
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Evaluating Defect Prediction Approaches: A Benchmark
and an Extensive Comparison

Marco D’Ambros · Michele Lanza ·
Romain Robbes

Received: date / Accepted: date

Abstract Reliably predicting software defects is one of the holy grails of software
engineering. Researchers have devised and implemented a plethora of defect/bug
prediction approaches varying in terms of accuracy, complexity and the input data
they require. However, the absence of an established benchmark makes it hard, if
not impossible, to compare approaches.

We present a benchmark for defect prediction, in the form of a publicly avail-
able dataset consisting of several software systems, and provide an extensive com-
parison of well-known bug prediction approaches, together with novel approaches
we devised. We evaluate the performance of the approaches using different perfor-
mance indicators: classification of entities as defect-prone or not, ranking of the
entities, with and without taking into account the effort to review an entity.

We performed three sets of experiments aimed at (1) comparing the approaches
across different systems, (2) testing whether the differences in performance are
statistically significant, and (3) investigating the stability of approaches across
different learners.

Our results indicate that, while some approaches perform better than others
in a statistically significant manner, external validity in defect prediction is still
an open problem, as generalizing results to different contexts/learners proved to
be a partially unsuccessful endeavor.

Keywords Defect prediction · Source code metrics · Change metrics

Marco D’Ambros
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland
E-mail: marco.dambros@usi.ch

Michele Lanza
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland
E-mail: michele.lanza@usi.ch

Romain Robbes
PLEIAD Lab @ Computer Science Department (DCC)
University of Chile, Chile
E-mail: rrobbes@dcc.uchile.cl

2 Marco D’Ambros et al.

1 Introduction

Defect prediction has generated widespread interest for a considerable period of
time. The driving scenario is resource allocation: Time and manpower being finite
resources, it seems sensible to assign personnel and/or resources to areas of a
software system with a higher probable quantity of bugs.

Many approaches have been proposed to tackle the problem, relying on di-
verse information, such as code metrics (e.g., lines of code, complexity) [BBM96,
OA96,BDW99,EMM01,SK03,GFS05,NB05a,NBZ06], process metrics (e.g., num-
ber of changes, recent activity) [NB05b, Has09, MPS08, BEP07], or previous de-
fects [KZWZ07, OWB05, HH05]. The jury is still out on the relative performance
of these approaches. Most of them have been evaluated in isolation, or were com-
pared to only few other approaches. Moreover, a significant portion of the evalu-
ations cannot be reproduced since the data used for their evaluation came from
commercial systems and is not available for public consumption. In some cases,
researchers even reached opposite conclusions: For example, in the case of size
metrics, Gyimothy et al. reported good results [GFS05], as opposed to the findings
of Fenton and Ohlsson [FO00].

What is sorely missing is a baseline against which the approaches can be com-
pared. We provide such a baseline by gathering an extensive dataset composed
of several open-source systems. Our dataset contains the information required to
evaluate several approaches across the bug prediction spectrum.

How to actually evaluate the performance of approaches is also subject to
discussion. Some use binary classification (i.e., predicting if a given entity is buggy
or not), while others predict a ranking of components prioritizing the ones with the
most defects. Finally, some prediction models take into account the effort required
to inspect an entity as a performance evaluation metric. Hence, a comparison of
how each approach performs over several evaluation metrics is also warranted.

Contributions. The contributions of this paper are:

– A public benchmark for defect prediction, containing sufficient data to evaluate
a variety of approaches. For five open-source software systems, we provide, over
a five-year period, the following data:

– process metrics on all the files of each system,
– system metrics on bi-weekly versions of each system,
– defect information related to each system file, and
– bi-weekly models of each system version if new metrics need to be com-

puted.

– Two novel bug prediction approaches based on bi-weekly source code samples:
1. The first, similarly to Nikora and Munson [NM03], measures code churn as

deltas of high-level source code metrics instead of line-based code churn.
2. The second extends Hassan’s concept of entropy of changes [Has09] to

source code metrics.
– The evaluation of several defect prediction approaches in three distinct series

of experiments, aimed respectively at (1) comparing the performance of the ap-
proaches across different systems, (2) testing whether the differences are statis-
tically significant, and (3) studying the stability of approaches across learners.

Title Suppressed Due to Excessive Length 3

We evaluate the approaches according to various scenarios and performance
measures:

– a binary classification scenario, evaluated with ROC curves;
– a ranking-based evaluation using cumulative lift charts of the numbers of

predicted bugs; and
– an effort-aware ranking-based evaluation, where effort is defined as the size

in lines of code of each entity.

– An extensive discussion of the overall performance of each approach on all
case studies, according to several facets: (1) the performance criteria men-
tioned above; (2) the variability of performance across a number of runs of the
experiment; and (3) the variability of the performance across learners. We also
comment on the quantity of data necessary to apply each approach, and the
performance of approximations of sets of metrics by single metrics.

Structure of the paper. In Section 2 we present an overview of related work in
defect prediction. In Section 3 we detail the approaches that we reproduce and the
ones that we introduce. We describe our benchmark and evaluation procedure in
Section 4. We report on the performance in Section 5 and Section 6, and investigate
issues of stability across various learners in Section 7. We discuss finer-grained
aspects of the performance in Section 8. In Section 9, we discuss possible threats
to the validity of our findings, and we conclude in Section 10.

2 Related Work in Defect Prediction

We describe several defect prediction approaches, the kind of data they require
and the various data sets on which they were validated. All approaches require a
defect archive to be validated, but they do not necessarily require it to actually
perform their analysis. When they do, we indicate it.

Change Log Approaches use process metrics extracted from the versioning system,
assuming that recently or frequently changed files are the most probable source of
future bugs.

Khoshgoftaar et al. classified modules as defect-prone based on the number
of past modifications to the source files composing the module [KAG+96]. They
showed that the number of lines added or removed in the past is a good predictor
for future defects at the module level.

Graves et al. devised an approach based on statistical models to find the best
predictors for modules’ future faults [LFJS00]. The authors found that the best
predictor is the sum of contributions to a module in its history.

Nagappan and Ball performed a study on the influence of code churn (i.e.,

the amount of change to the system) on the defect density in Windows Server
2003. They found that relative code churn is a better predictor than absolute
churn [NB05b].

Hassan introduced the concept of entropy of changes, a measure of the com-
plexity of code changes [Has09]. Entropy was compared to the amount of changes
and the amount of previous bugs, and was found to be often better. The entropy
metric was evaluated on six open-source systems: FreeBSD, NetBSD, OpenBSD,
KDE, KOffice, and PostgreSQL.

4 Marco D’Ambros et al.

Moser et al. used metrics (including code churn, past bugs and refactorings,
number of authors, file size and age, etc.), to predict the presence/absence of bugs
in files of Eclipse [MPS08].

Nikora et al. introduced the churn of code metrics [NM03], measuring the dif-
ferences of various size and control flow characteristics of the source code, over
multiple releases of evolving software systems. They showed, on c/c++ systems,
that such measures can be used to predict defects.

