The Moose Reengineering Environment

Stéphane Ducasse, Michele Lanza and Sander Tichelaar

Software Composition Group, University of Berne
{ducasse,lanza,tichel} @iam.unibe.ch

1. Introduction

This article presents the M oose Reengineering Environ-
ment, a language independent tool environment to reverse
engineer, i.e., understand, and reengineer software systems,
aswell asthetoolswhich have been developed around it and
the experience, both academic and industrial, we have ob-
tained.

Moose is implemented in VisualWorks 3.0/Envy 4.0. It
consists of arepository to store models of software systems,
and provides facilitiesto analyse, query and navigate them.
Models consist of entities representing software artifacts
such as classes, methods, etc.

Moose hasthefollowing characteristics:

It supports reengineering of applications developed in
different object-oriented languages, asits core model is
language independent which, if needed, can be custom-
ized to incorporate language specific features.

* |tisextensible. New entities like measurements or spe-
cial-purpose relationships can be added to the environ-
ment.

« |t supportsreengineering by providing facilities for an-
alysing and storing multiple models, for refactoring and
by providing support for analysis methods such as met-
rics and the inference of properties of source code ele-
ments.

» With its fully object-oriented implementation, Moose
provides a complete description of the metamodel ele-
ments in terms of objects that are easily parameterised,
extended or manipul ated.

These properties make Moose an ideal foundation for
reengineering tools such as CodeCrawler [DDL99] or Su-
premo [KNO1]. These, and other, tools are discussed in sec-
tion 8.

Moose is based on the FAMIX metamodel [DDT99]
[DTDO1]. FAMIX providesfor alanguage-independent rep-
resentation of object-oriented sources and contains the re-
quired information for the reengineering tasks performed by
our tools. It is language independent, because we need to
work with legacy systems in different implementation lan-
guages (C++, Java, Smalltalk, Ada). It is extensible, since
we cannot know in advance all information that isneededin

Duploc
Duplication
Identification

/
/

Gaudi
View Extraction
Role Extraction

CodeCrawler
System Understanding

Supremo
Duplication Analysis

Based on Moose

Moose Soul
Moose Finder Moose Explorer Design Extraction
Evolution Code Analysis

Navigation i

-
-
|~ Collaborate with

Refactoring Engine| | Euler
Metrics

Figure 1 Moose collaborations with other
tools

future tools, and since for some reengineering problems
tools might need to work with language-specific informa-
tion (e.g., to analyseinclude hierarchiesin C++). Therefore
we alow for language plug-ins that extend the model with
|language-specific features. Next to that, we allow tool plug-
insto extend the model to store, for instance, analysisresults
or layout information for graphs.

Theoutlineof thisarticleisthefollowing. Westart by list-
ing the main characteristics that we expect from a reengi-
neering environment. We then present Moose in depth: first
we discuss its overall architecture, followed by a detailed
presentation of the different parts. We present some tools
that make use of Moose and we finish with a validation of
Moose against the requirements we have set and a conclu-
sion.

2. Requirementsfor a Reengineering
Environment

Based on our experiencesand on therequirementsreport-
edintheliterature[MN97] [HEH*96] [Kaz96], theseareour
main requirementsfor areengineering environment:

» Support for reengineering tasks. An obvious require-
ment which determines the focus of the tool. It deter-
mines the information to store and which services the
environment provides. Typical reengineering tasks are
metrics, grouping, visualisation and refactoring.

» Extensible. An environment for reverse engineering
and reengineering should be extensiblein many aspects:

- The metamodel should be able to represent and
mani pulate entities other than the ones directly
extracted from the source code (e.g., measure-
ments, associations, relationships, etc.).

- To support reengineering in the context of software
evolution the environment should be able to handle
several source code models simultaneously.

- It should be able to use and combine information
from various sources, for instance the inclusion of
tool-specific information such as run-time informa-
tion, metric information, graph layout information,
etc.

- The environment should be able to operate with
external tools like graph drawing tools, diagram-
mers and parsers.

» Exploratory. The exploratory nature of reverse engi-
neering and reengineering demandsthat areengineering
environment does not impose rigid sequences of activi-
ties. The environment should be able to present the
source code entities in many views, both textual and
graphical, inlittletime. It should be possible to perform
several types of actions on the views the tools provide
such as zooming, switching between different abstrac-
tion levels, deleting entities from views, grouping enti-
tiesintological clusters, etc. The environment should as
well provide away to easily access and query the enti-
ties contained in amodel. To minimize the distance be-
tween the representation of an entity and the actual en-
tity in the source code, an environment should provide
every entity with a direct linkage to its source code. A
secondary requirement in this context is the possibility
to maintain ahistory of all steps performed by the reen-
gineer and preferably allow him to return to earlier
states in the reengineering process.

