
The Moose Reengineering Environment

Stéphane Ducasse, Michele Lanza and Sander Tichelaar
Software Composition Group, University of Berne

{ducasse,lanza,tichel}@iam.unibe.ch

1. Introduction

This article presents the Moose Reengineering Environ-
ment, a language independent tool environment to reverse
engineer, i.e., understand, and reengineer software systems,
as well as the tools which have been developed around it and
the experience, both academic and industrial, we have ob-
tained.

Moose is implemented in VisualWorks 3.0/Envy 4.0. It
consists of a repository to store models of software systems,
and provides facilities to analyse, query and navigate them.
Models consist of entities representing software artifacts
such as classes, methods, etc.

Moose has the following characteristics:

• It supports reengineering of applications developed in
different object-oriented languages, as its core model is
language independent which, if needed, can be custom-
ized to incorporate language specific features.

• It is extensible. New entities like measurements or spe-
cial-purpose relationships can be added to the environ-
ment.

• It supports reengineering by providing facilities for an-
alysing and storing multiple models, for refactoring and
by providing support for analysis methods such as met-
rics and the inference of properties of source code ele-
ments.

• With its fully object-oriented implementation, Moose
provides a complete description of the metamodel ele-
ments in terms of objects that are easily parameterised,
extended or manipulated.

These properties make Moose an ideal foundation for
reengineering tools such as CodeCrawler [DDL99] or Su-
premo [KN01]. These, and other, tools are discussed in sec-
tion 8.

Moose is based on the FAMIX metamodel [DDT99]
[DTD01]. FAMIX provides for a language-independent rep-
resentation of object-oriented sources and contains the re-
quired information for the reengineering tasks performed by
our tools. It is language independent, because we need to
work with legacy systems in different implementation lan-
guages (C++, Java, Smalltalk, Ada). It is extensible, since
we cannot know in advance all information that is needed in

future tools, and since for some reengineering problems
tools might need to work with language-specific informa-
tion (e.g., to analyse include hierarchies in C++). Therefore
we allow for language plug-ins that extend the model with
language-specific features. Next to that, we allow tool plug-
ins to extend the model to store, for instance, analysis results
or layout information for graphs.

The outline of this article is the following. We start by list-
ing the main characteristics that we expect from a reengi-
neering environment. We then present Moose in depth: first
we discuss its overall architecture, followed by a detailed
presentation of the different parts. We present some tools
that make use of Moose and we finish with a validation of
Moose against the requirements we have set and a conclu-
sion.

2. Requirements for a Reengineering
Environment

Based on our experiences and on the requirements report-
ed in the literature [MN97] [HEH+96] [Kaz96], these are our
main requirements for a reengineering environment:

• Support for reengineering tasks. An obvious require-
ment which determines the focus of the tool. It deter-
mines the information to store and which services the
environment provides. Typical reengineering tasks are
metrics, grouping, visualisation and refactoring.

• Extensible. An environment for reverse engineering
and reengineering should be extensible in many aspects:

CodeCrawler
 System Understanding

Moose

Moose Explorer
 Code Analysis
 Navigation

Refactoring Engine

Moose Finder
 Evolution

 Euler
 Metrics

Gaudi
 View Extraction
 Role Extraction

Supremo
 Duplication Analysis

Duploc
 Duplication
 Identification

Based on Moose

Soul
 Design Extraction

Collaborate with

Figure 1 Moose collaborations with other
tools

- The metamodel should be able to represent and
manipulate entities other than the ones directly
extracted from the source code (e.g., measure-
ments, associations, relationships, etc.).

- To support reengineering in the context of software
evolution the environment should be able to handle
several source code models simultaneously.

- It should be able to use and combine information
from various sources, for instance the inclusion of
tool-specific information such as run-time informa-
tion, metric information, graph layout information,
etc.

- The environment should be able to operate with
external tools like graph drawing tools, diagram-
mers and parsers.