The mentioned techniques do not make use of the defect archives to predict
bugs, while the following ones do.

Hassan and Holt’s top ten list approach validates heuristics about the defect-
proneness of the most recently changed and most bug-fixed files, using the defect
repository data [HH05]. The approach was validated on six open-source case stud-
ies: FreeBSD, NetBSD, OpenBSD, KDE, KOffice, and PostgreSQL. They found
that recently modified and fixed entities are the most defect-prone.

Ostrand et al. predicted faults on two industrial systems, using change and
defect data [OWB05].

The bug cache approach by Kim et al. uses the same properties of recent
changes and defects as the top ten list approach, but further assumes that faults
occur in bursts [KZWZ07]. The bug-introducing changes are identified from the
SCM logs. Seven open-source systems were used to validate the findings (Apache,
PostgreSQL, Subversion, Mozilla, JEdit, Columba, and Eclipse).

Bernstein et al. used bug and change information in non-linear prediction mod-
els [BEP07]. Six eclipse plugins were used to validate the approach.

Single-version approaches assume that the current design and behavior of the pro-
gram influences the presence of future defects. These approaches do not require
the history of the system, but analyze its current state in more detail, using a
variety of metrics.

One standard set of metrics used is the Chidamber and Kemerer (CK) metrics
suite [CK94]. Basili et al. used the CK metrics on eight medium-sized information
management systems based on the same requirements [BBM96]. Ohlsson et al. used
several graph metrics including McCabe’s cyclomatic complexity on an Ericsson
telecom system [OA96]. El Emam et al. used the CK metrics in conjunction with
Briand’s coupling metrics [BDW99] to predict faults on a commercial Java system
[EMM01]. Subramanyam et al. used the CK metrics on a commercial C++/Java
system [SK03]. Gyimothy et al. performed a similar analysis on Mozilla [GFS05].

Researchers also used other metric suites: Nagappan and Ball estimated the
pre-release defect density of Windows Server 2003 with a static analysis tool
[NB05a]. Nagappan et al. also used a catalog of source code metrics to predict
post-release defects at the module level on five Microsoft systems, and found that
it was possible to build predictors for one individual project, but that no predictor
would perform well on all the projects [NBZ06]. Zimmermann et al. used a number
of code metrics on Eclipse [ZPZ07].

Menzies et al. argued that the exact static source code metric used is not
as important as which learning algorithm is used [MGF07]. Based on data from
the NASA Metrics Data Program (MDP) to arrive to the above conclusion, the
authors compared the impact of using the LOC, Halstead and McCabe metrics
(and a variety of other metrics), versus the impact of using the Naive Bayes, OneR,
and J48 algorithms.

Title Suppressed Due to Excessive Length 5

Effort-aware Defect Prediction. Several recent works take into account the effort
necessary to inspect a file during defect prediction. The time spent reviewing a
potentially buggy file depends on its size and complexity. Hence for an equivalent
amount of bugs to discover, a shorter file involves less effort [ABJ10]. The intent
of effort-aware bug prediction is hence not to predict if a file is buggy or not, but
rather to output a set of files for which the ratio of effort spent for number of bugs
found is maximized.

Mende and Koschke showed that if a trivial defect prediction model—predicting
that large files are the most buggy—performs well with a classic evaluation met-
ric such as the ROC curve, it performs significantly worse when an effort-aware
performance metric is used [MK09]. Later, they evaluated two effort-aware models
and compared them to a classical prediction model [MK10].

Likewise, Kamei et al. revisited common findings in defect prediction when
using effort-aware performance measurements [KMM+10]. One finding that they
confirmed is that process metrics (i.e., extracted from the version control system
or the defect database) still perform better than product metrics (i.e., metrics of
the software system itself).

Arisholm and Briand conducted a study on a large object-oriented legacy sys-
tem [AB06], building logistic regression models with a variety of metrics such as
structural measures, source code metrics, fault measures, and history data from
previous releases. To take the effort into account, the authors introduced a method-
ology to assess the cost-effectiveness of the prediction to focus verification effort.

Koru et al. showed—initially on Mozilla [KZL07], and in a subsequent work on
ten KOffice open source products and two commercial systems [KEZ+08]—that
smaller modules are proportionally more defect prone than larger ones. They thus
recommended to focus quality assurance resources on smaller modules, as they are
more cost effective, i.e., more defects will be found in the same amount of code.

Menzies et al. also took into account the effort in their defect prediction ap-
proach, and found that some prediction algorithms are outperformed by manual
methods, when using static code metric data [MMT+10]. They however did not
consider process metrics, as they focused more on the performance differences of
algorithms, and not on the impact of different data sources.

Other Approaches. Ostrand et al. conducted a series of studies on the whole history
of different systems to analyze how the characteristics of source code files can
predict defects [OW02,OWB04,OWB07]. On this basis, they proposed an effective
and automated predictive model based on these characteristics (e.g., age, lines of
code, etc.) [OWB07].

Binkley and Schach devised a coupling dependency metric and showed that it
outperforms several other metrics in predicting run-time failures [BS98]. Zimmer-
mann and Nagappan used dependencies between binaries in Windows server 2003
to predict defects with graph-centric metrics [ZN08].

Marcus et al. used a cohesion measurement based on the vocabulary used in
documents, as measured by Latent Semantic Indexing (LSI) for defect prediction
on several C++ systems, including Mozilla [MPF08].

Arnaoudova et al. showed initial evidence that identifiers that are used in a
variety of contexts may have an impact on fault-proneness [AEO+10].

Neuhaus et al. used a variety of features of Mozilla (past bugs, package imports,
call structure) to detect vulnerabilities [NZHZ07].

6 Marco D’Ambros et al.

Shin et al. also investigated the usefulness of the call structure of the pro-
gram, and found that the improvement on models based on non-call structure is
significant, but becomes marginal when history is taken into account [SBOW09].

Pinzger et al. empirically investigated the relationship between the fragmenta-
tion of developer contributions and the number of post-release defects [PNM08]. To
do so, they measured the fragmentation of contributions with network centrality
metrics computed on a developer-artifact network.

Wolf et al. analyzed the network of communications between developers to
understand how they are related to issues in integration of modules of a sys-
tem [WSDN09]. They conceptualized communication as based on developer’s com-
ments on work items.

Zimmermann et al. tackled the problem of cross-project defect prediction,
i.e., computing prediction models from a project and applying it on a different
one [ZNG+09]. Their experiments showed that using models from projects in the
same domain or with the same process does not lead to accurate predictions.
Therefore, the authors identified important factors influencing the performance of
cross-project predictors.

Turhan et al. also investigated cross-project defect prediction [TMBS09]. In a
first experiment, they obtained results similar to the ones of Zimmermann et al.,
where a defect prediction model learned from one project provides poor perfor-
mances on other projects, in particular with respect to the rate of false positives.
With a deeper inspection, they found out that such low performances were due to
irrelevancies, i.e., the model was learning from numerous irrelevant details from
other projects. Turhan et al. thus applied a relevancy filtering technique, which
drastically reduced the ratio of false positives.