» Scalable. As legacy systems tend to be huge, an envi-
ronment should be scalable in terms of the number of
entities being represented, i.e., at any level of granular-
ity the environment should provide meaningful infor-
mation. An additional requirement in this context isthe
actual performance of such an environment. It should
be possible to handle alegacy system of any size with-
out long latency times.

 Information Exchangeand Tool Integration. A reen-
gineering effort is typically a cooperation of a group of
specialised tools [DDT99]. Therefore, a reengineering
environment needs to be able to integrate with external
tools, either by exchanging information or ideally by
providing a platform for tools for runtime integration.

In addition to these general requirements, the context of
the FAMOOS project [DD99] forced usto have an environ-
ment that is able to support multiple languages.

3. Architecture

Moose has a layered architecture (see figure 2). We de-
scribe the architecture starting from the bottom.

Import/Export Framework. Thereareseveral waystoim-
port information about software systemsinto Moose.

* Inthecaseof VisuaWorks Smalltalk — thelanguagein
which Mooseisimplemented — sources can be directly
extracted via the metamodel of the Smalltalk language
or viathe built-in parser.

* For other source languages Moose provides an import
interface for CDIF or XMI files based on the FAMIX
metamodel. CDIF [Com94] and XM| [OMG98] are in-
dustry-standard interchange formats for exchanging
models viafiles or streams. Over this interface Moose
uses external parsers for source languages other than
VisuaWorks Smalltalk. Currently C++, Java, Ada and
some other Smalltalk dialects are supported. Informa:
tion exchangeis discussed in more detail in section 8

Repository and Model Management. Information is
transformed from source code into a source code model.
M oose can maintain and access several modelsinmemory at
the same time. The models are based on the FAMIX meta-
model [DTDO01]. Every model contains el ements represent-
ing the software artifacts of the target system. The
informationinthismodel canthen beanalysed, manipulated
and used to trigger code transformations by means of refac-
torings.

Services. Moose providesseveral servicesthat makethelife
of areengineer easier.

» Querying and Navigation. Every element in amodel is
represented by an object, which allows direct interac-
tion of elements, and consequently an easy way to query
and navigate amodel. The query and navigation support
isdiscussed in detail in section 4

» Metrics and other Analysis support. Moose's analysis
services are mostly implemented as operators that can
be run over a model to compute additional information
regarding the software elements. For example, metrics
can be computed and associated with the software enti-
ties, entities can be annotated with additional informa-
tion such as inferred type information, analysis of the
polymorphic invocations, etc.

e Grouping. Moose has grouping mechanisms, with
which it is easy to group severa entities into one group
entity, which is treated from then on as an entity itself.
This is useful when a reengineer wants to reduce the
amount of information by looking at the subject system
from a higher level of abstraction, i.e., instead of look-
ing at several hundreds of classes, he can group them

Moose Tools

v Tool Integration Framework Moose
Services Repository and Model Management
| Navigation |
| Querying |
| Metrics | W |
| Analysis | Ifél
| Grouping |
| Refactoring |
Import/Export Framework ﬁ
VisualWorks parser CDIF XMl :
o 72
f <=
SNiFF+ parser
= = = 5 —
X
= = ==& =

Figure 2 Architecture of Moose

into a few dozen applications and thus obtain a better
view of the whole system.

 Refactoring. The Moose Refactoring Engine imple-
ments language-independent refactorings as defined in
[TDDNOO]. Section 7 describes the engine in more de-
tail.

ToolsLayer and Tools Integration Framework. The
functionality which is provided by Moose is to be used by
tools. Thisisrepresented by the top layer of figure 2. Tools
can use the repository and services of Moose and use the
Tools Integration Framework to find each other and inte-
grate. The Tools Integration Framework and examples of
tools based on Moose are described in section 8.2.

The following sections discuss the different parts of
Moosein moredetail.

4. Querying and Navigation

One of the challenges when dealing with large complex
metamodelsishow to support their navigation and facilitate
easy accessto specific entities. In the following subsections
we present two different ways of querying and inspecting
source code modelsin Moose.