• Exploratory. The exploratory nature of reverse engi-
neering and reengineering demands that a reengineering
environment does not impose rigid sequences of activi-
ties. The environment should be able to present the
source code entities in many views, both textual and
graphical, in little time. It should be possible to perform
several types of actions on the views the tools provide
such as zooming, switching between different abstrac-
tion levels, deleting entities from views, grouping enti-
ties into logical clusters, etc. The environment should as
well provide a way to easily access and query the enti-
ties contained in a model. To minimize the distance be-
tween the representation of an entity and the actual en-
tity in the source code, an environment should provide
every entity with a direct linkage to its source code. A
secondary requirement in this context is the possibility
to maintain a history of all steps performed by the reen-
gineer and preferably allow him to return to earlier
states in the reengineering process.

• Scalable. As legacy systems tend to be huge, an envi-
ronment should be scalable in terms of the number of
entities being represented, i.e., at any level of granular-
ity the environment should provide meaningful infor-
mation. An additional requirement in this context is the
actual performance of such an environment. It should
be possible to handle a legacy system of any size with-
out long latency times.

• Information Exchange and Tool Integration. A reen-
gineering effort is typically a cooperation of a group of
specialised tools [DDT99]. Therefore, a reengineering
environment needs to be able to integrate with external
tools, either by exchanging information or ideally by
providing a platform for tools for runtime integration.

In addition to these general requirements, the context of
the FAMOOS project [DD99] forced us to have an environ-
ment that is able to support multiple languages.

3. Architecture

Moose has a layered architecture (see figure 2). We de-
scribe the architecture starting from the bottom.

Import/Export Framework. There are several ways to im-
port information about software systems into Moose.

• In the case of VisualWorks Smalltalk — the language in
which Moose is implemented — sources can be directly
extracted via the metamodel of the Smalltalk language
or via the built-in parser.

• For other source languages Moose provides an import
interface for CDIF or XMI files based on the FAMIX
metamodel. CDIF [Com94] and XMI [OMG98] are in-
dustry-standard interchange formats for exchanging
models via files or streams. Over this interface Moose
uses external parsers for source languages other than
VisualWorks Smalltalk. Currently C++, Java, Ada and
some other Smalltalk dialects are supported. Informa-
tion exchange is discussed in more detail in section 8

Repository and Model Management. Information is
transformed from source code into a source code model.
Moose can maintain and access several models in memory at
the same time. The models are based on the FAMIX meta-
model [DTD01]. Every model contains elements represent-
ing the software artifacts of the target system. The
information in this model can then be analysed, manipulated
and used to trigger code transformations by means of refac-
torings.

Services. Moose provides several services that make the life
of a reengineer easier.

• Querying and Navigation. Every element in a model is
represented by an object, which allows direct interac-
tion of elements, and consequently an easy way to query
and navigate a model. The query and navigation support
is discussed in detail in section 4

• Metrics and other Analysis support. Moose’s analysis
services are mostly implemented as operators that can
be run over a model to compute additional information
regarding the software elements. For example, metrics
can be computed and associated with the software enti-
ties, entities can be annotated with additional informa-
tion such as inferred type information, analysis of the
polymorphic invocations, etc.

• Grouping. Moose has grouping mechanisms, with
which it is easy to group several entities into one group
entity, which is treated from then on as an entity itself.
This is useful when a reengineer wants to reduce the
amount of information by looking at the subject system
from a higher level of abstraction, i.e., instead of look-
ing at several hundreds of classes, he can group them

into a few dozen applications and thus obtain a better
view of the whole system.

• Refactoring. The Moose Refactoring Engine imple-
ments language-independent refactorings as defined in
[TDDN00]. Section 7 describes the engine in more de-
tail.

Tools Layer and Tools Integration Framework. The
functionality which is provided by Moose is to be used by
tools. This is represented by the top layer of figure 2. Tools
can use the repository and services of Moose and use the
Tools Integration Framework to find each other and inte-
grate. The Tools Integration Framework and examples of
tools based on Moose are described in section 8.2.

The following sections discuss the different parts of
Moose in more detail.