The same authors reported that importing data from other projects can indeed
improve the performance of the prediction, at the cost of increasing also false
positives [TBM10].

Bacchelli et al. investigated whether integrating information from e-mails com-
plements other data sources [BDL10]. The intuition is that problematic classes are
more often discussed in email conversations than classes that have less problems.

2.1 Observations

We observe that both case studies and the granularity of approaches vary. Distinct
case studies make a comparative evaluation of the results difficult. Validations
performed on industrial systems are not reproducible, because it is not possible to
obtain the underlying data. There is also variation among open-source case studies,
as some approaches have more restrictive requirements than others. With respect
to the granularity of the approaches, some of them predict defects at the class level,
others consider files, while others consider modules or directories (subsystems), or
even binaries. While some approaches predict the presence or absence of bugs for
each component (the classification scenario), others predict the amount of bugs
affecting each component in the future, producing a ranked list of components.

Replication. The notion of replication has gained acceptance in the Mining Soft-
ware Repositories community [Rob10, JV10]. It is also one of the aims of the

Title Suppressed Due to Excessive Length 7

PROMISE conference series1. Mende [Men10] attempted to replicate two defect
prediction experiments, including an earlier version of this one [DLR10]. Mende
was successful in replicating the earlier version of this experiment, but less so
for the other one. This does cast a shadow on a substantial amount of research
performed in the area, which can only be lifted through benchmarking.

Benchmarking allows comparison or replication of approaches and stimulate a com-
munity [SEH03]. The PROMISE data set is such a benchmark, as is the NASA
MDP project. The existence of such data sets allows for systematic comparison,
as the one by Menzies et al. [MMT+10], or Lessman et al. [LBMP08], where differ-
ent prediction algorithms (Regression Models, Support Vector Machines, Random
Forests, etc.), were trained on the same data and compared. The authors could
only show that the difference between at least two algorithms was significant, but
could not show that most classifiers performed significantly different from one an-
other. We could however not use these data sets, as they do not include all the
data sources we need (e.g., bi-weekly snapshots of the source code are still a rare
occurrence). This lack of data sources limits the extensibility of these existing
benchmarks to evaluate novel metrics.

These observations explain the lack of comparison between approaches and
the occasional diverging results when comparisons are performed. For this reason,
we propose a benchmark to establish a common ground for comparison. Unlike
most other datasets, our benchmark provides means of extension through the def-
inition of additional metrics, since it also includes sequences of high-level models
of the source code in addition to the metrics themselves. We first introduce the
approaches that we compare, before describing our benchmark dataset and evalu-
ation strategies.

3 Bug Prediction Approaches

Considering the bulk of research performed in this area it is impossible to compare
all existing approaches. To cover a range as wide as possible, we selected one or
more approaches from each category, summarized in Table 1.

Type Rationale Used by
Process metrics Bugs are caused by changes. Moser [MPS08]
Previous defects Past defects predict future defects. Kim [KZWZ07]
Source code metrics Complex components are harder to

change, and hence error-prone.
Basili [BBM96]

Entropy of changes Complex changes are more error-
prone than simpler ones.

Hassan [Has09]

Churn (source code metrics) Source code metrics are a better
approximation of code churn.

Novel

Entropy (source code metrics) Source code metrics better de-
scribe the entropy of changes.

Novel

Table 1 Categories of bug prediction approaches.

1 http://promisedata.org

http://promisedata.org

8 Marco D’Ambros et al.

3.1 Process Metrics

We selected the approach of Moser et al. as a representative, and describe three
additional variants.

MOSER. We use the catalog of file-level process metrics introduced by Moser et

al. [MPS08] listed in Table 2.

Name Description
NR Number of revisions
NREF Number of times a file has been refactored
NFIX Number of times a file was involved in bug-fixing
NAUTH Number of authors who committed the file
LINES Lines added and removed (sum, max, average)
CHURN Codechurn (sum, maximum and average)

Codechurn is computed as
∑
R(addedLOC − deletedLOC), where R is the

set of all revisions
CHGSET Change set size, i.e., number of files committed together to the repository

(maximum and average)
AGE Age (in number of weeks) and weighted age computed as∑N

i=1 Age(i)×addedLOC(i)∑N
i=1 addedLOC(i)

, where Age(i) is the number of weeks starting from

the release date for revision i, and addedLOC(i) is the number of lines of code
added at revision i

Table 2 Change metrics used by Moser et al.

The metric NFIX represents the number of bug fixes as extracted from the
versioning system, not the defect archive. It uses a heuristic based on pattern
matching on the comments of every commit. To be recognized as a bug fix, the
comment must match the string “%fix%” and not match the strings “%prefix%”
and “%postfix%”. The bug repository is not needed, because all the metrics are
extracted from the CVS/SVN logs, thus simplifying data extraction. For systems
versioned using SVN (such as Lucene) we perform some additional data extraction,
since the SVN logs do not contain information about lines added and removed.

NFIX: Zimmermann et al. showed that the number of past defects has the highest
correlation with number of future defects [ZPZ07]. We inspect the accuracy of the
bug fix approximation in isolation.

NR: In the same fashion, since Graves et al. showed that the best generalized
linear models for defect prediction are based on number of changes [LFJS00], we
isolate the number of revisions as a predictive variable.

NFIX+NR: We combine the previous two approaches.

3.2 Previous Defects

This approach relies on a single metric to perform its prediction. We also describe
a more fine-grained variant exploiting the categories present in defect archives.

Title Suppressed Due to Excessive Length 9

BUGFIXES. The bug prediction approach based on previous defects, proposed by
Zimmermann et al. [ZPZ07], states that the number of past bug fixes extracted
from the repository is correlated with the number of future fixes. They then use this
metric in the set of metrics with which they predict future defects. This measure
is different from the metric used in NFIX-ONLY and NFIX+NR: For NFIX,
we perform pattern matching on the commit comments. For BUGFIXES, we
also perform the pattern matching, which in this case produces a list of potential
defects. Using the defect id, we check whether the bug exists in the bug database,
we retrieve it and we verify the consistency of timestamps (i.e., if the bug was
reported before being fixed).

BUG-CATEGORIES. We also use a variant in which as predictors we use the
number of bugs belonging to five categories, according to severity and prior-
ity. The categories are: All bugs, non trivial bugs (severity>trivial), major bugs
(severity>major), critical bugs (critical or blocker severity) and high priority bugs
(priority>default).

3.3 Source Code Metrics

Many approaches in the literature use the CK metrics. We compare them with
additional object-oriented metrics, as well as lines of code (LOC). Table 3 lists all
source code metrics we use.

