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Abstract Code completion is a widely used productivity tool. It takegy the bur-
den of remembering and typing the exact names of methodasses: As a developer
starts typing a name, it provides a progressively refingdficandidates matching
the name. However, the candidate list usually comes in blgtimorder, i.e., the en-
vironment is only second-guessing the name based on pati@ching, relying on
human intervention to pick the correct one. Finding the@drcandidate can thus be
cumbersome or slower than typing the full name.

We present an approach to improve code completion basedtordesl program
histories. We define a benchmarking procedure measuringdbearacy of a code
completion engine and apply it to several completion athars on a dataset con-
sisting of the history of several systems. Further, we usecttange history data to
improve the results offered by code completion tools. Bnale propose an alterna-
tive interface for completion tools that we released to ttgwers and evaluated.
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1 Introduction

In 2006, Murphy et al. published an empirical study on howaiaXlevelopers used
the Eclipse IDE[[7]. One of their findings was treaterydeveloper in the study used
the code completion feature. Among the top commands exgegtr®ss all develop-
ers, code completion came sixth with 6.7% of the number otetesl commands,
sharing the top spots with basic editing commands such ag pagte, save and
delete. It is hardly surprising that this was not discussedhmCode completion is
one of those features that once used becomes second natwadays, every major
IDE features a language-specific code completion systerite &hy text editor has
to offer at least some kind of word completion to be deemedbledar programming.

What is surprising is that not much is being done to advande completion.
Beyond taking into account the programming language usedethave been few
documented efforts to improve completion engines. Thissdu® mean that code
completion cannot be improved, far from it: The set of pdssilandidates (referred
to from now on as suggestions or matches) returned by a cadpletion engine is
often inconveniently large, and the match a developer igadlgtiooking for can be
buried under several irrelevant suggestions. If spottingkies too long, the context
switch risks breaking the flow the developer is in.

Language-specific completion engines can alleviate tldblpm as they signifi-
cantly reduce the number of possible matches by exploitingstructure or the type
system of the program under edition. However, if an API isi@mtly large, or if the
programming language used is dynamically typed, the setodlidates to choose
from will still be too large. Given the limitations of currecode completion engines,
we argue that there are a number of reasons for the lack of agirlg done to im-
prove it:

1. There is no obvious way to improve language-depender cochpletion: Code
completion algorithms already take into account the stmecof a program, and
if possible the structure of the APIs the program uses. Toavgthe state of the
art, additional sources of information are needed.

2. Beyond obvious improvements such as using the prograrotgte, there is no
way to assert that a completion mechanism is “better” thasihear. A standard
measure of how a completion algorithm performs comparedatheer on some
empirical data is missing, since the data itself is not th&hee only possible
assessment of a completion engine is to manually test sdlézst cases.

3. “Ifitain’t broken, don'tfix it". Users are accustomed to the way code completion
works and are resistant to change. This healthy skeptiaispties that only a
significant improvement over the default code completistiesy can change the
status quo.

Ultimately, these reasons are tied to the fact that code tetiop is “as good as
it gets” with the information provided by current IDEs. Topnove it, we need addi-
tional sources of information, and provide evidence thatithprovement is worth-
while.

In our previous work, we implemented Spyware, a frameworlctvhecords the
history of a program under developmentwith great accuradystores it in a change-



based repository [13,15]. Our IDE monitoring plug-in isified of the programmer’s

code edits, analyzes them, and extracts the actual prolgnagh@.e., not text-based)
changes the developer performed on the program. Theseoaee sts first-class en-
tities in a change-based software repository, and latet hgevarious change-aware
tools.

In this article we illustrate how one can improve code cortipfewith the use
of change-based information. As a prerequisite, we definerghmark to test the
accuracy of completion engines. In essence, we replay tire eievelopment history
of the program and call the completion engine at every stemparing the sugges-
tions of the completion engine with the changes that wenesdlgtperformed on the
program. With this benchmark as a basis for comparison, \iileelalternative com-
pletion algorithms using change-based historical infdrometo different extents, and
compare them to the default algorithm which sorts matchetpinabetical order. We
validate our algorithms by extensively testing each varidthe completion engine
on the history of a medium-sized program developed for a reurabyears, as well
as several smaller projects, testing the completion erggueral hundred thousand
times. In this article we make the following contributions:

— The definition of a benchmarking procedure for code commtegingines based
on the recorded, real-world usage of the IDE by programmers.

— The definition of several variants of completion enginespleting method calls,
and their evaluation on a benchmark with several prograsmagainst standard
completion algorithms.

— Following the same procedure, we evaluate several vamdntampletion engines
for class names on the same dataset.

— The implementation of our algorithms in a tool named OCortigre which takes
advantage of the increased accuracy of the algorithms tatically propose
completions without explicit user interaction.

— A qualitative evaluation of OCompletion. We released ittte bpen source com-
munities around the Squeak and the Pharo projects, anatealléheir feedback
in the form of a survey.

Structure of the article Sectio[ 2 details code completion algorithms and exposes
the main shortcomings of these. We classify those algostam“pessimistic”, and
introduce requirements for “optimistic” ones. Sectidn 3irasts benchmark-style
evaluations with user studies and motivates our choice fmr&ehmark-style evalu-
ation. Sectiofi 4 details the kind and the format of the dashwe gather and store
in change-based repositories, and how it can be accessedtatNext, Sectiohl5
presents the benchmarking framework we defined to measaractturacy of com-
pletion engines. Sectidd 6 introduces several optimisibeccompletion strategies
beyond the default pessimistic one. Each strategy is eteal@cording to the bench-
mark we defined. Secti@h 7 introduces several completiarigfgns at the class level
evaluated with the same benchmark-style evaluation. @€8tpresents a prototype
implementation of a Ul better suited for optimistic compatalgorithms. Sectiof] 9
presents a qualitative evaluation of our code completiohtiased on the feedback
we received after its public release. Finally, after a bidistussion in Sectidn 10 and
related work review (Sectidn11), we conclude in Sedtidn 12.



2 Code Completion

Word completion predates code completion and is presenbat text editors. Since
the algorithms used for text completion are different frdme bnes used in code
completion, we do not cover these, referring Fazly's workdstate of the arf[6].

Code completion uses the large amount of information it cathey about the
code base to significantly reduce the number of matches pegptw a user when
he triggers it. For instance, when a Java-specific code agtinplengine is asked to
complete a method call to a String instance, it will only ratthe names of methods
implemented in the class String. When completing a variahtae, it will only con-
sider variables which are visible in the scope of the culagation. Such a behaviour
is possible thanks to the amount of analysis performed byemolDESs.
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Fig. 1 Code completion in Eclipse

2.1 Code Completion in the Real World

In the following, we focus on the completi@mgingi.e., the part of the code comple-
tion tool which takes as input a token to be completed and tezbused to access alll
the information necessary in the system, and outputs ameddequence of possible
completions.



We describe code completion in three IDEs: Eclipse (for)J&8queak and Visu-
alWorks (for Smalltalk).

Code completion in EclipseCode completion in Eclipse for Java is structure-sensitive
i.e., it can detect when it completes a variable/method name proposes different
completions. It is also type-sensitive: If a variable is astéance of class String, the
matches returned when auto-completing a method name wilbddeed for in the
classes “String” and “Object”, i.e., the class itself andd&its superclasses.

Figure[1 shows Eclipse code completion in action: The prognar typed “re-
move” and attempts to complete it via the completion engiraened “Content As-
sist”. The system determines that the object to which thesaggsis sentis an instance
of “javax.swing.JButton”. This class features a large APinore than 400 methods,
of which 22 start with “remove”. These 22 potential matchesadl returned and dis-
played in a popup window displaying roughly 10 of them, th& reeeding scrolling
to be accessed. The matches are sorted in alphabetica) wittethe shorter ones
given priority (the first 3 matches would barely save typisg@ey would only in-
sert parentheses). This example shows that sometimes thy@eton system, even
in a typed programming language, can be more of a hindrarmeeah actual help.
As APIs grow larger, completion becomes less useful, eaflgsince some prefixes
tend to be shared by more methods than other prefixes: Fantest more than a
hundred methods in JButton’s interface start with the prgfet”.

Code completion in Visualworkd/isualworks is a Smalltalk IDE sold by Cincofh.
Since Smalltalk is a dynamically typed language, Visuaksdaces more challenges
than Eclipse to propose accurate matches. The IDE cannaot @miak assumption
about the type of an object since it is determined only atimtand thus returns
potential candidates from all the classes defined in thesysBince Smalltalk con-
tains large libraries and is implemented in itself, the |ID#t@ins more than 2,600
classes already defined and accessible initially. The€#0ZBisses total more than
50,000 methods, defining around 27,000 unique method ndraes?7,000 poten-
tial matches for each completion. The potential matchegpesented in a menu,
which is routinely more than 50 entries long. As in Eclipse tmatches are sorted
alphabetically.

