
Understanding Software Evolution using a Flexible Query Engine

Michele Lanza, Stéphane Ducasse, Lukas Steiger
Software Composition Group, University of Berne
Neubrückstrasse 12, CH – 3012 Berne, Switzerland

{lanza,ducasse,steiger}@iam.unibe.ch — http://www.iam.unibe.ch/∼scg/
Published in the Formal Foundations of Software Evolution Workshop Proceedings of CSMR 2001

Abstract
One of the main problems which arises in the field of
software evolution is the sheer amount of information to
be dealt with. Compared to reverse engineering where
the main goal is the main understanding of one single
system. In the field of software evolution this information
is multiplied by the number of versions of the system one
wants to understand. To counter this problem we have
come up with a flexible query engine which can perform
queries on the different versions of a system. In this paper
we give an outlook on our current work in the field of
software evolution and focus particularly on the concepts
behind the query engine we have built.

Keywords: Reverse Engineering, Evolution, Moose,
Object-Oriented Programming

1 Introduction
Understanding software systems that have evolved over
several versions is difficult because of two main obstacles:

• The changes on a system during its development are
often not or badly documented for several reasons.
We believe one of the main forces is the weak en-
forcement of change documentation policies in com-
panies: the people who perform the changes know
what they are doing, so what’s the point of docu-
menting it?

• The original design document is not updated accord-
ing to the performed changes, which leads to a rapid

decay in the original design coherence.

• The amount of information is multiplied by the num-
ber of versions of the subject system: coping with
such amounts of information is difficult and time-
consuming.

Software Evolution is confronted with the difficulty of
recovering such changes through the analysis of two or
more versions of the same system. The main problem
here is the amount of useless “noise” (i.e. false positives)
which is returned.

To counter this problem we have come up with the
idea of a flexible query engine similar to those used for
professional databases. In a query language like SQL it is
farily easy to define a query which can retrieve a certain
set of data out of a possibly huge collection of data.
Moreover it is also possible to further refine the query by
adding more criteria.

This paper is structured as follows: in the next sec-
tion we present the concepts and prerequisites of our
query engine. We then show how the queries are made.
Then we shortly present the tool which was realized using
those concepts, and present some results obtained using
the query engine on several case studies. In the final
section of the paper we discuss the current and future
work that we plan to do in this domain.

1

2 The Concepts and Prerequisites of
the Query Engine

2.1 The Concept
The whole concept of such a query engine is based on the
Composite Pattern[7]: The intent is to compose objects
(in our case queries) into tree structures to represent part-
whole hierarchies. A composite lets clients treat individ-
ual objects (queries) and compositions of objects (com-
posed queries) uniformly.

A composed query can thus be seen as a hierarchy
of queries and subqueries glued together by binary log-
ical operators, i.e. AND and OR. A query can of course
also be negated by assigning a unary NOT operator to the
query. A name can be assigned to a query, through which
it can be included by reference in other queries.

2.2 The Prerequisites
A query engine like ours has some prerequisites which
must be fulfilled. The following prerequisites must hold:

• A Collection of Data. The primary prerequisite for
such a query engine is a collection of data which be-
haves like a database on which queries can be per-
formed. In our case we have our reengineering en-
vironment Moose[6] that we have developed during
the FAMOOS ESPRIT project[4]. Note that Moose
keeps all entities in memory, instead of using a file
based approach like a database. Although we know
that a database is more scalable we have not encoun-
tered size problems until now.

The Moose reengineering environment is an im-
plementation of the language independent FAMIX
metamodel[3]. At this time the following languages
can be represented in our metamodel: Smalltalk,
Java, C++ and COBOL.

We parse the source code (directly in the case of
Smalltalk and using parsers in the case of the other
languages) and end up with a collection of entities
which are an internal representation of software arti-
facts. In the context of evolution it is important that
we can have several metamodels (e.g. several ver-
sions of the same software) parallel to each other at
the same time in memory.

• A Query Language. Although we could have used
Smalltalk as the query language, we have decided
to build a textual query language which can be ex-
pressed at a graphical user interface level. The ben-
efits of this are that non-Smalltalkers can also make
use of it and a bigger ease of expression.

• A Metrics Framework. Most of the queries we per-
form are based on metric properties of the entities.
For that purpose we have implemented a large frame-
work of metrics (at this time more than 50), which is
better explained in [8].