Type Name Description

CK WMC Weighted Method Count
CK DIT Depth of Inheritance Tree
CK RFC Response For Class
CK NOC Number Of Children
CK CBO Coupling Between Objects
CK LCOM Lack of Cohesion in Methods

OO FanIn Number of other classes that reference the class
OO FanOut Number of other classes referenced by the class
OO NOA Number of attributes
OO NOPA Number of public attributes
OO NOPRA Number of private attributes
OO NOAI Number of attributes inherited
OO LOC Number of lines of code
OO NOM Number of methods
OO NOPM Number of public methods
OO NOPRM Number of private methods
OO NOMI Number of methods inherited

Table 3 Class level source code metrics.

CK. Many bug prediction approaches are based on metrics, in particular the Chi-
damber & Kemerer suite [CK94].

OO. An additional set of object-oriented metrics.

10 Marco D’Ambros et al.

CK+OO. The combination of the two sets of metrics.

LOC. Gyimothy et al. showed that lines of code (LOC) is one of the best metrics
for fault prediction [GFS05]. In addition to incorporating it with the OO metrics,
we evaluate its accuracy as a defect predictor in isolation.

3.4 Entropy of Changes

Hassan predicted defects using the entropy (or complexity) of code changes [Has09].
The idea consists in measuring, over a time interval, how distributed changes are
in a system. The more spread the changes are, the higher the complexity. The
intuition is that a change affecting one file only is simpler than another affecting
many different files, as the developer who has to perform the change has to keep
track of all of them. Hassan proposed to use the Shannon Entropy defined as

Hn(P) = −
n∑
k=1

pk ∗ log2 pk (1)

where pk is the probability that the file k changes during the considered time
interval. Figure 1 shows an example with three files and three time intervals.

Time

File A

File B

File C

t1 (2 weeks) t2 (2 weeks) t3 (2 weeks)

Fig. 1 An example of entropy of code changes.

In the fist time interval t1, we have four changes, and the change frequencies
of the files (i.e., their probability of change) are pA = 2

4 , pB = 1
4 , pC = 1

4 .

The entropy in t1 is: H = −(0.5∗ log2 0.5+0.25∗ log2 0.25+0.25∗ log2 0.25) = 1

In t2, the entropy is higher: H = −(2
7 ∗ log2

2
7 + 1

7 ∗ log2
1
7 + 4

7 ∗ log2
4
7) = 1.378

As in Hassan’s approach [Has09], to compute the probability that a file changes,
instead of simply using the number of changes, we take into account the amount
of change by measuring the number of modified lines (lines added plus deleted)
during the time interval. Hassan defined the Adaptive Sizing Entropy as:

H′ = −
n∑
k=1

pk ∗ logn̄ pk (2)

where n is the number of files in the system and n̄ is the number of recently
modified files. To compute the set of recently modified files we use previous periods
(e.g., modified in the last six time intervals). To use the entropy of code change

Title Suppressed Due to Excessive Length 11

as a bug predictor, Hassan defined the History of Complexity Metric (HCM) of a
file j as

HCM{a,..,b}(j) =
∑

i∈{a,..,b}
HCPFi(j) (3)

where {a, .., b} is a set of evolution periods and HCPF is:

HCPFi(j) =

{
cij ∗H′i, j ∈ Fi
0, otherwise

(4)

where i is a period with entropy H ′
i, Fi is the set of files modified in the period

i and j is a file belonging to Fi. According to the definition of cij , we test two
metrics:

– HCM: cij = 1, every file modified in the considered period i gets the entropy
of the system in the considered time interval.

– WHCM: cij = pj , each modified file gets the entropy of the system weighted
with the probability of the file being modified.

– cij = 1
|Fi| the entropy is evenly distributed to all the files modified in the

i period. We do not use this definition of cij since Hassan showed that it
performs less well than the other.

Concerning the periods used for computing the History of Complexity Metric,
we use two weeks time intervals.

Variants. We define three further variants based on HCM, with an additional
weight for periods in the past. In EDHCM (Exponentially Decayed HCM, intro-
duced by Hassan), entropies for earlier periods of time, i.e., earlier modifications,
have their contribution exponentially reduced over time, modelling an exponential
decay model. Similarly, LDHCM (Linearly Decayed) and LGDHCM (LoGarith-
mically decayed), have their contributions reduced over time in a respectively lin-
ear and logarithmic fashion. Both are novel. The definition of the variants follows
(φ1, φ2 and φ3 are the decay factors):

EDHCM{a,..,b}(j) =
∑

i∈{a,..,b}

HCPFi(j)

eφ1∗(|{a,..,b}|−i)
(5)

LDHCM{a,..,b}(j) =
∑

i∈{a,..,b}

HCPFi(j)

φ2 ∗ (|{a, .., b}|+ 1− i)
(6)

LGDHCM{a,..,b}(j) =
∑

i∈{a,..,b}

HCPFi(j)

φ3 ∗ ln(|{a, .., b}|+ 1.01− i)
(7)

3.5 Churn of Source Code Metrics

The first—and to the best of our knowledge the only one—to use the churn of
source code metrics to predict post release defects were Nikora et al. [NM03]. The
intuition is that higher-level metrics may better model code churn than simple
metrics like addition and deletion of lines of code. We sample the history of the

12 Marco D’Ambros et al.

source code every two weeks and compute the deltas of source code metrics for
each consecutive pair of samples.

For each source code metric, we create a matrix where the rows are the classes,
the columns are the sampled versions, and each cell is the value of the metric
for the given class at the given version. If a class does not exist in a version, we
indicate that by using a default value of -1. We only consider the classes which
exist at release x for the prediction.

We generate a matrix of deltas, where each cell is the absolute value of the
difference between the values of a metric –for a class– in two subsequent versions.
If the class does not exist in one or both of the versions (at least one value is -1),
then the delta is also -1.

10Class Foo

Class Bar 42

Class Bas -1

2 weeks

Release X

50

32

50

22

70

22

48

40

10 15

Version from
1.1.2005

Version from
15.1.2005

Version from
29.1.2005

Time

10

-1

0

10

5

Fig. 2 Computing metrics deltas from sampled versions of a system.

Figure 2 shows an example of deltas matrix computation for three classes. The
numbers in the squares are metrics; the numbers in circles, deltas. After computing
the deltas matrices for each source code metric, we compute churn as:

CHU(i) =

C∑
j=1

{
0, D(i, j) = −1
PCHU(i, j), otherwise

(8)

PCHU(i, j) = D(i, j) (9)

where i is the index of a row in the deltas matrix (corresponding to a class), C
is the number of columns of the matrix (corresponding to the number of samples
considered), deltas(i, j) is the value of the matrix at position (i, j) and PCHU

stands for partial churn. For each class, we sum all the cells over the columns
–excluding the ones with the default value of -1. In this fashion we obtain a set of
churns of source code metrics at the class level, which we use as predictors of post
release defects.

