
The Journal of Systems & Software 202 (2023) 111729

G
G
a

b

p
b
e
b
d
n
s
c
2
2
2
F

t

(
r
m

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A comprehensive evaluation of SZZ Variants through a
developer-informed oracle✩

iovanni Rosa a,∗, Luca Pascarella b, Simone Scalabrino a, Rosalia Tufano b,
abriele Bavota b, Michele Lanza b, Rocco Oliveto a

STAKE Lab, University of Molise, Italy
Software Institute, USI Università della Svizzera Italiana, Switzerland

a r t i c l e i n f o

Article history:
Received 28 June 2022
Received in revised form 11 January 2023
Accepted 24 April 2023
Available online 28 April 2023

Keywords:
SZZ
Defect prediction
Empirical study

a b s t r a c t

Automatically linking bug-fixing changes to bug-inducing ones (BICs) is one of the key data-extraction
steps behind several empirical studies in software engineering. The SZZ algorithm is the de facto
standard to achieve this goal, with several improvements proposed over time. Evaluating the per-
formance of SZZ implementations is, however, far from trivial. In previous works, researchers (i)
manually assessed whether the BICs identified by the SZZ implementation were correct or not, or
(ii) defined oracles in which they manually determined BICs from bug-fixing commits. However,
ideally, the original developers should be involved in defining a labeled dataset to evaluate SZZ
implementations. We propose a methodology to define a ‘‘developer-informed’’ oracle for evaluating
SZZ implementations, without requiring a manual inspection from the original developers. We use
Natural Language Processing (NLP) to identify bug-fixing commits in which developers explicitly
reference the commit(s) that introduced the fixed bug. We use the built oracle to extensively evaluate
existing SZZ variants defined in the literature. We also introduce and evaluate two new variants aimed
at addressing two weaknesses we observed in state-of-the-art implementations (i.e., processing added
lines and handling of revert commits).

© 2023 Elsevier Inc. All rights reserved.
b
v
o

1. Introduction

The revision history of long-lived software projects features
lenty of corrective changes, i.e., modifications aimed at fixing
ugs. For each corrective change – or bug-fixing commit – it
xists a non-empty set of commits that introduced the addressed
ug. While the performed bug-fixing activity is often explicitly
ocumented in the commit message, the same obviously does
ot happen for the commits introducing bugs. Therefore, while
uch a linking can be useful to conduct empirical studies on the
haracteristics of changes that introduce bugs (Bavota and Russo,
015; Tufano et al., 2017; Aman et al., 2019; Chen and Jiang,
019) or to validate defect prediction techniques (Hata et al.,
012; Tan et al., 2015; Pascarella et al., 2019; Yan et al., 2020;
an et al., 2019), it is challenging to establish.
In 2005, Śliwerski et al. (2005) proposed the SZZ algorithm

o address such a problem. Given a bug-fixing commit CBF , the

✩ Editor: Dr. Earl Barr.
∗ Corresponding author.

E-mail addresses: giovanni.rosa@unimol.it (G. Rosa), luca.pascarella@usi.ch
L. Pascarella), simone.scalabrino@unimol.it (S. Scalabrino),
osalia.tufano@usi.ch (R. Tufano), gabriele.bavota@usi.ch (G. Bavota),
ichele.lanza@usi.ch (M. Lanza), rocco.oliveto@unimol.it (R. Oliveto).
https://doi.org/10.1016/j.jss.2023.111729
0164-1212/© 2023 Elsevier Inc. All rights reserved.
SZZ algorithm identifies a set of commits that likely introduced
the error fixed in CBF . These commits are named ‘‘bug-inducing’’
commits. In a nutshell, SZZ identifies the last change (commit)
to each source code line changed in CBF (i.e., changed to fix the
ug). This is done by relying on the annotation/blame feature of
ersioning systems. The identified commits are considered as the
nes that later on triggered the bug-fixing commit CBF .
Since the original work was published, several researchers

have proposed variants of the original algorithm, with the goal
of improving its accuracy (Kim et al., 2006; Williams and Spacco,
2008b; Davies et al., 2014; Da Costa et al., 2016; Neto et al.,
2018, 2019). For example, a limitation of the original SZZ al-
gorithm is that it considers changes to code comments and
whitespaces like any other change. Therefore, if a comment is
modified in CBF , the latest change to such a comment is mis-
takenly considered as a BIC. Therefore, Kim et al. (2006) intro-
duced a variant which ignores such changes. Similarly, other
variants ignore non-executable statements (e.g., import state-
ments) (Williams and Spacco, 2008b), meta-changes (e.g., merge
commits) (Da Costa et al., 2016), and refactoring operations (e.g.,
variable renaming) (Neto et al., 2018, 2019).

Despite the growth of the number of SZZ variants intro-
duced to achieve higher and higher levels of accuracy, Da Costa
et al. (2016) highlighted that the performed accuracy evaluations

https://doi.org/10.1016/j.jss.2023.111729
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111729&domain=pdf
mailto:giovanni.rosa@unimol.it
mailto:luca.pascarella@usi.ch
mailto:simone.scalabrino@unimol.it
mailto:rosalia.tufano@usi.ch
mailto:gabriele.bavota@usi.ch
mailto:michele.lanza@usi.ch
mailto:rocco.oliveto@unimol.it
https://doi.org/10.1016/j.jss.2023.111729

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

m
p
W
t
t
a
b
g
e
p
d
t
m
e

i
o
o
a
p
k
d
t
s
b
c
t
b
n
t
o
i

d
t
2
o
9
(
4
t
a
d
p
d
S
r
p
s
c
t
S

t
e
b
p
r
f
t
o
r
i
c
w

u

r

w
f

2

(
T
s

2

d
a
S
t
T
r
b

ostly rely on manual analysis performed on the output of the
roposed SZZ variants (Śliwerski et al., 2005; Kim et al., 2006;
illiams and Spacco, 2008b; Davies et al., 2014). Researchers

hemselves usually perform such a validation, despite not being
he original developers of the studied systems and, thus, not
lways having the knowledge needed to correctly identify the
ug introducing commit. Other researchers, instead, defined a
round truth to evaluate the performance of their variants (Neto
t al., 2019). Also in these cases, however, researchers com-
leted such a task. Therefore, there is a clear need for oracles
efined by exploiting the knowledge of people who worked on
he system (Da Costa et al., 2016). Still, directly involving them to
anually evaluate a large sample of BICs is impractical (Da Costa
t al., 2016).
In this paper, we extend our previous paper (Rosa et al., 2021)

n which we addressed this problem by introducing a method-
logy to build a ‘‘developer-informed’’ oracle for the evaluation
f SZZ variants. To explain the core idea, let us take as an ex-
mple commit 31063db from the mrc0mmand/systemd GitHub
roject, accompanied by a commit message saying: ‘‘sd-device:
eep escaped strings in DEVLINK= property. This fixes a bug intro-
uced by 87a4d41. Fixes systemd#17772’’. The developer fixing
he bug is explicitly documenting the commit that introduced
uch a bug. Based on this observation, we defined strict NLP-
ased heuristics to automatically detect messages of bug-fixing
ommits in which developers explicitly reference the commit(s)
hat introduced the fixed bug. We call such commits ‘‘referenced
ug-fixing commits’’. It is worth noting that such a process is
ot meant to be exhaustive, i.e., we do not aim at finding all
he referenced bug-fixing commits. Instead, we mainly aim at
btaining a high-quality dataset of commits that are very likely
nduced a bug-fix.

We used our NLP-based heuristics to filter all the commits
one on GitHub public repositories between March 2011 and
he end of January 2021 by relying on GitHub Archive (Grigorik,
012), a public service which archives all public events occurred
n GitHub. Compared to our previous paper, we have analyzed
additional months of GitHub events. From a set of 24,042,335

i.e., 4.4M more than our previous paper), our heuristics identified
585 possible referenced bug-fixing commits. To further increase
he quality of our dataset, we manually validated such commits,
iming at verifying whether the commit message was clearly
ocumenting the bug-inducing commit. Besides, we annotated
ossible issues from the issue-tracker explicitly referenced by
evelopers since such a piece of information is exploited by some
ZZ variants. In the end, we obtained a dataset including 2304
eferenced bug-fixing commits (i.e., 22% more than our previous
aper), with 212 also including information about the fixed is-
ue(s). This means that developers keep annotating the BIC in the
ommit messages, thus our methodology can be used to build and
hen update, over time, an extensive dataset for the evaluation of
ZZ.
After manually analyzing cases in which all SZZ variants failed

o detect the correct BIC, we found two main limitations of
xisting approaches: (i) they do not take into account added lines,
ut only deleted lines, since those are the ones on which it is
ossible to use the blame command; (ii) they are confused by
evert commits, which reset previous changes not allowing SZZ to
ind the actual BICs. Therefore, we introduce two novel heuristics
hat aim at overcoming such limitations. In the first, given the set
f added lines, we detect the lines directly affected by them by
elying on Definition-Use chains. Then, we detect changes that
ntroduced such lines. In the second heuristic, we detect revert
ommits by using NLP-based heuristics, and we discard them
hen they are selected as candidate BICs.
We tested the new heuristics we introduced in isolation, to

nderstand to what extent they affect the accuracy. Our results
2

show that the Definition-Use heuristic allows finding BICs in cases
in which other SZZ variants do not work. On the other hand, the
revert heuristics for revert commits provides a small advantage
in terms of precision (+1%), without paying any price in terms of
ecall.

To summarize, the novel contributions provided in this paper
ith respect to our previous paper (Rosa et al., 2021) are the

ollowing:

1. We extended the dataset by including 9 additional devel-
opment months on GitHub, resulting in 4.4M additional
commits analyzed and 421 new instances in the final
dataset;

2. We replicated our experiments on the new dataset;
3. Based on our findings, we introduced and evaluated two

new heuristics for SZZ, showing that both of them slightly
improve its effectiveness.

. Background and related work

We start by presenting several variants of the SZZ algorithm
Śliwerski et al., 2005) proposed in the literature over the years.
hen, we discuss how those variants have been used in SE re-
earch community.

.1. SZZ variants

Several approaches have been proposed to identify bug intro-
ucing commits, such as those based on history slicing (Servant
nd Jones, 2011, 2012, 2017). Among the proposed techniques,
ZZ is the one which had the highest adoption when it comes
o the detection of bug-inducing changes (Herbold et al., 2022).
able 1 presents the SZZ variants proposed in the literature. We
eport for each of them its name and reference, the approach it
uilds upon (i.e., the starting point on which the authors provide

improvements), some references to works that used it, and infor-
mation about the oracle used for the evaluation. Specifically, we
report how the oracle was built and the number of projects/bug
reports considered.

All the approaches that aim at identifying bug-inducing com-
mits (BICs) rely on two elements: (i) the revision history of
the software project, and (ii) an issue tracking system (optional,
needed only by some SZZ implementations).

The original SZZ algorithm was proposed by Śliwerski et al.
(2005) (we refer to it as B-SZZ, following the notation provided
by Da Costa et al., 2016). B-SZZ takes as input a bug report from
an issue tracking system, and tries to find the commit that fixes
the bug. To do this, B-SZZ uses a two-level confidence level:
syntactic (possible references to the bug ID in the issue tracker)
and semantic (e.g., the bug description is contained in the commit
message). B-SZZ relies on the CVS diff command to detect the
lines changed in the fix commit and the annotate command to
find the commits in which the lines were modified. Using this
procedure, B-SZZ determines the earlier change at the location of
the fix. Potential bug-inducing commits performed after the bug
was reported are always ignored.

Kim et al. (2006) noticed that B-SZZ has limitations mostly
related to formatting/cosmetic changes (e.g., moving a bracket
to the next line). Such changes can deceive B-SZZ: B-SZZ (i) can
report as BIC a revision which only changed the code formatting,
and (ii) it can consider as part of a bug-fix a formatting change
unrelated to the actual fix. They introduce a variant (AG-SZZ) in
which they used an annotation graph, a data structure associating
the modified lines with the containing function/method. AG-SZZ
also ignores the cosmetic parts of the bug-fixes to provide more
precise results.

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

i
(
i
2
(
i

u
l

n
w
c
b
m

i
S
t
t
a
R
s

f

Table 1
Variants of the SZZ algorithm. For each one, we specify (i) the algorithm on which it is based, (ii) references of works using it, (iii) the oracle used in the evaluation
(how it was built, number of projects (# P.) and bug fixes (# B.F.) considered).
Approach Reference Based on Used by Oracle def. # P. # B.F.

B-SZZ Śliwerski et al. (2005) (Palomba et al., 2018; Pascarella
et al., 2019; Çaglayan and Bener,
2016; Wen et al., 2016; Posnett
et al., 2013; Kim et al., 2008; Tan
et al., 2015; Kononenko et al., 2015;
Wehaibi et al., 2016; Lenarduzzi
et al., 2020a)

// // //

AG-SZZ Kim et al. (2006) B-SZZ Tufano et al. (2017), Bernardi et al.
(2018), Hata et al. (2012), Rahman
et al. (2011), Eyolfson et al. (2014),
Misirli et al. (2016), Canfora et al.
(2011), Prechelt and Pepper (2014),
Bird et al. (2009a)

Manual 2 301

DJ-SZZ Williams and Spacco
(2008b)

AG-SZZ Marinescu et al. (2014), Borg et al.
(2019), Bavota and Russo (2015),
Tóth et al. (2016), Fan et al. (2019),
Karampatsis and Sutton (2020),
Rodríguez-Pérez et al. (2020, 2018)

Manual 1 25

L- & R-SZZ Davies et al. (2014) AG-SZZ Da Costa et al. (2016) Manual 3 174
MA-SZZ Da Costa et al. (2016) AG-SZZ Fan et al. (2019), Neto et al. (2018,

2019), Tu et al. (2020), Aman et al.
(2019), Chen and Jiang (2019)

Automated 10 2,637

RA-SZZ Neto et al. (2018) MA-SZZ Fan et al. (2019), Neto et al. (2018),
Yan et al. (2020)

Manual 10 365

RA-SZZ* Neto et al. (2019) RA-SZZ None Manual 10 365
A-SZZ Sahal and Tosun (2018) B-SZZ None Manual 2 251
Table 2
Open-source tools implementing SZZ.
Tool name Approach Public repository

SZZ Unleashed (Borg et al., 2019) ∼DJ-SZZ (Williams and Spacco, 2008b) https://github.com/wogscpar/SZZUnleashed
OpenSZZ (Lenarduzzi et al., 2020b) ∼B-SZZ (Śliwerski et al., 2005) https://github.com/clowee/OpenSZZ
PyDriller (Spadini et al., 2018) ∼AG-SZZ (Śliwerski et al., 2005) https://github.com/ishepard/pydriller
e

f
e

U
l
n

Williams and Spacco (2008b) improved the AG-SZZ algorithm
n two ways: first, they use a line-number mapping approach
Williams and Spacco, 2008a) instead of the annotation graph
ntroduced by Kim et al. (2006); second, they use DiffJ (Pace,
007), a Java syntax-aware diff tool, which allows their approach
which we call DJ-SZZ) to exclude non-executable changes (e.g.,
mport statements).
Davies et al. (2014) propose two variations on the criterion

sed to select the BIC among the candidates: L-SZZ uses the
argest candidate, while R-SZZ uses the latest one. These improve-
ments were done on top of the AG-SZZ algorithm.