Code completion in SqueaBqueak is an open-source Smalltalk [BEhe com-
pletion system of Squeak has two modes. The normal mode ohtige is similar
to Visualworks: Since the type of the receiver is not knovrg set of candidates
is searched for in the entire system. However, Squeak fesfm integration of the
completion engine with a type inference system, Roel WURt&|Typer[20]. When
the type inference engine finds a possible type for the receive candidate list is
significantly shorter than it would be if matches were seadcim the entire system
(3,000 classes, 57,000 methods totalling 33,000 uniqubadetames). The type in-
ference engine finds the correct type for a variable roughly &f the time. Both
systems sort matches alphabetically.

1 http://www.cincomsmalltalk.com
2 |http:/iwww.squeak.org
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2.2 Classifying Code Completion Approaches

The algorithms we surveyed all share the same shortcomtiregmatch actually

looked for may be buried under a large number of irrelevagygsstions because
the matches are sorted alphabetically. The only way to maitrdown is to type a

longer completion prefix which diminishes the value of codmpletion.

To classify completion algorithms, we reuse an analogy fBoftware Config-
uration Management. Versioning systems have two ways tdleaionflicts during
concurrent developmert/[4]:

1. Pessimistic version contrelintroduced first— prevents any conflict by forcing
developers to lock a resource before using it. Conflicts naappen, but this
situation is inconvenient when two developers need to bdisame file.

2. Inoptimistic version controllevelopers do not lock a resource to edit it. Several
developers can freely work on the same file. Conflicts can éapput the opti-
mistic view states that they do not happen often enough t@beter-productive.
Today, every major versioning system uses an optimistatex.

We characterize current completion algorithms as pestaniBhey expect to
return a large number of matches, and order them alphaligtithe alphabetical
order is the fastest way to look up an individual entry amotayge set. This makes
the entry lookup a non-trivial operation: As anyone who hasr @ised a dictionary
knows, search is still involved. The cognitive load assedlao reading the list might
incur a context switch from the coding task at hand.

In contrast, we want to introduce an optimistic completitgoathm, free of the
obligation to sort matches alphabetically, under the foitg requirements:

— The number of matches returned with each completion attesygohall. The list
of matches must be very quick to be checked. No scrolling Ishiog involved,
and reading it should be fast. In addition few keystrokesukhbe required to
select the correct match. Our implementation (SediionrBitdi the number of
matches returned to 3.

— The match the programmer is looking for has a high probahifitbeing among
the matches returned by the completion engine. Even if éhgek short list of
matches is fast, it is pointless if the match looked for isindt Hence the match
looked for should be in the short list presented, preferabtie top spot.

— To minimize typing, the completion prefix necessary to hdee dorrect match
with a high probability should be short. With a 10 charactefig, it is easy to
return only 3 matches and have the right one among them.

To sum up, an optimistic code completion strategy seeks tamize the proba-
bility that the desired entry is among the ones returnedgawhinimizing the number
of entries returned, so that checking the list is fast. #ratits to do so even for short
completion prefixes to minimize the typing involved by thegrammer.



3 Evaluating Code Completion

How can one accurately evaluate code completion? The proajlies to recom-
mender systems in general (of which code completion is @meljs not trivial. Since
these tools are ultimately used by humans, a direct usenaiah with a controlled
experiment is a sensible choice. However these studiesshavi&comings that we re-
view before motivating our use of an alternative evaluasivategy. We believe that a
combination of benchmarking, to fine-tune the recommendatigorithm, with user
surveys after longer-term usage of the recommender, to lre mted to recom-
mender systems in general and code completion in particular

3.1 Human Subject Studies and Benchmarks

Human subject studiehave a long tradition as an evaluation method in software
engineering for methodologies and tools. They usually cnapwo treatments and
hence involve two groups of people assigned to perform angagk, one using the
methodology or tool under study, and a control group notgiiT he performance of
the groups are measured according to the protocol definéeé sttidy, and compared
with each other in order to determine whether the methogodwgool under study
provides an improvement for the task at hand. To have cordaleanthe measure, a
larger sample of individuals is needed to confirm a smallerdase in performance.
Human subject studies are the “golden standard” to mealsareffect of a treatment
in a large number of cases. However some of their charatitsnmmake them unsuited
for recommender systems in software engineering:

— They are time-consuming and potentially expensive to seDupruns must be
performed first, so that the experiment’s protocol is cdhgfiefined. Volunteers
have to be be found, which may also require a monetary coraiensThe most
extreme case in recent history is the pair programming stdidyrisholm et al.,
which tested —and compensated— 295 professional progresiije

— The original authors need to document their experimentalpseery carefully
in order for the experiment to be reproduced. Lung et al. demted [[10] the
difficulties they encountered while reproducing a humarnestitstudy [5].

— These studies are unsuited for incremental refinement gbroach, as they are
too expensive to be run repeatedly. In addition, a modegstinent on an existing
approach is harder to measure and must be validated on arlsghmple size,
increasing the complexity of the study.

— Comparing two approaches is difficult, as it involves rumgninnew experiment
pitting the two approaches side by side. The alternative isse a common base-
line, but variations in the setup of the experiment may skewésults.

— In the case of tools, they include a wide range of issues plyasirelated to the
approach the tool implements. Simple Ul and usability issmay overshadow
the improvements the new approach brings.

In short, controlled experiments involving human subjgite great confidence
in the results they provide, but are hard to scale for a lamgerber of treatments, or
small variations in the treatments.



Benchmarksare designed to automatically evaluate the performancemiaches
on a datasel [18]. A benchmark delimits the problem to beesbin order to reliably
measure performance against a baseline. The outcome othrbark is typically an
array of measurements summing up the overall efficiencyeéfiproach. An exam-
ple is the CppETS benchmark for C++ fact extractbrs [19]dHsa corpus consists
of several C++ programs exercising the various capalslifefact extractors. A fact
extractor run on the dataset returns the list of extractets favhich can be compared
with known results to produce a performance measuremengnghmark has a set
of characteristics that are suited to the evaluation ofrenenders:

— Automated benchmarks can be run at the press of a button.allbigs each
experiment to be run easily, and re-run if needed. This demnably eases the
replication of experiments done by other researchers.

— Automated scoring makes it trivial to compare approachbs. dccuracy of the
scoring allows one to evaluate the impact of incrementatawpments.

— Benchmarks test a restricted functionality, and are imipes/to usability issues.

In a nutshell, benchmarks are useful when one needs to ceraparger number
of approaches which may feature low amounts of variations.

3.2 Our Evaluation Procedure

Recommenders are essentially algorithms that proposecdigstommendations. As
such, they require a fair amount of fine-tuning. This invele@a extensive number of
replications, re-runs and comparisons of variants of teememendation algorithm,
which is the weak point of controlled experiments.

We advocate a two-step approach: We first determine throagbhmarking the
best performing recommender algorithm, and then evaltaimpact on users.

Given that we already have carefully measured the perfocemalfithe various
recommendation algorithms, we perform a more qualitativéysin the second step.
After having programmers use the recommender for a peridinaf, we ask them
through a survey if they perceived an improvement in thdlydetivities when using
the recommender, and gather additional free-form feedlf2io&osing a survey after
a longer-term usage period of the tool, instead of a comialser study, allows us to
trade precision in the measured performance (which we Inareks to the benchmark
in the first step), for impressions after real-life usagehef tool. This lets the users
determine how well the recommender actually fit in theirywibrkflow.

This approach assumes that we have a benchmark at our didpposaver, creat-
ing the benchmark itself and the data corpus it uses repiea@onsiderable amount
of work. For the C++ fact extractor benchmark, it presumafplved a manual re-
view of the C++ programs in the dataset to list the expectet$ fm be extracted. In
the case of code completion, what is needed is a way to repedtie usage of code
completion by developers in order to retrospectively exedihow well an alternate
completion engine would have performed. Since 2005, we balvep and populated
a change-based software repository that contains the datied for this. Before de-
tailing the benchmarking procedure, we first describe holWwange-based software
repository works.



4 Change-based Software Repositories

The benchmark and some of the algorithms presented heremr@yr previous work
on Change-Based Software Evoluti@BSE). CBSE aims at accurately modeling
how software changes by treating change as a first-clagg.éntour previous work
we used this model to perform software evolution analysis1].