4.1 Programming Queries

Thefact that the metamodel in Mooseisfully object-ori-
ented together with thefacilitiesoffered by the Smalltalk en-
vironment, it is simple to directly query amodel in Moose.
We show two examples. Thefirst query returnsall the meth-
ods accessing the attribute nane of the classNode.
(MBEMbdel curr ent Model

entityWthNare: # Node. nane’)
accessedBy(Col | ect :
[:each | MSEMbdel current Model
entityWthName: each accessedln]

The second query select al the classes that have more
than 10 descendants (WNOC isametric and means Weight-
ed Number Of Children).

MBEMbdel current Model al | A assesSel ect :
[:each | each hasProperties and:
[(each hasPropertyNaned: #WNOCO) if True:
[(each get NanedPropertyAt: #WNOO > 10]]]

Note that these queries resemble SQL queries on model

information stored in adatabase [KC99].

M oose Finder

The Moose Finder is atool that allows one to compose
gueriesbased ondifferent criterialikeentity type, properties
or relationships, etc. A simple query finds entities that meet
certain conditions. Such a query can in turn be combined

with other queries to express more complex ones. The
Moose Finder supports multiple models in the context of
software evolution.

=
File Options
ElockQuery [Version3] [:anObject | anObject isClass | =

Added classes [Version2, Wersion3]
MetricChangesQuery [NOC = difference O] [Version] VersionZ]
OneSuperClassConditionQuery wrapp
= R

WSEMetricChangesQuer
2 Version2 | Joutput: 1] AND

Sibling b helass [Version2,
Moved Methods Candidates [output new madel] [Wersion2, Wersion3]

=l

Add Query

Result in

& Explorer

" Inspector

£ CodeCrawler

a MSEOhjectCompositeAndQuery

outputindex: 1

--> Queries Collection

OneSuperClassConditionGuery wrapped: [MSEMetricChangesGuery]
MetricChangesQuery [NOC > difference 0] [Version1 Version2]

Run

Figure 3 Moose Finder

4.2 Querying and navigating using the M oose
Explorer

Reengineering large systems brings up the problem of
how to navigate large amounts of complex information.
WEell-known solutions are code browsers such as the Small-
talk one, which have been sufficient to support code brows-
ing, editing and navigating a system by the way of senders
and implementers. However, for reengineering these ap-
proaches are not sufficient because:

« The number of potentially interesting entities and their
interrelationships is too large. A typical system can
have several hundreds of classes which contain in turn
several thousands of methods, etc.

« All entities need to be navigable in a uniform way.

- In the context of reengineering no entity is predom-
inant. For example, attribute accesses can be
extremely important to analysis methods but in
other cases completely irrelevant.

- In presence of an extensible metamodel, the navi-
gation schema should take into account the fact that
new entities and relationships can be added and
should be navigable as well.

Moose Explorer proposes a uniform way to represent
model information (see figure 4). All entities, relationships
and newly added entities can be browsed in the same way.
From top to bottom, thefirst pane represents a current set of
selected entities. Here we see all the classes of the current
model. The bottom left panerepresentsall the possibleways
to accessother entitiesfrom the currently selected ones. The
resulting entities are displayed in the right bottom pane and
can then befurther browsed. * Diving’ into the resulting enti-

ties putsthem asthe current selection in the top pane again,
which allowsfor further navigation through the model.

4®MoosE eXplorer - VisualWorks i —iol x|
Evplore View Model Loadal Revealonal Revesloninputlist Edit Operatians

class (673)
Nurnber class]
ObjectMermory

ObjectMemory_class

ObjectRegistry

ObjectRegistry_class

ObjectTracer

7 pre computation attribute | (0/1)
attributes ﬂ Object DependentsFields |
methods

inherited attributes

inherited methods

not inwoked methads 4 _,,d
implicit variabla(s)

- _',ll ATTD0E _.I inspect| dive opel

©

xplarer |

T function profiles
[¥! tool nate hook

|] A o) o e]

Figure 4 Moose Explorer

5. Metricsand other analysis support

Mooseincludesametricsenginefor the computation and
storage of metric measurements. We support so called De-
sign Metrics[LK94], i.e., metrics which are extracted from
the source entities themsel ves. These metricsare used to as-
sessthesizeandin some casesthe quality and complexity of
software. The current implementation of the metrics engine
includes language-independent as well as language-spe-
cificmetrics. The language independent metrics can be ex-
tracted from our metamodel. Examples are the number of
methods or the number of attributes of class. Examples for
language- specific metrics are the number of method proto-
colsof aclassin Smalltalk or thenumber of privateattributes
of aclassin C++ or Java.