4. Querying and Navigation

One of the challenges when dealing with large complex
metamodels is how to support their navigation and facilitate
easy access to specific entities. In the following subsections
we present two different ways of querying and inspecting
source code models in Moose.

4.1 Programming Queries

The fact that the metamodel in Moose is fully object-ori-
ented together with the facilities offered by the Smalltalk en-
vironment, it is simple to directly query a model in Moose.
We show two examples. The first query returns all the meth-
ods accessing the attribute name of the class Node.

(MSEModel currentModel
 entityWithName: #’Node.name’)
 accessedByCollect:
 [:each | MSEModel currentModel

entityWithName: each accessedIn]

The second query select all the classes that have more
than 10 descendants (WNOC is a metric and means Weight-
ed Number Of Children).

MSEModel currentModel allClassesSelect:
 [:each | each hasProperties and:
 [(each hasPropertyNamed: #WNOC) ifTrue:

[(each getNamedPropertyAt: #WNOC) > 10]]]

Note that these queries resemble SQL queries on model
information stored in a database [KC99].

Moose Finder
The Moose Finder is a tool that allows one to compose

queries based on different criteria like entity type, properties
or relationships, etc. A simple query finds entities that meet
certain conditions. Such a query can in turn be combined

Navigation

Metrics

Analysis

Grouping

Querying

Refactoring

Services

Figure 2 Architecture of Moose

SNiFF+ parser

CDIF XMIVisualWorks parser

Repository and Model Management

Moose

Import/Export Framework

Moose Tools

Sm
al

lta
lk

Ja
va C++

CO
BO

L

Ada

CDIF
XM

I

Tool Integration Framework

with other queries to express more complex ones. The
Moose Finder supports multiple models in the context of
software evolution.

4.2 Querying and navigating using the Moose
Explorer

Reengineering large systems brings up the problem of
how to navigate large amounts of complex information.
Well-known solutions are code browsers such as the Small-
talk one, which have been sufficient to support code brows-
ing, editing and navigating a system by the way of senders
and implementers. However, for reengineering these ap-
proaches are not sufficient because:

• The number of potentially interesting entities and their
interrelationships is too large. A typical system can
have several hundreds of classes which contain in turn
several thousands of methods, etc.

• All entities need to be navigable in a uniform way.

- In the context of reengineering no entity is predom-
inant. For example, attribute accesses can be
extremely important to analysis methods but in
other cases completely irrelevant.

- In presence of an extensible metamodel, the navi-
gation schema should take into account the fact that
new entities and relationships can be added and
should be navigable as well.

Moose Explorer proposes a uniform way to represent
model information (see figure 4). All entities, relationships
and newly added entities can be browsed in the same way.
From top to bottom, the first pane represents a current set of
selected entities. Here we see all the classes of the current
model. The bottom left pane represents all the possible ways
to access other entities from the currently selected ones. The
resulting entities are displayed in the right bottom pane and
can then be further browsed. ‘Diving’ into the resulting enti-

ties puts them as the current selection in the top pane again,
which allows for further navigation through the model.

5. Metrics and other analysis support

Moose includes a metrics engine for the computation and
storage of metric measurements. We support so called De-
sign Metrics [LK94], i.e., metrics which are extracted from
the source entities themselves. These metrics are used to as-
sess the size and in some cases the quality and complexity of
software. The current implementation of the metrics engine
includes language-independent as well as language-spe-
cificmetrics. The language independent metrics can be ex-
tracted from our metamodel. Examples are the number of
methods or the number of attributes of class. Examples for
language- specific metrics are the number of method proto-
cols of a class in Smalltalk or the number of private attributes
of a class in C++ or Java.

6. Grouping

Moose supports grouping of any entities. Groups can be
nested. They can also described by intention and by exten-
tion. The following code shows how all classes of the system
under analysis can be grouped into group representing the
categories they belong to.