Model and ImplementationCBSE models software evolution as a sequence of changes
that takes a system from one state to the next by means ofcsignfiee., not text-
based) transformations. These transformations are @dérom the activity recorded
by the event notification system of IDEs such as Eclipse, whenthe developer in-
crementally modifies the system. Examples are the modificaif the body of a
method or a class, but also higher-level changes offeregtactoring engines. In
short, we do not view the history of a software system as aeserpiof versions, but
as the sum ofhange operationghich brought the system to its actual state.

CBSE isimplemented in a prototype named SpyWark [16] foBtingeak Smalltalk
IDE. SpyWare monitors the programmer’s activity, convérte changes and stores
them in a change-based repository. We also implementedatype for the Eclipse
IDE and the Java language called EclipsEye [17].

Program RepresentationCBSE represents programs as domain-specific entities, e.qg.
classes, methods, etc. rather than text files. We repressoitware system as an
evolving abstract syntax tree (AST) containing nodes whéginesent packages, classes,
methods, variables and statements, as shown in Higure 2.

Package B Package C
] [ Class F ]

l private int x l public void foo(int y) l l

Package A

Fig. 2 An example program AST

A nodea is a child of a nodé if a containsb (a superclass is not the parent of
a subclass, only packages are parents of classes). Nodegrbperties which vary
depending on the node type, such as: for classes, name agitlsgg; for methods,
name, return type and access modifier (public, protectedieatp, if the language
supports them); for variables, name, type and access mmdifee The name is a
property of entities since identity is provided by uniquerndfiers (ID).
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Change operationsepresent the evolution of the system under study: Theyare a
tions a programmer performs when he changes a program, whimtr model are
captured and reified. They represent the transition fronstate of the evolving sys-
tem to the next. Change operations axecutableA change operation applied to
the staten of the program yields the statet1 of the program. Some examples of
change operations are: adding/removing classes/methticsn the system, chang-
ing the implementation of a method, or refactorings. We sufgtomicandcompos-

ite change operations.

Atomic Change OperationSince we represent programs as ASTs, atomic change
operations are, at the finest level, operations on the pnograST. Atomic change
operations are executable, and can be undone: An atomigeltamtains all the
necessary information to update the model by itself, andtopute its opposite
atomic change. By iterating on the list of changes we canmgeémell the states
the program went through during its evolution. The follogvimperations suffice
to model the evolution of a program AST:

— Creation: Create and initialize a new node with idof typet. The node is
created, but is not added to the AST yet. The opposite of diereehange is
a Destruction

— Destruction: Remove noden from the system. Destructions only occur as
undos ofCreations never otherwise (removed nodes are kept as they could
be moving to a new branch).

— Addition: Add a noden as the last child of parent nogeThis is the addition
operation for unordered parts of the tree. The opposite cddtition is a
Removal

— Removal:Remove nod& from parent nod. The opposite of the Addition
change.

— Insertion:Insert noden as a child of nodg, at positionm (m is the node just
before n, after n is inserted). Contrary to an addition, aeiition addresses
the edition of ordered parts of the tree. The opposite changBeletion

— Deletion:Delete node from parenp at locatiorm. The opposite ofnsertion

— Change PropertyChange the value of propentyof noden, fromvtow. The
opposite operation is a property change from valte valuev. The property
can be any property of the AST node, and as such depends onojerfies
defined in the model.

Composite Change OperatioMhile atomic change operations are enough to model
the evolution of programs, the finest level of granularitné always the best
suited. Change operations can be abstracted into highelrdemposite changes.
The first of these levels is tlteveloper-level changehich groups atomic changes
in logical actions a developer performs. Examples are ddsltions (create a
class, add it to a package, set its name and superclass, laaswekating and
adding instance variables), or modifying a method (cregadind adding a set of
statements to a method, and removing another set of stateifitem the same
method). Since we do not use higher-level composite changbss article, we
do not detail them further.
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5 A Benchmark For Code Completion

The idea behind our benchmark is to use the information werded from the evo-
lution of programs, and to replay it while calling the contja engine as often
as possible. Since the information we record in our repnsi®accurate, we can
simulate a programmer typing program statements while taiaimg the system’s
structure as an AST. While replaying the evolution of thegpamn, we call the com-
pletion engine at every keystroke, and gather the resulieuld have returned, as if
it had been called at that point in time. Since we represenptbgram as an evolving
AST, we are able to reconstruct the context necessary fordhepletion engine to
work correctly, including the structure of the source cadg,, the completion engine
is able to locate in which class it is called, thus works asider normal conditions.

The rationale behind the benchmarking framework is to répce as closely as
possible the conditions encountered by the completionnendiring its actual use.
Indeed, one might imagine a far simpler benchmark than &ather than recording
the complete history of a program, we could simply retrieme wersion of the pro-
gram, and attempt to complete every single message sendiogcin it, using the
remainder of the program as the context. However, such aroapp would disre-
gard the order in which the code was developed and assumiéhattire code base
just “popped into existence”. More importantly, it wouldtrovide any additional
source of information beyond the source code base, whictidymt permit any im-
provement over the state of the art. In contrast, by reprioduwow the program was
actually changed, we can feed realistic data to the conopletngine, and give it the
opportunity to use history as part of its strategy.

Replaying a Program’s Change Historyfo recreate the context needed by the com-
pletion engine at each step, we execute each change in thgehstory of the pro-
gram to recreate the AST of the program. In addition, the detigm engine can use
the actual change data to improve its future predictiongn@asure the completion
engine’s accuracy, we use algorithin 1.

Input: Change history, completion engine to test
Output: Benchmark results

results = newCollection();
foreach Changech in Change historydo
if methodCalllnsertionfh) then
name = changeNameg);
foreach Substringpre fiz of name between 2 and 8o
entries = queryEngine¢ngine, prefiz);
index = indexOfentries, name);
Incrementtesults[lengthpre fix),index]);
end
end
processChangefgine,ch);

end
return results; . ) .
Algorithm 1: The benchmark’s main algorithm
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While replaying the history of the system, we call the cortipteengine when-
ever we encounter the insertion of a statement including thadecall. To test the
accuracy with variable prefix length, we call the engine wétrery prefix of the
method name between 2 and 8 letters —a prefix longer than thitddvbe too long
to be worthwhile. For each one of those prefixes, we collexlitt of suggestions,
and look up the index of the method that was actually insentéie list, and store it
in the benchmark results.

Using a concrete example, if a programmer inserted a methlbdoca method
named “hasEnoughRooms”, we would query the completionnenfisist with “ha”,
“has”, “hask”, ..., up to “hasEnoug”. For each completiotempt we measure the
index of “hasEnoughRooms” in the list of results. In our exdan “hasEnough-
Rooms” could be 23rd for “ha”, 15th for “has” and 8th for “hdsPBne can picture
our benchmark as emulating a programmer compulsively ipiggdhe completion
key.

Itis also possible that the correct match is not presentitishof entries returned
by the engine. This can happen in the following cases:

— The method called does not exist yet. There is no way to pradientity which
is not known to the system. This happens in a few rare cases.

— The match is below the cut-off rate we set. If a match is at dexrgreater than
10, we consider that the completion has failed as it is uhlikeuser will scroll
down the list of matches. In the example above, we would stoesult only when
the size of the prefix is 4 (8th position).

In both cases we record that the algorithm failed to producgeéul result. When
all the history is processed, all the results are analysedsammed up. For each
completion strategy tested, we can extract the averagégosi the correct match
in the entire history, or find how often it appears at a paldictank for a particular
prefix length.

5.1 Evaluation Procedure

To compare algorithms, we need a humerical estimation af #oeuracy. Precision
and recall are often used to evaluate prediction algoritfimscompletion algorithms
however, the ranking of the matches plays a very importdat for this reason we
devised a grading scheme giving more weight to both shorefixes and higher
ranks in the returned list of matches. For each prefix lengtftempute a gradé;,
wherei is the prefix length, in the following way:

10 results(i,j)
G g W
attempts(i)

Whereresults(i, j) represents the number of correct matches at iridexprefix
length i, and attempts(i) the number of times the benchmark was run for prefix
lengthi. Hence the grade improves when the indices of the correaiatproves.

A hypothetical algorithm having an accuracy of 100% for aegiprefix length would
have a grade of 1 for that prefix length.
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Based on this grade we compute the total score of the coroplalgorithm, using
the following formula which gives greater weight to shortegfixes:

i, o
St t
The numerator is the sum of the actual grades for prefixes 2 w6t weights,
while the denominator in the formula corresponds to a peeore (1) for each
prefix. Thus a hypothetical algorithm always placing therecr match in the first
position, for any prefix length, would get a score of 1. Thee@®then multiplied by
100 to ease reading.

