All-in-one tool creation and IDE integration

Currently, each step of the code smells detection is performed manually one after the
other. However, the ideal would be to have an executable tool that would perform the
different steps presented in Section 6. This tool could take as input the source code to
be analyzed and output the code smell instances.

Another solution would be to present this tool as an extension or plugin of develop-
ment software like Eclipse or Visual Studio. This would allow to directly ensure that the
program, which is developed on one of these IDE, does not contain code smells.

8.2.2 Use of schema inference

Some code smells cannot be detected based on a simple observation of the queries made
to the database. In some cases, it might be necessary to know how the data is stored
in the database. Therefore, the idea would be to infer the MongoDB database schema
based on the different queries. This inference can be made in different ways, depending
on the ODM or the driver.

Spring data and Morphia: This is the easiest way to infer about the database
schema. Indeed, since both ODMs rely on entities to represent MongoDB documents
and collections, we only need to observe these entities to infer on the schema.

MongoDB Java driver: It is a bit more complex to infer the schema of the MongoDB
database because the collections and the documents are not necessarily represented by
classes in Java. In this case, to make the inference, we would have to observe the queries
that are sent to this database. Indeed, the fields used by the CRUD queries would be
good sources of information about the database content.

MongoJack: For MongoJack, it is possible to rely on the two techniques presented
just before. MongoJack allows to map collections or documents using entity classes but
also allows to perform queries directly on the collection by transferring BSON document
objects. It would thus be necessary to observe the entity classes that represent the
collections, if they exist, or to analyze the content of the CRUD queries.

8.2.3 Improvements of the CodeQL database extractor

Currently, the database extractor does not solve all the limitations that were discussed
in Section 6.1.3. Therefore, in this section, we explain different ways to improve the
database extraction script.

Delombock projects using Lombock dependencies: As explained in the limita-
tions of CodeQL, some projects are using Lombock dependencies, which causes some
files not to be generated when extracting from the CodeQL database. Therefore, when
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extracting the database, it would be interesting to detect automatically if the project
has a Lombock dependency or not. If the project uses Lombock, it would be interesting
to replace the Lombock annotations with corresponding lines of code to be parsed by
CodeQL. To do this, as explained on the Lombock site1, this library offers the ability to
Delombock files using Lombock annotations with a command line. So, before executing
the extraction of the CodeQL database, it would be necessary to detect the files using
Lombock annotations and, for each of these files, to execute the appropriate command
line according to the Framework used by the project.

Try compilation on other project versions: As we explained in Section 6.1.3,
some project versions may contain errors and could cause compilation problems. As a
reminder, the projects used in our research are open-source projects stored on GitHub
repositories. Moreover, we are currently using the latest commit on the master branch of
the repository to perform our analysis. When the compilation of a project version fails,
it would be interesting to try to compile it with another version of the project contained
in the repository such as the latest release version for instance. This would allow finding
the first most stable version.

8.2.4 Include project analysis using other ODMs or drivers

Currently, our code smells analysis tool can only analyze projects using MongoDB Java
driver, Spring data and MongoJack. The ideal would be to implement the analysis for
other ODMs or drivers like Morphia, which we have already discussed previously.

8.3 Future works

In this section, we provide some potential avenues to deepen the research in the field of
code smells in NoSQL databases interactions.

8.3.1 Deeper analysis about the usage of NoSQL databases

NoSQL databases, despite the fact that it is becoming quite popular nowadays, have not
been studied a lot in the scientific domain. A deeper analysis of the way programmers
use them in their systems and the way they interact with them would be interesting to
study. A better understanding of their usage could lead to better tools, and in our case
in the detection of other anti-patterns or code smells.
For example, a deeper analysis could be carried on by using schema inference – which
we have already discussed in Section 8.2.2 – to show how the flexibility of the schema is
used in the studied system.

8.3.2 Empirical studies about the impact of code smells

As already said in Section 8.1.2, the impact of the code smells we defined have not been
studied yet. It would thus be interesting to conduct empirical studies to measure their
real impact on system performance and maintainability. A better understanding of their
impact would enhance the taxonomy we proposed by allowing to determine the severity
of each smell.

This empirical study could be achieved for example by performing performance tests
on real-world systems before and after the resolution of existing code smells, or by
introducing voluntarily code smells inside “healthy" systems to measure the loss in per-
formance.

1https://projectlombok.org/features/delombok
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8.3.3 Visualization of the code smells

Another idea would be to provide a proper visualization method to present code smell
instances detected inside of a program. A good visualization is key to the understanding
of data, and would therefore help in the maintenance of systems that contains code smells.
When we think about the visualization of code smells, we could imagine visualizations
that indicates the parts of a system that contains the most code smells and that would
need refactoring in priority.

8.3.4 Code smells in other types of NoSQL databases

Finally, our thesis focuses only on MongoDB, which belongs to the family of document
databases. However, the NoSQL databases appellation covers a lot of other database
families such as key-value stores, column-oriented databases and graph databases. Each
kind of database has its own peculiarity and therefore its own potential code smells.
Investigating code smells for other database systems than MongoDB is then necessary,
as we cannot systematically transpose the ones we defined in this thesis to other database
systems.
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Chapter 9

Conclusion

In the introduction, we first presented the context of our thesis as well as our motivations
and objectives. We have highlighted the motivation of studying code smells to improve
code and database interactions quality, as well as the advantages of establishing a tax-
onomy to better understand them. We then briefly introduced the rationale of static
analysis for the detection of these code smells. Indeed, it allows us to detect instances of
code smells without requiring the execution of the program. We ended this introduction
with an overview of our thesis structure.