MSEModel currentModel allClassesDo:

[:aMooseClass |

| group category|

aMooseClass isStub

ifFalse: [

category :=

MSEUtilities extractCategory:

aMooseClass sourceAnchor.

group := MSEModel currentModel

enumeratedGroupWithName:category.

group add: aMooseClass]]

Figure 3 Moose Finder

Figure 4 Moose Explorer

For all classes, we check if the class is not a stub i.e., a
class that is outside of the analysed code, then the method
groupWithName: returns an existing group representing a
category or a new one to which the class is added.

Note that in this code we are not manipulating Smalltalk
classes directly but Moose representation of these classes
which are language independent. However, this example il-
lustrates that while the Moose meta-model is language inde-
pendent the interpretation of information has sometimes to
be language dependent. Here the category concept only ex-
ists in Smalltalk.

7. Moose Refactoring Engine

Refactoring [FBB+99] is about making changes to code
to improve its structure, simplicity, flexibility, understanda-
bility or performance [Bec99] without changing the external
behaviour of the system. The Moose Refactoring Engine
provides support for twelve low-level refactorings. The
functionality is similar to the Refactoring Browser [RBJ97]
for Smalltalk, but for multiple implementation languages,
currently Smalltalk and Java.

The Moose Refactoring Engine does virtually all of the
analysis — needed to check the applicability of a refactoring
and to see what exactly has to be changed — using the lan-
guage-independent FAMIX model [DTD01]. The language
dependence can be kept on a minimal level, because firstly
the refactorings are very similar for the different languages,
and secondly, FAMIX is designed to capture these commo-
nalities as much as possible. For instance, FAMIX supports
multiple inheritance, which covers Smalltalk’s single inher-
itance, C++’s multiple inheritance and Java’s classes and in-
terfaces. Language extensions cover most of the remaining
issues, for instance, to figure out if a class entity in Moose
represents a class or an interface in Java.

Of course, changing the code is language-specific. For
every supported language a component has to be provided
that performs the actual code changes directly on the source
code. Currently the Moose Refactoring Engine is a proto-
type with language front-ends for Smalltalk and Java. For
Smalltalk we use the Refactoring Browser [RBJ97] to
change the code, and for Java we currently use a text-based
approach based on regular expressions. Although the text-
based approach is more powerful than we initially expected,
we plan to move to an abstract syntax tree based approach in
the future.

A set of language-independent refactorings together with
the analysis support of Moose itself provides for a powerful
combination of using analysis to drive (semi-)automated
code improvements.

8. Information Exchange and Tool
Integration

Interoperability between reengineering tools is support-
ed in two ways. First, there is the possibility to exchange in-
formation in text files using industry standard exchange
formats. Second, tools written in VisualWorks Smalltalk can
interoperate with the Moose repository, its services and each
other at runtime.

8.1 Information Exchange with CDIF and XMI

To exchange FAMIX-based information between differ-
ent tools, Moose provides two textual formats. One is CDIF
[Com94], an industrial standard for transferring models cre-
ated with different tools. The main reasons for adopting
CDIF are, that it is an industry standard and has a standard
plain text encoding which tackles the requirements of con-
venient querying and human readability. Next to that the
CDIF framework supports the extensibility we need to de-
fine our model and plug-ins.

Recently, we have adopted XMI (XML Metadata Inter-
change [OMG98]) as a second storage and exchange format
[Sch01] [Fre00]. XMI is an OMG standard for exchanging
models based on the MOF (Meta-Object Facility [OMG00])
and uses XML (Extensible Markup Language [BPSM98])
as the underlying technology to save this information.

The main reason to support a second standard is that
CDIF did not succeed in becoming a widely used standard.
XMI seems to stand a better chance, especially because it is
based on XML, which is likely to become the de facto stand-
ard for transferring information between applications and
allows the use of XML-based technologies such as XSL.
Secondly, XMI is based on the MOF, which is likely to be-
come the de facto standard to describe metamodels and of-
fers excellent integration to MOF-based metamodels such
as UML.

As shown in figure 2 we use CDIF to import FAMIX-
based information about systems written in Java, C++ and
other languages. The information is produced by external
parsers such as SNiFF+ [Tak96] [TD99]. Next to parsers we
also have integrations with external environments such as
the Nokia Reengineering Environment [DD99].