3 A Taxonomy of Queries
In this section we explain what kinds of queries we can
build and how they can be composed into more complex
ones. Note that the notation we use in this paper does not
reflect the actual notation we use, which is much more
verbose. For the sake of simplicity and readability we
have decided on this easy-to-understand notation.

In this section we will show how with our query engine
we can compose step by step a query which in the end will
return the following result:

3.1 Basic Queries and Composite Queries
A basic query checks whether a certain condition holds
or not, i.e. it iterates over one or several metamodels and
returns entities which match the query. We now present
how basic queries can be combined to compose a refined
query which returns specific results. We distinguish four
kinds of basic queries, i.e.

1. Type Query
A type query returns all entities which belong to a
certain type. The example below returns all classes
of a system.

ClassesQuery :=
[Type(x) = CLASS]

2. Name Query
This is a simple name matching query including
wildcards. The example below returns all classes
whose name contains the string “Abstract”.

2

AbstractClassesQuery :=
[ClassesQuery] AND
[Name(x) = ’*Abstract*’]

3. Property Query
In our metamodel we can annotate properties on an
entity. Examples of such properties include whether
a class is abstract, whether a method is an accessor
(i.e. get/set), whether an attribute is private, etc. A
property query tries to match a property which al-
ways returns a boolean value. The example below
returns all classes which contain the substring “Ab-
stract” in their name but in fact are not abstract.

FalseAbstractClassesQuery :=
[AbstractClassesQuery] AND
[Property.Abstract(x) = FALSE]

4. Metric Query
Moose provides an extensive set of metrics for the
entities, including most of the metrics mentioned in
[1] and [9]. In the case of such a query we either
match the exact value or check on whether a metric
value of an entity is above or below a certain thresh-
old. The example below returns the false abstract
classes in the system which implement more than 30
methods.

LargeFalseAbstrClassesQuery :=
[FalseAbstractClassesQuery]
AND
[NOM(x) > 30]

3.2 Software Evolution Queries
A query can be composed of other (sub)queries. Those
can be combined using binary logical operators, i.e. AND
and OR like we have seen above.

In the case of Software Evolution Queries, we build
queries which return results from different versions of the
software and combine those results using logical unary
(NOT) and binary (AND,OR) operators.

Suppose we have three versions of the software Foo.
We call the versions Foo1, Foo2, Foo3. If we consider
only Foo1 and Foo2. We want to find all find all classes

which from one version to next increased their number of
methods by more than 20 (e.g. the class grew rapidly).

For that purpose we build the query

GrowQuery :=
[(NOM(x.new) - NOM(x.old)) > 20]

Here x represents the classes present in the new and the
old version of the software and NOM is the value of the
metric “Number of Methods” for x. This will return the
results for (Foo1, Foo2). We can apply the same query to
(Foo2, Foo3).

The combination of these through a logical AND op-
erator will return the classes which grew constantly by at
least 20 methods over the whole time frame we are con-
sidering. The combination of these through a logical OR
operator will return the classes which grew at an arbitrary
point in time.

3.3 Defining the Environment of a Query
Sometimes it is necessary to define a subquery on a query.
We call this subquery the environment of the query. As an
example, we want to find out all classes who grew by ad-
dition of methods and whose subclasses (at least one of
them) shrank by removal of methods. Our guess is that in
such a case the step in between performed by the develop-
ers was to push up the functionality of the subclasses into
the superclass which grew. The criteria are in this case:

PushUpCandidates :=
[(NOM(x.new) - NOM(x.old)) > 0]
AND
[((NOM(subclasses(x.new) -

NOM(subclasses(x.old)) < 0]

3.4 The Renamed Entity Tracking Problem
One of the major problems which must be dealt with, is
that although conceptually two different versions of the
same software entity have a “becomes” relationship, in
our metamodel those are two different objects. To estab-
lish the connection between them, the obvious way is to
go over the naming: if two entities have the same unique
name, they are two versions of the same software artifact.
However, what happens if an entity has been renamed?

We have found two simple and effective solutions to
this problem which cover almost all cases:

3

1. Using the metrics. We compare the metric measure-
ments of the “new” entities (i.e. those which have
appeared for the first time in a certain version of the
software) with those of the previous ones and see if
there is a match. This solution is straight forward but
not very effective.