MA-SZZ, introduced by Da Costa et al. (2016), excludes from
the candidate BICs all the meta-changes, i.e., commits that do
ot change the source code. This includes (i) branch changes,
hich are copy operations from one branch to another, (ii) merge
hanges, which consist in applying the changes performed in a
ranch to another one, and (iii) property changes, which only
odify file properties (e.g., permissions).
To further reduce the false positives, two new variants were

ntroduced by Neto et al. RA-SZZ (Neto et al., 2018) and RA-
ZZ* (Neto et al., 2019). They exclude from the BIC candidates
he refactoring operations, i.e., changes that should not modify
he behavior of the program. Both approaches use state-of-the-
rt tools: RA-SZZ uses RefDiff (Silva and Valente, 2017), while
A-SZZ* uses Refactoring Miner (Tsantalis et al., 2018), with the
econd one being more effective (Neto et al., 2019).
The presented variants of SZZ do not parse lines added in bug-

ixing commits (e.g., an added if statement checking for null
values). This is because a line added does not have a change
history when processed by SZZ using the Annotation Graph (Kim
et al., 2006) or the Line-Number mapping (Śliwerski et al., 2005).
As we discussed in our previous work (Rosa et al., 2021), there are
3

however cases in which lines added while fixing a bug can point
to the correct bug-inducing change. Sahal and Tosun (2018) pro-
posed the first approach to include in SZZ support for added lines
(from here on A-SZZ). Specifically, when the bug-fixing changes
add new lines, A-SZZ identifies the code blocks encapsulating
them. Then, A-SZZ considers the set of lines in the block and
discards the cosmetic changes and comment lines. Finally, it runs
the original SZZ algorithm as if the remaining lines of the block
were modified in the commit.

Recently, Bao et al. (2022) proposed a new variant of SZZ,
namely V-SZZ, which is specialized in the detection of
vulnerability-inducing commits. V-SZZ is not included in our
study since we consider generic bugs (not necessarily security-
relevant ones).

Another interesting variant is PR-SZZ, proposed by Bludau and
Pretschner (2022), which uses pull requests and the associated
data to find the bug inducing commits. Also this work is excluded
from our work since we do not study the issue extraction step
of SZZ, but rather its ability to identify the but-inducing commit
given the fixing commit.

Concerning the empirical evaluations performed in the litera-
ture, the original SZZ was not evaluated (Śliwerski et al., 2005).
Instead, all its variants, except MA-SZZ, were manually evaluated
by their authors. One of them, RA-SZZ* (Neto et al., 2019), used an
xternal dataset, i.e., Defect4J (Just et al., 2014). MA-SZZ was eval-

uated using automated metrics, namely earliest bug appearance,
uture impact of a change, and realism of bug introduction (Da Costa
t al., 2016).
In Table 2 we list the open-source implementations of SZZ. SZZ

nleashed (Borg et al., 2019) partially implements DJ-SZZ: it uses
ine-number mapping (Williams and Spacco, 2008b) but it does
ot rely on DiffJ (Pace, 2007) for computing diffs, also working

https://github.com/wogscpar/SZZUnleashed
https://github.com/clowee/OpenSZZ
https://github.com/ishepard/pydriller

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

o
(

s
c
2

a
h
p
c
f

2

p
p
P

i
2
2
2
P
n
2
P
e
n
s
o
s
S
R
2
F
F
t
d
l
o
e
S

l
s
Ç
K
e
g
2
p

Fig. 1. Process used for building the dataset. Steps 5 and 6 are the result of a manual evaluation.
n non-Java files. It does not take into account meta-changes
Da Costa et al., 2016) and refactorings (Neto et al., 2019).

OpenSZZ (Lenarduzzi et al., 2020b) implements the basic ver-
ion of the approach, B-SZZ. Since it is based on the git blame
ommand, it implicitly uses the annotated graph (Kim et al.,
006).
PyDriller (Spadini et al., 2018), a general purpose tool for

nalyzing git repositories, also implements B-SZZ. It uses a simple
euristic for ignoring C- and Python-style comment lines, as
roposed by Kim et al. (2006). We do not report in Table 2 a
omprehensive list of all the SZZ implementations that can be
ound on GitHub, but only the ones presented in papers.

.2. SZZ in software engineering research

The original SZZ algorithm and its variations were used in a
lethora of studies. We discuss some examples, while for a com-
lete list we refer to the extensive literature review by Rodríguez-
érez et al. (2018), featuring 187 papers.
SZZ has been used to run several empirical investigations hav-

ng different goals (Çaglayan and Bener, 2016; Lenarduzzi et al.,
020a; Wehaibi et al., 2016; Tufano et al., 2017; Bernardi et al.,
018; Eyolfson et al., 2014; Misirli et al., 2016; Canfora et al.,
011; Prechelt and Pepper, 2014; Bird et al., 2009a; Rodríguez-
érez et al., 2018; Aman et al., 2019; Chen and Jiang, 2019; Pos-
ett et al., 2013; Karampatsis and Sutton, 2020; Bavota and Russo,
015; Kononenko et al., 2015; Palomba et al., 2018; Rodríguez-
érez et al., 2020; Petrulio et al., 2022; Herbold et al., 2022). For
xample, Aman et al. (2019) studied the role of local variable
ames in fault-introducing commits and they used SZZ to retrieve
uch commits, while Palomba et al. (2018) focused on the impact
f code smells, and used SZZ to determine whether an artifact was
melly when a fault was introduced. Many studies also leverage
ZZ to evaluate defect prediction approaches (Kim et al., 2008;
ahman et al., 2011; Hata et al., 2012; Tan et al., 2015; Tóth et al.,
016; Wen et al., 2016; Fan et al., 2019; Pascarella et al., 2019;
an et al., 2019; Tu et al., 2020; Yan et al., 2020; Zeng et al., 2021).
or example, Zeng et al. (2021) presented a study to evaluate
he effectiveness of CC2Vec, a state-of-the-art Just-in-Time (JIT)
efect prediction tool which uses deep learning. They use SZZ to
abel the defect-fixing commits for the training and evaluation
f the model. Also, the main usage of SZZ in industry is for the
valuation of defect prevention approaches (Bowes et al., 2017;
enchenko et al., 2022).
Looking at Table 1 it is worth noting that, despite its clear

imitations (Kim et al., 2006), many studies, even recent ones,
till rely on B-SZZ (Palomba et al., 2018; Pascarella et al., 2019;
aglayan and Bener, 2016; Wen et al., 2016; Posnett et al., 2013;
im et al., 2008; Tan et al., 2015; Kononenko et al., 2015; Wehaibi
t al., 2016; Lenarduzzi et al., 2020a) (the approaches that use
it implicitly use the annotation graph defined by Kim et al.,
006). Improvements are only slowly adopted in the literature,

ossibly due to the fact that some of them are not released as

4

tools and that the two standalone tools providing a public SZZ
implementation were released only recently (Lenarduzzi et al.,
2020b; Borg et al., 2019).

The studies most similar to ours are the one by Da Costa
et al. (2016), the one by Rodríguez-Pérez et al. (2020), and the
one by Herbold et al. (2022). All of them report a comparison
of different SZZ variants. Da Costa et al. (2016) defined and
used a set of metrics for evaluating SZZ implementations with-
out relying on a manually defined oracle. However, they specify
that, ideally, domain experts should be involved in the con-
struction of the dataset (Da Costa et al., 2016), which motivated
our study. Rodríguez-Pérez et al. (2020) introduced a model for
distinguishing bugs caused by modifications to the source code
(the ones that SZZ algorithms can detect) and the ones that are
introduced due to problems with external dependencies. They
also used the model to define a manually curated dataset on
which they evaluated SZZ variants. Their dataset is created by
researchers and not domain experts. In our study, instead, we rely
on the explicit information provided by domain experts in their
commit messages. Herbold et al. (2022) conducted an empirical
analysis on the defect labels (i.e., bugfix commits) identified by
SZZ and the impact on commonly used features for defect predic-
tion. Their results, evaluated on a dataset of 38 Apache projects,
show that SZZ is able to correctly identify only half of the bug
fixing commits, and using more features is not significant for de-
fect prediction. In our study, we mainly focus on the construction
of an evaluation dataset for SZZ, comparing the main variants
proposed in literature.

3. Defining a developer-informed dataset for SZZ

In this section, we present a methodology to build a dataset of
bug-inducing commits by exploiting information provided by de-
velopers when fixing bugs. Our methodology reduces the manual
effort required for building such a dataset and more important,
does not assume technical knowledge of the involved source code
on the researchers’ side.

The proposed methodology involves two main steps: (i) auto-
matic mining from open-source repositories of bug-fixing com-
mits in which developers explicitly indicate the commit(s) that
introduced the fixed bug, and (ii) a manual filtering aimed at
improving the dataset quality by removing ambiguous commit
messages that do not give confidence in the information provided
by the developer. In the following, we detail these two steps. The
whole process is depicted in Fig. 1.

3.1. Mining bug-fixing and bug-inducing commits

There are two main approaches proposed in the literature for
selecting bug-fixing commits. The first one relies on the linking
between commits and issues (Bissyande et al., 2013): issues la-
beled with ‘‘bug’’, ‘‘defect’’, etc. are mined from the issue tracking
system, storing their issue ID (e.g., systemd#17772).

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

T
v
s
t
t
d
m

b
l
f
c
s

w
g

J

b
C
w
p
m
c
h

3

r
p
a
i
W
m
1
b
t
a

3

c
t
W
T
p
t
s
b

s
c

i

e
a

S
h
W
c
e

t
a
t
i
l
w
t
r
n
i
b

h
c
d
p
t

d
p
o
m

d
a
a
a
a
(
a

hen, the commits referencing the issue ID are mined from the
ersioning system and identified as bug-fixing commit. While
uch a heuristic is fairly precise, it has two important drawbacks
hat make it unsuitable for our work. First, the link to the issue
racking system must be known and a specific crawler for each
ifferent type of issue tracker (e.g., Jira, Bugzilla, GitHub, etc..)
ust be built.
Second, projects can use a customized set of labels to indicate

ug-related issues. Manually extracting this information for a
arge set of repositories is expensive. The basic idea behind this
irst phase is to use the commit messages to identify bug-fixing
ommits: we automatically analyze bug-fixing commit messages
earching for those explicitly referencing bug-inducing commits.
As a preliminary step, we mined GH Archive (Grigorik, 2012)

hich provides, on a regular basis, a snapshot of public events
enerated on GitHub in the form of JSON files.
We mined the time period going from March 1st 2011 to

anuary 28th 2021,1 extracting 24,042,335 commits performed in
the context of push events: such events gather the commits done
y a developer on a repository before performing the push action.
onsidering the goal of building an oracle for SZZ algorithms,
e are not interested in any specific programming language. We
erformed three steps to select a candidate set of commits to
anually analyze in the second phase: (i) we selected a first
andidate set of bug-fixing commits, (ii) we used syntax-aware
euristics to refine such a set, and (iii) we removed duplicates.

.1.1. Word-based selection of bug-fixing commits
To identify bug-fixing commits, we first apply a lightweight

egular expression on all the commits we gathered, as done in a
revious work (Fischer et al., 2003; Tufano et al., 2019). We mark
s potential bug-fixes all commits accompanied by a message
ncluding at least a fix-related word2 and a bug-related word.3
e exclude the messages that include the word merge to ignore
erge commits. Note that we do not need such a heuristic to be
00% precise, since two additional and more precise steps will
e performed on the identified set of candidate fixing commits
o exclude false positives (i.e., a NLP-based step and a manual
nalysis).

.1.2. Syntax-aware filtering of referenced bug-fixing commits
We needed to select from the set of candidate bug-fixing

ommits only the ones in which developers likely referenced
he bug-inducing commit(s) (i.e., referenced bug-fixing commits).
e used the syntax-aware heuristics described below to do this.
he first author defined such heuristics through a trial-and-error
rocedure, taking a 1-month time period of events on GH Archive
o test and refine different versions of the heuristics, manually in-
pecting the achieved results after each run. The final version has
een consolidated with the feedback of two additional authors.
As a preliminary step, we used the doc.sents function of the

paCy 4 Python module for NLP to extract the set Sc of sentences
omposing each commit message c .
For each sentence si ∈ Sc , we used spaCy to build its word

dependency tree ti, i.e., a tree containing the syntactic relation-
ships between the words composing the sentence. Fig. 2 provides
an example of ti generated for the sentence ‘‘fixes a search bug
ntroduced by 2508e12’’.

1 Compared to the previous paper (Rosa et al., 2021) which this manuscript
xtends, we analyze nine additional months of development, resulting in 4.4M
dditional commits.
2 fix or solve.
3 bug, issue, problem, error, or misfeature.
4 https://spacy.io/
5

Fig. 2. Example of word dependency tree built by spaCy.

By navigating the word dependency tree, we can infer that the
verb ‘‘fix’’ refers to the noun ‘‘bug’’, and that the verb ‘‘introduced’’
is linked to commit id 2508e12 through the ‘‘by’’ apposition.

H1: Exclude Commits Without Reference and Reverts. We
split each si ∈ Sc into words and we select all its commit hashes
H(si) using a regular expression.5 We ignore all the si for which
H(si) is empty (i.e., which do not mention any commit hash).
imilarly, we filter out all the si that either (i) start with a commit
ash, or (ii) include the verb ‘‘revert’’ referring to any hj ∈ H(si).
e keep all the remaining si. We exclude the commits that do not

ontain any valid sentence as for this heuristic. We use the H(si)
xtracted with this heuristic also for the following heuristics.
H2: Coarsely Filter Explicit Introducing References. If one of

he ancestors of hj is the verb ‘‘introduce’’ (in any declension),
s it happens in Fig. 2, we consider this as a strong indication of
he fact that the developer is indicating hj as (one of) the bug-
nducing commit(s). In this case, we check if hj also includes at
east one of the fix-related words2 and one of the bug-related
ords3 as one of its ancestors or children. At least one of the
wo words (i.e., the one indicating the fixing activity or the one
eferring to a bug) must be an ancestor. We do this to avoid erro-
eously selecting sentences such as ‘‘Improving feature introduced
n 2508e12 and fixed a bug ’’, in which both the fix-related and the
ug-related word are children of hj.
For example, the hj in Fig. 2 meets this constraint since it

as among its ancestors both fix and bug. We also exclude the
ases in which the words attempt or test (again, in different
eclensions) appear as ancestors of hj. We do this to exclude false
ositives observed while experimenting with earlier versions of
his heuristic.