A third format we plan to support is the Graph eXchange
Language (GXL) [HWS00]. GXL is a collaborative effort
from several academic and industrial research institutes to
come up with an exchange format and a set of metamodels
for information exchange for reengineering tools.

8.2 Tool Integration Framework and Tools

As mentioned earlier, Moose serves as a foundation for
other tools. It acts as the central repository and provides
services such as metric computation and refactorings to the
reengineering tools built on top of Moose. To enable tools to
interact, Moose provides a simple tool registration and
lookup mechanism.

At this point in time the following tools have been devel-
oped:

• CodeCrawler supports reverse engineering through the
combination of metrics and visualization [Lan99]
[DDL99] (see figure 5). Through simple visualisations
which make extensive use of metrics, it enables the user
to gain insights in large systems in a short time. Co-
deCrawler is a tool which works best when we approach
a new system and need quick insights to get information
on how to proceed. CodeCrawler has been successfully
tested on several industrial case studies.

• Gaudi [RD99] combines dynamic with static informa-
tion (see figure 6). It supports an iterative approach cre-
ating views which can be incrementally refined by ex-

tending and refining queries on the repository, while fo-
cusing on dynamic information.

• Supremo [KN01] uses the Moose repository and the du-
plication detection tool Duploc [DRD99] to put dupli-
cation in context. Figure 7 shows an example: the color-
ed nodes in the class inheritance tree represent the dis-
tribution of a recurring code sequence.

Except for providing the foundation for our own tools,
Moose also interfaces with external tools. Examples are the
Nokia Reengineering Environment [DD99] and Soul
[Wuy01].

9. Validation and Evaluation

Moose and its tools have been validated in several aca-
demic and industrial experiences, some of which we list in
more detail below. The idea was that members of our team
went to work on the industrial applications in a ’let’s see
what they can tell us about our system’ way. There was no
training of the developers with our tools. The common point
about those experiences was that the subject systems were of
considerable size and that there was a narrow time constraint
for all experiences we describe below:

1. A very large legacy system written in C++. The size
of the system was of 1.2 million lines of code in
more than 2300 classes. We had four days to obtain
results.

2. A medium-sized system written in both C++ and
Java. The system consisted of about 120,000 lines of
code in about 400 classes. The time frame was again
four days.

3. A large system written in Smalltalk. The system
consisted of about 600,000 lines of code in more
than 2500 classes. This time we had less than three
days to obtain results. Parsing and storing the com-
plete system took less than 5 minutes on a PC Pen-
tium III 500Hz with 128 MB of RAM.

Figure 5 CodeCrawler

Figure 6 Gaudi

Figure 7 Supremo

The fact that all the industrial case studies where under
extreme time pressure lead us to mainly get an understand-
ing of the system and produce overviews [DDL99]. We were
also able to point out potential design problems and on the
smallest case study we even had the time to propose a possi-
ble redesign of the system. Taking the time constraints into
account, we obtained very satisfying results. Most of the
time, the (often initially sceptical) developers were sur-
prised to learn some unknown aspects of their system. On
the other hand, they typically knew already about many
problems we found.

We learnt that, in addition to the views provided by our
tools, code browsing was needed to get a better understand-
ing of specific parts of the applications. Combining metrics,
graphical analysis and code browsing proved to be an suc-
cessful approach to get the results described above. The ob-
vious conclusion is that tools are necessary but not
sufficient.

Memory issues

Up to now we did not have problems regarding the
number of entities we loaded into the code repository. The
maximum number of entities we loaded was around
700’000. The workability of Moose then depends largely on
the amount of RAM of the computer it is running on. In the
industrial context we reached 300’000 entities, which due to
the small amount of RAM (128 MB) of the computer made
the VisualWorks Smalltalk environment swap information
to the hard disk and back. The code repository might run into
problems with multi-million line projects. For that reason
we have designed the code repository to support a possible
database mapping easily.