To begin our research, in Chapter 2, we established a state of the art, presenting
the previous researches in the domains used in our thesis. We presented code analysis,
with an emphasis on static analysis methods like abstract syntax trees, data-flow and
control-flow analysis. We then turned to the researches about code smell, beginning with
the origin of the term and a first definition. We spoke about the influence of those code
smells on object-oriented programming and in SQL databases interactions. Once those
code smells were defined, we focused on the existing methods and tools to detect them,
both in Java code and in SQL database interactions. We finished our state of the art by
exploring researches about code smells for NoSQL systems, which led us to the fact that
no code smells have yet been scientifically defined or analyzed.

In Chapter 3, we introduced the background of our research, by presenting MongoDB,
i.e. the database system we used, and CodeQL, i.e the static analysis tool that we used
to detect code smells.

In Chapter 4, we started filling the research gap we found by defining and following a
methodology to create a first list of 11 code smells for MongoDB databases interactions.
We provided code examples for each of these code smells and we hypothesized their
potential impact on the system. Once this list had been created, we classified those
smells into three groups: Relational design ghosts, Human-oriented decisions and Design
oversights. These three groups form the base of our taxonomy. Afterwards, we took
inspiration from existing code smell taxonomies to improve and complete our own.

Chapter 5 was dedicated to the design of a tool that allowed us to detect MongoDB
code smells in Java projects. We justified the choice of static code analysis for the
creation of this tool and presented the different phases of our analysis process: the
MongoDB access extraction – which allowed us to locate and collect information about
the accesses to a MongoDB database inside Java code, and the code smell detection phase
– which uses detection rules and the previously extracted accesses to locate instances of
code smells. Then, we selected the code smells for which we designed detection rules
based on selection criteria.

The implementation of the previously defined process took place in Chapter 6. We
first explained the choice of CodeQL as a static analysis tool among other alternatives
like SpotBugs or Spoon. We then described the way we used it to perform analysis steps
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like database accesses extraction and code smell detection.
Once implemented, our tool was tested and applied on a large number of projects

in Chapter 7. We began this chapter by the presentation and the selection of the Java
projects on which we performed our analysis. We then explained the way we applied our
tool to perform the analysis on such a large dataset. Finally, we exposed the results we
obtained for each code smell, providing some numbers as well as examples of instances
we detected and the corresponding analysis result. Thanks to numbers gathered in the
MongoDB access extraction phase, we were able to provide an overview of the different
MongoDB drivers use.

Finally, Chapter 8 gathers the limitations we faced during our work. For each of
these limitations, we have tried to give some hints for future improvements that could
be realized. These improvements concern the taxonomy that we have developed and the
code smells analysis tool that we have implemented. We also conclude this chapter with
some future works that could be realized in the field of NoSQL code smells.

To conclude, we can say that this thesis is a first step in the research field of NoSQL
code smells, and more precisely of MongoDB databases interaction code smells. It has
successfully proven that such code smells exist, that they are present in open-source
projects and that they can be detected with static analysis. There is of course room
for improvement, both in the taxonomy we proposed, and in our analysis method, for
example in the precision and recall it provides, which we did not evaluate. However, we
hope that the basis we have provided will encourage the research in this field.
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Appendix A

MongoDB bad smells taxonomy

Smell
type Smell name Description Impact type In-code detection Gran. Intra. VBMP IO NR

Relational
design
ghosts

Separating data
accessed together

When data is separated into dif-
ferent collections (for 1-1 or 1-
N relation) instead of being em-
bedded in a single document

Performance Lookup operation between two
collections Method No Yes No No

Use of relational
collections

When a relational collection is
used to represent N-N relation-
ships

Performance
Lookup operation between three
collections. Or an entity class
that contains only id references.

Class
/Method Yes Yes No No

Storage of empty
values

When Null or Undefined values
are stored in a collection instead
of not storing the attribute

Performance
/Storage waste

Insertion of new documents with
a null value or an empty string
for a field or update of a docu-
ment field with a null value or
an empty string

Method Yes Yes No No

Relying on trans-
action

When transactions are fre-
quently used, this may indicate
that data accessed together is
separated.

Performance
When same collections are often
accessed between the start and
the commit of a transaction

Method No Yes No No
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Human
oriented
decisions

Too long attribute
names

When attributes are stored with
long name Storage waste

With ODM, by checking the an-
notation on a field or the field
name of entity classes. Other-
wise, by checking the field used
in the database access query of
the program

Class
/Method Yes No No No

Human readable
values

When values are stored in a
human-readable format rather
than in an optimized format

Storage waste

Checking value insertions or up-
dates that correspond to typi-
cal representations of data in hu-
man format

Method Yes No Yes No

Too long docu-
ment keys

When using long ids value (like
UUID type or long string value)

Performance
/Storage waste

For UUIDs, by checking the
type declared for the identifier
in entity classes. Otherwise, by
checking the value inserted for
the id field of a new document

Class
/Method Yes No No No

Design
oversights

Inconsistent order
of attributes in-
side a collection

When consistency between doc-
uments is not maintained Incomplete results

In new document insertions,
field ordering is diffrent for a
same collection

Method No No No No

Databases access
spread across the
system

When database accesses are
spread across the system instead
of being group in folders or files

Maintainability

By comparing the number of
methods that have one or more
database accesses, to the total
number of methods in a sys-
tem or by comparing all accesses
locations to ensure that they
are grouped in the same place
within the file system

System Yes No No Yes

Storage of easily
calculated values

When easy-calculated values are
stored in a collection attribute
instead of being calculated in
the query or in the program

Performance
/Storage waste

Values inserted in a document,
which are calculated on the ba-
sis of other fields from this doc-
ument.

Method No No Yes No

Abusive use of in-
dexes

When many indexes are created
for a single collection and when
it is not necessary

Performance Total index creation in source
code for each collection

Class
/Method No Yes No No

Table A.1: MongoDB code smells taxonomy
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