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Abstract
Most changes during software maintenance and evolution are not atomic changes, but rather
the result of several related changes affecting different parts of the code. It may happen
that developers omit needed changes, thus leaving a task partially unfinished, introducing
technical debt or injecting bugs. We present a study investigating “quick remedy commits”
performed by developers to implement changes omitted in previous commits. With quick
remedy commits we refer to commits that (i) quickly follow a commit performed by the same
developer, and (ii) aim at remedying issues introduced as the result of code changes omitted
in the previous commit (e.g., fix references to code components that have been broken as a
consequence of a rename refactoring) or simply improve the previously committed change
(e.g., improve the name of a newly introduced variable). Through a manual analysis of 500
quick remedy commits, we define a taxonomy categorizing the types of changes that devel-
opers tend to omit. The taxonomy can (i) guide the development of tools aimed at detecting
omitted changes and (ii) help researchers in identifying corner cases that must be properly
handled. For example, one of the categories in our taxonomy groups the reverted commits,
meaning changes that are undone in a subsequent commit. We show that not accounting for
such commits when mining software repositories can undermine one’s findings. In partic-
ular, our results show that considering completely reverted commits when mining software
repositories accounts, on average, for 0.07 and 0.27 noisy data points when dealing with two
typical MSR data collection tasks (i.e., bug-fixing commits identification and refactoring
operations mining, respectively).
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1 Introduction

In the software life-cycle, change is the rule rather than the exception. Changes are generally
performed through commit activities to add new functionality, repair faults, and refactor
code (Mockus and Votta 2000). Some of these commits can involve a substantial part of
the source code, with dozens of artifacts impacted (Hattori and Lanza 2008). This is often
the result of what Herzig and Zeller (2013) defined as tangled commits: Commits grouping
together several unrelated activities, such as fixing a bug and adding a new feature.

In other cases, a single cohesive change (e.g., a bug fix) is instead split across several
commits. This can be due to omitted code changes and/or the need for fixing a mistake done
in the first attempt to implement the change. Park et al. (2012) showed that 22% to 33% of
bugs require more than one fix attempt (i.e., supplementary patches). Studying supplemen-
tary patches can be instrumental in designing recommender systems able to reduce omission
errors by alerting software developers, as attempted in a subsequent work by Park et al.
(2017), where the authors tried to predict additional change locations for real-world omis-
sion errors. Due to the limited empirical evidence about the nature of omitted changes, this
is still an open challenge. Indeed, while the work by Park et al. (2012) investigates omitted
changes, it explicitly focuses on supplementary patches for bug-fixing activities, ignoring
other types of code changes (e.g., implementation of new features, refactoring). Thus, there
is no study broadly investigating the types of changes that developers tend to omit during
implementation activities.

To fill this gap, in our previous work (Wen et al. 2020) we presented a qualitative study
focusing on “quick remedy commits” performed by developers. We defined as quick remedy
commits those commits that (i) quickly succeed a commit performed by the same developer
in the same repository; and (ii) aim at remedying the issues introduced as the result of code
changes omitted in the previous commit (e.g., fix references to code components that have
been broken as a consequence of a rename refactoring) and/or improves suboptimal choices
made in the previously committed change (e.g., refactoring code to improve its comprehen-
sibility). In other words, we identified pairs of commits (ci , ci+1) that are temporally close
(i.e., ci+1 succeeds ci by a few minutes), are performed by the same developer, and include
in the commit note of ci+1 a reference to fixing issues introduced in ci .

Figure 1 shows an example of a quick remedy commit from our dataset, and in particu-
lar from the GitHub project bardsoftware/ganttproject. In the commit depicted
in the top part of Fig. 1 (i.e., commit a43b8f2), the developer implemented, among
other changes, a refactoring aimed at simplifying the code of the GPAction class. In par-
ticular, instead of invoking three times the method GanttLanguage.getInstance()

in different parts of the class, the language variable is instantiated, and reused where
needed.

Two minutes later, the same author performs a quick remedy commit (bottom part of
Fig. 1 — commit 2c40a07) by reporting in the commit note: Forgot 1 refactoring of ’lan-
guage’ in previous commit. The remedy commit propagates the changes introduced by the
refactoring to another location of the GPAction class, that was missed by mistake in the
original commit.

We decided to focus on remedy commits (ci+1) that are temporally close to the original
change they fix (ci) for two reasons. First, it is easier to establish a clear link between two
commits by the same developer if they are performed within a few minutes. Second, as
shown by Park et al. (2017), it is challenging to prevent omission errors automatically; thus,
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Fig. 1 Example of quick remedy commit

we decided to focus on omission errors that, since fixed within few minutes, are likely not
to be so complex.

This allows gathering empirical knowledge to take a first step in automating the preven-
tion of a basic set of omission errors that, as we show, can be responsible for bugs and major
code inconsistencies if not promptly fixed.

We defined heuristics to identify quick remedy commits automatically, and mined the
commits of interest from the complete change history of 1,497 Java projects hosted on
GitHub. This allowed the identification of ∼1,500 candidates quick remedy commits. We
manually analyzed 500 of them looking at the changes introduced in the remedy commit
(ci+1) and the previous commit (ci) as well as the summary of changes provided in the
commit notes.

The goal of the manual analysis was to identify the rationale of the remedy commits to
define a taxonomy categorizing the types of issues introduced by developers during commit
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activities that trigger a remedy commit, discussing the implications of our taxonomy for
researchers and practitioners.

In this work, extending our previous paper (Wen et al. 2020), we further looked into
the implications of a specific part of our taxonomy for researchers working in the Mining
Software Repositories (MSR) field. In particular, we focused on a category in our taxonomy
grouping together reverted commits, i.e., remedy commits ci+1 in which the developers
revert, completely or partially, the code changes they committed in the previous commit ci .
We defined a methodology to automatically identify these commits in a given repository
and studied the impact they could have on MSR studies. The decision to focus on such a
specific category in our taxonomy is two-fold: (i) as we will explain later in the paper, it is
the type of quick remedy commits that is more likely to affect the data collection process in
MSR, possibly leading to the inclusion of noisy data points in the study; (ii) it is the only
category for which a reliable and automated detection mechanism can be easily devised (i.e.,
it is relatively easy to detect reverted commits as compared to other categories of commits
in our taxonomy).

We took two “data collection tasks” frequently performed in MSR studies, namely the
identification of bug-fixing commits (see e.g., Rodriguez-Perez et al. 2017b; Rodrı́guez-
Pérez et al. 2018; Tufano et al. 2018; Wang et al. 2020; Penta et al. 2020) and the mining
of refactoring operations performed in the history of a system (see e.g., Penta et al. 2020;
Peruma 2019; Mahmoudi et al. 2019; Lin et al. 2019; Fakhoury et al. 2019; AlOmar et al.
2019). Then, we applied these two tasks on 100 long-lived Github repositories; collecting
refactoring operations performed in each commit and a set of bug-fixing commits. Finally,
we cleaned the collected data by removing completely and partially reverted commits. For
example, a researcher may identify a bug-fixing commit in the history of a software system.
However, if such a bug-fix is later on reverted by the developer, we argue that, in most
of the cases, it should not be considered as a valid data point, since it basically represents
noise. We show that, for each completely reverted commit kept in the collected data, there
is a .07 increase in the number of detected bug-fixing commits and a 0.27 increase in the
number of detected refactoring commits. The methodology we adopt to identify the reverted
commits can be applied in MSR studies to help researchers in minimizing the impact of these
commits on their findings. Clearly, the removal of reverted commits is subject to the goal
of the study and the data analyses researchers are interested in performing. For example, if
the goal of the study is to count the number of bugs introduced by a developer in a system,
researchers may be willing to also count bug-introducing commits that have been later on
reverted. Instead, if the goal is to assess the logical coupling between code components
(i.e., how frequently they co-change), researchers may want to ignore completely reverted
changes in the coupling computation. Our study confirms the importance of careful data
cleaning when mining software repositories, as highlighted in previous works (Rigby and
Robillard 2013).

The data used in both our studies are publicly available (Replication package 2021).