2. In the case of classes or higher level software con-
structs like packages, etc. we go over the entities
contained in them. As an example, in the case of a
renamed class we check if we have a match regarding
the methods: if the name of certain methods stays the
same, but the unique name (i.e. including their class
name) changes we can be nearly sure that we have a
renamed class.

These two approaches work well enough for us, al-
though in both cases there are false positives. However,
the only bullet-proof way to track the renamed entities
would be to have a versioning software which tracks all
entities including the renamed ones.

4 The Implementation of the Query
Engine

Figure 1: The Main Window of MooseFinder.

We have implemented the concept of the query engine
in a tool called MooseFinder.

We have seen that the ease and flexibility of the query
composition mechanism is very important: Often a query
which works (i.e. returns useful results) in one context
must be changed for another context.

For that purpose MooseFinder supports an easy and
graphical way to compose queries including drag and drop
support. This is necessary to enable the user to quickly
adapt complex query structures to new contexts.

The window shown in Figure 1 is the main interface
of MooseFinder. Here we can select the queries and run
them.

Figure 2: The Query Composition Window of
MooseFinder.

The Query Composition Window shown in Figure 2 en-
ables the user to build the basic queries and compose them
into composite ones.

5 Applying the Approach
The result of the approach we are working on, is to ob-
tain a set of queries which return meaningful results in
the field of software evolution. For that purpose we have
set up a number of large and very large case studies we
want to work on.

This work is still under way but we have already identi-
fied some useful queries. We list here what we can detect
with each query:

• Introduction of a class on top of a large hierarchy

4

• Subclasses that become the sibling of their super-
classes, i.e. that have been pushed up one hierarchy
level

• Classes where methods and/or attributes have been
pushed up into their superclass

• Classes that have rapidly grown/shrunk from one
version to the next

• Classes which have been merged

• Entities which have been added to/removed from the
software at a certain point

• Classes which have been renamed

6 Conclusions and Future Work
The preliminary results obtained using this approach have
already shown that it is indeed useful and can return
meaningful results. However, we have encountered the
following problems:

• The usefulness of the approach is tied to the flexibil-
ity and power of the query language. This is on one
hand the query language per se, on the other hand
the user interface with which we can compose the
queries.

• This approach goes into the direction of data min-
ing and data reverse engineering. One of the main
problems in those fields is the representation of the
results. For the time being we still use textual rep-
resentations, although we can easily interface with
visualization software.

• The more general and less specific a query is, the
more results it will return. On the other hand a very
specific query can return an empty set of results.
The fine-tuning of the queries requires a considerable
deal of expertise on side of the user and flexibility on
side of the query engine.

Our future work in this context includes the publication
of a paper with the major results obtained with this ap-
proach applied on several large and very large case stud-
ies.

Furthermore we will extend the query engine and its
query language to render it as flexible and powerful as
possible.

We also plan to use the software visualization tool
CodeCrawler [8, 2, 5] in this context.

References
[1] S. R. Chidamber and C. F. Kemerer. A metrics suite

for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, June 1994.

[2] S. Demeyer, S. Ducasse, and M. Lanza. A hy-
brid reverse engineering platform combining metrics
and program visualization. In F. Balmas, M. Blaha,
and S. Rugaber, editors, Proceedings WCRE’99 (6th
Working Conference on Reverse Engineering). IEEE,
October 1999.

[3] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0
- the FAMOOS information exchange model. Tech-
nical report, University of Bern, August 1999.

[4] S. Ducasse and S. Demeyer, editors. The
FAMOOS Object-Oriented Reengineering Hand-
book. University of Bern, October 1999. See
http://www.iam.unibe.ch/˜famoos/handbook.

[5] S. Ducasse and M. Lanza. Towards a methodology for
the understanding of object-oriented systems. Tech-
nique et science informatiques, 20(4):539–566, 2001.

[6] S. Ducasse, M. Lanza, and S. Tichelaar. Moose:
an extensible language-independent environment for
reengineering object-oriented systems. In Proceed-
ings of the Second International Symposium on Con-
structing Software Engineering Tools (CoSET 2000),
June 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading, Mass.,
1995.

[8] M. Lanza. Combining metrics and graphs for object
oriented reverse engineering. Diploma thesis, Univer-
sity of Bern, October 1999.

5

[9] M. Lorenz and J. Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

6