Variants. We define several variants of the partial churn of source code metrics
(PCHU): The first one weights more the frequency of change (i.e., delta > 0) than
the actual change (the delta value). We call it WCHU (weighted churn), using
the following partial churn:

WPCHU(i, j) = 1 + α ∗ deltas(i, j) (10)

Title Suppressed Due to Excessive Length 13

where α is the weight factor, set to 0.01 in our experiments. This avoids that
a delta of 10 in a metric has the same impact on the churn as ten deltas of
1. We consider many small changes more relevant than few big changes. Other
variants are based on weighted churn (WCHU) and take into account the decay
of deltas over time, respectively in an exponential (EDCHU), linear (LDCHU)
and logarithmic manner (LGDCHU), with these partial churns (φ1, φ2 and φ3 are
the decay factors):

EDPCHU(i, j) =
1 + α ∗ deltas(i, j)

eφ1∗(C−j)
(11)

LDPCHU(i, j) =
1 + α ∗ deltas(i, j)
φ2 ∗ (C + 1− j)

(12)

LGDPCHU(i, j) =
1 + α ∗ deltas(i, j)
φ3 ∗ ln(C + 1.01− j)

(13)

3.6 Entropy of Source Code Metrics

In the last bug prediction approach we extend the concept of code change en-
tropy [Has09] to the source code metrics listed in Table 3. The idea is to measure
the complexity of the variants of a metric over subsequent sample versions. The
more distributed over multiple classes the variants of the metric is, the higher the
complexity. For example, if in the system the WMC changed by 100, and only one
class is involved, the entropy is minimum, whereas if 10 classes are involved with
a local change of 10 WMC, then the entropy is higher. To compute the entropy
of source code metrics, we start from the matrices of deltas computed as for the
churn metrics. We define the entropy, for instance for WMC, for the column j of
the deltas matrix, i.e., the entropy between two subsequent sampled versions of
the system, as:

H′WMC(j) = −
R∑
i=1

{
0, deltas(i, j) = −1
p(i, j) ∗ logR̄j

p(i, j), otherwise (14)

where R is the number of rows of the matrix, R̄j is the number of cells of
the column j greater than 0 and p(i, j) is a measure of the frequency of change
(viewing frequency as a measure of probability, similarly to Hassan) of the class i,
for the given source code metric. We define it as:

p(i, j) =
deltas(i, j)∑R

k=1

{
0, deltas(k, j) = −1
deltas(k, j), otherwise

(15)

Equation 14 defines an adaptive sizing entropy, since we use R̄j for the loga-
rithm, instead of R (number of cells greater than 0 instead of number of cells). In
the example in Figure 2 the entropies for the first two columns are:

H′(1) = −
40

50
∗ log2

40

50
−

10

50
∗ log2

10

50
= 0.722

H′(2) = −
10

15
∗ log2

10

15
−

5

15
∗ log2

5

15
= 0.918

14 Marco D’Ambros et al.

Given a metric, for example WMC, and a class corresponding to a row i in the
deltas matrix, we define the history of entropy as:

HHWMC(i) =
C∑
j=1

{
0, D(i, j) = −1
PHHWMC(i, j), otherwise

(16)

PHHWMC(i, j) = H′WMC(j) (17)

where PHH stands for partial historical entropy. Compared to the entropy of
changes, the entropy of source code metrics has the advantage that it is defined for
every considered source code metric. If we consider “lines of code”, the two metrics
are very similar: HCM has the benefit that it is not sampled, i.e., it captures all
changes recorded in the versioning system, whereas HHLOC , being sampled, might
lose precision. On the other hand, HHLOC is more precise, as it measures the real
number of lines of code (by parsing the source code), while HCM measures it from
the change log, including comments and whitespace.

Variants. In Equation 17 each class that changes between two version (delta >

0) gets the entire system entropy. To take into account also how much the class
changed, we define the history of weighted entropy HWH, by redefining PHH as:

HWH(i, j) = p(i, j) ∗H′(j) (18)

We also define three other variants by considering the decay of the entropy
over time, as for the churn metrics, in an exponential (EDHH), linear (LDHH),
and logarithmic (LGDHH) fashion. We define their partial historical entropy as
(φ1, φ2 and φ3 are the decay factors):

EDHH(i, j) =
H′(j)

eφ1∗(C−j)
(19)

LDHH(i, j) =
H′(j)

φ2 ∗ (C + 1− j)
(20)

LGDHH(i, j) =
H′(j)

φ3 ∗ ln(C + 1.01− j)
(21)

From these definitions, we define several prediction models using several object-
oriented metrics: HH, HWH, EDHHK, LDHH and LGDHH.

4 Benchmark and Experimental Setup

We compare different bug prediction approaches in the following way: Given a

release x of a software system s, released at date d, the task is to predict, for each class

of x, the presence (classification), or the number (ranking) of post release defects, i.e.,

the presence/number of defects reported from d to six months later. We chose the last
release of the system in the release period and perform class-level defect prediction,
and not package- or subsystem-level defect prediction, for the following reasons:

Title Suppressed Due to Excessive Length 15

– Package-level information can be derived from class-level information, while
the opposite is not true.

– Classes are the building blocks of object-oriented systems, and are self-contained
elements from the point of view of design and implementation.

– Predictions at the package-level are less helpful since packages are significantly
larger. The review of a defect-prone package requires more work than a class.

We use post-release defects for validation (i.e., not all defects in the history)
to emulate a real-life scenario. As in the work of Zimmermann et al. [ZPZ07] we
use a six months time interval for post-release defects.

4.1 Benchmark Dataset

To make our experiments reproducible, we created a website2 where we share
our bug prediction dataset. The dataset is a collection of models and metrics
of five software systems and their histories. The goal of such a dataset is to al-
low researchers to compare different defect prediction approaches and to evaluate
whether a new technique is an improvement over existing ones. We designed the
dataset to perform defect prediction at the class level. However, package or sub-
system information can be derived by aggregating class data, since, for each class,
the dataset specifies the package that contains it. Our dataset is composed of the
change, bug and version information of the five systems detailed in Figure 3.

System
url

Prediction
release Time period #Classes #Versions #Transactions

#Post-rel.
defects

Eclipse JDT Core
www.eclipse.org/jdt/core/

3.4 1.01.2005
6.17.2008

997 91 9,135 463

Eclipse PDE UI
www.eclipse.org/pde/pde-ui/

3.4.1 1.01.2005
9.11.2008

1,562 97 5,026 401

Equinox framework
www.eclipse.org/equinox/

3.4 1.01.2005
6.25.2008

439 91 1,616 279

Mylyn
www.eclipse.org/mylyn/

3.1 1.17.2005
3.17.2009

2,196 98 9,189 677

Apache Lucene
lucene.apache.org

2.4.0 1.01.2005
10.08.2008

691 99 1,715 103

Fig. 3 Systems in the benchmark.

The criteria for choosing these specific systems are:

Size and lifetime: All systems have been released for several years, feature thou-
sands of SCM commits, and feature on the order of hundreds to thousand of
classes, so are representative of medium to large systems with a significant
history.