In addition, the following considerations have to be taken
into account when speaking about memory problems. First,
the amount of available memory on the used computer sys-
tem is, of course, an important factor. Secondly, we have
never even tried to heavily optimize our environment neither
in access speed nor in memory consumption, because so far
we did not really have problems in these areas. Therefore,
there is some room for improvement, would it be needed in
the future. A third aspect is that tools that make use of the re-
pository need some memory of their own as well. For in-
stance, CodeCrawler needs to create a lot of additional
objects (representing nodes and edges) for the purpose of
visualization.

The requirements revisited

In section 2, we listed the main requirements for a reengi-
neering environment.We now discuss how Moose evaluates
in that context.

1. Support for reengineering tasks. Moose supports
all major reengineering tasks, mainly because it has

grown while being constantly validated in industrial
contexts. Therefore, although coming from an aca-
demic background, the whole environment has
strong roots in industry.

2. Extensible. The extensibility of Moose is inherent
to the extensibility of its metamodel. Its design al-
lows for extensions for language-specific features
and for tool-specific information. We have already
built several tools which use the functionalities of-
fered by Moose.

3. Exploratory. Moose is an object-oriented frame-
work and offers as such a great deal of possible in-
teractions with the represented entities. We imple-
mented several ways to handle and manipulate enti-
ties contained in a model, as we have described in
the previous sections.

4. Scalable. The industrial case studies presented at
the beginning of this section have proved that
Moose can deal with large systems in a satisfactory
way: we have been able to parse and load large sys-
tems in a short time. Since we keep all entities in
memory we have fast access times to the model it-
self. So far we have not encountered memory prob-
lems: the largest system loaded contained more than
700,000 entities and could still be held completely
in memory without any notable performance penal-
ties.

5. Information Exchange and Tool Integration. The
integration with several external tools has been re-
peatedly done without major problems. The infor-
mation can be exchanged with other tool platforms
using either CDIF, XMI or GXL. Especially GXL
may open up a whole new set of possible coopera-
tions with other tools.

10. Conclusion and Future Work

In this article we have presented the Moose reengineering
environment. First, we have defined our requirements for
such an environment and afterwards we have introduced the
architecture of Moose, its metamodel and the different tools
that are based on it.

The facilities of Moose for storing, querying and navigat-
ing information and its extensibility make it an ideal founda-
tion for other tools, as shown by tools such as Gaudi and
CodeCrawler. Next to that, the environment has repeatedly
proven its scalability and usability in an industrial setting.

Future work includes further development of our Moose-
based tools, using them to explore in more detail topics such
as design extraction, system evolution, steering of refactor-
ings based on code duplication detection or other kinds of
analysis.

11. Some Links

In this section we want to provide you with a set of links
regarding Moose, related tools, as well as research in this
context.

• SCG P.U.R.E. (Software Composition Group Program
Understanding and ReEngineering) (http://
www.iam.unibe.ch/~pure/) are the members of the
Software Composition Group (http://www.iam.un-
ibe.ch/~scg/) doing research in the context of program
understanding and reengineering. All the tools men-
tioned in this article can be downloaded for free.

• Conferences:

WCRE (Working Conference on Reverse Engineering)
http://www.reengineer.org/

ICSM (International Conference on Software Mainte-
nance) http://tcse.org/

References
[Bec99] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, 1999.
BPSM98] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen.

Extensible Markup Language (XML) 1.0 - w3c recommen-
dation 10-february-1998. Technical Report REC-xml-
19980210, World Wide Web Consortium, February 1998.

[Com94] CDIF Technical Committee. Cdif framework for mode-
ling and extensibility. Technical Report EIA/IS-107, Elec-
tronic Industries Association, January 1994. See http://
www.cdif.org/.