For example, the sentence ‘‘Remove attempt to fix error intro-
uced in 2f780609’’ belongs to a commit that aims at reverting
revious changes. Similarly, the sentence ‘‘Add tests for the fix
f the bug introduced in 2f780609’’ most likely belongs to the
essage of a test-introduction commit.
H3: Finely Filter Non-Explicit Introducing References. If hj

oes not contain the verb ‘‘introduce’’ as one of its ancestors, we
pply a finer filtering heuristic: both a word indicating a fixing
ctivity and a word indicating a bug must appear as one of hj’s
ncestors. Also, we define a list of stop-words that must not
ppear either in the hj’s ancestor as well as in the dependencies
i.e., ancestors and children) of the ‘‘fixing activity’’ word. Such
stop-word list, derived through a trial-and-error procedure,

5 [0-9a-f]{6,40}.

https://spacy.io/

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

t
a
s
m

3

s
w
c
g
T
(
a
r
p

i
p
a
i
c
o
s

3

s
e
m
d
v
i
c
i
c
i
e
a
a

i
S
e
p

c
i
o
a

Table 3
Features of the language-filtered/overall datasets.
Language Overall Language-filtered

#Repos #Commits #Issues #Repos #Commits #Issues

C 406 520 62 343 430 43
Python 311 348 43 276 307 29
C++ 187 223 25 159 189 19
JS 186 207 29 138 155 16
Java 92 106 14 74 83 8
PHP 65 73 6 57 64 3
Ruby 47 52 6 40 42 5
C# 31 38 3 25 32 1
Others 833 1077 99 0 0 0

Total 1,854 2,364 246 1,059 1,258 119
includes eight additional words (was, been, seem, solved, fixed, try,
rie (to capture tries and tried), and by), besides attempt and test
lso used in H2. This allows, for example, to exclude sentences
uch as ‘‘This definitely fixes the bug I tried to fix in commit 26f3fe2’’,
eets all selection criteria for H3, but it is a false positive.

.1.3. Deletion of duplicate commits
We saved the list of commits including at least one sentence

i meeting H1 and either H2 or H3 in a MySQL database. Since
e analyzed a large set of projects, it was frequent that some
ommits were duplicated due to the fact that different forks of a
iven project are available, or else they are cherry-pick commits.
his means that we consider as duplicates the commits that
i) have the same commit message, (ii) reference the same BIC,
nd (iii) apply the same change to the code. As a final step, we
emoved such duplicates, keeping only the commit of the main
roject repository.
Out of the 24,042,335 parsed commits, the automated filter-

ng selected 4585 commits. Our goal with the above described
rocess is not to be exhaustive, i.e., we do not want to identify
ll bug-fixing commits in which developers indicated the bug-
nducing commit(s), but rather to obtain a high-quality dataset of
ommits that were certainly of the bug-inducing kind. The quality
f the dataset is then further increased during the subsequent
tep of manual analysis.

.2. Manual filtering

Four of the authors (from now on, evaluators) manually in-
pected the 4585 commits produced by the previous step. The
valuators have different backgrounds (graduate student, faculty
ember, junior and a senior researcher with two years of in-
ustrial experience). The goal of the manual validation was to
erify (i) whether the commit was an actual bug-fix, and (ii) if
t included in the commit message a non-ambiguous sentence
learly indicating the commit(s) in which the fixed bug was
ntroduced. For both steps the evaluators mostly relied on the
ommit message and, if available, on possible references to the
ssue tracker. Those references could be issue IDs or links that the
valuators inspected to (i) ensure that the fixed issue was a bug,
nd (ii) store for each commit the links to the mentioned issues
nd, for each issue, its opening date.
The latter is an information that may be required by an SZZ

mplementation (e.g., SZZ Unleashed (Borg et al., 2019) and Open-
ZZ (Lenarduzzi et al., 2020b) require the link to the issue) to
xclude from the candidate list of bug-inducing commits those
erformed after the opening of the fixed issue.
Indeed, if the fixed bug has been already reported at date di, a

ommit performed on date dj > di cannot be responsible for its
ntroduction. Since the commits to inspect come from a variety
f software systems, they rely on different issue trackers. When
n explicit link was not available, but an issue was mentioned
6

in the commit message (e.g., see the commit message shown
in the introduction), the evaluators searched for the project’s
issue tracker, looking on the GitHub repository for documentation
pointing to it (in case the project did not use the GitHub issue
tracker itself). If no information was found, an additional Google
search was performed, looking for the project website or directly
searching for the issue ID mentioned in the commit message.

The manual validation was supported by a web-based appli-
cation we developed that assigns to each evaluator the candidate
commits to review, showing for each of them its commit message
and a clickable link to the commit GitHub page. Using a form,
the evaluator indicated whether the commit was relevant for
the oracle (i.e., an actual bug-fix documenting the bug-inducing
commit) or not, and listing mentioned issues together with their
opening date. Each commit was assigned by the web applica-
tion to two different evaluators, for a total of 8231 evaluations.
To be more conservative and to have higher confidence in our
oracle, we decided to not resolve conflicts (i.e., cases in which
one evaluator marked the commit as relevant and the other as
irrelevant): we excluded from our oracle all commits with at least
one ‘‘irrelevant’’ flag.

3.3. The resulting SZZ oracle

Out of the 4585 manually validated commits, 2304 (50%)
passed our manual filtering, of which 212 include references to
a valid issue (i.e., an issue labeled as a bug that can be found
online). For these, we also automatically checked if the issue
date is valid considering the extracted bug commit (i.e., the bug
commit date must be before the issue date). This indicates that
SZZ implementations that rely on information from issue trackers
can only be run on a minority of bug-fixing commits. Indeed, the
2304 instances we report have been manually checked as true
positive bug-fixes, and only 212 of these (13%) mention the fixed
issue. The dataset is available in our replication package (Rosa
et al., 2023).

These 2304 commits and their related bug-inducing commits
impact files written in many different languages. All the imple-
mentations of the SZZ algorithm (except for B-SZZ) perform some
language-specific parsing to ignore changes performed to code
comments.

In our study (Section 4.1) we experimented several versions
of the SZZ including those requiring the parsing of comments.
We implemented support for the top-8 programming languages
present in our oracle (i.e., the ones responsible for more code
commits): C, C++, C#, Java, JavaScript, Ruby, PHP, and Python. This
led to the creation of the dataset we use in our experimentation,
only including bug-fixing/inducing commits impacting files writ-
ten in one of the eight programming languages we support. This
dataset is also available in our replication package (Rosa et al.,
2023). Table 3 summarizes the main characteristics of the overall

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729
Table 4
Characteristics of the SZZ implementations we compare in the context of RQ1 . We mark with a ‘‘†’’ our re-implementations.
Acronym Fix line

filtering
BIC
identification
method

BIC filtering BIC selection Differences w.r.t. the original paper

B-SZZ† – Annotation
Graph (Kim
et al., 2006)

– – We use git blame instead of the CVS
annotate, i.e., we implicitly use an annotation
graph (Kim et al., 2006). We do not filter BICs
based on the issue creation date

AG-SZZ† Cosmetic
changes (Kim
et al., 2006)

Annotation
Graph (Kim
et al., 2006)

– – No differences

MA-SZZ† Cosmetic
changes (Kim
et al., 2006)

Annotation
Graph (Kim
et al., 2006)

Meta-Changes
(Da Costa
et al., 2016)

– No differences

L-SZZ† Cosmetic
Changes (Kim
et al., 2006)

Annotation
Graph (Kim
et al., 2006)

Meta-Changes
(Da Costa
et al., 2016)

Largest
(Davies et al.,
2014)

We filter meta-changes (Da Costa et al., 2016)

R-SZZ† Cosmetic
Changes (Kim
et al., 2006)

Annotation
Graph (Kim
et al., 2006)

Meta-Changes
(Da Costa
et al., 2016)

Latest (Davies
et al., 2014)

We filter meta-changes (Da Costa et al., 2016)

RA-SZZ*† Cosmetic
Changes (Kim
et al., 2006);
Refactorings
(Neto et al.,
2019)

Annotation
Graph (Kim
et al., 2006)

Meta-Changes
(Da Costa
et al., 2016)

– We use Refactoring Miner 2.0 (Tsantalis et al.,
2020)

SZZ@PYD Cosmetic
Changes (Kim
et al., 2006)

Annotation
Graph (Kim
et al., 2006)

– – We implement a wrapper for PyDriller
(Spadini et al., 2018).

SZZ@UNL Cosmetic
Changes (Kim
et al., 2006)

Line-number
Mapping
(Williams and
Spacco,
2008b)

Issue-date
(Śliwerski
et al., 2005)

– We implement a wrapper for SZZ Unleashed
(Borg et al., 2019).

SZZ@OPN – Annotation
Graph (Kim
et al., 2006)

– – We implement a wrapper for OpenSZZ
(Lenarduzzi et al., 2020b).
g
m
b
c
i
p

dataset and of the language-filtered one. Note that the language-
filtered dataset contains a lower number of instances also for
repositories having as a main language one of the eight supported
ones because some of their commits were related to unsupported
languages (e.g., fixing a bug in a Maven pom file).

It is worth noting that a repository, or even a commit, can
involve several programming languages: for this reason, the total
may be lower than the sum of the per-language values (i.e., a
repository can be counted in two or more languages).

Besides sharing the datasets as JSON files, we also share the
cloned repositories from which the bug-fixing commits have been
extracted. This enables the replication of our study and the use of
the datasets for the assessment of future SZZ improvements.

4. Study 1: Evaluating SZZ variants

In this section we report the updated results of our first study,
in which we use the oracle we built to evaluate state-of-the-art
SZZ variants and tools.

4.1. Study design

The goal of this study is to experiment different variants of the
SZZ algorithm. The perspective is that of researchers interested
in assessing the effectiveness of the state-of-the-art implemen-
tations and identify possible improvements that can be imple-
mented to further improve the accuracy of the SZZ algorithm.
To achieve such a goal, we aim to answer the following research

question:

7

RQ1: How do different variants of SZZ perform
in identifying bug-inducing changes? With this re-
search question we want to compare the various
state-of-the-art SZZ implementations using our dataset.

4.1.1. SZZ implementations compared
We used for our experiment different variants of the SZZ

algorithm. Specifically, re-implemented all the main approaches
available in the literature (presented in Section 2) in a publicly
available tool named pyszz6 which also includes an adapted
version of the PyDriller SZZ implementation (Spadini et al.,
2018). Moreover, we adapted existing Open Source tools (i.e., SZZ
Unleashed (Borg et al., 2019), and OpenSZZ (Lenarduzzi et al.,
2020b)) to work with our dataset. We provide a replication pack-
age (Rosa et al., 2023) containing all the tools involved in the
experiment with instructions on how to run them.

We report the details about all the implementations we com-
pare in Table 4 and, for each of them, we explicitly mention
(i) how it filters the lines changed in the fix (e.g., it removes
cosmetic changes), (ii) which methodology it uses for identifying
the preliminary set of bug-inducing commits (e.g., annotation
raph), (iii) how it filters such a preliminary set (e.g., it removes
eta-changes), and (iv) if it uses a heuristic for selecting a single
ug-inducing commit and, if so, which one (e.g., most recent
ommit). We also explicitly mention any difference between our
mplementations and the approaches as described in the original
apers presenting them.

6 https://github.com/grosa1/pyszz

https://github.com/grosa1/pyszz

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

r
a
s
t
B
p
a
(
c
b
d
m
F
i
a
t
f
a
d
i

i
r
o
F
s
w
d
I
U
F
t

b
w
i
t

4

v
d
i
(
o
t
i
f
t

J

δ

p
(
f
i
v
a
u
w
e
w
i
h
t
i

t
f
w
Y

f

b
c
b
i
Y
o
w

{

p

As most of the bug-fix pairs in our dataset do not contain the
eference to the bug-report (∼91%), all our re-implementations
re independent from the issue-tracker systems. This is the rea-
on why we did not set the ‘‘Issue-date’’ as a default BIC filtering
echnique, despite it is reported in the respective papers (e.g., for
-SZZ). However, since we have extracted this information where
resent, we experiment all of the variants with and without such
filtering applied. Note that git tracks both the author’s date

i.e., when the commit was performed in the first place) and the
ommit’s date, which the latter changing every time the commit is
eing modified (e.g., due to a rebasing of the branch). For the issue
ate filter we use the author’s date since the commit’s date might
ake SZZ erroneously filter out some legit bug-inducing commits.
or example, let us consider an issue I reported at a date dI , and
ts bug-inducing commit C having an author’s date daC < dI and
commit’s date dcC > dI . This indicates a situation in which

he issue was reported after the change was performed in the
irst place, but before C has been modified due, for example, to
rebase. If we considered the commit’s date, we would have
iscarded C as a bug-inducing commit as performed after the
ssue was reported.

For the Open Source tools, instead, we did not modify their
mplementation of the BIC-finding procedures: e.g., we did not
emove the filtering by issue date from SZZ Unleashed. However,
ur wrappers for such tools allow to run them with our dataset.
or example, SZZ Unleashed depends on a specific issue-tracker
ystem (i.e., Jira) for filtering commits done after the bug-report
as opened. We made it independent from it by adapting our
atasets to the input it expects (i.e., Jira issues in JSON format).
t is worth noting that, despite the complexity of such files, SZZ
nleashed only uses the issue opening date in its implementation.
or this reason, we only provide such field and we set the others
o null.

Note that some of the original implementations listed in Ta-
le 4 can identify bug-fixing commits. In our study, we did not
ant to test such a feature: we test a scenario in which the

mplementations already have the bug-fixing commits for which
hey should detect the bug-inducing commit(s).

.1.2. Study context
To evaluate the described implementations, we defined two

ersion of the datasets extracted from the language-filtered
ataset: (i) the oracleall dataset, featuring 1258 bug-fixes, which
ncludes both the ones with and without issue information, and
ii) the oracleissues dataset, featuring 119 instances, which includes
nly instances with issue information. Moreover, we defined
wo additional datasets, oracleJall (81 instances) and oracleJissues (8
nstances), obtained by considering only Java-related commits
rom the oracleall and oracleissues, respectively. We did this because
wo implementations, i.e., RA-SZZ*7 and OpenSZZ, only work on
Java files.