Homogeneous language: All systems are written in Java to ensure that all the
code metrics are defined identically for each system. By using the same parser,
we can avoid issues due to behavior differences in parsing, a known issue for

2 http://bug.inf.usi.ch

http://bug.inf.usi.ch

16 Marco D’Ambros et al.

reverse engineering tools [KSS02]. This also allows to ensure that the defini-
tion of all metrics are consistent among systems, and not dependent on the
presence/absence of a particular language feature.

Availability of the data: All systems provide unrestricted access to version archives
that make the gathering of bi-weekly snapshots of the source code possible.

We provide, for each system: the data extracted from the change log, including
reconstructed transaction and links from transactions to model classes; the defects
extracted from the defect repository, linked to the transactions and the system
classes referencing them; bi-weekly versions of the systems parsed into object-
oriented models; values of all the metrics used as predictors, for each version of
each class of the system; and post-release defect counts for each class.

Our bug prediction dataset is not the only one publicly available. Other datasets
exist, such as the PROMISE dataset3, and the NASA Metrics Data Program4, but
none of them provides all the information that ours includes.

The metrics we provide include process measures extracted from versioning
system logs, defect information and source code metrics for hundreds of system
versions. This extensive set of metrics makes it possible to compute additional
metrics such as the novel churn and entropy of source code metrics, and to compare
a wider set of defect prediction techniques. To compute some of these metrics, one
needs bi-weekly versions of the systems, which our dataset is—to our knowledge—
the sole one to provide.

Extensibility of the Benchmark. The presence of the FAMIX models makes our
dataset extensible by third parties. FAMIX models are fine-grained models of
the source code of each snapshot, containing packages, classes, methods, method
invocations, and variable access information, among others. This allows the defi-
nition of additional metrics that can be expressed with that information, such as
network metrics based on method call information [ZN08]. The fine-grained rep-
resentation of the data offered by the FAMIX metamodel makes parsing the data
again unnecessary in most cases. This lowers the barrier to entry in defining new
metrics based on the available data.

Moreover, since the data is available in bi-weekly snapshots, every new metric
can be also computed in its churn and entropy variants, to take into account the
changes of metric values over time and their distribution over entities. We regard
the availability of successive versions of FAMIX models as key to increase the
durability of our benchmark dataset, as this makes it more adaptable to the needs
of other researchers wishing to experiment with additional metrics. Gathering
and parsing successive versions of several large systems is a costly endeavor: By
providing the snapshots as a prepackaged on the website, we significantly cut down
on the time needed by other researchers to gather the data themselves.

Data Collection. Figure 4 shows the types of information needed by the compared
bug prediction approaches. In particular, to apply these approaches, we need the
following information:

– change log information to extract process metrics;

3 http://promisedata.org/data
4 http://mdp.ivv.nasa.gov, also part of PROMISE

http:// promisedata.org/data
http://mdp.ivv.nasa.gov

Title Suppressed Due to Excessive Length 17

Prediction Data Validation DataDate of Release X

Oracle

CVS Logs

Bugs Database

t

Bi-Weekly Snapshots

Last version

Change Metrics & Entropy of Changes

Prediction Validation

Oracle

CVS Logs

Bugs Database

Bi-Weekly Snapshots

t
Last version

Previous Defects

Prediction Validation

Oracle

CVS Logs

Bugs Database

Bi-Weekly Snapshots

t
Last version

Source Code Metrics

Prediction Validation

CVS Logs

Bugs Database Oracle

Bi-Weekly Snapshots

t
Last version

Entropy & Churn of Source Code Metrics

Prediction Validation

Fig. 4 The types of data used by different bug prediction approaches.

– source code version information to compute source code metrics; and
– defect information linked to classes for both the prediction and validation.

Figure 5 shows how we gather this information, given an SCM system (CVS
or Subversion) and a defect tracking system (Bugzilla or Jira).

SVN/CVS
Repository

FAMIX-Compliant
Object-Oriented

Model

History Model

Bugzilla/Jira
Database

Model with Bugs
and Metrics

Link Bugs
&

Compute
Metrics

Fig. 5 Model with bug, change and history.

Creating a History Model. To compute the various process metrics, we model how
the system changed during its lifetime by parsing the versioning system log files.
We create a model of the history of the system using the transactions extracted
from the system’s SCM repository. A transaction (or commit) is a set of files which
were modified and committed to the repository, together with the timestamp,
the author and the comment. SVN marks co-changing files at commit time as
belonging to the same transaction while for CVS we infer transactions from each
file’s modification time, commit comment, and author.

18 Marco D’Ambros et al.

Creating a Source Code Model. We retrieve the source code from the SCM reposi-
tory and we extract an object-oriented model of it according to FAMIX, a language
independent meta-model of object oriented code [DTD01]. FAMIX models the piv-
otal concepts of object oriented programming, such as classes, methods, attributes,
packages, inheritance, etc.

Since we need several versions of the system, we repeat this process at bi-weekly
intervals over the history period we consider.

In selecting the sampling time interval size, our goal was to sample frequent
enough to capture all significant deltas (i.e., differences) between system versions.
We initially selected a time window of one week, as it is very unlikely that a large
system dramatically changes over a one week period. Subsequently, we noticed
that we could even double the time window—making it two weeks long—without
losing significant data and, at the same time, halving the amount of information
to be processed. Therefore, we opted for a sampling time interval of two weeks.

Bugzilla/Jira
Database

Versioning
System Logs

Bug

Commit
CommentsParse

Query Parse

Link
Classes &

Files

Infer Link

Commit
CommentsCommit

Comments

Commit
CommentsCommit

CommentsBug Reports

FAMIX Classes

Bug
Bug

Link Bugs & Comments

Fig. 6 Linking bugs, SCM files and classes.

Linking Classes with Bugs. To reason about the presence of bugs affecting parts
of the software system, we first map each problem report to the components of
the system that it affects. We link FAMIX classes with versioning system files and
bugs retrieved from Bugzilla and Jira repositories, as shown in Figure 6.

A file version in the versioning system contains a developer comment written at
commit time, which often includes a reference to a problem report (e.g., “fixed bug
123”). Such references allow us to link problem reports with files in the versioning
system (and thus with classes). However, the link between a CVS/SVN file and
a Bugzilla/Jira problem report is not formally defined: We use pattern matching
to extract a list of bug id candidates [FPG03, ZPZ07]. Then, for each bug id, we
check whether a bug with such an id exists in the bug database and, if so, we
retrieve it. Finally we verify the consistency of timestamps, i.e., we reject any bug
whose report date is after the commit date.

Due to the file-based nature of SVN and CVS and to the fact that Java inner
classes are defined in the same file as their containing class, several classes might
point to the same CVS/SVN file, i.e., a bug linking to a file version might be
linking to more than one class. We are not aware of a workaround for this problem,
which in fact is a shortcoming of the versioning system. For this reason, we do not

Title Suppressed Due to Excessive Length 19

consider inner classes, i.e., they are excluded from our experiments. We also filter
out test classes5 from our dataset.