[DD99] Stéphane Ducasse and Serge Demeyer, editors. The FA-
MOOS Object-Oriented Reengineering Handbook. Univer-
sity of Berne, October 1999. See http://www.iam.unibe.ch/
~famoos/handbook.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza.
A hybrid reverse engineering platform combining metrics
and program visualization. In Francoise Balmas, Mike Bla-
ha, and Spencer Rugaber, editors, Proceedings WCRE’99.
IEEE, October 1999.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Sander
Tichelaar. Why unified is not universal. UML shortcomings
for coping with round-trip engineering. In Bernhard Rumpe,
editor, Proceedings UML’99, LNCS 1723, October 1999.
Springer-Verlag.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demey-
er. A language independent approach for detecting duplicat-
ed code. In Hongji Yang and Lee White, editors, Proceed-
ings ICSM’99, pages 109–118. IEEE, September 1999.

[DTD01] Serge Demeyer, Sander Tichelaar, and Stéphane
Ducasse. FAMIX 2.1 - the FAMOOS information exchange
model. Technical report, University of Berne, 2001. to ap-
pear.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Op-
dyke, and Don Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[Fre00] Michael Freidig. XMI for FAMIX. Informatikprojekt,
University of Berne, June 2000.

[HEH+96] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick,
and D. Roland. Database reverse engineering: From require-
ments to CARE tools. Automated Software Engineering,
3(1-2), June 1996.

[HWS00] Richard C. Holt, Andreas Winter, and Andy Schürr.
GXL: Towards a standard exchange format. In Proceedings
WCRE’00, November 2000.

[Kaz96] R. Kazman. Tool support for architecture analysis and
design, 1996. Proceedings of Workshop (ISAW-2) joint Sig-
soft.

[KC99] R. Kazman and S.J. Carriere. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Engineering, April 1999.

[KN01] Georges Golomingi Koni-N’sapu. A scenario based ap-
proach for refactoring duplicated code in object oriented
systems. Diploma thesis, University of Berne, June 2001.

[Lan99] Michele Lanza. Combining metrics and graphs for object
oriented reverse engineering. Diploma thesis, University of
Bern, October 1999.

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

[MN97] Gail Murphy and David Notkin. Reengineering with re-
flexion models: A case study. IEEE Computer, 8:29–36,
1997.

[OMG98] Object Management Group. XML Metadata Inter-
change (XMI). Technical Report ad/98-10-05, Object Man-
agement Group, February 1998.

[OMG00] Object Management Group. Meta Object Facility
(MOF) specification (version 1.3). Technical report, Object
Management Group, March 2000.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refac-
toring tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), 3(4):253–263, 1997.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-
level views of object-oriented applications from static and
dynamic information. In Hongji Yang and Lee White, edi-
tors, Proceedings ICSM’99, pages 13–22. IEEE, September
1999.

[Sch01] Andreas Schlapbach. Generix XMI support for the
MOOSE reengineering environment. Informatikprojekt,
University of Bern, Jun 2001.

[Tak96] TakeFive Software GmbH. SNiFF+, 1996.

[TD99] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to
Rational Rose – interoperability using a common exchange
model. In SNiFF+ User’s Conference, January 1999.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer,
and Oscar Nierstrasz. A meta-model for language-independ-
ent refactoring. In Proceedings ISPSE 2000. IEEE, 2000.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design and
Implementation. PhD thesis, Vrije Universiteit Brussel,
2001.

http://www.iam.unibe.ch/~pure
http://www.iam.unibe.ch/~scg/
http://www.iam.unibe.ch/~scg/
http://www.reengineer.org
http://tcse.org
http://tcse.org
http://www.iam.unibe.ch/~pure
http://www.iam.unibe.ch/~pure/
http://www.iam.unibe.ch/~pure/
hppt://www.reengineer.org

	The Moose Reengineering Environment
	1. Introduction
	2. Requirements for a Reengineering Environment
	3. Architecture
	4. Querying and Navigation
	4.1 Programming Queries
	4.2 Querying and navigating using the Moose Explorer

	5. Metrics and other analysis support
	6. Grouping
	7. Moose Refactoring Engine
	8. Information Exchange and Tool Integration
	8.1 Information Exchange with CDIF and XMI
	8.2 Tool Integration Framework and Tools

	9. Validation and Evaluation
	10. Conclusion and Future Work
	11. Some Links