6. Grouping

M oose supports grouping of any entities. Groups can be
nested. They can also described by intention and by exten-
tion. Thefollowing code showshow all classesof the system
under analysis can be grouped into group representing the
categoriesthey belongto.

MBEMbdel current Model al | A assesDo:

[: aMbosed ass |

| group category]|

aMbosed ass i sStub

i fFalse: [
category :=
MBEU i lities extractCategory:
aMbosed ass sour ceAnchor .
group : = MsEMbdel current Model
enuner at ed@ oupWt hNane: cat egory.

group add: aMbosed ass]]

For al classes, we check if the classisnot astubi.e., a
class that is outside of the analysed code, then the method
groupWithName: returns an existing group representing a
category or anew oneto which the classis added.

Note that in this code we are not manipulating Smalltalk
classes directly but Moose representation of these classes
which are language independent. However, thisexampleil-
lustratesthat while the M oose meta-model islanguageinde-
pendent the interpretation of information has sometimes to
be language dependent. Here the category concept only ex-
istsin Smalltalk.

7. Moose Refactoring Engine

Refactoring [FBB*99] is about making changes to code
to improveits structure, simplicity, flexibility, understanda-
bility or performance[Bec99] without changing the external
behaviour of the system. The Moose Refactoring Engine
provides support for twelve low-level refactorings. The
functionality issimilar to the Refactoring Browser [RBJ97]
for Smalltalk, but for multiple implementation languages,
currently Smalltalk and Java.

The Moose Refactoring Engine does virtualy al of the
analysis— needed to check the applicability of arefactoring
and to see what exactly hasto be changed — using the lan-
guage-independent FAMIX model [DTDO1]. Thelanguage
dependence can be kept on aminimal level, because firstly
therefactorings are very similar for the different languages,
and secondly, FAMIX is designed to capture these commo-
nalities as much as possible. For instance, FAMIX supports
multipleinheritance, which covers Smalltalk’ssingleinher-
itance, C++ smultipleinheritance and Java'sclassesand in-
terfaces. Language extensions cover most of the remaining
issues, for instance, to figure out if a class entity in Moose
representsaclassor an interfacein Java.

Of course, changing the code is language-specific. For
every supported language a component has to be provided
that performsthe actual code changes directly on the source
code. Currently the Moose Refactoring Engine is a proto-
type with language front-ends for Smalltalk and Java. For
Smalltalk we use the Refactoring Browser [RBJ97] to
change the code, and for Javawe currently use a text-based
approach based on regular expressions. Although the text-
based approach ismore powerful than weinitially expected,
we plan to moveto an abstract syntax tree based approachin
the future.

A set of language-independent refactoringstogether with
the analysis support of Mooseitself providesfor a powerful
combination of using analysis to drive (semi-)automated
codeimprovements.

8. Information Exchange and Tool
Integration

Interoperability between reengineering tools is support-
ed intwo ways. First, thereisthe possibility to exchangein-
formation in text files using industry standard exchange
formats. Second, toolswrittenin Visual Works Smalltalk can
interoperatewith the M ooserepository, its servicesand each
other at runtime.

8.1 Information Exchange with CDIF and XM

To exchange FAMI X-based information between differ-
ent tools, Moose providestwo textual formats. Oneis CDIF
[Com94], anindustrial standard for transferring modelscre-
ated with different tools. The main reasons for adopting
CDIF are, that it is an industry standard and has a standard
plain text encoding which tackles the requirements of con-
venient querying and human readability. Next to that the
CDIF framework supports the extensibility we need to de-
fine our model and plug-ins.

Recently, we have adopted XMI (XML Metadata Inter-
change[OM G98]) as a second storage and exchange format
[SchO1] [Fre00]. XMI isan OMG standard for exchanging
model sbased onthe M OF (M eta-Obj ect Facility [OMGO00])
and uses XML (Extensible Markup Language [BPSM98])
asthe underlying technology to save thisinformation.

The main reason to support a second standard is that
CDIF did not succeed in becoming awidely used standard.
XMI seemsto stand a better chance, especially becauseit is
based on XML, whichislikely to becomethedefacto stand-
ard for transferring information between applications and
alows the use of XML-based technologies such as XSL.
Secondly, XM is based on the MOF, which islikely to be-
come the de facto standard to describe metamodels and of -
fers excellent integration to MOF-based metamodels such
asUML.