S = % 100 )

Typed and Untyped CompletioAs we have seen in Sectigh 2, there are two kinds
of completion: Type-sensitive completion, and type-irsstire completion, the latter
being the one which needs to be improved most. To addressypeth of completion,
we chose the Squeak IDE to implement our benchmark. As Satkalituntyped, this
allows us to improve type-insensitive completion. Howesirce Squeak features
an inference engine, we were able to test whether our coimplatgorithms also
improves type-sensitive completion.

5.2 Benchmark Data

We used the history of SpyWare, our monitoring frameworklifgo test our bench-
mark. SpyWare has currently around 250 classes and 20j&9dif code. The data
we used spanned from 2005 to 2007, totalling more than 16c@®@loper-level
changes in several hundred development sessions.

We also used the data from 6 student projects, much smalfature and lasting
a week. This allows us to evaluate how our algorithms perfamrseveral code bases,
and also how much they can learn in a shorter amount of time.

The number of tests for each system we used is shown in Thble 1.

Table 1 Benchmark Data

Project Completion Attempts
SpyWare 131,000
(SpyWare typed) (49,000)
S1 5,500
S2 8,500
S3 10,700
S4 5,600
S5 5,700
S6 9,600
Total 176,600

In total, more than 175,000 method calls were inserted ltieguin the same
number of tests for our algorithm, and more than a millioniirtiial calls to the
completion engine.
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6 Code Completion Algorithms

We evaluate a series of completion algorithms, startingdmalling and evaluating
the two default pessimistic strategies for typed and urdygempletions. For each
algorithm we describe its principles and detail its ovepalitformance on our larger
case study, SpyWare, with a table showing the algorithnsalte for prefixes from

2 to 8 characters. Each column represents a prefix size. Shig@re expressed in
percentages of accurate predictions for each index. Thedins gives the percent-
age of correct prediction in the first place, ditto for thes®tand third. The fourth

rows aggregates the results for indices between 4 and 1@higybeyond 10 is con-
sidered a failure since it would require scrolling to be s&d. We provide the global
accuracy score for each algorithm, computed from the resitthe end, we discuss
all the algorithms and their performances on the six othejegts.

6.1 Default Untyped Strategy (Score: 12.15)

Principle: The match we are looking for can be anywhere in the systemalgwe
rithm searches through all methods defined in the systennta&th the prefix on
which the completion is attempted. It sorts the list alpliaidy.

Table 2 Results for the Default Untyped Strategy algorithm

Prefix 2 3 4 5 6 7 8
% 1st 0.00 0.33 2.39 3.09 0.00 0.03 0.13
% 2nd 2.89 | 10.79 | 1435 | 19.37 | 16.39 | 23.99 | 19.77
% 3rd 0.70 5.01 8.46 | 14.39 | 14.73 | 23.53 | 26.88
% 4-10 6.74 | 17.63 | 24.52 | 23.90 | 39.18 | 36.51 | 41.66
% fall 89.63 | 66.20 | 50.24 | 39.22 | 29.67 | 15.90 | 11.53

Results (Tablgl2)The algorithm barely, if ever, places the correct match anttp
position. However it performs better for the second anddtiplaces, which rise
steadily: By the time the prefix reaches a length of 7, nea®oof the correct
matches are in the second or third position. However theggeloprefixes contribute
little to the overall score.

6.2 Default Typed Strategy (Score: 47.95)

Principle: The match is one of the methods defined in the hierarchy of ltes of
the receiver. The algorithm searches through all the mattetined in the class hier-

archy of the receiver, as indicated by the programmer orfagragd by the completion
engine.



15

Table 3 Results for the Default Typed Strategy algorithm

Prefix 2 3 4 5 6 7 8
% 1st 31.07 | 36.96 | 39.14 | 41.67 | 50.26 | 51.46 | 52.84
%2nd | 10.11 | 11.41 | 13.84 | 16.78 | 13.13 | 13.51 | 12.15
% 3rd 5.19 5.94 491 5.15 3.20 1.94 2.00
%4-10 | 16.29 | 1254 | 12.24 | 8.12 6.29 4.14 2.79
% fail 37.30 | 33.11 | 29.83 | 28.24 | 27.08 | 28.91 | 30.18

Results (Tabl€]l3)Only the results where the type inference engine found a type
were considered. The algorithm consistently achieves itiame 25% of matches in
the first position, which is much better than the untyped c@se2-letter prefixes, it
still has a less than 50% chance to get the right match in {8 fuositions.

6.3 Optimistic Structural Completion (Score: 34.15)

Principle: Local methods are called more often than distant onesi(i.ether pack-
ages). The algorithm searches first in the methods of thesguaolass, then in its
package, and finally in the entire system.

Table 4 Results for the Optimistic Structural Completion algamth

Prefix 2 3 4 5 6 7 8
% 1st 12.70 | 22.45 | 24.93 | 27.32 | 33.46 | 39.50 | 40.18
% 2nd 594 | 13.21 | 18.09 | 21.24 | 20.52 | 18.15 | 22.40
% 3rd 3.26 5.27 6.24 7.22 | 10.69 | 14.72 | 10.77
%4-10 | 14.86 | 16.78 | 18.02 | 17.93 | 17.23 | 20.51 | 20.75
% Fail | 63.20 | 42.26 | 32.69 | 26.26 | 18.07 7.08 5.87

Results (Tabl€l4)This algorithm does not use the history of the system, omly it
structure, but is still an optimistic algorithm since it dagot order the matches al-
phabetically. This algorithm represents how far we can ginauit using an addi-
tional source of information. Its results are a definite ioygment over the default
algorithm, since even with only two letters it gets more th8#o of correct matches.

6.4 Recently Modified Method Names (Score: 36.57)

Principle: Programmers are likely to use methods they have just definaddified.
Instead of ordering all the matches alphabetically, theyomdered by date, with the
most recent date being given priority. Upon initializatitime algorithm creates a new
dated entry for every method in the system, dated as Janyd§70. Whenever a

method is added or modified, its entry is changed to the ctdase, making it much
more likely to be selected.
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Table 5 Results for the Recently Modified Method Names algorithm

Prefix 2 3 4 5 6 7 8
% 1st 16.73 | 23.81 | 25.87 | 28.34 | 33.38 | 41.07 | 41.15
% 2nd 6.53 | 12.99 | 17.41 | 19.30 | 18.23 | 16.37 | 21.31
% 3rd 4.56 6.27 6.83 7.70 | 11.53 | 15.58 | 10.76
% 4-10 | 15.53 | 17.00 | 20.16 | 20.73 | 20.34 | 20.65 | 21.55
% fail 56.63 | 39.89 | 29.70 | 23.90 | 16.47 6.30 5.18

Results (Tablgl5)Using a little amount of historical information is slightbetter
than using the structure. The results increase steadily thvé length of the prefix,
achieving a very good accuracy (nearly 75% in the top thratt) nger prefixes.
However the results for short prefixes are not as good. Inagés, results for the
first position rise steadily from 16 to 40%. This puts thistfoptimistic algorithm

slightly less than on par with the type-aware algorithmedllvithout the need for
type information.

6.5 Recently Modified Method Bodies (Score: 70.14)

Principle: Programmers work with a vocabulary which is larger than thmes of

the methods they are currently modifying. We need to alscsicen the methods
which are called in the bodies of the methods they have rigceisited. This vocab-

ulary evolves, so only the most recent methods are to be deresl. A set of 1000
entries is kept which is considered to be the “working vodaty of the program-

mer. Whenever a method is modified, its name and all the metiwbéth are called
in it are added to the working set. All the entries are sorteddte, favoring the most
recent entries. To better match the vocabulary the progerswurrently using, the
names of the method called which are in the bodies of the rdsttwhich have been
recently modified is also included in the list of priority rohés.