Structure of the paper In Section 2 we present the design and the results of our first
empirical study, in which we investigate the types of quick remedy commits performed by
developers. Section 3 presents the design and results of our second study, assessing the
potential impact of reverted commits in MSR studies. In Section 4 we discuss the threats
that could affect the validity of our two studies, while in Section 5 we discuss the related
literature. In Section 6 we conclude the paper and outline our future work.
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2 Study I: Studying Quick Remedy Commits Performed by Developers

2.1 Study Design

The goal of the study is to qualitatively investigate quick remedy commits. The purpose
is to define a taxonomy of quick remedy commits that developers perform to fix issues
introduced in a previous commit and/or finalize an uncompleted implementation task. The
study addresses the following research question (RQ):

RQ1: What types of quick remedy commits are made by developers in Java projects?

This RQ aims at identifying the types of quick remedy commits that are performed by
developers (e.g., documenting through a code comment a piece of code introduced in the
previous commit). Knowing the types of quick remedy commits made by developers can
guide the development of tools to automatically alert developers when code changes they
are committing may require a subsequent remedy commit. In some cases this could even
avoid the introduction of bugs (e.g., due to changes not propagated in all code areas where
they are required).

2.1.1 Data Collection and Analysis

To answer RQ1 we mined the complete change history of 1,497 open source Java projects
hosted on GitHub. These projects represent the context of our study and have been selected
from GitHub in November 2018 using the following constraints:

– Programming language. We only considered projects written in Java since all the
manual evaluators involved in the study (i.e., three of the four authors) have experience
in Java, and would be able to understand the reasons behind the quick remedy comments
in most of the cases.

– Change history. Since we were interested in identifying a good number of quick rem-
edy commits to manually analyze, we only selected projects having a relatively long
change history, composed of at least 500 commits.

– Popularity. The number of stars (About stars (GitHub) 2021) of a repository is a proxy
for its popularity on GitHub. Starring a repository allows GitHub users to express their
appreciation for the project. Projects with less than ten stars are excluded from the
dataset, to avoid the inclusion of likely irrelevant/toy projects.

A total of 6,563 projects satisfied these constraints. Then, we sorted the projects in
descending order based on their number of stars (i.e., the most popular on top), and we
manually inspected the ranked list (starting from the top) to filter out repositories that
do not represent real software systems (e.g., JAVA-DESIGN-PATTERNS 2021 and SPRING-
PETCLINIC 2021). Such a selection was done by checking the projects’ names and
descriptions (no code analysis was performed). We also checked for projects with shared
history (i.e., forked projects). In particular, we considered as forked projects two reposi-
tories having in their history at least one commit having the same SHA and commit date.
When we identified a set of forked projects, we only selected among them the one with the
longest commit history (e.g., both FINDBUGS 2021 and its successor SPOTBUGS 2021 fall
under our search criteria, but we only kept the latter one). Such a process stopped once we
reached 1,500 valid projects for our study.

During the cloning of the 1,500 GitHub repositories, we got a cloning error for three
of them. Thus, we extracted the list of commits performed over the change history of the
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remaining 1,497 projects. Table 1 reports descriptive statistics for size, change history, and
popularity of the selected projects. The complete list of considered projects is publicly
available in our replication package (2021).

To extract the history of the subject systems, we iterated through the commit history
related to all branches of each project with the git log --topo-order command. This
allowed us to analyze all branches of a project, without intermixing their history and
avoiding unwanted effects of merge commits.

Then, given the commit history, our goal was to identify all pairs of subsequent commits
(ci, ci+1) in which ci+1 had been performed by a developer Dj as a quick remedy fix for
a commit ci also authored by Dj . In other words, ci+1 must (i) have been authored by
the same developer of ci and performed within a relatively short time interval from ci ; (ii)
clearly be a “compensatory” fix for ci .

To identify the (ci, ci+1) pairs of interest, we adopt the following heuristic-based pro-
cedure. First, we computed the time interval between all adjacent (subsequent) commits in
each system authored by the same developer. In git it is possible to retrieve the author date
(i.e., the date in which the change has been implemented by the author) or the committer
date (i.e., the date in which the change has been committed). Given the goal of our work, we
considered the author date. We analyzed the distribution of these time intervals (see Fig. 2).

We considered the first quartile, exactly five minutes, as a candidate threshold to iden-
tify remedy commits: ci+1 commits performed as quick fixes for their predecessor ci

commit. This allowed us to select pairs of commits meeting our first requirement: They
were authored by the same developer and performed in rapid succession (i.e., within five
minutes). This filtering left us with 1,041,397candidate commits.

Second, we set up a process to define lexical patterns allowing the identification of ci+1
commits in which the developer explicitly indicates in the commit notes the fact that ci+1
is a remedy commit for changes introduced in the previous commit (ci). The first author
extracted from all 1,041,397commits output of the previous filtering step the words and 2-
grams used in their commit notes. This means that, from a commit note reporting “Fixes a
bug introduced in previous commit”, we would extract fixes, a, bug, etc. as the single words,
and fixes a, a bug, bug introduced, etc. as 2-grams. To remove noise, stop words (e.g.,
articles) and all single words shorter than four characters had been excluded from the set of
single words (not from the 2-grams list). The remaining words and all 2-grams had then been
sorted by frequency in descending order, excluding the long tail of those appearing in less
than ten commits. Indeed, even if useful to identify remedy commits, lexical patterns defined
from these words/2-grams are unlikely to retrieve a substantial amount of useful commits
and, thus, are excluded a priori from reducing the inspection effort. For each remaining
word/2-gram, we randomly extracted ten commit notes in which it appears.

This dataset, composed of words/2-grams and related commit notes, had been manually
and independently inspected by three authors with the goal of defining the needed lexical

Table 1 Dataset statistics
Overall Per Project

Mean Median

Java files 1,599,323 1,068 360

Effective LOC 162,243,714 108,379 31,392

Stars 2,895,219 1,930 762

Commits 7,926,912 5,313 1,778
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Fig. 2 Time differences (in minutes) between subsequent commits (without outliers)

patterns. After an open discussion in which each author presented his list of patterns, the
three evaluators agreed on the following lexical pattern to identify remedy commits:

(former or last or prev or previous) and commit

This means that commit notes including former commit, last commit, prev commit, or
previous commit would be matched and considered as relevant for our study. While this
heuristic is quite strict, our goal was to maximize precision at the expense of recall, con-
sidering the fact that our study is qualitative in nature and does not target a large number
of manually analyzed commits. At the end of this last filtering step, we obtained 1,577ci+1
commits which (i) have been authored within five minutes from the commit ci previously
performed by the same author; and (ii) explicitly mention in the commit note a lexical refer-
ence to the previous commit that can be captured by the defined pattern. Given the high cost
of the manual analysis process detailed in the following, we decided to focus our analysis
on a randomly selected sample of 500 commits, representing a 99% statistically significant
sample with a 4.8% confidence interval.

The 500 commits were randomly distributed among three authors, making sure that each
commit was classified by two authors. The goal of the process was to identify the exact
reason behind the changes performed in the commit. If the commit was unrelated to the
previous one, the evaluator classified it as false positive.

Otherwise, a tag explaining the reason for the change (e.g., remove debugging code from
the previous commit) was assigned.

We did not limit our analysis to the reading of the commit message, but we analyzed
the source code diff of the changes implemented in the GitHub commits, both in the ci+1
commit as well as in its predecessor (ci). The tagging process was supported by a Web appli-
cation that we developed to classify the commit and to solve conflicts between the authors.
The Web application is shown in Fig. 3. Each author independently tagged the commits
assigned to him by defining a tag describing the reason behind the commit. Every time the
authors had to tag a commit, the Web application also showed the list of tags created so far,
allowing the tagger to select one of the already defined tags (visible in the bottom part of
Fig. 3). Although, in principle, this is against the notion of open coding, in a context like
the one encountered in this work, where the number of possible tags (i.e., cause behind the
commit) is extremely high, such a choice helps using consistent naming and does not intro-
duce substantial bias. In cases for which there was no agreement between the two evaluators
(44%of the classified commits), the commit was assigned to an additional evaluator to solve
the conflict. While such a percentage may look high, it is worth considering that our task
was not to assign commits to a list of predefined categories, but to define the names for such
categories during the tagging process. This naturally leads to a higher number of conflicts.
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Add credits for previously committed code   Add missed commit message   Add missed documentation   Add test for code implemented in last commit
Application logic fixes   Commit adds/deletes files missed in previous commit   Document the implementation logic of new code   Document the rationale 
for refactoring in previous commit   Fix compilation error   Fix checkstyle warnings for previous commit   Fix compatibility issue introduced in previous 
commit   Fixed broken references caused by rename package refactoring in previous commit   Forgot to propagate a change in a clone

Commit

Fig. 3 Web application used to run the manual tagging

Also, we considered as a conflict cases in which a different but “semantically equivalent”
tag was used by the two evaluators (e.g., remove unnecessary code vs remove unneeded
code). In this case, the third evaluator just made sure that consistent wording was used, and
selected the proper tag. In a minority of cases, the two evaluators applied completely dif-
ferent tags and the third evaluator could choose whether to reuse one of the two labels or,
instead, define a new tag by discussing and agreeing with the two original evaluators.