As shown in figure 2 we use CDIF to import FAMIX-
based information about systems written in Java, C++ and
other languages. The information is produced by external
parserssuch as SNiFF+ [Tak96] [TD99]. Next to parserswe
also have integrations with external environments such as
the Nokia Reengineering Environment [DD99].

A third format we plan to support isthe Graph eX change
Language (GXL) [HWS00Q]. GXL is a collaborative effort
from several academic and industrial research institutes to
come up with an exchange format and a set of metamodels
for information exchange for reengineering tools.

8.2 Tool Integration Framework and Tools

As mentioned earlier, Moose serves as a foundation for
other tools. It acts as the central repository and provides
services such as metric computation and refactorings to the
reengineering toolsbuilt on top of Moose. To enabletoolsto
interact, Moose provides a simple tool registration and
lookup mechanism.

At this point in time the following tool s have been devel -
oped:

« CodeCrawler supports reverse engineering through the
combination of metrics and visualization [Lan99]
[DDL99] (see figure 5). Through simple visualisations
which make extensive use of metrics, it enablesthe user
to gain insights in large systems in a short time. Co-
deCrawler isatool which works best when we approach
anew system and need quick insightsto get information
on how to proceed. CodeCrawler has been successfully
tested on several industrial case studies.

u) s s e B
Pl e Jeledied Pmdeemiies Cobin BEER Eeles fEW
e T Gy | o SR M s e o] B | |
k B OFETREY RS
e B |
1
i
q ?
1
AR e e . 1
_Ll:lu-\.l-. W Ly B D] b | v]

Figure 5 CodeCrawler

e Gaudi [RD99] combines dynamic with static informa-
tion (seefigure 6). It supports an iterative approach cre-
ating views which can be incrementally refined by ex-

Sot Curentiven + Set Dispay,

PR

Figure 6 Gaudi

tending and refining queries on the repository, whilefo-
cusing on dynamic information.

» Supremo [KNO1] usesthe Moose repository and the du-
plication detection tool Duploc [DRD99] to put dupli-
cation in context. Figure 7 shows an example: the color-
ed nodes in the class inheritance tree represent the dis-
tribution of arecurring code sequence.

S
- t
b
t
/ t
t

MSEAbstractLacalEntity

Figure 7 Supremo

Except for providing the foundation for our own tools,
Moose al so interfaces with external tools. Examplesarethe
Nokia Reengineering Environment [DD99] and Soul
[Wuy01].

9. Validation and Evaluation

Moose and its tools have been validated in severa aca-
demic and industrial experiences, some of which welistin
more detail below. The idea was that members of our team
went to work on the industrial applications in a’let's see
what they can tell us about our system’ way. There was no
training of the devel operswith our tools. The common point
about those experienceswasthat the subj ect systemswere of
considerablesizeand that therewasanarrow time constraint
for all experienceswe describe below:

1. Avery largelegacy system writtenin C++. Thesize
of the system was of 1.2 million lines of code in
more than 2300 classes. We had four days to obtain
results.

2. A medium-sized system written in both C++ and
Java. The system consisted of about 120,000 lines of
codein about 400 classes. Thetimeframewasagain
four days.

3. A large system written in Smalltalk. The system
consisted of about 600,000 lines of code in more
than 2500 classes. This time we had less than three
days to obtain results. Parsing and storing the com-
plete system took less than 5 minutes on a PC Pen-
tium 111 500Hz with 128 MB of RAM.

The fact that all the industrial case studies where under
extreme time pressure lead us to mainly get an understand-
ing of the system and produce overviews[DDL99]. Wewere
also able to point out potential design problems and on the
smallest case study we even had the timeto propose a possi-
ble redesign of the system. Taking the time constraints into
account, we obtained very satisfying results. Most of the
time, the (often initially sceptical) developers were sur-
prised to learn some unknown aspects of their system. On
the other hand, they typically knew already about many
problemswefound.

We learnt that, in addition to the views provided by our
tools, code browsing was needed to get a better understand-
ing of specific parts of the applications. Combining metrics,
graphical analysis and code browsing proved to be an suc-
cessful approach to get the results described above. The ob-
vious conclusion is that tools are necessary but not
sufficient.