Table 6 Results for the Recently Modified Method Bodies algorithm

Prefix 2 3 4 5 6 7 8
% 1st 47.04 | 60.36 | 65.91 | 67.03 | 69.51 | 72.56 | 72.82
%2nd | 16.88 | 15.63 | 14.24 | 1491 | 1451 | 14.04 | 14.12
% 3rd 8.02 5.42 4.39 4.29 3.83 4.09 4.58
%4-10 | 11.25 | 7.06 6.49 6.64 6.51 5.95 5.64
% fall 16.79 | 11.49 8.93 7.09 5.60 3.33 2.81

Results: Considering the vocabulary the programmer is currentlggigields much
better results. With a two-letter prefix, the correct maghithe top 3 in more than
two thirds of the cases (71.94%). With a six-letter prefixvio-third of the cases it
is the first one, and it is in the top three in close to 90% of thees (87.85%). This
level of performance is worthy of an optimistic algorithm.
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6.6 Recently Inserted Code (Score: 62.66)

Principle: The vocabulary taken with the entire methods bodies is tg®|as some
of the statements included in these bodies are not relevgm@re. Only the most
recentinserted statements should be considered. Théthigas similar to the previ-
ous one. However when a method is modified, we only refreshidbabulary entries
which have been newly inserted in the modified method as wehaname, instead
of taking into account every method call. This algorithm @&k more extensive use
of the change information we provide.

Table 7 Results for the Recently Inserted Code algorithm

Prefix 2 3 4 5 6 7 8
% 1st 33.99 | 52.02 | 59.66 | 60.71 | 63.44 | 67.13 | 68.10
% 2nd | 15.05 16.4 | 15.44 | 16.46 | 16.38 | 17.09 | 16.52
% 3rd 9.29 7.46 5.98 5.64 5.36 4.74 5.45
% 4-10 | 22.84 | 11.05 8.53 8.65 8.45 7.23 6.71
% fail 18.79 | 13.03 | 10.35 8.50 6.33 3.77 3.17

Results: In this case our intuition was wrong, since this algorithnieiss precise
than the previous one, especially for short prefixes. Inades, this algorithm still
performs better than the typed completion strategy.

6.7 Per-Session Vocabulary (Score: 71.67)

Principle: Programmers have an evolving vocabulary representingwhoeking set.
However it changes quickly when they change tasks. In thse tizey reuse and mod-
ify an older vocabulary. It is possible to find that vocabylathen considering the
class which is currently changed. This algorithm uses fthiy change information
we provide. In this algorithm, a vocabulary (i.e., still & eédated entries) is main-
tained for eaclprogramming sessioim the history. A session is a sequence of dated
changes separated by at most an hour. If a new change octaira délay longer than
an hour, a new session is started. In addition to a vocahw@ach session contains a
list of classes which were changed (or had methods changeigdt. When look-
ing for a completion, the class for the current method is émblp. To reconstruct
the vocabulary the most relevant to that class, the vocapokaall the sessions in
which the class was modified is taken into account and givimigrover the other
vocabularies.

Results: This algorithm is the best we found as it reacts more quiaktiré developer

changing tasks, or moving around in the system. Since ttds dot happen that often,
the results are only marginally better. However when sviiighasks the additional

accuracy helps. It seems that filtering the history basedhermntity in focus (at the

class level) is a good fit for an optimistic completion algjom.
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Table 8 Results for the Per-Session Vocabulary algorithm

Prefix 2 3 4 5 6 7 8
% 1st 46.9 | 61.98 | 67.82 | 69.15| 72.59 | 75.61 | 76.43
%2nd | 16.88 | 15.96 | 14.41 | 15.01 | 14.24 | 14.44 | 13.80
% 3rd 7.97 5.73 4.64 4.30 3.45 3.00 3.40
%4-10 | 1466 | 8.18 6.50 6.19 5.44 4.53 4.16
% fail 1356 | 8.12 6.58 5.32 4.25 2.39 2.17

6.8 Typed Optimistic Completion (Score: 76.79)

Principle: Merging optimistic completion and type information shogige us the
best of both worlds. This algorithm merges two previouskrsalgorithms. It uses
the data from the session-based algorithm (our best opiinaigjorithm so far), and
merges it with the one from the default typed algorithm. Therge works as follow:
The list of matches for the two algorithms are retriev&fl{ssion, andM;ypeq). The
matches present in both lists are put at the top/of,s;.n, Which is returned.

Table 9 Results for the Typed Optimistic Completion algorithm

Prefix 2 3 4 5 6 7 8
% 1st 59.65 | 64.82 | 70.09 | 73.49 | 76.39 | 79.73 | 82.09
% 2nd | 14.43 | 14.96 14.1 | 13.87 | 13.17 | 13.09 | 12.08
% 3rd 4.86 4.64 3.89 3.27 2.92 2.23 1.85
% 4-10 8.71 7.04 5.86 4.58 4.09 3.37 2.50
% Fail 12.31 8.51 6.03 4.75 3.40 1.54 1.44

Results: The result is a significant improvement by 5 points (we ramiSpyWare
only for the same reasons as the default typed algorithm} algorithm indeed
performs better than the others, since it merely reusesltbady accurate session
information, but makes sure that the matches correspondititg right type are put

before the other matches. In particular, with a two lettefigr it gets the first match
correctly 60% of the time.

6.9 Discussion of the Results

Most of our expectations on what helps code completion wereect, except “Re-
cently inserted code”. We expected it to perform better tiising the entire method
bodies, but were proven wrong. We need to investigate if mgripe two strategies
yields any benefits over using only “Recent modified bodi€si the other hand, us-
ing sessions to order the history of the program is still tast lalgorithm we found,
even if by a narrow margin. This algorithm considers onlyeited calls during each
session, perhaps using the method bodies there could bielredpvell.
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When considering the other case studies (Table 10), we aeththtrends are the
same for all the studies, with some variations. Globallgrie algorithm performs
better than another for a case study, it tends to do so forf &llemn. The only ex-
ception is the session-aware algorithm, which sometimdsipas better, sometimes
worse, than the one using the code of all the methods recewttlified. One reason
for this may be that the other case studies have a much skstery, diminishing
the roles of sessions. The algorithm has hence less timeafut.ad

Table 10 Scores of each algorithm, for all projects

Project SW S1 S2 S3 S4 S5 S6
Baseline (Sectiop 6l 1) 12.15 | 11.17 | 10.72 | 15.26 | 14.35 | 14.69 | 14.86
Structure (Sectiop 6l3) 3415 | 23.31| 26.92 | 37.37 | 31.79 | 36.46 | 37.72
Names (Sectioh 6.4) 36.57 | 30.11 | 34.69 | 41.32 | 29.84 | 39.80 | 39.68
Bodies (Sectiof 6]5) 70.14 | 82.37 | 80.94 | 77.93 | 79.03 | 77.76 | 67.46
Inserted (Section 6l6) 62.66 | 75.46 | 75.87 | 71.25 | 69.03 | 68.79 | 59.95
Sessions (Sectidn 8.7) 71.67 | 79.23 | 78.95| 70.92 | 77.19 | 79.56 | 66.79
Typed (Sectioh 612) 47.95 - - - - - -
Typed Optimist (Section 618) 76.79 - - - -

Considering type information, we saw that it gives a sigaificimprovement
on the default strategy. However, the score obtained by ptimdstic algorithms —
without using any type information—is still better. Funtheur optimistic algorithms
work even in cases where the type inference engine doesfeotiype, and hence
is more useful globally. Merging the two strategies, e.f@ierfing the list of returned
matches by an optimistic algorithm based on type infornmatifives even better re-
sults.

7 Class-level Code Completion Algorithms

As we present later in Sectigh 9, we released our tool to thieldpers of two open-
source communities in order to gather feedback and improgeusability of our
tool. One of the first requests we received after releasingade completion tool to
the Squeak and Pharo (a derivative of Squeak) communitisdavanake it support
class-name completion. Our first version initially suppdronly the completion of
method names, using the default pessimistic algorithm énctise of classes. Such
a request is sound, since the number of classes available iDE is the second
most numerous category of entities after methods: If meshmonber in the tens of
thousands, classes number in the thousands. We hencedaiygisame evaluation
strategy, with the following changes:

— Instead of testing the completion engine each time a metalbd/as inserted, we
test it when a reference to a class is added to the program.

— The completion algorithm is aware that classes are expeateldreturns a list of
candidate classes.

Before detailing the four algorithms we investigated, wéenafew observations:
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— The tests are much less numerous than for methods, sinceneiieg a class di-
rectly is a much less common activity. All in all, we tested tompletion engines
for classes around 8,000 times - an order of magnitude lassftin methods. The
number of classes is lower as well (by an order of magnitutigs impacts the
results and makes the algorithms score better overall.

— As Squeak lacks the concept of namespaces, classes havebjteonvention—
their names prefixed by a two letter abbreviation identifytine application they
belong to. This may impact the results by lowering them farsprefixes.

— Type-aware completion does not help, since we are inseatiyge itself.