4.1.3. Experimental procedure
To answer RQ1, we perform an experiment to compare the dif-

ferent SZZ implementations. The hypothesis is that the evaluated
SZZ variants provide different performance in terms of detected
bug-inducing changes. We have as factor the SZZ variant. The
treatments are the different SZZ variants previously described. As
a dependent variables, we have the metrics we use to measure
their performance (i.e., precision, recall, F1-score). This means that
we ran all the implementations on all the datasets on which
they can be executed. This means that we run all the state-of-
the-art SZZ implementations and tools (Table 4) on oracleall and

7 It relies on Refactoring Miner (Tsantalis et al., 2020) which only works on
ava files.
 c

8

oracleissues, except for RA-SZZ* and OpenSZZ that are executed on
the datasets including Java files only.

Another exception is for SZZ Unleashed, that requires the issue
date in order to work. Since it would not be possible to run it
on the oracleall dataset, we simulated the best-case-scenario for
such commits: we pretended that an issue about the bug was cre-
ated few seconds after the last bug-inducing commit was done.
Consider the bug-fixing commit BF without issue information and
its set of bug-inducing commits BIC; we assumed that the issue
mentioned in BF had maxb∈BIC (date(b))+δ as opening date, where
is a small time interval (we used 60 s).
Such an experimental design allows us to compare all the im-

lementations in two scenarios: (i) the realistic scenario
oracleissues), in which the issue date is real, i.e., it may be quite
ar from the BIC dates; (ii) the best-case scenario (i.e., oracleall)
n which real issue information would be available only for a
ery small percentage of the bug-fixes instances, while the others
re simulated. Thus, when experimenting the SZZ variants not
sing the issue opening date, the results we achieve are those one
ould achieve in reality. Instead, when testing the approaches
xploiting the issue opening date information, we are showing
hat would be the hypothetical effectiveness of such variants

n the best case scenario in which all commits refer to an issue
aving an identifiable opening date and, for most of the commits,
he opening of the related issue immediately follows the bug
ntroduction.

In the end, we obtained a set of bug-inducing commits de-
ected by the experimented implementations. Based on the oracle
rom our datasets, we evaluated their accuracy by using three
idely-adopted metrics: recall, precision, and F-measure (Baeza-
ates and Ribeiro-Neto, 1999).
In detail, we computed the such metrics using the following

ormulas:

recall =
|correct ∩ identified|

|correct|
% precision =

|correct ∩ identified|
|identified|

%

where correct and identified represent the set of true positive
ug-inducing commits (those indicated by the developers in the
ommit message) and the set of bug-inducing commits detected
y the experimented algorithm, respectively. As an aggregate
ndicator of precision and recall, we report the F-measure (Baeza-
ates and Ribeiro-Neto, 1999), defined as the harmonic mean
f precision and recall. Such metrics were also used in previous
orks for evaluating SZZ variants (e.g., Neto et al., 2019).
Given the set of experimented SZZ variants/tools SZZexp =

v1, v2, . . . vn}, we also analyze their complementarity, by com-
uting the following metrics for each vi (Oliveto et al., 2010):

correctvi∩vj =
|correctvi ∩ correctvj |

|correctvi ∪ correctvj |

correctvi\(SZZexp\vi) =
|correctvi \ correct (SZZexp\vi)|
|correctvi ∪ correct (SZZexp\vi)|

where correctvi represents the set of correct bug-inducing com-
mits detected by vi and correct (SZZexp\vi) the correct bug-inducing
commits detected by all other variants but vi. correctvi∩vj mea-
sures the overlap between the set of correct bug-inducing com-
mits identified by two given implementations. We computed it by
comparing in pairs each of experimented SZZ variants, thus mea-
suring the percentage of correctly identified instances that are
common for each pair. We reported the results using a heatmap
H , where we have as rows i and columns j the evaluated SZZ
variants. Thus, we have at H[in, jm] the overlap measured between
the two SZZ implementations corresponding to the row in and
column jm, respectively. correctvi\(SZZexp\vi), instead, measures the
orrect bug-inducing commits identified only by variant v and
i

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

t
i
f
v

f
c
t
a
t

4

v
w
p
f
t
v
h
r
t
t
t
o

S
m
c
b
t
o

s
D
i
m

Table 5
Precision, recall, and F-measure calculated for all SZZ algorithms in the context of RQ1 . † means Java only files.

Algorithm oracleall oracleissue
Recall Precision F1 N Recall Precision F1 N

N
o
is
su

e
da

te
fil
te
r B-SZZ 0.68 0.39 0.49 1258 0.69 0.37 0.48 119

AG-SZZ 0.65 0.38 0.48 1258 0.67 0.38 0.48 119
L-SZZ 0.45 0.52 0.49 1258 0.43 0.50 0.46 119
R-SZZ 0.57 0.66 0.61 1258 0.55 0.63 0.59 119
MA-SZZ 0.63 0.36 0.46 1258 0.66 0.35 0.46 119
†RA-SZZ* 0.49 0.22 0.31 81 0.50 0.22 0.31 8
SZZ@PYD 0.67 0.39 0.49 1258 0.69 0.39 0.50 119
SZZ@UNL 0.67 0.09 0.15 1258 0.71 0.06 0.11 119
†SZZ@OPN 0.20 0.33 0.25 81 0.12 0.50 0.20 8

W
ith

da
te

fil
te
r

B-SZZ 0.68 0.42 0.52 1258 0.69 0.38 0.49 119
AG-SZZ 0.62 0.40 0.49 1258 0.67 0.39 0.49 119
L-SZZ 0.47 0.55 0.51 1258 0.45 0.51 0.48 119
R-SZZ 0.62 0.73 0.67 1258 0.57 0.66 0.61 119
MA-SZZ 0.63 0.39 0.49 1258 0.66 0.36 0.47 119
†RA-SZZ* 0.49 0.26 0.34 81 0.50 0.22 0.31 8
SZZ@PYD 0.67 0.42 0.52 1258 0.69 0.41 0.51 119
SZZ@UNL 0.67 0.09 0.15 1258 0.71 0.06 0.11 119
†SZZ@OPN 0.20 0.34 0.25 81 0.12 0.50 0.20 8
missed by all others experimented in RQ1. It is worth clarifying
hat, when we compute the overlap metrics, we compare all the
mplementations among them on the same dataset. This means,
or example, that we do not compute the overlap between a
ariant tested on oracleall and another variant tested on oracleissues.
As a last step, we compute the set of bug-fixing commits

or which none of the experimented SZZ variants was able to
orrectly identify the bug-inducing commit(s). Then, we qualita-
ively discuss these cases to understand (i) the weak points of the
pplied heuristics and (ii) if it is possible to refine these heuristics
o cover particular cases.

.2. Study results

Table 5 reports the results achieved by the experimented SZZ
ariants and tools. The top part of the table shows the results
hen the issue date filter has not been applied, while the bottom
art relates to the application of the date filter. With ‘‘issue date
ilter’’ we refer to the process through which we remove from
he list of candidate bug-inducing commits returned by a given
ariant all those performed after the issue documenting the bug
as been opened. Those are known to be false positives. For this
eason, such a filter is expected to never decrease recall (since
he discarded bug-inducing commits should all be false posi-
ives) while increasing precision. The left part of Table 5 shows
he results achieved on oracleall, while the right part focuses on
racleissue.
R-SZZ achieves the highest F-Measure (61%) when not using

the issue date filtering (top part). Our implementation of R-
ZZ uses the annotation graph, ignores cosmetic changes and
eta-changes (as MA-SZZ), and only considers as bug-inducing
ommits the latest change that impacted a line changed to fix the
ug. Thanks to that combination of heuristics, R-SZZ also achieves
he highest precision on both oracles, achieving a precision score
f 66% on oracleall and 63% on oracleissue.
B-SZZ, the simplest SZZ version, exhibits the highest recall

core of 68% on oracleall and 69% on oracleissue, followed by Py-
riller and SZZ@UNL. Nonetheless, B-SZZ pays in precision, mak-
ng it the fourth algorithm together with the PyDriller imple-
entation for oracleall and the sixth for oracleissue. Due to the

similarity between B-SZZ and the PyDriller implementation, also
their performances are quite similar.

Despite the recall/precision tradeoff, R-SZZ and B-SZZ are not
heavily affected in terms of recall score compared to SZZ@UNL
9

(SZZ Unleashed). It achieves 66% of recall on oracleall and 67%
on oracleissue datasets, with a very low precision of 9% and 6%,
respectively. We investigated the reasons behind such a low
precision, finding that it is mainly due to a set of outlier bug-
fixing commits for which SZZ@UNL identifies a high number of
(false positive) bug-inducing commits. For example, three bug-
fixing commits are responsible for 72 identified bug-inducing
commits, out of which only three are correct. We analyzed the
distribution of bug-inducing commits reported by SZZ@UNL for
the different bug-fixing commits. Cases for which more than
20 bug-inducing commits are identified for a single bug-fix can
be considered outliers. By ignoring those cases, the recall and
precision of SZZ@UNL are 66% and 17%, respectively on oracleall,
and 71% and 16% on oracleissue. By lowering the outlier threshold
to 10 bug-inducing, the precision grows in both datasets to 22%.
We believe that the low precision of SZZ@UNL may be due to
misbehavior of the tool in few isolated cases.

Two implementations (i.e., RA-SZZ* and SZZ@OPN) only work
with Java files. In this case, we compute their recall and precision
by only considering the bug-fixing commits impacting Java files.
Both of them exhibit limited recall and precision. While this is
due in part to limitations of the implementations, it is also worth
noting that the number of Java-related commits in our datasets
is quite limited (i.e., 81 in oracleall and only 8 in oracleissue). Thus,
failing on a few of those cases penalizes in terms of performance
metrics.

AG-SZZ, L-SZZ, and MA-SZZ exhibit, as compared to others,
good performance for both recall and precision. These algorithms
provide a good balance between recall and precision, as also
shown by their F-Measure (∼50%).

The bottom of Table 5 shows the results achieved by the same
algorithms when using the issue data filter.

As expected, the recall remains, for the most of the cases,
equal to the previous scenario with marginal improvements in
precision (thanks to the removal of some false positives). While
most of the algorithms improve their precision by 1%–4%, R-SZZ
obtain substantial improvements in the oracleall dataset R-SZZ
(+6%). This boosts the latter to a very good 73% precision on
oracleall, and 66% on oracleissue (+3%).

To summarize the achieved results: We found that R-SZZ is the
most precise variant on our datasets, with a precision ∼70% when
the issue date filter is applied. Thus, we recommend it when

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729
Fig. 3. Overlap between SZZ variants, evaluated in RQ1 , when no issue date filter is applied.
Fig. 4. Overlap between SZZ variants, evaluated in RQ1 , when the issue date filter is applied.
precision is more important than recall (e.g., when a set of bug-
inducing commits must be mined for qualitative analysis). If the
focus is on recall, the current recommendation is to rely on B-SZZ,
using, for example, the implementation provided by PyDriller.
Finally, looking at Table 5, it is clear that there are still margins
of improvement for the accuracy of the SZZ algorithm.

Table 6 shows the correctvi\(SZZexp\vi) metric we computed
for each SZZ variant vi. This metric measures the correct bug-
inducing commits identified only by variant vi and missed by all
the others.

Figs. 3(a) and 3(b) depict the correctvi∩vj metric computed
between each pair of SZZ variants when not filtering based on
the issue date, while Figs. 4(a) and 4(b) show the same metric
when the issue filter has been applied. Given the metric def-
inition, the depicted heatmaps will be symmetric. To improve
the readability, we keep only the lower triangular matrix (i.e.,
correctvi∩vj = correctvj∩vi). The only variant able to identify bug-
inducing commits missed by all others SZZ implementations is
SZZ@UNL (19 on oracleall and 2 on oracleissue) – Table 6. This
is not surprising considering the high SZZ@UNL recall and the
high number of bug-inducing commits it returns for certain bug-
fixes. The main difference with the other evaluated SZZ variants
10
Table 6
Bug inducing commits correctly identified exclusively by the vi algorithm. † Java
only files.
Algorithm No date filter With date filter

oracleall oracleissue oracleall oracleissue
B-SZZ 1/898 0/86 1/898 0/86
AG-SZZ 0/898 0/86 0/898 0/86
L-SZZ 0/898 0/86 0/898 0/86
R-SZZ 0/898 0/86 0/898 0/86
MA-SZZ 0/898 0/86 0/898 0/86
†RA-SZZ* 0/56 0/5 0/56 0/5
SZZ@PYD 0/898 0/86 0/898 0/86
SZZ@UNL 19/898 (2%) 2/86 (2%) 19/898 (2%) 2/86 (2%)
†SZZ@OPN 0/56 0/5 0/56 0/5

is the BIC identification method used (i.e., Line-number Mapping
Williams and Spacco, 2008b). This can be the reason why none of
the other implementations identifies such bug-inducing commits:
Given 898 as cardinality of the intersection of the true positives
identified by all SZZ variants, SZZ@UNL correctly retrieves 842 of
them.

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

v
p
p
a
o
l
S
b
t

4

c
a
c

s
c
i
v
t
n
a
t
2
a
t
T
r
i
f
i
l
w
i
w
c

o
c
c
s
t
i
s
b
t
a
c
c

l
t
c
e
e
r
r

C
v
s
i
t
t
t

e
T
d
T
w

i
W
w
e
w
r
b
r

Looking at the overlap metrics in Figs. 3 and 4, two obser-
ations can be made. First, the overlap in the identified true
ositives is substantial. Excluding SZZ@OPN, 24 of the 28 com-
arisons have an overlap in the identified true positives ≥70%
nd the lower values are still in the range 60%–70%. The low
verlap values observed for SZZ@OPN are instead due to the its
ow recall. Second, the complementarity between the different
ZZ variants is quite low, which indicates that there is a set of
ug-fixing commits for which all of the variants fail in identifying
he correct bug-inducing commit(s).