After having manually tagged all commits, we defined a taxonomy of quick remedy
commits through an open discussion involving all the authors (see Fig. 4). We qualitatively
answer our research question by discussing specific categories of commits likely related to
the code changes developers often forget to implement and try to immediately remedy. For
each category, we present interesting examples and discuss implications for researchers and
practitioners.

2.2 Results

We addressed our research question by labeling 500 commits identified as candidates to
being quick remedy commits (see Section 2.1). We identified 42 false positives (i.e., com-
mits ci+1 that were not related to the preceding ci commit) and 458 commits actually
classifiable as quick remedies.1 Note that not all these quick remedy commits are compen-
satory fixes for issues caused by omitted changes. They also include fixes for previously
introduced errors (e.g., the developer realizes that her previous commit introduced a bug) as
well as commits aimed at simply improving the previously committed change (e.g., improve
the name of a newly introduced variable). Finally, our taxonomy also features remedy com-
mits aimed at fixing simple mistakes performed during the ci commit process itself (e.g.,
the developer forgot to include a modified file in commit ci and thus commits it in ci+1).

Overall, we identified 69 types of quick remedy commits made by developers, 20 of
which relevant for changes omitted in the previous commit.

Figure 4 presents the results in the form of a hierarchical taxonomy composed by six
root categories: Bug Fix, Code Refactoring/Clean Up, Build Issue, Missing Code Change,
Documentation, and Reverted Commit. The more specific types of quick remedy commits
are represented either as intermediate nodes or leaves, and commits relevant for the fixing
of issues caused by omitted changes are marked with a sign. For each category, we next

1Our online appendix features an analysis of common keywords present in the commit message of these
commits in comparison to non-quick-remedy commits (Replication package 2021).
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Fig. 4 Taxonomy of quick remedy commits

describe representative examples and discuss implications for researchers (indicated with
the icon) and/or practitioners ( icon) derived from our findings.

2.2.1 Bug Fix (79)

This category groups pairs of commits (ci , ci+1) in which the remedy commit (i.e., ci+1)
fixes a bug introduced in ci . We identified two main subcategories: Fix Broken Test, in
which ci+1 has been triggered by test cases failing after the change implemented in ci , and
Fix Implementation Logic, in which the developer realized that she introduced a bug in ci

and quickly submits a patch.
The commits in the Fix Broken Test category targets the fixing of the production code

or the test code modified in ci that caused a break in the test suite. For example, in the
Denominator project of Netflix, a developer reported in the commit message: “Fix
tests broken by former commits” (Commit to denominator project on GitHub 2021).

While in the cases we analyzed the issue was spotted and fixed quickly by the developer,
there might be non-trivial cases in which only a subset of the test suite is executed for
regression testing (e.g., due to a limited testing budget) and a non-executed broken test is
not identified by the developer.

For researchers, this is an opportunity to study test breaking-changes and to develop
techniques able to alert the developer when a change she implemented might require a
double check of (part of) the test suite. For practitioners, continuous integration practices
can help in timely spotting these issues in most of the cases.

The fixes to the implementation logic are mostly classic bugs introduced but quickly
recognized and fixed by developers (e.g., errors in if conditions, wrong literal values, null
pointer exceptions, etc.). While these are not related to omitted changes, they are interesting
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since they represent bugs fixed by developers within five minutes (due to our selection
criteria for the commits).

This indicates that these bugs, while prevalent in our taxonomy (73 instances), are
likely quite simple to fix. Thus, researchers could investigate the possibility of creating
approaches able to learn from this data on how to avoid and/or automatically fix these bugs.
For example, recent work applied Neural Machine Translation (NMT) models to automat-
ically fix bugs (Tufano et al. 2018). However, given the complexity of this task and the
non-trivial bugs that these models have to fix, they are usually only able to automatically
fix a minority of the bugs provided as input (Tufano et al. 2018). Focusing on these simpler
but quite frequent bugs could represent a good application scenario for the NMT-based bug
fixing approach.

Some of the fixes in the Fix Implementation Logic category are related to omitted changes
(see Fig. 4). This includes the Forgot to Propagate Code Change category in which devel-
opers do not consistently propagate a change across all relevant code components. This is
typical of cases in which code clones are spread in the system and inconsistent changes are
implemented in ci (Krinke 2007). An example of this can be seen in the mathttT omP 2P

project. In a commit (Commit to TomP2P project on GitHub 2021b), the developers adapts
a builder class (PutBuilder) to earlier changes of the original class and they implement
new methods such as isPutConfirm and isPutReject. In a follow-up change (Com-
mit to TomP2P project on GitHub 2021c), they fix a conditional statement to check the
status of a Put object in a new branch. Then, only a few seconds later (Commit to tomp2p
project on GitHub 2021a), they update a conditional check with a similar structure but in
another class. For this last commit, the commit message says “belongs to previous commit”.
Another example can be seen in the mathttspacewalk project. In a commit (Commit to
spacewalk project on GitHub 2021a), they update a SQL script by adding a query for the
removal of unnecessary data. Then, in the quick subsequent commit (Commit to spacewalk
project on GitHub 2021b), they propagate the same schema changes into a database upgrade
file.

These examples highlight the relevance for practitioners of approaches to guide code
changes (see e.g., the seminal work in the area by Zimmermann et al. (2005)) as well as the
need for the research community to continue improving these techniques and, possibly,
making them easily pluggable into a continuous integration pipeline to foster developers’
adoption.

Interesting in this category is also the introduction of ambiguous references due to incom-
plete move package refactoring. We found this case in the apache/accumulo project,
where they migrate some classes to another package (Commit to Accumulo project on
GitHub 2021), but still keep the old ones.

In a follow-up commit (Commit to accumulo project on GitHub 2021), they realize that
they use, however, the wrong references to the migrated classes. Code clone detection
techniques (Roy et al. 2009) could help in these cases by promptly pointing the developer to
the presence of multiple copies of the same classes in the repository. The integration of these
approaches in a just-in-time fashion could help in identifying clones introduced in the last
commit, thus avoiding mistakes as the one in the discussed commit (Commit to Accumulo
project on GitHub 2021).

2.2.2 Code Refactoring/Clean up (39)

This category groups the pairs of commits (ci , ci+1) in which the remedy commit (i.e., ci+1)
implements a refactoring/cleanup of the code changed in ci (see Fig. 4). In these commits
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developers are either not satisfied of the code they implemented or are trying to address
warnings received by static analyzers.

Some other subcategories include the simple removal of code that was only temporary
implemented in ci (i.e., Remove Debugging Code) or that becomes unnecessary after ci’s
changes (i.e., Remove Unnecessary Code). Also, code formatting issues (e.g., mainly the
inconsistencies of indentations and line breaks introduced with code changes) were fixed
by developers in the remedy commit (ie Code Formatting). Additionally, in 2 cases, devel-
opers changed the code implemented in ci to improve its performance. An example can be
seen in project rzwitserloot/lombok (Commit to lombok project on GitHub 2021)
where a developer fine tunes a cache clearing mechanism implemented in a previous com-
mit by turning a variable volatile and moving the invocation for the cache clearing after a
conditional check.

However, the main purpose of those code refactoring/clean up tasks is to improve the
code understandability. Variable and method renaming refactoring (i.e., renaming a variable
or method to better reflect its functionality) is the most common way to make the code easier
to comprehend. Also popular are code transformations aimed at replacing literal values with
variables or splitting long functions through extract method refactoring. The latter allows
not only to foster comprehensibility, but also the reusability of small code snippets.