7.1 Default Strategy for Classes (Score: 41.37)

Principle: The match we are looking for may be any class in the system.alhe
gorithm searches through all the classes defined in thersysteose name matches
the prefix on which the completion is attempted. The algaritorts the resulting
matches alphabetically.

Table 11 Results for the Default Strategy for Classes algorithm

Prefix 2 3 4 5 6 7 8
% 1st 5.02 27.8 | 58.76 | 57.92 | 60.41 72.0 | 76.15
% 2nd 7.75 | 14.39 | 1457 | 15.86 | 15.97 8.66 6.93
% 3rd 1.59 3.73 3.35 3.94 3.58 3.19 2.45
% 4-10 2.64 9.83 3.6 1.97 1.7 1.5 1.51
% fail 82.96 | 44.21 | 19.69 | 20.27 | 18.31 | 14.61 | 12.92

Results: Due to the reduced number of entities, the pessimistic glgoifares much
better in the case of classes than methods. It reaches aigérgrobability of putting
the right match on top if the prefix is long enough (4 lettermare). The score for a
two-letter prefix is much lower, due to the convention of priefi classes to indicate
which package they belong to.

7.2 Structure-aware Completion (Score: 45.36)

Principle: Classes in the same package are more often used than classide of
it. When using code completion in a given class, the algoriphioritizes the classes
that belong to the same package over those of the whole system

Results: The algorithm is more precise than the default algorithnra,ebut not by
much. One reason for that is that the assumption behind gogithim is sometimes
invalidated: Developers often use base classes from idsréinat are outside of the
application, such as string, collection or file classeshht tase, this algorithm fares
no better than the previous one. The accuracy for two-Iptifixes is improved, but
remains still overall quite low.
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Table 12 Results for the Structure-aware Completion algorithm

Prefix 2 3 4 5 6 7 8
% 1st 8.71 325 | 61.72 | 60.01 | 62.48 | 74.07 | 78.76
%2nd | 8.78 | 13.29 16.1 | 17.26 | 17.48 9.76 6.71
% 3rd 2.21 6.79 2.76 3.42 2.93 2.75 2.17
% 4-10 | 3.76 9.53 3.37 2.3 2.01 1.74 1.63
% fail 76.5 | 37.85| 16.01 | 16.98 | 15.07 | 11.65 | 10.68

7.3 Recently Used Classes (Score: 79.29)

Principle: Classes used in methods the programmer change have moceshtiaie
used again in the future. All the class entries have an assactdate, initialized to
January 1st 1970. Whenever the programmer changes a maththe, references to

classes in its body are updated to the date of the changée&ate ordered by date,
with the most recent first.

Table 13 Results for the Recently Used Classes algorithm

Prefix 2 3 4 5 6 7 8
% 1st 58.78 | 77.66 | 85.04 | 84.01 | 84.97 | 86.85| 88.0
% 2nd 7.55 9.65 6.63 7.04 6.76 5.56 | 4.95
% 3rd 6.34 2.97 1.23 1.39 1.28 1.0 | 0.81
% 4-10 5.95 2.25 1.21 0.93 0.69 0.59 | 0.47
% Fail | 21.35 7.44 5.86 6.6 6.26 5.97 | 5.73

Results: This algorithm takes into account usage recency, and aggaihenefits are
clearly visible, as its score is nearly double that of thevjunes best-performing algo-
rithm. Scores are much higher for all prefix lengths, but tlesineontributing factor
is the short prefixes. For a length of 2, the algorithm putgitpet match in the right
position nearly seven times as often as the previous bekirper. Indeed, only a

recency factor could help differentiating between a langeber of classes which all
share the same two-letter prefix.

7.4 Recently Inserted Classes (Score: 79.86)

Principle: Classes previously used the by the programmer have a higbiealpility
of being reused. Whenever a reference to a class is added By#tem, its entry’s

date is changed to the current time. Entries are ordered tgy déth the last used
first.

Results: This algorithm provides a slight improvement over the poeagione. Nev-
ertheless, favoring class references that were actuaérted gives a slight edge all
over the board, as opposed to the method case, where it \ghf\stietrimental. We
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Table 14 Results for the Recently Inserted Classes algorithm

Prefix 2 3 4 5 6 7 8
% 1st 60.14 | 77.94 | 85.34 | 84.17 | 85.22 | 86.88 | 88.29
% 2nd 7.62 9.49 6.16 6.65 6.32 541 4.5
% 3rd 6.73 2.94 1.39 1.64 1.56 1.21 1.1
% 4-10 5.02 2.18 1.16 0.87 0.58 0.47 0.34
% fail 2046 | 741 5.91 6.63 6.29 6.0 5.73

are unsure about the causes. Since the improvement was Bpveenare convinced
we reached a point of diminishing returns, after which iases in accuracy will be
minimal.

7.5 Discussion of the Results

The problem of class completion is simpler than the one ohogtompletion, as the
entities to choose from are less numerous by an order of matmiThere is however
space for valuable improvement, as we have shown: A histargre completion al-
gorithm can easily improve over the default or structurex@amalgorithms. Moreover,
the improvements are considerable for short prefixes.

Table 15 Scores for the class completion algorithms of all projects

Project SW S1 S2 S3 S4 S5 S6
Baseline | 41.37 | 18.27 | 29.26 | 57.30 | 46.79 | 53.49 | 65.84
Structure | 45.36 | 18.85 | 29.43 | 70.45 | 47.42 | 56.19 | 72.87
Used 79.29 | 86.22 | 88.47 | 92.51 | 92.76 | 95.46 | 93.35
Inserted | 79.86 | 87.12 | 88.80 | 92.51 | 92.76 | 95.46 | 93.22

The overall results for each project are shown in TAble 150W¢erve variations
in accuracy in each of the projects, as we saw previouslythaualgorithms stay in
the same order across projects. Of course, smaller praéstshad a higher accu-
racy as the number of classes defined for each project was loweh This makes
completion of domain classes significantly easier. Thisnitlaffect the completion
of library classes, which are still used a significant portid the time. Depending
on the usage patterns of classes in projects, the improwvegivem by the structural
algorithm ranges from very significant (for project S4 theg¢simainly classes it de-
fined), to nearly insignificant (for project S3 that uses géarumber of base classes).
Project S1 is a bit of an outlier as the performance of theudesdgorithms is decid-
edly lower than other projects: It is using a restricted nandf classes that happen to
have rather ambiguous names. Of note, if the default andtatal algorithms have
relatively large variations, the history-aware algorithane much more stable across
all projects, suggesting that we reached a plateau of effigi€omforting this point,
the difference between the algorithms is negligible to tbapthat on some case
studies the algorithm perform identically, with very higloges.



23

8 A User Interface for Optimistic Completion

All user interfaces for completion tools suit pessimistionpletion algorithms: the
interface is a menu invoked by the programmer via a keybdavdeut. Arrow keys
are then used to select the right match. Thus code complistiosed explicitly by
the programmer, who may underuse it and still type entirédhodd and class names,
even when the completion engine would have been successfelalternative is to
have the completion engine propose candidates constaitthyyut explicit interven-
tion by the programmer. This maximizes the chances thatriiigrammer uses code
completion, but induces the risk of distractions when theppsitions are too of-
ten inaccurate. Considering the accuracy of pessimistie completion algorithms,
having an explicit access to completion is reasonable. Wehncreased accuracy of
optimistic completion algorithms, it may be time to revisiis choice.

[self removeProperty: *expandedExtent.

self extent: exteritToHsrdlaHard].
selectedObject
selectorsForViewer
selectorsForViewerln:

Fig. 3 Optimistic completion in action

We implemented OCompIetiBrﬁsee Figurgl3), which uses optimistic completion
together with an implicit invocation interface. As the pragimer types the names of
identifiers, a short list is permanently shown and intevatyi updated as the pro-
grammer types. We call the suggestions on this list “Autéen@tiggestions” as it
appears without explicit user interaction. Pressing taerits the first candidate in
the list, while pressing the down arrow causes the menu wllstown. Scrolling
down also signifies interest in the matches, so the menu esgarshow up to seven
matches, a number that can still be easily processed by hift&h Initially, we
show only up to three matches to minimize the reading ef8ased on our empirical
data, this is sufficient to show the expected match close ¥ Ghthe time.

As for the algorithm we implemented in the tool, the empiriesults on our
dataset allowed us to make an informed decision, takingr gthemeters than raw
performance into account, such as the simplicity of impletaton. We chose the
“recently changed method bodies” algorithm for methodst &as a performance
close to the ideal without needing to store a lot of usage. dktaclasses, we chose
“recently used classes”, which had a performance closeetbéist performing algo-
rithm. Choosing these algorithms limits the amount of paysie have to perform
in the tool, as we do not have to differentiate two versions ofiethod to extract
changes. This makes the released tool lighter overalleSipon installation, OCom-
pletion has not gathered usage data yet, it asks the useli&irod packages he or
she is working on in order to have a reasonable initial setatthes.