.2.1. Current limitation of SZZ
We manually analyzed the cases in which all the variants we

onsidered failed to identify the correct BIC. We found that there
re two possible improvements that might help SZZ finding the
orrect BICs, which we discuss below.
The buggy line is not always impacted in the bug-fix. In

ome cases, fixing a bug introduced in line l may not result in
hanges performed to l. An example in Java is the addition of an
f guard statement checking for null values before accessing a
ariable. In this case, while the bug has been introduced with
he code accessing the variable without checking whether it is
ull, the bug-fixing commit does not impact such a line, it just
dds the needed if statement. An example from our dataset is
he bug-fixing commit from the thcrap repository8 in which line
89 is modified to fix a bug introduced in commit b67116d,
s pointed by the developer in the commit message. However,
he bug was introduced with changes performed on line 290.
hus, running git blame on line 289 of the fix commit will
etrieve a wrong bug-inducing commit. Defining approaches to
dentify the correct bug-inducing commit in these cases is far
rom trivial. Also, in several bug-fixing commits we inspected, the
mplemented changes included both added and modified/deleted
ines. SZZ implementations focus on the latter, since there is no
ay to blame a newly added line. However, we found cases

n which the added lines were responsible for the bug-fixing,
hile the modified/deleted ones were unrelated. An example is
ommit ca11949 from the snake repository,9 in which two lines
are added and two deleted to fix a bug. The deleted lines, while
being the target of SZZ, are unrelated to the bug-fix, as clear
from the commit message pointing to commit 315a64b10 as the
ne responsible for the bug introduction. In the bug-inducing
ommit, the developer refactored the code to simplify an if
ondition. While refactoring the code, she introduced a bug (i.e.,
he missed an else branch). The fixing adds the else branch
o the sequence of if/else if branches introduced in the bug-
nducing commit. In this case, by relying on static analysis, it
hould be possible to link the added lines, representing the else
ranch, to the set of if/else if statements preceding it. While
he added lines cannot be blamed, lines related to them (e.g.,
cting on the same variable, being part of the same ‘‘high-level
onstruct’’ like in this case) could be blamed to increase the
hances of identifying the bug-inducing commit.
SZZ is sensible to history rewriting. Bird et al. (2009b) high-

ighted some of the perils of mining git repositories, among which
he possibility for developers to rewrite the change history. This
an be achieved through rebasing, for example: using such a strat-
gy can have an impact on mining the change history (Kovalenko
t al., 2018), and, therefore, on the performance of the SZZ algo-
ithm. Besides rebasing, git allows to partially rewrite history by
everting changes introduced in one or more commits in the past.

8 https://github.com/thpatch/thcrap/commit/29f1663
9 https://github.com/krmpotic/snake/commit/ca11949

10 https://github.com/krmpotic/snake/commit/315a64b
11
This action is often performed by developers when a task they are
working on leads to a dead end. The revert command results in
new commits in the change history that turn back the indicated
changes. Consequently, SZZ can improperly show one of these
commits as candidate bug-inducing. For example, in the message
of commit 5d8cee1 from the xkb-switch project,11 the developer
indicates that the bug she is fixing has been introduced in commit
42abcc. By performing a blame on the fix commit, git returns
as a bug-inducing commit 8b9cf29,12 which is a revert commit.
By performing an additional blame step, the correct bug-inducing
commit pointed by the developer can be retrieved.13

5. New heuristics for improving SZZ

Based on the discussed limitations, we propose two new
heuristics aimed at improving SZZ. In the first one, HDU , we use
data flow analysis to process added lines in bug-fixing commits in
order to identify unchanged lines that might be the actual buggy
lines on which the blame must be performed to correctly retrieve
the bug-inducing commits. In the second one, HR, we propose a
heuristic that allows SZZ to be aware of reverted changes, i.e.,
changes that result in new commits that undo previous changes.
While both heuristics can be combined with any SZZ variant, we
experiment them with MA-SZZ and R-SZZ, providing four new
variants that we implement in our pyszz tool.

5.1. HDU : Handling added lines

As outlined in Section 4.2, developers might add new lines
to fix bugs, but such lines are ignored by all SZZ variants. To
overcome such a limitation, it would be necessary to (i) identify
the instructions functionally impacted by the added lines and (ii)
run the SZZ on those lines, assuming that some of them induced
the bug.

To achieve this goal, we define HDU , a heuristic that relies on
Definition-Use Chains (DUCs) (Kennedy, 1978) to process added
lines. We report below the steps for running HDU :

Step 1: Building Definition-Use Chains. A Definition-Use
hain (DUC) is a data structure that links the definition of a
ariable to all its uses. DUCs can be statically extracted from
ource code. To extract the DUCs from a given file, we first
dentify all the declared functions or methods. Then, for each of
hem, we parse each line and we assign the label defv if it assigns
he variable v and the labels usev if it uses variable v. For example,
he line int a = b + c is marked with the labels defa, useb, and
usec . Finally, for each variable v, we link all the instruction that
use v (marked with usev) to the nearest instruction that precedes
and defines it (i.e., marked with defv). It is worth noting that for
ach instruction we keep the line number in which it appears.
herefore, we transform the instructions into line numbers, and
etermine which lines are related by definition-use relationships.
he output of this step is a map DUM that associates each def line
ith its respective use lines.
Step 2: Finding Related Lines. Given the list of added lines La

n the bug-fixing commit, we aim at finding related lines in DUM .
e find for all the line numbers La their reference in DUM , where
e extract the DUCs containing La. From the selected DUCs, for
ach def , we select the use line at distance k = 1. As a result,
e obtain a set of def − use pairs, from which we extract the
eferenced line numbers. Pairs involving the lines added in the
ug-fixing commits are ignored, since it would not be possible to
un SZZ on them due to the lack of a change history.

11 https://github.com/grwlf/xkb-switch/commit/5d8cee1
12 https://github.com/grwlf/xkb-switch/commit/8b9cf29
13 https://github.com/grwlf/xkb-switch/commit/42abcc0

https://github.com/thpatch/thcrap/commit/29f1663
https://github.com/krmpotic/snake/commit/ca11949
https://github.com/krmpotic/snake/commit/315a64b
https://github.com/grwlf/xkb-switch/commit/5d8cee1
https://github.com/grwlf/xkb-switch/commit/8b9cf29
https://github.com/grwlf/xkb-switch/commit/42abcc0

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

t
i
i
i

m
m
s
g
w
o
c

5

c
t
e

i
i
o
m
u
t

6

d
d
a
i
t
s
p

6

e
a
h
l
b

h
t
t
s
s
t
t
a
R
t

R
‘
i
a
t
o

Fig. 5. Example workflow of HDU heuristic.

Step 3: Running SZZ. As a final step, we use SZZ on all
he lines identified in the previous step, as if they were mod-
fied in the commit. The assumption is that the commit that
ntroduced/modified such lines was probably responsible for the
ntroduction of the bug.

Fig. 5 shows an example of our HDU heuristic. We imple-
ented a prototype implementation of HDU for the C program-
ing language, given the need to perform language-dependent
tatic analysis. We choose C because it is the programming lan-
uage with the largest number of instances in our dataset. It is
orth noting, however, that our methodology can be adapted to
ther languages. We used SrcML14 to parse the input files and
onvert them in XML-like format to support the static analysis.

.2. HR: Filtering revert commits

The second heuristic that we introduce is a filter for reverting
hanges. As we found in our first study, SZZ is sensible to his-
ory rewritings: Rebase operations and revert commits might be
rroneously selected as bug-inducing commits.
When a rebase operation is performed, the change history

s entirely wiped up to a specific commit. In such cases, it is
mpossible to go back to the previous version of the history. In
ther words, rebase operations cannot be treated. Revert com-
its, instead, are additional commits that apply inverse changes
p to a given point. Therefore, revert commit explicitly appear in
he revision history. Similarly to what done in MA-SZZ, we filter

14 https://www.srcml.org/doc/c_srcML.html
12
the SZZ output to ignore revert commits and reduce the number
of false positives. Therefore, we implemented HR, a heuristic that
leverages the commit message to identify reverted commits and
ignore them. Such a filter consists in a simple string match using
two patterns. With the first one, we skip commit that contain
the sequence ‘‘This reverts commit’’ in the message. With the
second pattern, we skip commits that start with the sequence
‘‘Revert’’. We define these two pattern taking into account the
default reverting commit message provided by git. This means
that HR cannot identify reverting commits having a customized
commit message.

6. Study 2: Evaluating the proposed SZZ heuristics

In this section we report our second study, in which we
evaluate the two novel heuristics we introduced.

6.1. Study design

The goal of this study is to evaluate whether the two new
heuristics we propose, HDU and HR, allow to improve the accu-
racy of the SZZ algorithm. In particular, we aim to answer the
following research questions:

• RQ2: Does HDU improve the accuracy of SZZ? With this re-
search question, we want to evaluate the effectiveness of the
heuristic we defined for handling added lines.

• RQ3: Does HR improve the accuracy of SZZ? In this research
question, we aim to experiment our heuristic that allows
SZZ to be aware of reverting commits.

.1.1. Study context
We rely on the previously described oracleall and oracleissues

ataset. Since the implementation of our HDU heuristic performs
ata flow analysis for functions written in C, we defined two
dditional datasets: oracleCall (397 instances) and oracleCissues (40
nstances), obtained by considering only C-related commits from
he oracleall (1258 instances) and oracleissues (119 instances), re-
pectively. That means we selected all the bug-fix commits im-
acting only .c and .h source files.

.1.2. Experimental procedure
To answer RQ2, we perform an experiment to evaluate the

ffectiveness of the SZZ variants using the heuristics to process
lso added lines (HDU and A-SZZ Sahal and Tosun, 2018). The
ypothesis is that using heuristics for the processing of added
ines improves the effectiveness of SZZ in terms of detected
ug-inducing changes.
As reported in Section 2, Sahal and Tosun (2018) proposed a

euristic to run SZZ on all the lines belonging to the same instruc-
ion block, including also the added lines. We re-implemented
hat heuristic as described in their original paper (Sahal and To-
un, 2018). Furthermore, we implemented a version of HDU which
upports C source code. To understand if HDU allows improving
he accuracy of SZZ, we combine it (and also the baseline heuris-
ic) with two SZZ variants: MA-SZZ (i.e., the implementation
dopting the most complete set of filtering heuristics, excluding
A-SZZ that only works for Java code), and R-SZZ (i.e., the one
hat achieved the best results in our first study).

In total, we define four new variants:MA-SZZ@DU,MA-SZZ@A,
-SZZ@DU, and R-SZZ@A. Note that the variants starting with
‘DU-’’ are those adopting our HDU heuristic, while those start-
ng with ‘‘A-’’ are those using the approach defined by Sahal
nd Tosun (2018). We run such variants on the oracleCall and
he oracleCissues datasets. As a reference baseline, we also run the
riginal SZZ implementation on these datasets. Thus, the factor

https://www.srcml.org/doc/c_srcML.html

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

S
t
R

Table 7
Precision, recall, and F-measure calculated for the SZZ algorithms evaluated in the context of RQ2 .

Algorithm oracleCall oracleCissue
Recall Precision F1 N Recall Precision F1 N

N
o
fil
te
r

R-SZZ@A 0.51 0.54 0.53 397 0.40 0.40 0.40 40
R-SZZ@DU 0.55 0.64 0.59 397 0.50 0.57 0.53 40
R-SZZ 0.54 0.63 0.58 397 0.50 0.57 0.53 40

MA-SZZ@A 0.73 0.06 0.12 397 0.68 0.03 0.06 40
MA-SZZ@DU 0.62 0.28 0.38 397 0.57 0.20 0.29 40
MA-SZZ 0.60 0.35 0.44 397 0.57 0.25 0.35 40

Is
su

e
da

te
fil
te
r R-SZZ@A 0.68 0.73 0.70 397 0.42 0.42 0.42 40

R-SZZ@DU 0.60 0.72 0.66 397 0.53 0.60 0.56 40
R-SZZ 0.59 0.72 0.65 397 0.53 0.60 0.56 40

MA-SZZ@A 0.73 0.07 0.12 397 0.68 0.03 0.06 40
MA-SZZ@DU 0.62 0.33 0.43 397 0.57 0.23 0.32 40
MA-SZZ 0.60 0.37 0.46 397 0.57 0.26 0.35 40
Table 8
Precision, recall, and F-measure calculated for the SZZ algorithms evaluated in the context of RQ3 .

Algorithm oracleall oracleissue
Recall Precision F1 N Recall Precision F1 N

N
o
fil
te
r MA-SZZ 0.63 0.36 0.46 1258 0.66 0.35 0.46 119

MA-SZZ@REV 0.64 0.36 0.46 1258 0.66 0.36 0.47 119

R-SZZ 0.57 0.66 0.61 1258 0.55 0.63 0.59 119
R-SZZ@REV 0.58 0.66 0.62 1258 0.57 0.65 0.61 119

W
ith

fil
te
r MA-SZZ 0.63 0.39 0.48 1258 0.66 0.36 0.47 119

MA-SZZ@REV 0.64 0.39 0.49 1258 0.66 0.37 0.47 119

R-SZZ 0.62 0.73 0.67 1258 0.57 0.66 0.61 119
R-SZZ@REV 0.63 0.74 0.68 1258 0.59 0.67 0.63 119
b

of the experiment is the SZZ variant. Specifically, the treatments
are both the SZZ variants able to process also added lines (MA-
ZZ@DU, MA-SZZ@A, R-SZZ@DU, and R-SZZ@A) and the respec-
ive base variants that can only process deleted lines (MA-SZZ and
-SZZ). The dependent variables are precision, recall, and F1-score.
To answer RQ3, similarly to RQ2, we conduct an experiment

having as hypothesis that using heuristics to handle revert com-
mits improves the effectiveness of SZZ in terms of identified
bug-inducing commits. To achieve this, we combine HR with
MA-SZZ and R-SZZ obtaining two new variants, namely MA-
SZZ@REV and R-SZZ@REV. We have as factor, again, the SZZ
variant. The treatments are both the variants based on the heuris-
tic HR (MA-SZZ@REV and R-SZZ@REV) and the basic variants
without it (MA-SZZ and R-SZZ). The dependent variables are pre-
cision, recall, and F1-score. Since HR is not language-dependent,
we run it on oracleall and oracleissues. Again, as a reference, we
compare the results with the ones obtained by MA-SZZ, R-SZZ,
and B-SZZ.

As the last step, we compute the set of bug-fixing commits for
which none of the experimented SZZ variants was able to identify
the bug-inducing commit(s) correctly. Then, we qualitatively dis-
cuss these cases to understand (i) the weak points of the applied
heuristics and (ii) if it is possible to refine these heuristics further
to cover corner cases we did not consider.

6.2. Study results

In the following subsection, we report the results to answer
our research questions.

6.2.1. RQ2: Does HDU improve the accuracy of SZZ?
Table 7 reports the resulting metrics for the six variants we

compare based on R-SZZ and MA-SZZ.
When no issue date filter is applied, R-SZZ@DU is the best

performing on oracleCall, followed by R-SZZ. Considering oracleCissues,
both R-SZZ@DU and R-SZZ achieve an F-measure score of 53%.
13
The same is true for Precision. R-SZZ@A is the worst performing
variant, with an F-measure of 53% on oracleCall, which goes down to
40% for oracleCissues. However, MA-SZZ remains the best compared
to its two variants regarding Recall and F-measure score. MA-
SZZ@A have the lowest F-measure and Precision, obtaining the
highest Recall of 73% and 68% on the two datasets. This is a
consequence of the selection heuristic used where the entire code
block encapsulating the added lines is returned.