Other interesting cases are the ones in which developers modify the previously com-
mitted code to promote consistency with the coding style of the project (see e.g., Rename
Method for Consistency). For example, in a commit of the project liferay − portal
(Commit to liferay-portal project on GitHub 2021), developers opened an issue to “intro-
duce tests to document current behavior” (Liferay Portal Issue LPS-44476 2021). Interest-
ingly, in this process they very carefully review the used method names for better readability,
and in a commit they say:

[...] where specific method names are NOT accurate, go for a generic name to force
the developer to read the code to find what the method actually does.

The developers decided to change a method’s name from assertThatSearch-
ResultHasVersion to assertSearchResult. In the next commit (Commit to
liferay-portal project on GitHub 2021), to remain consistent, they replace the method
invocation of assertThatEverythingButSummaryIsEmpty (in another class) to
assertSearchResult. For this last commit, the commit message says “Match previous
commit even though this method name was accurate”.

The inconsistencies fixed with simple refactorings point to the possibility for the
software engineering research community to investigate techniques able to learn coding
conventions used in a given system and recommend fixes for possible violations. To the
best of our knowledge, the only attempt at date has been made by Allamanis et al. (2014)
with their NATURALIZE tool able to recommend meaningful identifier names and format-
ting guidelines. Other approaches focus only on rename refactoring suggestions (Lin et al.
2017, 2017). While these techniques cover most of the inconsistencies fixed in the Code
Refactoring/Clean up category (e.g., Rename Method for Consistency, Fix Improper Excep-
tion Name), others are left uncovered (e.g., Fields Ordering), indicating more potential for
additional research in the area of recommending coding convention fixes.

2.2.3 Build Issue (68)

This category is related to commits fixing build issues introduced as a result of the ci

changes. The main subcategory here is the fix of the compilation errors/warnings issued by
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the compiler due to the changes in ci (i.e., Fix Compilation Warning/Error). Unused import
statements are the main cause for the warnings we identified (see Fig. 4), and the trigger for
the remedy commits in this category. The unnecessary import statements are caused either
by import statements introduced in ci by the developer and then unused, or by previously
existing imports becoming unused due to the changes implemented in ci . These warnings
are usually raised by static analysis checks performed at commit time and, thus, are easy to
catch for developers.

In the Syntax Error category we found many cases of broken references due to rename
refactoring operations performed in ci . These rename refactorings are related to variables,
methods, classes, as well as packages. An example can be seen in the commit (Commit
to tower project on GitHub 2021) of the DroidPlanner/Tower project which fol-
lowed a renaming of multiple classes. Some other cases were violating the syntax of the
programming language due to introduced typos (e.g., missing statement separators).

Considering the good refactoring support provided by modern IDEs, the identification
of these broken references as a consequence of refactorings was quite surprising for us.

This may indicate either that these refactorings were performed manually, leading
to the introduction of broken references, or that bugs might affect refactoring engines, as
already found by previous work in the literature (Daniel et al. 2007). Additional investiga-
tion focused on these specific types of errors is needed to understand the reasons behind
them.

Other subcategories that also caused a build issue include the fix of introduced errors in
configuration files (i.e., Fix Error in Configuration File) or in a build script (i.e., Fix Build
Issue in Build Script). For example, in some remedy commits developers fixed broken tags
in configuration files or incorrect filepath references in build scripts.

2.2.4 Missing Code Change (165)

This category groups the pairs of commits (ci , ci+1) in which the remedy commit (i.e.,
ci+1) adds some missing code changes that should be introduced within previous commit
ci . We divided those commits into two subcategories: Commit Added/Deleted Files Missed
in Previous Commit and Finalizing Code Change.

The first subcategory is related to fixing a previous commit error. In this case, we are
not referring to the code changes implemented in ci , but to the commit process itself. This
issue is mainly caused by an incorrect selection of committed files by the developer. Also,
sometimes IDE cache issues can lead to a similar situation (e.g., the IDE cached the wrong
version of a committed file or lost track of some code changes during the git commit pro-
cess). While this subcategory is kind of unrelated to artifacts’ changes, it still provides hints
for interesting research directions. For example, approaches to automatically identify the
set of files to commit can be designed to reduce the possibility of missing files or to include
unrelated changes. This could also go further and recommend to the developer when to
commit in such a way to avoid tangled commits (Herzig and Zeller 2013) and committing
cohesive sets of code changes. To the best of our knowledge, the only step in this direc-
tion has been done by Bradley et al. (2018) with a context-aware developer assistant able
to identify the files to push towards the repository when the developer asks. However, more
automation can be envisioned, with approaches also able to (i) recommend when to com-
mit (as previously said, to e.g., avoid tangled commits), and (ii) summarize the changes in
a meaningful commit message (as attempted by Jiang et al. 2017).
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The second subcategory (i.e., Finalizing Code Change) refers to code changes forgotten
or left incomplete for other reasons in commit ci that are then finalized in ci+1. This includes
cases in which developers add new test cases needed to test the production code introduced
in the previous commit, or to complete an implementation task. For example, in a commit of
the openpnp project (Commit to openpnp project on GitHub 2021), the developer claimed
in the commit message that three new sub-features were introduced. However, the developer
forgot to actually implement one of those sub-features and added the missing implemen-
tation in the following commit. In another case from the geoserver project (Commit to
geoserver project on GitHub1 2021), the developer introduced a guard clause in commit ci

to check if a processed reference is null. Meanwhile, a debugging message was also added
saying that “the reference is null, reset it to default value”. However, the actual implemen-
tation for resetting this reference value was missing in commit ci , and implemented in the
remedy commit ci+1. While these issues are of different natures, some of them can be
spotted automatically through techniques comparing what is described in the commit mes-
sage and what has been actually implemented in the change. For example, in the previously
discussed example (Commit to openpnp project on GitHub 2021), a misalignment between
the number of sub-features actually implemented and claimed in the commit message could
be spotted and reported to the developer.

2.2.5 Reverted Commit (58)

This category groups remedy commits ci+1 in which the developers revert the code changes
they committed in the previous commit ci . The reasons pushing a developer to revert previ-
ous changes through a remedy commit include: (i) introduced bugs spotted after pushing the
changes in ci ; (ii) unintended changes, pushed in ci by mistake; (iii) failing test cases, pos-
sibly indicating a bug worth of investigation before applying the ci’s changes. In all these
cases, developers prefer to quickly bring the code back to its previous state to double check
the implemented changes and understand the causes for the (possible) introduced issues.

In many cases we were not able to understand the reasons behind the reverted changes
by manually inspecting the subject commits. These cases are just grouped in the root cate-
gory Reverted Commit. Also, we observed that sometimes the code changes were reverted
backward and forward within a few subsequent commits.

Our study is not the first one investigating reverted commits in software repositories.
Shimagaki et al. (2016) conducted a study to gain a better understanding of why commits
are reverted in large software systems. They found that 1%-5% of the commits from the
systems they studies are reverted and this number could be reduced by improving team
communication and developers’ awareness. However, in some cases, commits are reverted
due to external factors (e.g., requirement change by end-users, customers, or remote teams)
and, in this case, they are difficult to avoid. Yan et al. (2019) proposed a model to automati-
cally identify commits that will be reverted in the future. They also found that the developer
who performs the change is the most important predictive feature among the three they
studied (i.e., code change, developer, commit message). Besides the recommendations to
developers already provided by Shimagaki et al. (2016), the presence of reverted com-
mits in the history of software systems is also relevant for the mining software repositories
(MSR) research community. For example, it could be debated whether studies analyzing
the change-proneness of code components (i.e., how frequently code components are sub-
ject to changes in software repositories) — e.g., Bieman et al. (2003), Catolino and Ferrucci
(2019), and Aniche et al. (2018) — should take into account commits that are quickly
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reverted or, as currently done, should consider them. The same applies for works using the
history of changes implemented by developers as a proxy for the developers’ experience
— e.g., Rahman et al. (2017) and Tufano et al. (2017). In Section 3 we present an empiri-
cal study aimed at assessing the impact of considering (or not) reverted commits for typical
MSR data collection tasks.