Computing Metrics. At this point, we have a model including source code infor-
mation over several versions, change history, and defects data. The last step is to
enrich it with the metrics we want to evaluate. We describe the metrics as they
are introduced with each approach.

Tools. To create our dataset, we use the following tools:

– inFusion6 (developed by the company intooitus in Java) to convert Java source
code to FAMIX models.

– Moose7 [DGN05] (developed in Smalltalk) to read FAMIX models and to com-
pute a number of source code metrics.

– Churrasco8 [DL10] (developed in Smalltalk) to create the history model, extract
bug data and link classes, versioning system files and bugs.

4.2 Evaluating the approaches

We evaluate the performance of bug prediction approaches with several strategies,
each according to a different usage scenario of bug prediction. We evaluate each
technique in the context of classification (defective/non-defective), ranking (most
defective to least defective), and effort-aware ranking (most defect dense to least
defect dense). In each case, we use performance evaluation metrics recommended
by Jiang et al. [JCM08].

Classification. The first scenario in which bug prediction is used is classification:
One is interested in a binary partition of the classes of the system in defective and
non-defective classes. Since our prediction models assign probabilities to classes,
we need to convert these probabilities to binary labels. The commonly used evalua-
tion metrics in this case, namely precision and recall, are sensitive to the thresholds
used as cutoff parameters. As an alternative metric we use the Receiver Operating
Characteristic (ROC) curve, which plots the classes correctly classified as defective
(true positives) against the classes incorrectly classified as defective (false posi-
tives). Figure 7 shows an example ROC curve, evaluating the performance of the
BUGFIX approach on the Eclipse system. The diagonal represents the expected
performance of a random classifier.

To have a comprehensive measure that eases comparison across approaches,
we report the Area Under the ROC Curve (AUC), as a single scalar value: an area
of 1 represents a perfect classifier, whereas for a random classifier an area of 0.5
would be expected. Of course we expect all our approaches to perform better than
a random classifier, but how much so remains yet to be determined.

5 We employ JUnit 3 naming conventions to detect test classes, i.e., classes whose names
end with “Test” are detected as tests.

6 Available at http://www.intooitus.com/
7 Available at http://www.moosetechnology.org
8 Available at http://churrasco.inf.usi.ch

http://www.intooitus.com/
http://www.moosetechnology.org
http://churrasco.inf.usi.ch

20 Marco D’Ambros et al.

0%	

20%	

40%	

60%	

80%	

100%	

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

TP
	
 ra

te
	

FP	
 rate	

BUG-­‐FIX	

Fig. 7 ROC curve for the BUGFIX prediction approach on Eclipse

Ranking. A scenario that is more useful in practice is to rank the classes by the
predicted number of defects they will exhibit. The general concept is known as the
Module-Order Model [KA99]. In the context of defect prediction, the prediction
model outputs a list of classes, ranked by the predicted number of defects they
will have. One way to measure the performance of the prediction model—used
in our previous experiment [DLR10]—is to compute the Spearman’s correlation
coefficient between the list of classes ranked by number of predicted defects and
number of actual defects. The Spearman’s rank correlation test is a non-parametric
test that uses ranks of sample data consisting of matched pairs. The correlation
coefficient varies from 1, i.e., ranks are identical, to -1, i.e., ranks are the opposite,
where 0 indicates no correlation. However, this prediction performance measure
is not indicated when there is a considerable fraction of ties in the considered
lists. Therefore, we employ another evaluation performance strategy, based on
cumulative lift charts, which is compatible with the works of Mende et al. [MK09],
and Kamei et al. [KMM+10]. Further, cumulative lift charts are easily used in a
practical setting.

Given the list of classes ranked by the predicted number of defects, a manager
is expected to focus resources on as many items in the beginning of the list as
possible. The question to answer in this context is: what is the percentage of
defects that can be encountered, when reviewing only n % of the classes. This
can be shown visually via a cumulative lift chart, where the classes are ordered
according to the prediction model on the x axis, and the cumulative number of
actual defects is plotted on the y axis, as shown in Figure 8, for the same system
and defect predictor as above.

In the chart, the bottom curve represents the expected performance of a ran-
dom classifier; the middle curve, the performance of the BUGFIX approach; and
the top curve, the performance of a perfect classifier, delivering a perfect ranking.
The chart tells us that upon inspecting for instance 20% of the files of Eclipse us-
ing BUGFIX as a predictor, one can expect to encounter roughly 75% of the bugs.

Title Suppressed Due to Excessive Length 21

0%	

20%	

40%	

60%	

80%	

100%	

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

%
	
 d
ef
ec
ts
	

%	
 classes	

Op+mal	

BUG-­‐FIX	

Fig. 8 Cumulative lift chart for the BUGFIX prediction approach on Eclipse

As an aside, this chart shows that roughly 20% of the classes present post-release
defects, while the other 80% of the classes are defect-free.

In order to extract a comprehensive performance metric from the lift chart,
we use Mende and Koschke’s popt metric [MK09]. ∆opt is defined as the difference
between the area under the curve of the optimal classifier and the area under the
curve of the prediction model. To keep the intuitive property that higher values
denote better performance, popt = 1−∆opt.

Effort-aware ranking. In order to take the effort needed to review a file in account,
we use the LOC metric as a proxy for effort, similarly to Mende et al. [MK09,
Men10], Kamei et al. [KMM+10], and Menzies et al. [MMT+10]. The intuition is
that a larger file takes a longer time to review than a smaller file, hence one should
prioritize smaller files if the number of predicted defects is the same. In this case,
we evaluate the performance of the approaches with a cumulative lift chart, as done
above, but ordering the classes according to their defect density (number of defects
divided by number of lines of code, instead of their defect count). Additionally the
chart plots LOC on the x axis instead of the number of classes. The result can
be seen in Figure 9. Compared to the previous lift chart, we see that when using
BUGFIX as a predictor, inspecting the files that represent 20% of the lines of code
of the system allows us to only encounter 35% of the defects, much less than the
previous measure indicated. Even with an optimal ranking, we need to review 60%
of the lines of code to find 100% of the defects, when taking effort into account.

In this case, we use again the popt metric to evaluate the performance of the
approaches more comprehensively. In the following, we refer to it as peffort to
distinguish it from the previous metric.

Experimental evaluations. We perform three experimental evaluations of all the
bug prediction approaches. We start by ranking the approaches in terms of perfor-
mance (Section 5); we then analyze the variability of selected approaches, and test

22 Marco D’Ambros et al.

0%	

20%	

40%	

60%	

80%	

100%	

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

%
	
 d
ef
ec
ts
	

%	
 LOC	

Op+mal	

BUG-­‐FIX	

Fig. 9 Cumulative effort-aware lift chart for the BUGFIX prediction approach on Eclipse

the ranking of these approaches for statistical significance (Section 6); finally, we
explore the stability of the selection of attributes across several machine learning
algorithms (Section 7).