The observed differences are related to the underlying BIC
selection heuristic behind R-SZZ. With R-SZZ@A, the resulting
BICs are filtered, selecting, for each instance, only the most recent
commit, thus effectively reducing the disadvantage it has with
MA-SZZ in terms of Precision, which, instead, does not filter the
BICs. The same is true for R-SZZ@DU and MA-SZZ@DU, where the
BIC filtering procedure used in R-SZZ (most recent commit) gives
the same advantage to R-SZZ@A. However, as HDU is more conser-
vative than the heuristic by Sahal and Tosun (2018), the impact on
Precision is always acceptable. For example, considering oracleCall,
MA-SZZ identifies a total of 688 bug-inducing changes against the
883 of MA-SZZ@DU and 4575 of MA-SZZ@A.

When the issue date filter is applied, similarly to RQ1, there is
a general improvement in the Precision score due to the reduced
number of false-positive BICs.

In general, combining SZZ with heuristics that can process
added lines improves SZZ. Therefore, both the heuristics work
well when combined with R-SZZ and less well when combined
with MA-SZZ.

6.2.2. RQ3: Does HR improve the accuracy of SZZ?
We report in Table 8 the resulting metrics of our experiment.

Both MA-SZZ@REV and R-SZZ@REV perform similar to MA-SZZ
and R-SZZ, achieving a small improvement (1%) with and without
the issue date filter. When the issue date filter is applied, there is
a general improvement in terms of Precision, as seen for RQ1.

We can conclude that HR only has a positive effect when com-
ined with R-SZZ, where the BIC selection heuristic picks only one

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

v

6

S
a
I
r
m
c
c
t
f
t
p

Table 9
Correctness ratio computed among all evaluated SZZ approaches.
Algorithm No issue date filter With issue date filter

oracleCall oracleCissues oracleCall oracleCissues
B-SZZ 32/397 (0.08) 6/40 (0.15) 19/397 (0.05) 5/40 (0.13)
AG-SZZ 4/397 (0.01) 0/40 0/397 (0.00) 0/40
MA-SZZ 1/397 (0.00) 0/40 0/397 0/40
L-SZZ 5/397 (0.01) 0/40 0/397 0/40
R-SZZ 2/397 (0.01) 20/40 (0.50) 1/397 (0.00) 21/40 (0.53)
MA-SZZ@A 10/397 (0.03) 2/40 (0.05) 3/397 (0.01) 2/40 (0.05)
R-SZZ@A 32/397 (0.08) 1/40 (0.03) 269/397 (0.68) 1/40 (0.03)
MA-SZZ@DU 0/397 0/40 0/397 0/40
R-SZZ@DU 218/397 (0.55) 0/40 12/397 (0.03) 0/40
MA-SZZ@REV 0/397 0/40 0/397 0/40
R-SZZ@REV 0/397 0/40 0/397 0/40
commit as a BIC candidate. As a consequence, the effectiveness
of the revert commit filter is concrete only for some SZZ variants.
Another point to consider is that the effectiveness of the heuristic
directly depends on the presence of cases where there are revert
commits. However, our heuristic never reduced the efficacy of the
baselines: This means that HR can be safely used on top of any SZZ
ariant, and we found no drawbacks in including it.

.3. Evaluating commit-level effectiveness of SZZ

In summary, our first and second studies show that (i) R-
ZZ generally achieves the best results, and (ii) by considering
dded lines and revert commits, the accuracy of SZZ improves.
nterestingly, we found such an advantage (mostly, the ones
elated to added lines) dependent on the context. Some variants
ight work better in some cases, while some others in other
ases. Thus, we conduct an additional analysis where for each
ommit we measure what is the best performing SZZ variant in
erms of correctly identified BICs. The goal of this analysis is to
ind out if the performance of the SZZ variants are dependent on
he context, i.e., for each commit there is a different variant which
erforms better than the others. To do this, for each variant vj

and commit Ci, we compute the precision score for each bugfix
commit as follows:

F
vj
Ci

=
|identified

vj
Ci

∩ correctCi |

|identified
vj
Ci
|

where identified
vj
Ci

is the set of BICs returned by vj for commit Ci,
and correctCi is the set of BICs correctly identified by vj for the
commit Ci. The higher the score, the more the given variant is
suitable for the commit. For each commit Ci, we award a point to
the SZZ variant(s), achieving the highest score for Ci. Then, we
sum such scores. In case there are more SZZ implementations
with the same score, we assign the point to the one that also
achieves the highest F-measure score on the entire dataset. We
identify the final resulting score as correctness ratio. This metric
is comparable to the precision score evaluated for all the SZZ
variant for a single commit. Thus, it allows to measure which is
the best variant of SZZ to use for each commit. In Table 9 we
report the correctness ratio score. When the issue date filter is not
applied, R-SZZ@DU achieves the highest score for oracleCall, while
for oracleCissues the best performing is R-SZZ. The SZZ variants that
are less effective, without earning any points on both datasets,
are MA-SZZ@DU, R-SZZ@REV, and MA-SZZ@REV. When the issue
date filer is applied, R-SZZ@A achieves the highest correctness
ratio score (68%) on oracleCall, while looking at oracleCissues the top
performer is still R-SZZ (53%). This confirms what we stated in
RQ2, that the best combination of line processing heuristic, BIC
selection techniques and filters for SZZ depend on a specific bug-
fixing context (i.e., fix pattern). As the proposed heuristics give
14
the best improvement to R-SZZ, we can also conclude that not
all the SZZ heuristics are compatible, but some work better in
combination with others. To verify this, for each commit, we
pick only the best performing SZZ implementation to compare
the resulting F-measure scores to the highest achieved in the
context of RQ2. Thus, we obtain an overall score of 0.71 (+0.12)
for the dataset oracleCall and 0.63 (+0.10) for oracleCissues, without
applying the issue date filter. When the issue date filter is ap-
plied, we achieve 0.75 (+0.05) and 0.65 (+0.09), respectively.
Surprisingly, both R-SZZ@REV and MA-SZZ@REV does not gain
any points with and without filtering by issue date. This because
the uniquely identified commits, looking at the results from RQ3,
do not impact C source files. Thus, the HR does not give any
advantage over the other SZZ implementations considering the C-
only dataset. We also statistically compared the values of F

vj
Ci

for
each SZZ variant. In detail, we performed the Wilcoxon signed-
rank test (Wilcoxon, 1945) between all pairs of SZZ variants to
evaluate if there is a statistically significant difference between
the resulting values. We applied the Benjamini–Hochberg p-value
correction procedure (Benjamini and Hochberg, 1995) to account
for multiple tests. For the SZZ pairs for which there is a statisti-
cally significant difference (i.e., p-value < 0.05), we evaluated the
effect size by computing the Cliff’s delta (Cliff, 1993) between the
two distributions. We report the results as heatmaps in Figs. 6
and 7 with and without the issue date filter applied, respectively.
The values of the heatmaps are the effect size magnitude when
there is statistical significance, or Not Significant (NS) otherwise.
In most cases, there is a statistical significance with a Negligible
effect size. The detailed results can be found in our replication
package (Rosa et al., 2023).

7. Discussion

In this section we report some examples on unidentified bug-
inducing changes, and we discuss some points about the differ-
ences between our oracle and past oracles.

7.1. Unidentified BICs

There are still bug-inducing changes that the improved SZZ
implementation cannot identify. A first example is commit
b0f795 from libmesh repository,15 where the C file extension is
used for a C++ source file and only added lines are present as
fixing change. Our SZZ implementations cannot correctly process
such files as they only work for C source code. Another example is
commit d6ef40 from the repository gxt/QEMU.16 In that case, the
bug and the fix impact different files (cpu-all.h and main.c
respectively). It is interesting to notice that, in such a case, the

15 https://github.com/libMesh/libmesh/commit/b0f7953
16 https://github.com/gxt/QEMU/commit/d6ef40b

https://github.com/libMesh/libmesh/commit/b0f7953
https://github.com/gxt/QEMU/commit/d6ef40b

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

c
t
t

Fig. 6. Cliff’s delta magnitude computed between the correctness ratio values for pairs of SZZ variants, with no issue date filter applied.
Fig. 7. Cliff’s delta magnitude computed between the correctness ratio values for pairs of SZZ variants, with issue date filter applied.
ommit message of the bug-fixing commit contains a reference
o the file involved in the bug-inducing commit: ‘‘...but we need
o at least define the reserved_va global so that cpu-all.h’s
RESERVED_VA macro will work correctly’’.. A similar observation
can be done for commit aebda6 from OpenChannelSSD/linux17:
To identify the bug-inducing change, SZZ has to process lines that
are not related to those impacted by the fix (e.g., line 548). In this
case, the commit message contains information about the method
impacted by the fix: ‘‘...to fix the issue, as we have to do is make
sure that our start_config_issued flag gets reset whenever
we receive a SetInterface request’’. This shows that it can
be possible to use NLP-based techniques to extract information
about code artifacts indirectly affected by a commit, using such a
piece of information to improve the effectiveness of SZZ.

7.2. Differences with past oracles

Table 10 shows the recall and precision of the SZZ variants
for studies in the literature also evaluating SZZ and its variants.
We only focus on studies adopting our same evaluation metrics.
All of them but (Petrulio et al., 2022) use oracles defined by
researchers. Petrulio et al. (2022) evaluate different SZZ variants
using Mozilla’s benchmark dataset which is manually annotated

17 https://github.com/OpenChannelSSD/linux/commit/aebda61
15
by developers from Mozilla. This means that the oracle from
Mozilla’s dataset is the most similar to our oracle, with the
exception that it is manually annotated and not automatically
generated. The studies of Petrulio et al. (2022) and Bludau and
Pretschner (2022) conducted their evaluation using the first ver-
sion of our pyszz tool, proposed in our previous work (Rosa
et al., 2021) and extended in this paper. However, their results are
lower compared to what we achieved on our dataset. According
to Petrulio et al. (2022), this could be due to differences in the
datasets, with our dataset not featuring ghost commits (Rezk
et al., 2021), i.e., BICs that cannot be detected by SZZ since
related to added lines, and extrinsic bugs (Rodríguez-Pérez et al.,
2020), i.e., changes from external dependencies not part of the
repository. This directly affects the performance of SZZ, giving
a boost when compared to Mozilla’s benchmark. As the authors
explain, this could be due to the methodology we used to build
the oracle. In fact, those cases seem to be present only if the bug
was manually annotated by the developer when starting from a
bug report.

We can summarize the differences between the results in our
study and those reported in previous oracles with the following
points.

Recall and Precision. SZZ obtains better performance (Ta-
ble 5) when using our dataset, compared to the others existing in
the literature (Table 10). This might be due to the fact that some

https://github.com/OpenChannelSSD/linux/commit/aebda61

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

w
a
r
o
w

7

d
o
t
2
b
b
s

e
t
a
p
m

t
s
S
w
a
f

7

r
t
b
t
s
c
b
a

Table 10
Summary table of the other studies from the literature using comparable evaluation metrics with our work. For each variant we report the values
of Precision (P), Recall (R), the size of the dataset used for the evaluation (N).
Study B-SZZ AG-SZZ MA-SZZ L-SZZ R-SZZ N

R P R P R P R P R P

Davies et al. (2014) 0.59 0.50 – – – – – – – – 431
Wen et al. (2016) – 0.64 0.69 – – – – – – – 357
Rodríguez-Pérez et al. (2020) 0.71 0.32 0.76 0.34 – – – – 0.53 0.51 116
Bludau and Pretschner (2022) 0.62 0.34 0.21 0.26 0.26 0.19 0.19 0.32 0.17 0.29 300
Petrulio et al. (2022) 0.47 0.58 0.38 0.50 – – 0.29 0.27 0.39 0.50 1,586

Our work (with date filter) 0.68 0.42 0.65 0.40 0.63 0.39 0.47 0.55 0.62 0.73 1,258
c
e
q
r
t
a
f

o
p
e
t
W
n
i
p
d
o
p
o
a
c
a
B
t
4
f

c
t
i
o
i
b
c
o
d
t
w
o

particular cases, commonly present in bug-fix commits datasets,
are absent in our dataset (Petrulio et al., 2022).

Scalability. Although a manual effort is required in our case, it
ill be lower as compared to the manual effort spent to manually
nnotate datasets in the literature. We can reduce further the
equired manual effort by using only the H1 and H2 filters in
ur mining heuristics. This allows considering only those commits
ith explicit BIC reference, which are less prone to false positives.

.3. Implications

Our work has various implications for both academia and in-
ustry. Concerning the former, we provide a high-quality dataset
f bug-fixing and bug-inducing commits which, as documented in
he literature, it is difficult and expensive to build (Herbold et al.,
022; Hosseini et al., 2017). In addition, we explored the benefits
rought by SZZ heuristics considering the entire line of bug-fix
y including both deleted and added lines (Hosseini et al., 2017),
howing that the impact on the algorithm accuracy is limited.
In industrial practice, there is evidence that SZZ is used in the

valuation of defect prediction tools (Bowes et al., 2017). Given
he performance we obtained (i.e., precision and recall values
round 60%–70%), the quality of the datasets used for defect
rediction approaches (Fan et al., 2019; Herbold et al., 2022)
ight be lower than expected.
Generalizability of HR. Our heuristic can be extended to other

ypes of changes that do not significantly alter commit history,
uch as cherry-pick. In the case of squash commits, most probably
ZZ will simply go back in the history until the BIC is found, or it
as part of the squashing, and the resulting commit containing
ll the squashed changes will be identified as BIC. In any case,
urther investigation is required for these particular cases.

.4. Limitations of our oracle

While it is true that we leverage information on the BIC
elated to specific bug fixing commits, we do not verify our oracle
hrough a manual verification of the bug and the fix performed
y the original developers. There is a chance that, in some cases,
he commit reported as BIC is not the source of the bug, but a
ymptom. Also, the fix could be performed by more than one
ommit. However, we are interested in finding the association
etween a fix commit and its BIC, reported by the developer
t that time (i.e., with the intention of the performed change)

assuming that the reported BIC comes from the knowledge that
comes from the fact that he/she developed that system. Thus, if a
developer performs several changes to fix a bug, he/she probably
refers to the same BIC in the commit messages.