2.2.6 Documentation (49)

Our last category groups remedy commits related to software documentation. These com-
mits impact a number of documentation artifacts that represent the main subcategories (see
Fig. 4), namely: release notes, licensing statements, code comments, commit messages, and
readme files.

The errors fixed in release notes, licenses and readme files are mostly minor. For exam-
ple, some commits just update the copyright year in a previously committed file. Also, the
fixes of commit messages rarely happen, and are mostly due to adding a missing commit
message for the code changes implemented in the previous commit. Also these cases are
interesting for the MSR community. For example, approaches using pairs 〈code changes
implemented in a commit cx , commit message of cx〉 to train models able to learn how to
generate commit notes (Jiang et al. 2017), could be negatively biased by commit messages
in a commit ci+1 referring to changes implemented in ci .

Other remedy commits are related to code comments. In some cases, developers docu-
mented the rationale for a code change implemented in the previous commit. This is the
case of commit (Commit to jitsi project on GitHub 2021a) performed in the jitsi project.
In a commit (Commit to jitsi project on GitHub 2021b) they fix a bug due to the wrong gen-
eration of a message where they mistakenly set a value of a parameter to an empty string
instead of a null value.

In the next commit (Commit to jitsi project on GitHub 2021a) they add a comment to
explain the otherwise non-trivial difference in the generated message.

Interesting is also the missed removal of Self Admitted Technical Debt (SATD) instances
(Potdar and Shihab 2014), meaning technical debt documented by developers in the code
with comments such as TODO : . . ., TOFIX : . . ., etc. We found cases in which developers
payed-back the technical debt instance, but forgot to remove the comment documenting the
SATD. This resulted in a code-comment inconsistency (Wen et al. 2019), that could possi-
bly confuse developers comprehending the associated code components. One representative
example of this scenario is the commit (Commit to tinkerpop project on GitHub 2021a) per-
formed in the apache/tinkerpop project where the developers “Forgot to remove todo
from previous commit”, as their commit message says. Indeed, in the remedy commit they
remove a single-line comment which says “todo: need a test to enforce this condition”, and
just right in the previous commit (Commit to tinkerpop project on GitHub 2021b) they had
implemented the missing test case, thus paying back the technical debt.

The cases discussed above for the Documentation category provide us with some
interesting lessons learned. First, identifying code components in which specific types of
comments (e.g., to document the rationale for a given implementation and/or to detail the
application logic) are needed, can be a promising research direction. Second, automatically
classify SATD as payed-back (or not) can help in identifying obsolete and misleading com-
ments in the code. We believe this is another interesting research direction for the software
engineering community.
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3 Study II: On the Impact of Reverted Commits onMSR Data Collection

3.1 Study Design

The goal of the study is to investigate the impact of reverted commits (one subcategory
of quick remedy commits) on data collection activities performed in the context of MSR
studies. The purpose is to show the level of noise introduced by reverted commits in
MSR studies collecting specific types of data. Our study addresses the following research
question:

RQ2: What is the impact of reverted commits on data collection tasks when mining
Java projects?

We instantiate RQ2 on two popular “data collection tasks”, namely the identification of
bug-fixing commits (Rodriguez-Perez et al. 2017b; Rodrı́guez-Pérez et al. 2018; Tufano
et al. 2018; Wang et al. 2020; Penta et al. 2020) and of refactoring operations (Penta et al.
2020; Peruma 2019; Mahmoudi et al. 2019; Lin et al. 2019; Fakhoury et al. 2019; AlOmar
et al. 2019) performed in the change history of software systems. We show the impact of
filtering-out (or not) reverted commits while mining this data (e.g., a refactoring operation
mined in the system’s history in commit ci may have been reverted in commit ci+1, thus
questioning its validity as a study data point). The results of our study help to increase the
awareness about noisy data points introduced by reverted commits, eventually leading to a
better handling of data processing in MSR studies.

3.1.1 Data Collection and Analysis

To answer RQ2, we sorted the 1,497 projects used in the context of RQ1 based on the
number of commits in their change history impacting at least one source code (i.e., Java)
file. We discarded seven projects having more than 100k of such commits since the data
extraction process for refactoring operations on these systems is too costly in terms of time.
In particular, we run the data collection process described in the following for two weeks,
processing in parallel up to ten systems at a time. At the end of these two weeks, the seven
systems we excluded were still far from being processed. We replaced these seven systems
with those ranked in positions 101-107, still selecting a total of 100 repositories as context
for RQ2. The list of considered projects is available in our replication package (Replication
package 2021).

From each of the 100 selected projects we extracted the following information:

• Bug-fixing commits. To identify bug-fixing commits in open-source repositories, we
mined lexical patterns in commits, as done in previous work (Fischer et al. 2003). In
particular, we used the pattern defined by Tufano et al. (2019), who reported a precision
of 97.6% (i.e., 97.6% of commits identified by this heuristic as bug-fixes are true posi-
tives): The commit message must match the patterns (“fix” or “solve”) and (“bug” or
“issue” or “problem” or “error”) to classify the related commit as a bug-fix.

• Refactoring operations. To mine the refactoring operations in the history of a sys-
tem at commit level we used the state-of-the-art tool RefactoringMiner (Tsantalis et al.
2018; Tsantalis et al. 2020). If at least one refactoring operation is identified in a given
commit, we mark this commit as a “refactoring commit” and store the refactoring-
related information (i.e., performed refactoring operations, code lines impacted by the
refactoring).
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• Reverted commits. Before detailing the procedure we adopted to identify reverted
commits, it is important to clarify that, in our study, we only focus on identifying com-
mits reverting Java code changes from the previous commit. This means that, as for our
previous study, we are still in a scenario in which we are looking at pairs of commits
ci and ci+1, with ci being the reverted commit and ci+1 the reverting one. We imple-
mented an approach similar to the one by Yan et al. (2019). First, we identify reverting
commits by scanning commit messages, looking for the pattern reverts commit ci . Sec-
ond, to identify reverting commits ci+1 not explicitly labeled as such in their commit
note, we compare the code they change with the one changed in the previous commit
ci . To do this, we stored the changes performed in each commit in a vector having the
format: 〈AddedFile, DeletedFile, ModifiedFile, AddedCode, DeletedCode〉. We refer to
this 5-element vector as a commit change vector V , in which AddedFile indicates the
added file paths, DeletedFile the deleted file paths, ModifiedFile the modified file paths,
and AddedCode and DeletedCode refer to the text in the inserted lines and removed
lines, respectively, with each line added together with a prefix of the changed file path.
Given the commits ci and ci+1, we mark ci as a reverted commit and ci+1 as a reverting
commit if they satisfy all of the following constraints:

– addedFilei+1 = deletedFilei ,
– deletedFilei+1 = addedFilei ,
– modifiedFilei+1 = modifiedFilei ,
– addedCodei+1 = deletedCodei ,
– deletedCodei+1 = addedCodei .

• Partially reverted commits. Similarly to the identification of completely reverted
commits, given two commits ci and ci+1, we mark ci as a partially reverted commit and
ci+1 as a partially reverting commit if they satisfy all of the following constraints:

– addedFilei+1 ⊂ deletedFilei ,
– deletedFilei+1 ⊂ addedFilei ,
– modifiedFilei+1 ⊂ modifiedFilei

– addedCodei+1 ⊂ deletedCodei ,
– deletedCodei+1 ⊂ addedCodei .

Once extracted the above described data from the change history of the 100 selected
projects, we compute the impact of considering/not-considering completely and partially
reverted commits when collecting bug-fixes and refactoring operations from the change
history of software projects. In particular, given a task T ∈ {ref actorings, bugf ixes},
we compute for each project the average number of noisy data points introduced by a single
reverted commit in the following way:

|DataPointsTall
− DataPointsTcleaned

|
|reverted|

where DataPointsTall
represents the total number of data points collected for the task T

(i.e., in our case, number of bug-fixes or number of refactorings); DataPointsTcleaned
is the

number of data points collected for the same task T when removing reverted commits; and
|reverted| is the total number of reverted commits identified in the repository. To make
an example, in the case of T = mining of bug-fixing commits, a value for this metric of
0.5 indicates that every reverted commit introduces in the collected data, on average, 0.5
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noisy bug-fixing commits. We compute the same metric when considering both reverted
and partially reverted commits:

|DataPointsTall
− DataPointsTcleaned′ |

|reverted| + |partiallyreverted|
In this case, the only difference is that DataPointsTcleaned′ represents the number of data

points collected for the task T when removing both reverted and partially reverted commits.