Memory issues

Up to now we did not have problems regarding the
number of entities we loaded into the code repository. The
maximum number of entities we loaded was around
700" 000. Theworkability of Moosethen dependslargely on
the amount of RAM of the computer it isrunning on. In the
industrial context we reached 300’ 000 entities, which dueto
the small amount of RAM (128 MB) of the computer made
the VisualWorks Smalltalk environment swap information
tothehard disk and back. The coderepository might runinto
problems with multi-million line projects. For that reason
we have designed the code repository to support a possible
database mapping easily.

In addition, thefollowing considerations have to betaken
into account when speaking about memory problems. First,
the amount of available memory on the used computer sys-
tem is, of course, an important factor. Secondly, we have
never eventried to heavily optimize our environment neither
in access speed nor in memory consumption, because so far
we did not really have problems in these areas. Therefore,
there is some room for improvement, would it be needed in
thefuture. A third aspect isthat tool sthat make use of there-
pository need some memory of their own as well. For in-
stance, CodeCrawler needs to create a lot of additional
objects (representing nodes and edges) for the purpose of
visualization.

Therequirementsrevisited

Insection 2, welisted themain requirementsfor areengi-
neering environment.We now discuss how Moose eval uates
inthat context.

1. Support for reengineering tasks. Moose supports
all major reengineering tasks, mainly because it has

grown while being constantly validated in industrial
contexts. Therefore, although coming from an aca
demic background, the whole environment has
strong roots in industry.

2. Extensible. The extensibility of Moose is inherent
to the extensibility of its metamodel. Its design al-
lows for extensions for language-specific features
and for tool-specific information. We have already
built several tools which use the functionalities of-
fered by Moose.

3. Exploratory. Moose is an object-oriented frame-
work and offers as such a great deal of possible in-
teractions with the represented entities. We imple-
mented several ways to handle and manipulate enti-
ties contained in a model, as we have described in
the previous sections.

4. Scalable. The industrial case studies presented at
the beginning of this section have proved that
Moose can deal with large systemsin a satisfactory
way: we have been able to parse and load large sys-
tems in a short time. Since we keep all entitiesin
memory we have fast access times to the model it-
self. So far we have not encountered memory prob-
lems: the largest system loaded contained more than
700,000 entities and could still be held completely
in memory without any notable performance penal-
ties.

5. Information Exchangeand Tool I ntegration. The
integration with several external tools has been re-
peatedly done without major problems. The infor-
mation can be exchanged with other tool platforms
using either CDIF, XMI or GXL. Especially GXL
may open up awhole new set of possible coopera-
tions with other tools.

10. Conclusion and Future Work

Inthisarticlewehave presented the M oosereengineering
environment. First, we have defined our requirements for
such an environment and afterwards we have introduced the
architecture of Moose, its metamodel and the different tools
that arebased on it.

Thefacilitiesof Moosefor storing, querying and navigat-
inginformation and itsextensibility makeit anideal founda-
tion for other tools, as shown by tools such as Gaudi and
CodeCrawler. Next to that, the environment has repeatedly
proven its scalability and usability inanindustrial setting.

Future work includesfurther development of our M oose-
based tools, using them to explorein more detail topics such
as design extraction, system evolution, steering of refactor-
ings based on code duplication detection or other kinds of
analysis.

11. SomelLinks

In this section we want to provide you with a set of links
regarding Moose, related tools, as well as research in this
context.

» SCG P.U.R.E. (Software Composition Group Program
Understanding and ReEngineering) (http://
www.iam.unibe.ch/~puref) are the members of the
Software Composition Group (http://www.iam.un-
ibe.ch/~scg/) doing research in the context of program
understanding and reengineering. All the tools men-
tioned in this article can be downloaded for free.

» Conferences:

WCRE (Working Conference on Reverse Engineering)
http://www.reengineer.org/

ICSM (International Conference on Software Mainte-
nance) http://tcse.org/

References

[Bec99] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

BPSM98] Tim Bray, Jean Peoli, and C.M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0 - w3c recommen-
dation 10-february-1998. Technical Report REC-xml-
19980210, World Wide Web Consortium, February 1998.

[Com94] CDIF Technical Committee. Cdif framework for mode-
ling and extensibility. Technical Report EIA/I1S-107, Elec-
tronic Industries Association, January 1994. See http:/
www.cdif.org/.