3 Available afhttp://www.squeaksource.com/OCompletion
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9 A Qualitative Evaluation of Optimistic Completion

We decided that the best course of action to evaluate how aueltool works in
practice was to release OCompletion to the developer coritypbhave them use it in
their habitual work environment, and collect their feedbatle preferred this over a
controlled experiment for the following reasons:

— The tool is used in a real-world setting. The tool was matmeugh so that de-
velopers used it over several weeks in their daily actisitiés such they could
get familiar with it and give us detailed feedback, both ofetthwould not have
been possible over a short usage period as in a controllediengnt.

— Controlled experiments of recommenders are hard to setsipiefalready men-
tioned in Sectiofl3, the numbers of variables one has to atéorin a program-
ming task can be so large that isolating the variable of @seran be difficult. On
the other hand, gathering feedback about the overall usegalof OCompletion
over time is much more straightforward.

— We already have solid empirical evidence that our algor#ttsmgnificantly im-
prove on current algorithms. Since we are able to preciselaie and measure
the accuracy of code completion over time using benchmggtbering subjec-
tive developer feedback is sufficient.

— The real-world impact is greater. By releasing the tool te dommunity, we
had to take care of a number of usability issues to make suplpare willing
to use it daily. We know of several people who have integr&@€bmpletion
in their daily toolset. It is even included by default in onfetloe programming
environments for which we released it.

Initial Release and FeedbackVe publicly released OCompletion at the beginning
of May 2009 to the Squeak and Pharo development commurfitipgeak is an open
source implementation of a Smalltalk programming envirentraimed at research,
teaching and multimedia activities. Pharo is a fork of S¢uemed at a more profes-
sional development of applications. The feedback we redeivas very positive as
quotes from the mailing lists show:

— “I like [OCompletion’s ] non-intrusive smartness.”

— “l love OCompletion, first time I've found completion in Snitalk actually help-
ful.”

— “In my opinion this could be in the Pharo dev image by default.

As a consequence, the Pharo maintainers decided to inclGdenPletion in the
standard development distribution of Pharo, Pharo-delependently, OCompletion
has been downloaded more than 100 times so far. OComplesiens also quickly
reported bugs and feature requests, such as making OCaonpheirk also for class
names (see Sectidh 7). We addressed these issues anddelesesmnd version of
OCompletion, at which point we decided to collect more fdrfeadback using a
survey.
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9.1 OCompletion User Survey

The goal of the survey was to assess with greater accuracypbople felt about
OCompletion and how well it fares compared to its predeaesSiompletion. eCom-
pletion is the tool currently used by most users of the Sqeeakmunity. It mimics

the way code completion in eclipse works, and as such usessagetic completion
algorithm. Our survey consisted of 10 questions (to keepufgg’s time investment
low), separated into five categories:

1. The first question assessed the experience of the partisijpising the develop-
ment environment;

2. the next three questions assessed how the respondeththegrevious comple-
tion tool, eCompletion;

3. the following three questions compared OCompletion torefletion with simi-
lar questions;

4. the next two questions addressed the automatic suggesti@®Completion and
how the participants perceived them;

5. finally, a space for free-form feedback collected geriarptessions, requests for
enhancements, etc.

We advertised the survey on the Squeak and Pharo mailingatisacting 29
respondents, of which 20 had used OCompletion. 8 others$etleCompletion but
did not try OCompletion, and one did not use code completimistat all. In the
following tables, questions marked with a star allowed ipldtanswers. The survey
kept track of how many people answered each question (whighiya distinct from
the number of answers), and of how many people skipped it. 8Meaomment on
the results of each question.

9.2 Experience of the Respondents (Table 16)

Table 16 Experience of responders using Squeak

Answers | Responses Percent Count
Q1: How long have you been using Squeak? 29 answers, 0 skipped
less than 3 months | 3.4% 1

3 months to a year [ | 13.8% 4

1to 4 years ] 51.7% 15

5 years or more [ ] 31% 9

Q1. We can see that the respondents are overall quite erpedavith the IDE,
and as such are educated in the available tools in the IDEe kihan 80% have been
using the IDE for more than a year, and nearly a third of thpaedents for 5 years
or more.
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9.3 Usage of eCompletion (Talhle]17)

Table 17 Experience of responders using eCompletion

Answers | Responses Percent Count
Q2: How often did you use eCompletion? 29 answers, 0 skipped
I didn't use it [ ] 6.9% 2

| used it but eventually stopped I 27.6% 8

Only when it would save me keystrokes | 6.9% 2
Regularly, but | sometimes type full names [ | 20.7% 6

As much as possible [ ] 37.9% 11

*

Q3: If you stopped using eCompletion, why did you? 14 answers, 15 skipped

Unclear benefits [ | 14.3% 2
Imprecise N | 64.3% 9

Too slow I 50% 7

Buggy [ | 7.1% 1

Other [ 21.4% 3

Q4: Where would you find the match you needed? 28 answers, 1 skipped
| rarely got the match | wanted [ ] 10.7% 3

After a lot of scrolling and typing ] 37.9% 11

In the first few menu items [ 46.4% 13

In the top position | 3.6% 1

Q2. This question addresses the usage patterns of eCoomplesters. Two per-
sons did not use eCompletion: one was not using completiois &t all, and the
second switched from no completion tool to OCompletion. &tiran 25% of the
respondents ended up stopping to use eCompletion. A myneeite wary of eCom-
pletion’s accuracy and deliberately typed longer prefigdsetsure that the tool would
propose the right match. The majority used OCompletiomfaiten.

Q3 investigates why people stopped to use eCompletion. Tdie meason for
people stopping to use eCompletion was its lack of precj$émiowed by a perceived
slowness. One respondent states that he switched to OConpknother does not
remember exactly ("It probably got on my nerves”) and adkid notinstall it again
when he changed environments (probably because the bemefitsnot important
enough to him). A larger number of people responded to Q3 thamumber of
people who said that they stopped using eCompletion in Q. alko applies to Q5
and Q6; we do not know the reason of the discrepancy.

Q4 gathers impressions about eCompletion’s accuracy. &/hse the curve is
balanced, with small minorities choosing extreme choiéesmall minority found it
really imprecise, and an even smaller minority (one respafjdound it very precise.
The two main blocks state that either using eCompletioniredwa lot of scrolling
and typing (somewhat imprecise), or that it was satisfgaoerall.
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9.4 Usage of OCompletion (Takile]18)

Table 18 Experience of responders using OCompletion

Answers | Responses Percent Count
Q5: How often do you use OCompletion? 26 answers, 3 skipped
I didn't use it ] 23.1% 6

| used it, but eventually stopped [ | 7.7% 2

| use it regularly I 26.9% 7

Ifit is not installed, 1 install it | 15.4% 4

Itis installed by default in my environment I 26.9% 7

Q6: If you stopped using OCompletion, why did you?* 4 answers, 25 skipped
Unclear benefits [ ] 25% 1
Imprecise 0% 0

Too slow [ ] 25% 1

Buggy 0% 0

Other [ 50% 2

Q7: Where would you find the match you needed? 20 answers, 9 skipped
| rarely got the match | wanted 0% 0

After a lot of scrolling and typing [ | 10% 2

In the first few menu items | e5% 13

In the top position [ ] 25% 5

Q5 is about OCompletion and its usage patterns. Since thiéniséface is dif-
ferent (OCompletion’s user interface is always there aritdnmmoned on demand),
some of the possible answers differ from Q2. Beyond peoplausiong OComple-
tion, we see that fewer people stopped using OCompletiai¥gythan eCompletion
(27.6%). This leaves us under the impression that its beh&vioverall very satis-
factory. Several users responded that they depended oaugérto install it if it is
missing, while others (Pharo users) have it installed bydef

Q6. Few people stopped using OCompletion. Nobody stoppealise of a lack
of precision. Reasons cited include OCompletion not waykifith class names (this
problem was fixed in the second version), and slowness. limtbemal feedback we
received, we associated slowness with the class name igaepts to complete a
class name in the first version of OCompletion fell back tom@letion’s algorithm,
which was indeed slow. We suspect these respondents didyrtbetsecond version.

Q7. In terms of accuracy, we see a large difference with eGetiop. None of
the respondents said that they had trouble finding the mlagshteeded. On the other
hand, people finding OCompletion extremely precise are havsécond largest cat-
egory. Overall, the shape is much more skewed towards anguvhereas eComple-
tion’s was centered.