3.2 Results

We start by commenting on the number of fully and partially reverted commits we identified
in the 100 systems. Overall, we found 5,083 reverted (avg=51, median=30, Q1=15, Q3=60)
and 958 partially reverted (avg=10, median=7, Q1=3, Q3=13) commits. While the number
of reverted commits is non-negligible, we only found a limited number of partially reverted
commits, with a maximum of 44 observed for apache/hbase. Also, fully reverted com-
mits are found in all repositories, while for the partially reverted ones we did not find any
instance in six of the analyzed projects. Note that the number of reverted commits found in
our paper is substantially lower as compared to the data reported in the work by Shimagaki
et al. (2016) and Yan et al. (2019), in which up to 5% of commits in a repo were found to be
reverted. However, it is worth noting that in our study, differently from previous work, we
only considered reverting commits ci+1 that revert changes in ci (e.g., we do not consider
ci+1 as reverting commit if it reverts changes performed in ci−1).

Figure 5 shows the results achieved for the data collection task related to bug-fixing
commits. The 100 projects are sorted from the left to the right in ascending order by the
absolute number of completely reverted commits. For example, the first project on the left is
hibernate/hibernate-search with only one reverted commit in its change history,
while the last is apache/hbase with 617. The stacked bar chart shows the number of non-
impacted bug-fixing commits (i.e., commits that are not fully nor partially reverted)—blue

Fig. 5 Impact of reverted commits on bug-fixing commits
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bar, of fully reverted bug-fixing commits (orange bar) and of partially reverted bug-fixing
commits (green bar), using the scale on the left y-axis. The partially reverted commits are
hardly visible in the chart due to their low number.

The line chart in Fig. 5 shows instead the average impact of fully reverted commits
(cyan line) and of both fully and partially reverted commits (pink line) using the formulas
presented at the end of Section 3.1. In this case, the reference y-axis is the one on the right.
Since the number of partially reverted commits is very low, we limit our discussion to the
impact of fully reverted commits on the collected bug-fixes. However, as it can be seen in
the line chart in Fig. 5, the trend of the two lines is very similar.

Ignoring reverted commits from the data collection has an impact, in terms of collected
data points, on 57 out of the 100 analyzed systems. The average impact goes from a min-
imum of 0.02 (i.e., a reverted commit results, on average, in 0.017 “wrong” bug fixes
collected) to a maximum of 0.24, with an average of 0.07 and a median of 0.06. The system
resulting in the highest number of noisy data points for this task is apache/tomcat, in
which the 147 reverted commits cause the collection of 27 reverted bug-fixes (on average,
each reverted commit contributes 0.18 noisy data points).

We discuss a few examples of commits that were identified as a bug-fixing commit but
had been reverted in the subsequent commit.

One commit of the apache/hadoop project was marked bug-fixing https://github.
com/apache/hadoop/commit/cb64e8eb192 as the log message said: “Fix synchronization
issues . . . ” The changes, however, were reverted by the next commit with the message “
Revert “Fix synchronization issues . . . ” because forgot to add JIRA Number.” In this case,
the reverted commit is indeed a bug-fixing commit, but the reverting commit should not be
considered a valid bug-fix even though it contains the expression “Fix issues.” In the worst
case, a mining study might believe that there are already two bug-fixes in the change history
after the revert. While in reality, the code does not implement the bug-fix after the revert.

In another commit of the apache/tomcat project https://github.com/apache/tomcat/
commit/f711963768, the author claimed in the commit message that a reported issue had
been fixed. However, the fix was reverted in the subsequent commit as they noticed that “it
fixes the reported issue but introduces other issues.” Again, the fix was reverted, and the
reverting commit should not be counted as a bug-fix.

Another interesting example can be seen in https://github.com/aosp-mirror/platform
packages apps settings/commit/d3dcce029d. The bug-fix was reverted because the issue
had been fixed before by someone else: “Revert [. . . ] Bug: 27700406” Framework bug was
fixed by ag/900274, so this is no longer needed.”

It is important to highlight that, while there is an impact of the reverted commits on the
collected bug-fixes (and, as such, excluding them from the data analysis might be preferred),
such an impact is overall limited. However, it is also worth reminding that in our study
design we favored the precision in the identification of reverted commits rather than recall.
Thus, the number of reverted commits we identify is certainly an underestimation of the
real ones. Also, in case these reverted bug-fixes are used to compute additional data (e.g.,
are provided as input to an SZZ algorithm as done in previous works (Penta et al. 2020)),
such an error can further propagate and results in additional noisy data points. Basically, a
cleaning of reverted commits when collecting bug-fixes is usually desirable, even though
for specific study designs (e.g., collection of bug-fixing commits for qualitative manual
analysis) it might not be needed.

Figure 6 shows the same data discussed before for the refactoring-related task, with the
only difference that, in this case, the reverted and partially reverted commits are “refactoring
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Fig. 6 Impact of reverted commits on refactoring commits

commits”, meaning commits featuring at least one refactoring operation. Also in this case
we focus our discussion on the completely reverted commits.

Considering reverted commits during the data collection has an impact on 97 out of
the 100 systems, with an average impact for a single reverted commit of 0.27 noisy data
points (i.e., reverted refactoring commits), median=0.26. The average impact goes from a
minimum of 0.08 to a maximum of 1.00. The latter is a sort of outlier, since it refers to
the hibernate/hibernate-search that, as said before, does only have one reverted
commit that is indeed a refactoring commit.

In this case, the system that would be mostly affected by the presence of noisy refactoring
commits collected when not handling reverted commits is apache/hbase with a total of
236 reverted refactoring commits that would be wrongly considered (result of the overall
617 reverted commits in this system).

An example of refactoring-related commits that have been reverted is the one com-
mit performed in the metasfresh/metasfresh project https://github.com/metasfresh/
metasfresh/commit/7875c81632. The developer performed some refactoring operations
(e.g., rename parameter, change return type, rename method), but the commit message
claimed that the refactoring was only partially. The subsequent commit reverted this par-
tial refactoring. Thus, specific types of empirical studies mining refactoring operations may
consider ignoring the refactorings detected in the first commit, since the refactorings were
implemented and quickly reverted by the developer.

In another commit performed in the wordpress − mobile/WordPress − Android
project,2 one of the private inner classes has been moved to a public outer class through a
move class refactoring. However, the author said that this refactoring was only for testing
purpose and reverted the change in the subsequent commit.

2https://github.com/wordpress-mobile/WordPress-Android/commit/c363f2ff2d
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As compared to the collection of bug-fix commits, reverted commits seem to have
a higher impact when mining refactoring operations, with an overall of 1,447 reverted
(noisy) refactoring commits that are identified across the 100 analyzed systems. Consider-
ing our conservative approach to identify reverted commits, we believe its cleaning is highly
recommended when studying refactoring operations over the history of software systems.

3.3 Summing Up

Both the quantitative and qualitative results of this study point to an opportunity to obtain
cleaner data by considering reverted commits: Reverted commits are noise in the recorded
history of a system, and while it looks like a negligible phenomenon, we argue that the
cleaner the data the better the analyses. In the spirit of the work by Kawrykow and Robil-
lard (2011) on cleaning out non-essential changes from any mining software repositories
research, detecting and removing reverted commits could thus also become a part of the
cleaning preprocessing before starting an actual analysis.

4 Threats to Validity

Threats to construct validity concern the relation between the theory and the observation,
and in this work are mainly due to (Study I) the manual analysis we performed to iden-
tify the reasons behind the quick remedy changes performed by developers, and (Study
II) the heuristics used to identify bug-fixing commits and reverted commits as well as to
imprecisions introduced by the tool used to mine refactoring operations.

To mitigate subjectivity bias in the manual analysis (Study I), every commit was assigned
to two authors who manually analyzed it independently. Then, in the case of disagreement,
a third author was assigned to the commit to solve the conflict. In addition to that, we
used lexical patterns to identify candidate remedy commits. While these lexical patterns can
return false positives, these have been excluded in our study through manual validation, and
thus do not influence our findings.