8. Threats to validity

Construct validity. During the manual validation, the evaluators
mainly relied on the commit message and the linked issue(s),
16
when available, to confirm that a mined commit was a bug-
fixing commit. Misleading information in the commit message
could result in the introduction of false positive instances in our
dataset. However, all commits have been checked by at least two
evaluators and doubtful cases have been excluded, privileging a
conservative approach. To build our dataset, we considered all the
projects from GitHub, without explicitly defining criteria to select
only projects that are invested in software quality. Our assump-
tion is that the fact that developers take care of documenting the
bug-introducing commit(s) is an indication that they care about
software quality. To ensure that the commits in our dataset are
from projects that take quality into account, we manually ana-
lyzed 123 projects from our dataset, which allowed us to cover
a significant sample of commits (286 out of 1115, with 95%±5%
onfidence level). For each of them, we checked if they contained
lements that indicate a certain degree of attention to software
uality, i.e., (i) unit test cases, (ii) code reviews (through pull
equests), (iii) and continuous integration pipelines. We found
hat in 95% of the projects, developers (i) wrote unit test cases,
nd (ii) conducted code reviews through pull requests. Also, we
ound CI pipelines in 75% of the projects.

Internal validity. There is a possible subjectiveness introduced
f the manual analysis, which has been mitigated with multi-
le evaluators per bug-fix. Also, we reimplemented most of the
xperimented SZZ approaches, thus possibly introducing varia-
ions as compared to what proposed by the original authors.
e followed the description of the approaches in the origi-
al papers, documented in Table 4 any difference between our
mplementations and the original proposals, and share our im-
lementations (Rosa et al., 2023). Also, note that the differences
ocumented in Table 4 always aim at improving the performance
f the SZZ variants and, thus, should not be detrimental for their
erformance. Another point is that our new implementations
f HDU and A-SZZ can have critical point or exceptional cases
ctually not handled. For example, when construct Definition-Use
hains only at method level, thus as discussed in Section 7 there
re some cases where our heuristic cannot identify the correct
IC. Also, for MA-SZZ@A and R-SZZ@A, currently we do not apply
he BICs filter described in the paper, where they select at most
commits as BIC. This because we replaced that filter with the

iltering heuristic of R-SZZ.
External validity. While it is true that we mined millions of

ommits to build our dataset, we used very strict filtering criteria
hat resulted in 2304 instances for our oracle. Also, the SZZ
mplementations have been experimented on a smaller dataset
f 1258 instances that is, however, still larger than those used
n previous works. Finally, our dataset represents a subset of the
ug-fixes performed by developers. This is due to our design
hoice, where we used strict selection criteria when building
ur oracle to prefer quality over quantity. It is possible that our
ataset is biased towards a specific type of bug-fixing commits:
here might be an inherent difference between the bug fixes for
hich developers document the bug-inducing commit(s) (i.e., the
nly ones we considered) and other bug fixes.

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

p
c

u
l
r
o

9

b
p
W
v
H
v
(
s
c
a
t
s
s

C

y
i
r
V
a
W
i
a

While, to date, this is the largest dataset to evaluate SZZ im-
lementations, additional mining and different filtering heuristics
ould help in improving the generalizability of our findings.
In industrial settings, bugs are usually reported and then fixed

sing issue trackers (Zhang, 2020). This means that developers
ess probably annotate the BIC in the commit message, but they
eport the issue link to the fixed bug. Thus, the applicability of
ur methodology needs to be furtherly investigated.

. Conclusion and future works

Exploring new ways to improve the effectiveness of SZZ can
e relevant for both industry and academia. In this paper, we
roposed a developer-informed dataset for the evaluation of SZZ.
e use that dataset to perform a thorough comparison of existing

ariants of the algorithm, including two new heuristics, namely
DU and HR. Based on our findings, the best performing SZZ
ariant is R-SZZ. The newly evaluated heuristics to enrich SZZ
HDU and HR), applied on the top of R-SZZ and MA-SZZ, provide a
light improvement in terms of precision and recall (i.e., +1%–2%)
ompared to the original versions. One possible future direction
imed at further improve performance could be the combina-
ion of different SZZ variants, trying to exploit their individual
trengths and applying the most appropriate one based on the
pecific bug-fixing commit at hand.

RediT authorship contribution statement

Giovanni Rosa: Conceptualization, Data curation, Formal anal-
sis, Investigation, Methodology, Software, Validation, Visual-
zation, Writing. Luca Pascarella: Conceptualization, Data cu-
ation, Formal analysis, Investigation, Methodology, Software,
alidation, Visualization, Writing. Simone Scalabrino: Conceptu-
lization, Methodology, Formal analysis, Visualization, Software,
riting. Rosalia Tufano: Conceptualization,Investigation, Writ-

ng, Methodology, . Gabriele Bavota: Conceptualization, Funding
cquisition, Supervision, Writing. Michele Lanza: Conceptualiza-

tion, Funding acquisition, Supervision, Writing. Rocco Oliveto:
Conceptualization, Funding acquisition, Supervision, Writing.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Gabriele Bavota reports financial support was provided
by European Research Council. Gabriele Bavota and Michele Lanza
reports financial support was provided by Swiss National Science
Foundation.

Data availability

The complete study material, data, and source code of our
re-implementations are fully available in our replication pack-
age (Rosa et al., 2023).

Acknowledgments

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 851720). We
are grateful for the support by the Swiss National Science foun-
dation (SNF) and JSPS, Japan (Project ‘‘SENSOR’’).
17
References

Aman, H., Amasaki, S., Yokogawa, T., Kawahara, M., 2019. Empirical study of
fault introduction focusing on the similarity among local variable names. In:
QuASoQ@ APSEC. pp. 3–11.

Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Information Retrieval. Addison-
Wesley.

Bao, L., Xia, X., Hassan, A.E., Yang, X., 2022. V-SZZ: automatic identification of
version ranges affected by CVE vulnerabilities. In: Proceedings of the 44th
International Conference on Software Engineering. pp. 2352–2364.

Bavota, G., Russo, B., 2015. Four eyes are better than two: On the impact of
code reviews on software quality. In: 2015 IEEE International Conference on
Software Maintenance and Evolution. ICSME, IEEE, pp. 81–90.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat.
Methodol. 57 (1), 289–300.

Bernardi, M.L., Canfora, G., Di Lucca, G.A., Di Penta, M., Distante, D., 2018. The
relation between developers’ communication and fix-inducing changes: An
empirical study. J. Syst. Softw. 140, 111–125.

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu, P.,
2009a. Fair and balanced? bias in bug-fix datasets. In: Proceedings of the
7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering. pp.
121–130.

Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P., 2009b.
The promises and perils of mining git. In: 2009 6th IEEE International
Working Conference on Mining Software Repositories. IEEE, pp. 1–10.

Bissyande, T.F., Thung, F., an?d D. Lo, S.W., Jiang, L., Reveillere, L., 2013. Empirical
evaluation of bug linking. In: 2013 17th European Conference on Software
Maintenance and Reengineering. pp. 89–98.

Bludau, P., Pretschner, A., 2022. PR-SZZ: How pull requests can support the
tracing of defects in software repositories. In: 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering. SANER, IEEE,
pp. 1–12.

Borg, M., Svensson, O., Berg, K., Hansson, D., 2019. SZZ unleashed: an open
implementation of the SZZ algorithm-featuring example usage in a study
of just-in-time bug prediction for the jenkins project. In: Proceedings of the
3rd ACM SIGSOFT International Workshop on Machine Learning Techniques
for Software Quality Evaluation. pp. 7–12.

Bowes, D., Counsell, S., Hall, T., Petric, J., Shippey, T., 2017. Getting defect
prediction into industrial practice: the ELFF tool. In: 2017 IEEE International
Symposium on Software Reliability Engineering Workshops. ISSREW, IEEE,
pp. 44–47.

Çaglayan, B., Bener, A.B., 2016. Effect of developer collaboration activity on
software quality in two large scale projects. J. Syst. Softw. 118, 288–296.

Canfora, G., Ceccarelli, M., Cerulo, L., Di Penta, M., 2011. How long does a bug
survive? an empirical study. In: 2011 18th Working Conference on Reverse
Engineering. IEEE, pp. 191–200.

Chen, B., Jiang, Z.M.J., 2019. Extracting and studying the logging-code-issue-
introducing changes in java-based large-scale open source software systems.
Empir. Softw. Eng. 24 (4), 2285–2322.

Cliff, N., 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychol. Bull. 114 (3), 494.

Da Costa, D.A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., Hassan, A.E., 2016.
A framework for evaluating the results of the szz approach for identifying
bug-introducing changes. IEEE Trans. Softw. Eng. 43 (7), 641–657.

Davies, S., Roper, M., Wood, M., 2014. Comparing text-based and dependence-
based approaches for determining the origins of bugs. J. Softw.: Evol. Process
26 (1), 107–139.

Eyolfson, J., Tan, L., Lam, P., 2014. Correlations between bugginess and
time-based commit characteristics. Empir. Softw. Eng. 19 (4), 1009–1039.

Fan, Y., Xia, X., da Costa, D.A., Lo, D., Hassan, A.E., Li, S., 2019. The impact of
changes mislabeled by SZZ on just-in-time defect prediction. IEEE Trans.
Softw. Eng..

Fischer, M., Pinzger, M., Gall, H.C., 2003. Populating a release history database
from version control and bug tracking systems. In: 19th International Con-
ference on Software Maintenance (ICSM 2003), the Architecture of Existing
Systems, 22-26 September 2003, Amsterdam, the Netherlands. p. 23.

Grigorik, I., 2012. GitHub archive. https://www.githubarchive.org.
Hata, H., Mizuno, O., Kikuno, T., 2012. Bug prediction based on fine-grained

module histories. In: 2012 34th International Conference on Software
Engineering. ICSE, IEEE, pp. 200–210.

http://refhub.elsevier.com/S0164-1212(23)00124-3/sb1
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb1
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb1
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb1
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb1
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb2
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb2
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb2
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb3
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb3
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb3
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb3
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb3
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb4
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb4
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb4
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb4
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb4
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb5
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb5
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb5
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb5
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb5
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb6
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb6
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb6
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb6
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb6
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb7
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb8
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb8
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb8
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb8
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb8
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb9
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb9
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb9
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb9
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb9
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb10
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb11
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb12
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb13
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb13
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb13
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb14
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb14
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb14
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb14
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb14
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb15
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb15
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb15
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb15
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb15
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb16
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb16
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb16
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb17
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb17
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb17
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb17
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb17
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb18
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb18
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb18
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb18
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb18
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb19
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb19
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb19
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb20
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb20
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb20
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb20
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb20
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb21
https://www.githubarchive.org
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb23
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb23
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb23
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb23
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb23

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

H

H

J

K

K

K

K

K

K

L

L

M

M

N

N

O

P

P

P

P

P

P

R

R

erbold, S., Trautsch, A., Trautsch, F., Ledel, B., 2022. Problems with SZZ and
features: An empirical study of the state of practice of defect prediction
data collection. Empir. Softw. Eng. 27 (2), 1–49.

osseini, S., Turhan, B., Gunarathna, D., 2017. A systematic literature review and
meta-analysis on cross project defect prediction. IEEE Trans. Softw. Eng. 45
(2), 111–147.

ust, R., Jalali, D., Ernst, M.D., 2014. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. pp.
437–440.

arampatsis, R.-M., Sutton, C., 2020. How often do single-statement bugs
occur? the ManySStuBs4J dataset. In: Proceedings of the 17th International
Conference on Mining Software Repositories. In: MSR ’20, Association for
Computing Machinery, New York, NY, USA, pp. 573–577. http://dx.doi.org/
10.1145/3379597.3387491, https://doi.org/10.1145/3379597.3387491.

ennedy, K., 1978. Use-definition chains with applications. Comput. Languages
3 (3), 163–179.

im, S., Whitehead, E.J., Zhang, Y., 2008. Classifying software changes: Clean or
buggy? IEEE Trans. Softw. Eng. 34 (2), 181–196.

im, S., Zimmermann, T., Pan, K., James Jr., E., et al., 2006. Automatic identifica-
tion of bug-introducing changes. In: 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06). IEEE, pp. 81–90.

ononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W., 2015. Investigating
code review quality: Do people and participation matter? In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 111–120.

ovalenko, V., Palomba, F., Bacchelli, A., 2018. Mining file histories: Should
we consider branches? In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. pp. 202–213.

enarduzzi, V., Lomio, F., Huttunen, H., Taibi, D., 2020a. Are sonarqube rules
inducing bugs? In: 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, pp. 501–511.

enarduzzi, V., Palomba, F., Taibi, D., Tamburri, D.A., 2020b. Openszz: A
free, open-source, web-accessible implementation of the szz algorithm. In:
Proceedings of the 28th IEEE/ACM International Conference on Program
Comprehension. p. To appear.

arinescu, P., Hosek, P., Cadar, C., 2014. Covrig: a framework for the analysis
of code, test, and coverage evolution in real software. In: Proceedings of the
2014 international symposium on software testing and analysis. pp. 93–104.

isirli, A.T., Shihab, E., Kamei, Y., 2016. Studying high impact fix-inducing
changes. Empir. Softw. Eng. 21 (2), 605–641.

eto, E.C., da Costa, D.A., Kulesza, U., 2018. The impact of refactoring changes
on the szz algorithm: An empirical study. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering. SANER, IEEE,
pp. 380–390.

eto, E.C., da Costa, D.A., Kulesza, U., 2019. Revisiting and improving SZZ
implementations. In: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ESEM, IEEE, pp. 1–12.

liveto, R., Gethers, M., Poshyvanyk, D., Lucia, A.D., 2010. On the equivalence
of information retrieval methods for automated traceability link recovery.
In: Proceedings of the 18th IEEE International Conference on Program
Comprehension. IEEE Computer Society, pp. 68–71.

ace, J., 2007. A tool which compares java files based on content. http://www.
incava.org/projects/java/diffj.

alomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A., 2018.
On the diffuseness and the impact on maintainability of code smells: a large
scale empirical investigation. Empir. Softw. Eng. 23 (3), 1188–1221.

ascarella, L., Palomba, F., Bacchelli, A., 2019. Fine-grained just-in-time defect
prediction. J. Syst. Softw. 150, 22–36.

etrulio, F., Ackermann, D., Fregnan, E., Calikli, G., Castelluccio, M., Ledru, S.,
Denizet, C., Humphries, E., Bacchelli, A., 2022. SZZ in the time of pull
requests. arXiv preprint arXiv:2209.03311.

osnett, D., D’Souza, R., Devanbu, P., Filkov, V., 2013. Dual ecological measures
of focus in software development. In: 2013 35th International Conference
on Software Engineering. ICSE, IEEE, pp. 452–461.

rechelt, L., Pepper, A., 2014. Why software repositories are not used for defect-
insertion circumstance analysis more often: A case study. Inf. Softw. Technol.
56 (10), 1377–1389.

ahman, F., Posnett, D., Hindle, A., Barr, E., Devanbu, P., 2011. BugCache
for inspections: hit or miss? In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering. pp. 322–331.

ezk, C., Kamei, Y., Mcintosh, S., 2021. The ghost commit problem when
identifying fix-inducing changes: An empirical study of apache projects. IEEE,
18
Rodríguez-Pérez, G., Robles, G., González-Barahona, J.M., 2018. Reproducibility
and credibility in empirical software engineering: A case study based on
a systematic literature review of the use of the SZZ algorithm. Inf. Softw.
Technol. 99, 164–176.

Rodríguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D.M.,
Gonzalez-Barahona, J.M., 2020. How bugs are born: a model to identify how
bugs are introduced in software components. Empir. Softw. Eng. 1–47.

Rosa, G., Pascarella, L., Scalabrino, S., Tufano, R., Bavota, G., Lanza, M., Oliveto, R.,
2021. Evaluating szz implementations through a developer-informed oracle.
In: 2021 IEEE/ACM 43rd International Conference on Software Engineering.
ICSE, IEEE, pp. 436–447.

Rosa, G., Pascarella, L., Scalabrino, S., Tufano, R., Bavota, G., Lanza, M., Oliveto, R.,
2023. Replication Package for ‘‘A Comprehensive Evaluation of SZZ Variants
Through a Developer-informed Oracle’’, https://doi.org/10.6084/m9.figshare.
19586500.

Sahal, E., Tosun, A., 2018. Identifying bug-inducing changes for code additions.
In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. pp. 1–2.

Senchenko, A., Patterson, J., Samuel, H., Ispir, D., 2022. SUPERNOVA: Automating
test selection and defect prevention in AAA video games using risk based
testing and machine learning. In: 2022 IEEE Conference on Software Testing,
Verification and Validation. ICST, IEEE, pp. 345–354.

Servant, F., Jones, J.A., 2011. History slicing. In: 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011). IEEE, pp.
452–455.

Servant, F., Jones, J.A., 2012. History slicing: assisting code-evolution tasks. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. pp. 1–11.

Servant, F., Jones, J.A., 2017. Fuzzy fine-grained code-history analysis. In: 2017
IEEE/ACM 39th International Conference on Software Engineering. ICSE, IEEE,
pp. 746–757.

Silva, D., Valente, M.T., 2017. RefDiff: detecting refactorings in version histo-
ries. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories. MSR, IEEE, pp. 269–279.

Śliwerski, J., Zimmermann, T., Zeller, A., 2005. When do changes induce
fixes? ACM Sigsoft Softw. Eng. Notes 30 (4), 1–5.

Spadini, D., Aniche, M., Bacchelli, A., 2018. PyDriller: Python framework for
mining software repositories. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE 2018. ACM Press,
New York, New York, USA, pp. 908–911. http://dx.doi.org/10.1145/3236024.
3264598, URL http://dl.acm.org/citation.cfm?doid=3236024.3264598.

Tan, M., Tan, L., Dara, S., Mayeux, C., 2015. Online defect prediction for
imbalanced data. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. Vol. 2, IEEE, pp. 99–108.

Tóth, Z., Gyimesi, P., Ferenc, R., 2016. A public bug database of GitHub projects
and its application in bug prediction. In: Computational Science and Its
Applications – ICCSA 2016. Springer International Publishing, pp. 625–638.

Tsantalis, N., Ketkar, A., Dig, D., 2020. RefactoringMiner 2.0. IEEE Trans. Softw.
Eng. http://dx.doi.org/10.1109/TSE.2020.3007722.

Tsantalis, N., Mansouri, M., Eshkevari, L., Mazinanian, D., Dig, D., 2018. Accurate
and efficient refactoring detection in commit history. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering. ICSE, IEEE, pp. 483–494.

Tu, H., Yu, Z., Menzies, T., 2020. Better data labelling with EMBLEM (and how
that impacts defect prediction). IEEE Trans. Softw. Eng..

Tufano, M., Bavota, G., Poshyvanyk, D., Di Penta, M., Oliveto, R., De Lucia, A., 2017.
An empirical study on developer-related factors characterizing fix-inducing
commits. J. Softw.: Evol. Process 29 (1), e1797.

Tufano, M., Watson, C., Bavota, G., Penta, M.D., White, M., Poshyvanyk, D., 2019.
An empirical study on learning bug-fixing patches in the wild via neural
machine translation. ACM Trans. Softw. Eng. Methodol. 28 (4), 19:1–19:29.

Wehaibi, S., Shihab, E., Guerrouj, L., 2016. Examining the impact of self-
admitted technical debt on software quality. In: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering. SANER, 1,
IEEE, pp. 179–188.

Wen, M., Wu, R., Cheung, S.-C., 2016. Locus: Locating bugs from software
changes. In: 2016 31st IEEE/ACM International Conference on Automated
Software Engineering. ASE, IEEE, pp. 262–273.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biom. Bull. 1
(6), 80–83, URL http://www.jstor.org/stable/3001968.

Williams, C.C., Spacco, J.W., 2008a. Branching and merging in the repository.
In: Proceedings of the 2008 International Working Conference on Mining
Software Repositories. pp. 19–22.

Williams, C., Spacco, J., 2008b. Szz revisited: verifying when changes induce fixes.
In: Proceedings of the 2008 Workshop on Defects in Large Software Systems.
pp. 32–36.

http://refhub.elsevier.com/S0164-1212(23)00124-3/sb24
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb24
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb24
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb24
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb24
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb25
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb25
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb25
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb25
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb25
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb26
http://dx.doi.org/10.1145/3379597.3387491
http://dx.doi.org/10.1145/3379597.3387491
http://dx.doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb28
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb28
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb28
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb29
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb29
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb29
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb30
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb30
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb30
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb30
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb30
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb31
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb32
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb32
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb32
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb32
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb32
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb33
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb33
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb33
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb33
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb33
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb34
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb35
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb35
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb35
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb35
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb35
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb36
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb36
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb36
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb37
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb38
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb38
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb38
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb38
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb38
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb39
http://www.incava.org/projects/java/diffj
http://www.incava.org/projects/java/diffj
http://www.incava.org/projects/java/diffj
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb41
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb41
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb41
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb41
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb41
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb42
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb42
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb42
http://arxiv.org/abs/2209.03311
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb44
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb44
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb44
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb44
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb44
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb45
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb45
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb45
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb45
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb45
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb46
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb47
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb47
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb47
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb47
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb47
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb48
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb49
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb49
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb49
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb49
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb49
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb50
https://doi.org/10.6084/m9.figshare.19586500
https://doi.org/10.6084/m9.figshare.19586500
https://doi.org/10.6084/m9.figshare.19586500
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb52
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb52
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb52
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb52
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb52
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb53
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb54
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb54
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb54
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb54
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb54
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb55
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb55
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb55
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb55
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb55
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb56
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb56
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb56
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb56
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb56
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb57
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb57
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb57
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb57
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb57
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb58
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb58
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb58
http://dx.doi.org/10.1145/3236024.3264598
http://dx.doi.org/10.1145/3236024.3264598
http://dx.doi.org/10.1145/3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb60
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb60
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb60
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb60
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb60
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb61
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb61
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb61
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb61
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb61
http://dx.doi.org/10.1109/TSE.2020.3007722
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb63
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb63
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb63
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb63
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb63
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb64
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb64
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb64
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb65
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb65
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb65
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb65
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb65
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb66
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb66
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb66
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb66
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb66
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb67
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb68
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb68
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb68
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb68
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb68
http://www.jstor.org/stable/3001968
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb70
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb70
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb70
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb70
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb70
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb71
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb71
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb71
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb71
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb71

G. Rosa, L. Pascarella, S. Scalabrino et al. The Journal of Systems & Software 202 (2023) 111729

Y

Z

Z

/

M

an, M., Xia, X., Fan, Y., Hassan, A.E., Lo, D., Li, S., 2020. Just-in-time defect
identification and localization: A two-phase framework. IEEE Trans. Softw.
Eng..

eng, Z., Zhang, Y., Zhang, H., Zhang, L., 2021. Deep just-in-time defect predic-
tion: how far are we? In: Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. pp. 427–438.

hang, W., 2020. Efficient bug triage for industrial environments. In: 2020 IEEE
International Conference on Software Maintenance and Evolution. ICSME,
IEEE, pp. 727–735.

Giovanni Rosa is a Ph.D. student in Software Engineer-
ing at University of Molise (UNIMOL), Italy. He received
his MSc. in Software System Security, from the same
University, in October 2020. His research activity is
focused on (but not limited to) software quality and
maintenance of DevOps artifacts.
More information: https://giovannirosa.com/

Luca Pascarella is a researcher at ETH Zurich, Switzer-
land. He received his Ph.D. in Computer Science
from TU Delft, The Netherlands, in 2020. His broader
mission aims at leveraging the heterogeneous data
recorded during engineering processes to lighten
human-centered tasks through data-driven algorithms.
His focus is on empirical software engineering, code
review, and computer-vision algorithms. He received
an ACM SIGSOFT Distinguished Paper Award at MSR
2017 and a Best Paper Award Honorable Mention at
CSCW2018. More information is available at: https:

/lucapascarella.com/

Simone Scalabrino is a Research Fellow at the Uni-
versity of Molise, Italy. He has received his MS degree
from the University of Salerno, and his Ph.D. degree
from the University of Molise, defending a thesis on
automatically assessing and improving source code
readability and understandability. His main research
interests include code quality, software testing, and
empirical software engineering. He has received three
ACM SIGSOFT Distinguished Paper Awards at ICPC
2016, ASE 2017, and MSR 2019. He is co-founder
and CSO of datasound, a spin-off of the University of

olise.

Rosalia Tufano is a Ph.D student in the Faculty of
Informatics at the Università della Svizzera Italiana
(USI), Switzerland. She received her MSc. in Applied
Mathematics from Università degli Studi di Napoli
Federico II , Italy, in March 2019. Her research inter-
ests mainly include the study and the application of
machine learning techniques to support code-related
tasks. More information available at: https://www.inf.
usi.ch/phd/tufanr/
19
Gabriele Bavota is an Associate Professor at the Faculty
of Informatics of the Università della Svizzera italiana
(USI), Lugano, where he is part of the Software Institute
and he leads the SEART research group. He received
the PhD in Computer Science from the University of
Salerno, Italy, in 2013. His research interests include
software maintenance and evolution, mining software
repositories, and empirical software engineering. On
these topics, he authored over 160 papers appeared in
international journals and conferences and has received
four ACM Sigsoft Distinguished Paper awards at the

three top software engineering conferences: ASE 2013 and 2017, ESEC-FSE 2015,
and ICSE 2015. He also received the best/distinguished paper award at SCAM
2012, ICSME 2018, MSR 2019, and ICPC 2020, and the MIP award at SCAM
2022.He is the recipient of the 2018 ACM Sigsoft Early Career Researcher Award
for outstanding contributions in the area of software engineering as an early
career investigator and the principal investigator of the DEVINTA ERC project.
More information: https://www.inf.usi.ch/faculty/bavota/

Michele Lanza is full professor and director of the Soft-
ware Institute at the Università della Svizzera italiana
(USI) in Lugano, Switzerland. His doctoral dissertation,
completed in 2003 at the University of Bern in Switzer-
land, received the Ernst Denert Award for best thesis in
software engineering of 2003. Prof. Lanza received the
Credit Suisse Award for best teaching in 2007 and 2009.
His professional service includes serving on the steering
committees of the IEEE International Conference of
Software Maintenance and Evolution (ICSME) and of
the IEEE International Conference on Mining Software

Repositories (MSR). He was Program co-chair of SANER 2016, ICSME 2010, MSR
2007/2008, VISSOFT 2009, and IWPSE 2007. He has graduated 13 awesome
PhD students so far, some of whom have become internationally well-known
academics. At USI Prof. Lanza directs the Software Institute of USI, which he
founded in 2017. Moreover, he leads the REVEAL research group, which he
founded in 2004. REVEAL works in the areas of software visualization, evolution,
and analytics. He co-authored more than enough peer-reviewed articles and the
book ‘‘Object-Oriented Metrics in Practice’’.

Rocco Oliveto is a Full Professor at the University of
Molise (Italy). He is the founder of the Software Engi-
neering and Knowledge Engineering (STAKE) Lab of the
University of Molise. Prof. Oliveto is co-author of about
200 papers on topics related to software traceability,
software maintenance and evolution, and empirical
software engineering. He has received several awards
for his research activity, including 5 ACM SIGSOFT Dis-
tinguished Paper Awards and 3 Most Influential Paper
Awards. Prof. Oliveto participated in the organization
and was a member of the program committee of

several international conferences in the field of software engineering. Since 2018
he has been CEO of Datasound srl, a spin-off of the University of Molise that was
created to conceive, design and develop innovative recommendation systems to
be applied in different contexts.

http://refhub.elsevier.com/S0164-1212(23)00124-3/sb72
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb72
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb72
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb72
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb72
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb73
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb73
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb73
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb73
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb73
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb74
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb74
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb74
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb74
http://refhub.elsevier.com/S0164-1212(23)00124-3/sb74
https://giovannirosa.com/
https://lucapascarella.com/
https://lucapascarella.com/
https://lucapascarella.com/
https://www.inf.usi.ch/phd/tufanr/
https://www.inf.usi.ch/phd/tufanr/
https://www.inf.usi.ch/phd/tufanr/
https://www.inf.usi.ch/faculty/bavota/

	A comprehensive evaluation of SZZ Variants through a developer-informed oracle
	Introduction
	Background and Related Work
	SZZ Variants
	SZZ in Software Engineering Research

	Defining a Developer-informed Dataset for SZZ
	Mining Bug-fixing and Bug-inducing Commits
	Word-Based Selection of Bug-Fixing Commits
	Syntax-Aware Filtering of Referenced Bug-Fixing Commits
	Deletion of Duplicate Commits

	Manual Filtering
	The Resulting SZZ Oracle

	Study 1: Evaluating SZZ Variants
	Study Design
	SZZ Implementations Compared
	Study Context
	Experimental Procedure

	Study Results
	Current Limitation of SZZ

	New Heuristics for Improving SZZ
	HDU: Handling Added Lines
	HR: Filtering Revert Commits

	Study 2: Evaluating the Proposed SZZ Heuristics
	Study Design
	Study Context
	Experimental Procedure

	Study Results
	RQ2: Does HDU improve the accuracy of SZZ?
	RQ3: Does HR improve the accuracy of SZZ?

	Evaluating Commit-Level Effectiveness of SZZ

	Discussion
	Unidentified BICs
	Differences with Past Oracles
	Implications
	Limitations of our oracle

	Threats to Validity
	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