[DD99] Stéphane Ducasse and Serge Demeyer, editors. The FA-
MOOS Object-Oriented Reengineering Handbook. Univer-
sity of Berne, October 1999. See http://www.iam.unibe.ch/
~famoog/handbook.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza.
A hybrid reverse engineering platform combining metrics
and program visualization. In Francoise Balmas, Mike Bla-
ha, and Spencer Rugaber, editors, Proceedings WCRE' 99.
|EEE, October 1999.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Sander
Tichelaar. Why unified is not universal. UML shortcomings
for coping with round-trip engineering. In Bernhard Rumpe,
editor, Proceedings UML’99, LNCS 1723, October 1999.
Springer-Verlag.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demey-
er. A language independent approach for detecting duplicat-
ed code. In Hongji Yang and Lee White, editors, Proceed-
ings ICSM’ 99, pages 109-118. |EEE, September 1999.

[DTDO1] Serge Demeyer, Sander Tichelaar, and Stéphane
Ducasse. FAMIX 2.1 - the FAMOOS information exchange
model. Technical report, University of Berne, 2001. to ap-
pear.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Op-
dyke, and Don Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[Fre00] Michael Freidig. XMI for FAMIX. Informatikprojekt,
University of Berne, June 2000.

[HEH+96] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick,
and D. Roland. Database reverse engineering: From require-
ments to CARE tools. Automated Software Engineering,
3(1-2), June 1996.

[HWS00] Richard C. Holt, Andreas Winter, and Andy Schiirr.
GXL: Towards a standard exchange format. In Proceedings
WCRE’ 00, November 2000.

[Kaz96] R. Kazman. Tool support for architecture analysis and
design, 1996. Proceedings of Workshop (ISAW-2) joint Sig-
soft.

[KC99] R. Kazman and S.J. Carriere. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Engineering, April 1999.

[KNO1] Georges Golomingi Koni-N'sapu. A scenario based ap-
proach for refactoring duplicated code in object oriented
systems. Diplomathesis, University of Berne, June 2001.

[Lan99] Michele Lanza. Combining metrics and graphsfor object
oriented reverse engineering. Diploma thesis, University of
Bern, October 1999.

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

[MN97] Gail Murphy and David Notkin. Reengineering with re-
flexion models: A case study. IEEE Computer, 8:29-36,
1997.

[OMG98] Object Management Group. XML Metadata Inter-
change (XMI). Technical Report ad/98-10-05, Object Man-
agement Group, February 1998.

[OMGO00] Object Management Group. Meta Object Facility
(MOF) specification (version 1.3). Technical report, Object
Management Group, March 2000.

[RBJ97] Don Raoberts, John Brant, and Ralph E. Johnson. A refac-
toring tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), 3(4):253-263, 1997.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-
level views of object-oriented applications from static and
dynamic information. In Hongji Yang and Lee White, edi-
tors, Proceedings |CSM’ 99, pages 13-22. |EEE, September
1999.

[Sch01] Andreas Schlapbach. Generix XMI support for the
MOOSE reengineering environment. Informatikprojekt,
University of Bern, Jun 2001.

[Tak96] TakeFive Software GmbH. SNiFF+, 1996.

[TD99] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to
Rational Rose — interoperability using a common exchange
model. In SNiFF+ User’s Conference, January 1999.

[TDDNOQ] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer,
and Oscar Nierstrasz. A meta-model for language-independ-
ent refactoring. In Proceedings 1SPSE 2000. | EEE, 2000.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design and
Implementation. PhD thesis, Vrije Universiteit Brussel,
2001.

http://www.iam.unibe.ch/~pure
http://www.iam.unibe.ch/~scg/
http://www.iam.unibe.ch/~scg/
http://www.reengineer.org
http://tcse.org
http://tcse.org
http://www.iam.unibe.ch/~pure
http://www.iam.unibe.ch/~pure/
http://www.iam.unibe.ch/~pure/
hppt://www.reengineer.org

	The Moose Reengineering Environment
	1. Introduction
	2. Requirements for a Reengineering Environment
	3. Architecture
	4. Querying and Navigation
	4.1 Programming Queries
	4.2 Querying and navigating using the Moose Explorer

	5. Metrics and other analysis support
	6. Grouping
	7. Moose Refactoring Engine
	8. Information Exchange and Tool Integration
	8.1 Information Exchange with CDIF and XMI
	8.2 Tool Integration Framework and Tools

	9. Validation and Evaluation
	10. Conclusion and Future Work
	11. Some Links