Concerning Study II, the identification of bug-fixing commits was based on a heuristic
defined and validated in previous work (Tufano et al. 2019). As for the reverted commits,
we combined two types of heuristics based on the analysis of the commit message and
of the code changes. Also, we limited the identification of reverted commits only to pairs
of subsequent commits to increase the precision in our analysis. While this likely reduces
the number of reverted commits we can identify (i.e., recall), considering the analysis we
performed (i.e., assessing the average “cost” in terms of noisy data of a single reverted
commit) our findings should not be substantially affected. Finally, refactoring operations
have been mined by relying on the state-of-the-art tool RefactoringMiner (Tsantalis et al.
2020).

Threats to internal validity concern external factors we did not consider that could affect
the variables and the relations being investigated. One aspect could be related to the selec-
tion of projects being considered. As explained by Kalliamvakou et al. (2014) mining
GitHub can be risky because projects may contain very few commits. To mitigate this threat,
we applied strict criteria (i.e., more than 500 commits, more than ten stars) when select-
ing the context of our study. Also, we manually looked into the set of retrieved projects
to exclude repositories that do not represent real software systems (e.g., tutorials, collec-
tions of code examples) and forked projects. Also, in Study I all considered data points (i.e.,
commits) have been manually checked, strengthening its internal validity.
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Threats to external validity concern the generalizability of our findings. Our analysis in
Study I is limited to a specific set of 500 commits we randomly selected as the output of
a keyword-based mechanism used for the pre-selection of commits likely to be “remedy”
commits. Because of this procedure, our taxonomy inevitably omits types of remedy com-
mits we did not analyze and/or documented in diverse data sources. Also, we set a 5-minute
threshold to identify the quick remedy commits subject of our study. While our choice is
justified by the temporal distribution plotted in Fig. 2, changing this threshold value may
result in different findings. This investigation is part of our future research agenda.

As for Study II, the reported findings are related to a set of 100 Java open source projects,
which do not allow us to generalize our results to projects written in other languages which
require additional investigations.

5 RelatedWork

There is a vast literature of empirical studies investigating developers’ commits for various
purposes. Many studies tackle research questions related to when, where, or why developers
change source code. However, there has been little research on quick fixes, or consecutive
changes performed by software developers, as well as on the impact of specific types of
commits in the data collection of MSR studies. Here we present an overview of the related
work close to the topic of this article.

5.1 Reasons for Changes

Mockus and Votta (2000) studied a large legacy telecommunication system to identify rea-
sons for software changes. Using an automatic classification algorithm, they discovered
three primary reasons for changes according to maintenance activities: adding new function-
ality (adaptive), repairing faults (corrective), and restructuring the code to accommodate
future changes (perfective). They noticed that several changes fall under the fourth cate-
gory of inspection rework changes, i.e., changes to implement the recommendations of code
inspections. They also found a strong relationship between the type and size of a change
and the difficulty of a change.

Hattori and Lanza (2008) conducted an empirical study on nine large open source
systems. They defined the size of a commit based on the number of files. They classi-
fied commits according to the comments information into development or maintenance
(reengineering, corrective engineering, and management).

Hindle et al. (2008) conducted a study on large commits, created a taxonomy of their
purpose. They found that large commits are more focused on perfective maintenance, while
small commits are more related to corrective maintenance.

5.2 Effects of a Change on Quality

Small Changes Purushothaman and Perry (2005) investigated small source code changes
(i.e., one-line changes) during the development process. An interesting finding of their work
is that there is less than a four percent probability that a one-line change introduces a fault
in the code.

Large Changes Śliwerski et al. (2005) studied fix-inducing changes, i.e., changes that lead
to problems indicated by fixes. In particular, they investigated the day of the week and the
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size of commits in Eclipse and Mozilla. They found that the commits performed on Friday
and large commits have higher chances of introducing bugs.

Social Characteristics Eyolfson et al. (2011) investigated the bug-fix time as the time from
the earliest commit that introduced the bug to the bug-fixing commit. Their findings suggest
that the time and date of a code update may affect the quality of the code.

In an earlier study, Claes et al. (2018) also studied developers’ working hours by inves-
tigating the timestamps of commit activities. They found that developers mainly work in
regular office hours, and they did not find support that project maturation would decrease
irregular working hours.

Bird et al. (2011) mined commits in Windows Vista and Windows 7 to investigate the
relationship between code ownership and software quality. They found that high levels of
ownership, specifically high values for the proportion of ownership for the top owners,
or high values for major, and low values of minor contributors, are associated with fewer
defects.

Rahman and Devanbu (2011) found that implicated code is more closely related to the
contribution of a single developer. Their findings also indicate that an author’s specialized
experience in the target file is more important than general experience.

Gonzalez-Barahona et al. (2011) investigated in FLOSS projects from the Mozilla com-
munity whether contributors fixing a bug are the same introducing and seeding them in
the first place. Their results show that in 80% of the cases, the bug-fixing activity involves
source code modified by at most two developers. Hence, in most of the cases, the bug fixing
process is not carried out by the same developers.

Supplementary Patches Park et al. (2012) studied bugs whose initial patches were later
considered incomplete and to which programmers applied supplementary patches. They
examined three open source projects: Eclipse JDT core, Eclipse SWT, and Mozilla. They
found that a significant portion of bugs fall in this category while their causes are often
diverse, e.g., missed port changes, incorrect handling of conditional statements, or incom-
plete refactoring. In their follow-up work (Park et al. 2014; 2017) they further investigated
supplementary patches, and the results showed that only 7% to 17% of supplementary
patches had content similar to their initial patches, which implies that a separate code clone
analysis could not predict the supplementary patch location.

An et al. (2014) found that supplementary bug fixes accounted for 10.3% to 26.9% of
total bug reports. Also, in the subject systems, a high percentage of the supplementary fixes
(i.e., from 21.6% to 33.8%) had been re-opened.

Consecutive Changes Dai et al. (2014) investigated the relationship between consecutive
changes and software quality. They studied two concepts of consecutive changes: chain of
consecutive bug-fixing file versions, and chain of consecutive file versions where each pair
of adjacent versions has different authors. They found that those consecutive changes have
a negative impact on the later file versions in the short term, especially when the length of
the change chain is four or five.

Inconsistent Changes Bettenburg et al. (2012) conducted an empirical study on inconsis-
tent changes to code clones in two large open source software systems. They observed that
the number of defects caused by inconsistent changes to code clones was substantially lower
at the release level, compared to the revision level. Their findings suggest that developers
can effectively manage and control the evolution of cloned code at the release level.
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Incorrect Changes Yin et al. (2011) presented a comprehensive characteristic study on
incorrect bug-fixes from large operating system code bases, including Linux, OpenSolaris,
and FreeBSD. They found that at least 14.8%-24.4% of sampled fixes for post-release bugs
in these large operating systems were incorrect.

Changes and Refactoring Palomba et al. (2017) conducted a quantitative investigation of
the relationship between different types of code changes and different refactoring types.
They found that developers tend to apply a higher number of refactoring operations when
they are fixing bugs.

Bavota et al. (2012) presented a study aimed at investigating to what extent refactoring
activities induce faults. They showed that refactorings involving hierarchies (e.g., pull down
method) induce faults very frequently. Conversely, other kinds of refactorings are likely to
be harmless in practice.

5.3 Changes and Time

Rodriguez-Perez et al. (2017a) conducted two case studies and studied the Time To Notify
(TNN) metric which describes how much time it takes for a bug to be notified/reported since
the bug was introduced into the source code. They examined how this metric is related to
software maintenance and evolution. Interestingly, they found relatively high mean values
of TTN in the projects: 312 and 431 days.

Kim and Whitehead (2006) studied the bug-fix time of files in ArgoUML and Post-
greSQL. Their statistics showed that fixing 50% of the bugs requires 100 to 300 days, while
the median bug-fix time is about 200 days.

5.4 Change Patterns

Pan et al. (2009) presented an automatic approach in which software history data is mined
to find patterns in bug fix changes and automatically categorize bugs. They defined bug fix
patterns (e.g., method call with different actual parameter values) which covered 45-63% of
bug fixes in seven open source projects.

Zhao et al. (2017) conducted an empirical study to investigate the characteristics of
change types in bug fixing code. They proposed a change classification schema and devel-
oped an automatic classification tool to categorize changes into five change types. They
found that interface-related code changes are the most frequent bug-fixing changes.