28

9.5 Impressions About OCompletion’s Automatic Suggestidiabld 1D)

Table 19 OCompletion’s automatic suggestions

Answers Responses Percent Count

Q8: How useful do you find automatic suggestions? 18 answers, 11 skipped
| stopped using OCompletion because of them 0% 0
Somewhat annoying 0% 0

| don’t mind them [ ] 22.2% 4

| find them useful I | 61.1% 11

| use them all the time [ | 16.7% 3

Q9: What is the main improvement of OCompletion? 18 answers, 11 skipped
Increased accuracy [ ] 16.7% 3
Automatic suggestions || 11.1% 2

The combination of both e | s1.1% 11
Neither/No significant improvement [ | 11.1% 2

Other 0%

Q8 investigates how people react to the automatic suggastibOCompletion
gave inaccurate suggestions, people would find automagigestions annoying, or
stop using the tool altogether. The respondents are ovémimgly in favor of auto-
matic suggestions, as nobody stated that they were anngytbe Isuggestions.

Q9. Thisis also reflected in what people think are the adggstaf OCompletion.
Again, a strong majority find that the combination of an ims®d accuracy with
automatic suggestions is worth more than both improvemeonsidered on their
own. A small minority of respondents did not see visible immments with the tool.
We hope to win them over with subsequent versions of OCoroplet

9.6 Detailed Feedback

Q10 was a detailed feedback form. Only 8 users chose to filliit below half of the
respondents who browsed the last page of the survey (whittaioed Q8, Q9 and
Q10). Common suggestions included:

— Add support for other language constructs beyond methaitis aw emphasis on
classes. This has been added in the second version of the tool

— Restore one feature that eCompletion has, but OCompleties dot: the ability
to explore the matches in detail. Since we propose a smadiflimatches, users
cannot explore many methods in the list even if they would tik

— Perform cosmetic changes such as a better integration héthQiE’s look and
feel.

— Make OCompletion work in all parts of the IDE. OCompletiogtri now works
in the most common tools, but not all of them.
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9.7 Conclusions on the Survey

This survey comforted our opinion that optimistic compdetialgorithms are more
accurate than pessimistic ones, and that the improvempatdgptible in real-world
usage. In addition, it validated our expectation that aera#itive completion inter-
face would benefit optimistic completion, as it maximizemptetion opportunities
without distracting the user with too many wrong suggestidie respondents to our
survey were overwhelmingly in favor of this. Finally, theeudeedback we gathered
by publicly releasing the tool pointed us to what users yeadinted to see improved
in subsequent versions of the tool (e.g., class hame coimp/@nd restoring the ex-
ploration possibilities), changes that were included angbcond version of the tool.

10 Discussion

Despite the provably more efficient completion algorithmes pvesented —and their
usefulness in practice—, our approach has a few shortca@mning

Applicability to other programsWe have tested several programs, but can not
account for the general validity of our results. However;, msults are consistent
among the different programs we tested. If an algorithmgoer§ better in one, it
tends to perform better on the others. Moreover, the respasdo our survey re-
ported real-world improvements over the default compieditgorithm.

Applicability to other language<ur results are currently valid for Smalltalk
only. However, the tests showed that our optimistic al@poni perform better than the
default algorithm using type inference, even without ampetinformation. Merging
the two approaches shows another improvement. An intuigason for this is that
even if only 5 matches are returned due to the help of typhgpbsition they occupy
is still important. Thus we think our results have some ptatifior typed object-
oriented languages such as Java. In addition, we are contitey could greatly
benefit any dynamic language, such as Python, Ruby, Erlang, e

Other uses of code completidProgrammers use code completion in IDEs at least
for two reasons: (1) To complete the code they are typingchvis the part that we
optimize, and (2) as a quick alternative to documentati@mdeCcompletion allows
programmers to quickly discover the methods at their diabos any object. Our
completion algorithms do not provide this, and one couldiarthat they are detri-
mental to this usage, since they return only a small numberaithes. Indeed, two
of the survey respondents specifically reported that thesphed this behavior back.
Programmers could use optimistic completion while typwgt{out explicit invoca-
tion), and still invoke the regular code completion algamitusing the old keyboard
shortcut if they wish to explore the system. This would make tivo approaches
complementary.

Resource usag@ur benchmark in its current form is resource-intensivetimg
the completion engine several hundred thousands timesiw takes a few hours for
each benchmark. We are looking at ways to make this fasteth®aother hand, since
the best performing algorithm uses a more limited numberatthes, an optimistic
code completion tool can actually be faster than a pessmuse.
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11 Related Work

We reviewed a number of completion approaches used in pedintBection2. We re-
view here the few academic contributions we are aware ofnlttmain of code com-
pletion. Beyond the classical completion algorithms, fewvks can compare with our
approach, for the reasons we mentioned in Seéfion 1: Thedfkw data sources
to improve code completion, the difficulty of evaluation kaut a benchmark-type
approach such as ours, and the necessity of a large improwéonsonvince users.

Mylyn by Kersten and Murphy features a form of code complebased on task
contexts prioritizing elements belonging to the task atchi@, which is similar to
our approach. We could however not reproduce their algorgimce our recorded in-
formation focuses on changes, while theirs focuses onaatiens (they also record
which entities were changed, but not the change extent,hadricounts to the “re-
cently modified method names” algorithm). The data we remidcludes interac-
tions only on a smaller period and could thus not be compaitdthe rest of the
data. Mylyn’s completion is mentioned as a minor contribatin their paper, and is
not evaluated separately.

Another completion mechanism is Keyword Programming byld.iand Miller
[Q], in which free-form keywords are replaced by valid codeirid in the model
of the program. It functions quite differently from standaompletion algorithms,
and hence could not be directly compared with other compietirategies. We see
this approach as halfway between code completion and cadelsengines such
as Google code searfhKoderdd or academic source code search engines such as
Sourcerer by Bajracharya et all [2] or S6 by Reliss [12].

A final completion mechanism is the one proposed by Bruch .ef3al They
propose 3 completion algorithms based on the existing ushgkasses in the code
base, and compare their accuracy with the default complatiechanism by having
their algorithms train on a part of the code base, and proposwletions on the
remaining part of the code base. There are several diffeeewith our approach.
First, the algorithms they propose learn from existing ¢edgle the algorithms we
experimented with use recent change information. Our élguarare lighter-weight,
and may adapt more quickly to the developer’s actions inéise evhere examples are
not yet available to learn from. Second, their evaluatiasiexisting code bases that
are divided in a training set and a testing set, while we usegaecorded sequence
of changes. Third, they evaluate their completion mecmamighout prefixes, while
we study the behavior of our algorithms for a varying lengtipiefixes. Similarly
to us, they perform a second validation by having users parfocoding task with
their best-performing mechanism and having them fill a qaestire afterwards.
A difference in the second step of evaluation is that we seldahe tool and let
developers use it for a longer period of time during theiuattoding activities,
while they specified a task that developers worked on usirgadrtheir previously
trained completion algorithms.

4 http://www.google.com/codesearch
5 http://www.koders.com/
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12 Conclusion

Code completion is a tool used by every developer, yet imgmrents have been
few and far-between: Additional data is needed to both impiband measure the
improvement. We defined a benchmark to measure the accuraoge completion
by replaying the entire change history of seven projectdevdalling the completion
engine at every step. Using this historical informationmadditional source of data
for the completion engine, we significantly improved its @ecy by changing the
alphabetical ordering of the results to an ordering baseehtity usage. We applied
our approach to the two most numerous kind of entities in twsoé system, class
and method names, and saw significant improvements in be#isar

Our optimistic completion algorithms return the correctohan the top 3 in close
to 75% of the cases, whereas a pessimistic algorithm alweyes tihe correct match,
but in a much larger list of candidates, and usually at a wiask since the matches,
when sorted alphabetically, have no semantic orderingcelersing an optimistic
algorithm involves less navigation and a lesser cognitiegllto select a match.

We integrated our improved completion algorithm in a codengietion tool
named OCompletion, and we released it in two open-sourcentorities. The in-
formal feedback we received was very positive and guided wsii subsequent im-
provements of the tool. In addition, a survey of the usersvgldiothat they found it
significantly more accurate than the previous tool they paed that OCompletion’s
user interface, optimized for optimistic completion, wisoaa part of the increased
usability of the tool. More telling to us is the fact that OCuoletion is now included
in the Pharo development environment and is as such usedoyails developers.
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