In a related research thread, Martinez and Monperrus (2019) presented Coming, a tool to
mine change pattern instances from git commits.

Change patterns have also been exploited recently to train neural networks in order to
automatically reproduce code changes implemented by developers in pull requests of open
source projects (Tufano et al. 2019) or to learn how to automatically fix bugs (Tufano et al.
2018).

5.5 Bias and Noise in Mining Change Histories

Many approaches and studies depend on the quality of the dataset produced by mining
change histories. Discussions about the bias in data collected by mining repositories have
gained more attention recently. As Bird et al. (2009) say in a study on bias in bug-fix
datasets: “bias is a critical problem that threatens both the effectiveness of processes that
rely on biased datasets to build prediction models and the generalizability of hypotheses
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tested on biased data”. Here, we overview the potential causes and impact of bias and noise
in mining studies.

Impact of Non-Essential Changes Kawrykow and Robillard (2011) observed that software
changes are often accompanied by non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of a rename refactoring. They studied code
changes in over 24,000 changesets of seven open-source systems and observed non-essential
changes in their history. They found that up to 15.5% of a system’s method updates were
due to non-essential differences among interesting observations.

The authors also investigated the impact of non-essential changes on change-based anal-
yses in their same research work (Kawrykow and Robillard 2011). They implement a
method-pair association rule mining analysis similar to the approach of Zimmermann et al.
(2004). This approach, given a set of changes, suggests and predicts likely further changes.
They found that removing non-essential method updates improved the precision of the
recommendations by 10.5% and decreased their recall by 4.2%.

Impact of Tangled Changes Herzig and Zeller (2013) defined a tangle change as a single
commit which consists of separate changes (e.g., fixing a bug and adding a new feature).
They found that up to 15% of all bug fixes include tangled changes.

Later, they also showed that tangled changes could significantly impact the accuracy of
defect prediction models assessed in empirical studies (Herzig et al. 2016).

Impact of Untracked Changes Hora et al. (2018) claimed that changes affecting code enti-
ties’ names (untracked changes) present a potential threat to MSR studies. For example,
a method rename could be misinterpreted as the deletion and the addition of a method,
thus, splitting its history. Based on an empirical analysis of 15 Java systems, they found
that between 10 and 21% of the method level changes are untracked, hence, should be
systematically considered by MSR studies.

Bias in Bug Localization and Prediction Kochhar et al. studied biases in bug localization
(Kochhar et al. 2014). They identified potential causes that can impact the validity of the
results reported in studies. One of the main reasons is that files modified in commits that fix
the bugs might not contain the bug. Instead, files are often changed because of refactorings
or modifications to program comments.

Kim et al. (2011) measured the impact of noise on defect prediction models built using
historical defect data obtained by mining software repositories. They consider false posi-
tives and false negatives as noise in such dataset. They found that, for large defect datasets,
noises alone do not lead to substantial performance differences. However, their prediction
performance decreased significantly when the dataset contained 20%-35% of both FP and
FN noises.

Rahman et al. (2013) assessed whether the size of the dataset or bias affects the perfor-
mance of defect prediction approaches. Similar to the findings of Kim et al. (2011), they
conclude that size matters at least as much as bias.

Noise in History Slicing Li et al. (2016) presented a semantic history slicing approach
to extract changes related to a particular functionality. As they say, state-of-the-art tech-
niques tend to over-approximate the inferred changes, and their slice histories may contain
irrelevant changes. Their approach implements a method to untangle unrelated changes
introduced in a single commit.
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Threats in Aggregating Software Repository Data Robillard et al. (2018) investigated
potential threats to validity associated with metrics that summarize software repository data.
They conducted a case study in which they retrieved and analyzed every file considered aban-
doned to investigate the files’ properties, including size, file type, and amount of comments.
As a result, they identified eight major threats that can generalize to software process met-
rics derived from repository data. These threats are fragility, file content, file role, comment,
contributor involvement, quantization, architectural sensitivity, and exceptional action.

5.6 Summing Up

As discussed above, previous work investigated code changes from several different points
of view. However, to the best of our knowledge, our study is the first to investigate the impact
of reverted commits on data collected by mining the versioning system (and, in particular,
big-fixing commits and refactoring operations).

6 Conclusion

We presented two empirical studies related to quick remedy commits. In the first, we quali-
tatively investigate quick remedy commits performed by developers in GitHub projects. We
defined quick remedy commits as commits performed by developers to remedy changes omit-
ted or errors introduced in a previous commit, performed just a few minutes before. This study
(Study I) is based on the manual analysis of 500 commits, that we classified by looking at
the objective of the remedy commit. The output of this study is represented by the taxonomy
depicted in Fig. 4. We used several qualitative findings to distill lessons learned resulting in
actionable items for both researchers and practitioners, which are summarized in Fig. 7.

Then, we investigated the impact of a specific type of quick remedy commits, namely
reverted commits, on the data extracted for MSR studies. In particular, we focused on two
data collection tasks performed in many previous works: (i) the identification of bug-fixing
commits and (ii) the mining of refactoring operations over the change history of a system.
Our analysis disclosed the amount of potential noise brought by reverted commits for these
two data collection tasks.

6.1 FutureWork

Our future work will target two directions. First, we will work on some of the research
directions discussed in the results section of Study I, and summarized in the following:

Automatic bug fixing Developing approaches able to learn how to automatically fix the
“simple” bugs that, as shown in our study, are fixed by developers within a few minutes
from their introduction. We believe that approaches based on deep learning (see e.g., Tufano
et al. 2018) can be particularly performant in this specific context.

Automatic identification of omitted changes Integrating approaches to identify locations
for missed code changes in a continuous integration pipeline, to alert developers when
changes they are committing are likely to be incomplete.

Learning coding conventions Investigating novel techniques to learn coding conventions,
enlarging the set of conventions that are currently supported by state-of-the-art techniques
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Researchers

Practitioners

breaking-changes. 

Techniques that can guide software changes need to be improved and possibly pluggable into a continuous integration pipeline to foster 

The integration of code clone detection techniques in a just-in-time fashion could help in spotting some potential issues caused by previous 
introduced clones (e.g, uncleaned duplicate classes after classes/package migration).

Studies should be run to understand the reasons why sometimes broken references are still introduced as a consequence of refactoring 
considering the good refactoring support provided by modern IDEs 

Continuous integration practices can help in timely spotting test breaking issues in most cases.

Approaches proposed by researchers to guide code changes (e.g., the seminal work by Zimmermann et al. [31]) are highly relevant to daily 
development practices for the purpose of propagating changes into related software artifacts and avoiding incomplete changes.

Many reverted commits could have been avoided with better team communication and change awareness [46].

Leveraging the good support provided by modern IDEs may help developers to prevent broken references from manual refactoring. 

changes. This could also go further and recommend to the developer when to commit in such a way to avoid tangled commits and committing 
cohesive sets of code changes. 

Developing techniques to detect misalignments between what described in the commit message and what has been actually implemented in the 
code change can help developers to avoid incomplete code changes or unmatched code implementation.

comments (e.g., to document the rationale for a given implementation and/or to detail the application logic) are needed. Second, automatically 
classify SATD as payed-back (or not) can help in identifying obsolete and misleading comments in the code.

Approaches using pairs code changes implemented in a commit cx, commit message of cx  to train models able to learn how to generate commit 
notes could be negatively biased by commit messages in a commit ci+1 referring to changes implemented in ci .

The presence of reverted commits in the history of software systems is relevant for the mining software repositories (MSR) research community. 

Fig. 7 Summary implications for researchers and practitioners

(Allamanis et al. 2014). Once learned, the coding conventions can be automatically checked
on the code to commit, raising a warning in case violations are detected.

Automatic software documentation Developing techniques able to (i) identify code com-
ponents in which specific types of comments (e.g., rationale for implementation choices)
are needed; and (ii) automatically classify SATD as payed-back (or not).

Second, we will analyze the impact of other types of quick remedy commits on the out-
come of MSR studies. For example, the results of works mining logical coupling between
components (i.e., how often specific files co-change), can be impacted by considering a
quick remedy commit ci+1 as part of its previous commit ci , since they basically represent
the same implementation activity.
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