5 Experiment 1: Comparing Approaches

To compare bug prediction approaches, we apply them on the same software sys-
tems and, for each system, on the same data set. We consider the last major
releases of the systems and compute the predictors up to the release dates. To
ease readability, in Table 4 we list all the acronyms used in the paper.

Acronym Description
MOSER Change metrics used by Moser et al. [MPS08]
NFIX-ONLY Number of times a file was involved in bug-fix (part of MOSER)
NR Number of revisions (part of MOSER)
BUG-FIX Number of past bug fixes
BUG-CAT Number of past bug fixes categorized by severity and priority
CK Chidamber & Kemerer source code metrics suite [CK94]
OO 11 object-oriented code metrics (listed in Table 3)
LOC Number of lines of code (part of OO)
HCM Entropy of changes [Has09]
CHU Churn of source code metrics
HH Entropy of source code metrics
W{HCM, CHU, HH} Weighted version of HCM or CHU or HH
ED{HCM, CHU, HH} Exponentially decayed version of HCM or CHU or HH
LD{HCM, CHU, HH} Linearly decayed version of HCM or CHU or HH
LGD{HCM, CHU, HH} Logarithmically decayed version of HCM or CHU or HH

Table 4 List of acronyms used in the paper.

Title Suppressed Due to Excessive Length 23

5.1 Methodology

In our first experiment, we follow the methodology detailed below and summarized
in Algorithm 1:

Algorithm 1: Outline of the first experiment.

; // Let M be the set of metrics and brow the number of post-release bugs
if classification then

; // if we do classification, b is a vector of boolean (with or without
bugs)
b := brow > 0
A := apply log transformation(M)

else
; // if we do ranking, we apply the log transformation also to b
(A, b) := apply log transformation(M, brow)

end
folds := stratified partition(b)
; // starting from the empty set, and evaluating all attributes in A, select
the best attributes to fit b doing cross validation in folds. To fit b, it
uses generalized linear regression models
Abest := wrapper(A, b, folds, “generalized linear regression′′)
performance := average(crossvalidation(Abest, b, folds, “generalized linear regression′′))

1. Preprocessing the data. Considering the exponential nature of many of our data
sets distributions, before creating any model we apply a log transformation to
the data to better comply with the assumptions of linear regression models.

2. Attribute selection. A large number of attributes might lead to over-fitting a
model, severely degrading its predictive performance on new data. Similarly,
highly correlated attributes are problematic since they make it harder to judge
the effect of a single attribute. To account for this, we employ an attribute
selection technique called wrapper subset evaluation, which selects a subset of
attributes that provides the best predictive performance by sequentially select-
ing attributes until there is no improvement in prediction.
Starting from an empty attribute set, the wrapper creates candidate attribute
subsets by sequentially adding each of the attribute as yet unselected. For
each candidate attribute subset, the technique performs stratified 10-fold cross-
validation by repeatedly evaluating the prediction performance with different
training and test subsets. In other words, for each candidate attribute subset,
the wrapper creates ten prediction models and measures their performances
on ten test sets (one per fold), returning the average of their prediction per-
formance. The attribute selection technique chooses the candidate attribute
subset that maximizes the performance (or minimize the prediction error):
This process continues until adding more attributes does not increase the per-
formance.

3. Building regression models. We base our predictions on generalized linear regres-
sion models built from the metrics we computed. The independent variables—
or attributes used for the prediction—are the set of metrics under study for
each class, while the dependent variable—the predicted attribute—is the num-
ber of post-release defects. Note that generalized linear regression models are

24 Marco D’Ambros et al.

also built within the attribute selection process, to evaluate the performance
of each attribute subset.

4. Ten-folds cross validation. We do stratified 10-fold cross validation, i.e., we split
the dataset in 10 folds, using 9 folds (90% of the classes) as training set to build
the prediction model, and the remaining fold as a validation set to evaluate
the accuracy of the model. Each fold is used once as a validation set. Stratified
cross-validation means that the folds are selected so that the distribution of
the dependent variable in each fold is consistent with the entire population.

5.2 Results

Tables 5, and 6 (top and bottom) follow the same format: Each approach is de-
scribed on a row, where the first five cells show the performance of the predictor
on the five subject systems, according to the metric under study. To highlight the
best performing approaches, values within 90% of the best value are bolded. The
last cell shows the average ranking (AR) of the predictor over the five subject sys-
tems. Values lesser or equal than 10 (top 40% of the ranking) denote good overall
performance; they are underlined.

Classification with AUC. Table 5 contains the prediction performance measure-
ments according to the AUC metric of accuracy for classification. The last column
shows the average rank of the predictor among all 25 approaches.

Predictor Eclipse Mylyn Equinox PDE Lucene AR

MOSER 0.921 0.864 0.876 0.853 0.881 6
NFIX-ONLY 0.795 0.643 0.742 0.616 0.754 24.2
NR 0.848 0.698 0.854 0.802 0.77 19.4
NFIX+NR 0.848 0.705 0.856 0.805 0.761 19.4
BUG-CAT 0.893 0.747 0.876 0.868 0.814 12.2
BUG-FIX 0.885 0.716 0.875 0.854 0.814 13.8
CK+OO 0.907 0.84 0.92 0.854 0.764 7.2
CK 0.905 0.803 0.909 0.798 0.721 13.8
OO 0.903 0.836 0.889 0.854 0.751 10.8
LOC 0.899 0.823 0.839 0.802 0.636 17.2
HCM 0.87 0.638 0.846 0.798 0.78 20.8
WHCM 0.906 0.667 0.839 0.848 0.768 17.2
EDHCM 0.81 0.677 0.854 0.846 0.834 18
LDHCM 0.812 0.667 0.862 0.849 0.834 17
LGDHCM 0.802 0.655 0.853 0.82 0.81 20.6
CHU 0.91 0.825 0.854 0.849 0.851 10.2
WCHU 0.913 0.8 0.893 0.851 0.854 8
LDCHU 0.89 0.789 0.899 0.87 0.885 7
EDCHU 0.867 0.807 0.892 0.876 0.884 7.2
LGDCHU 0.909 0.788 0.904 0.856 0.882 6.2
HH 0.91 0.811 0.897 0.843 0.88 7.6
HWH 0.897 0.789 0.887 0.853 0.83 11.6
LDHH 0.896 0.806 0.882 0.869 0.874 9
EDHH 0.867 0.812 0.872 0.875 0.879 9.6
LGDHH 0.907 0.786 0.891 0.845 0.875 10.8

Table 5 AUC values for all systems and all predictors.

Title Suppressed Due to Excessive Length 25

Predictor Eclipse Mylyn Equinox PDE Lucene AR

popt
MOSER 0.871 0.832 0.898 0.776 0.843 9.4
NFIX-ONLY 0.783 0.642 0.831 0.636 0.707 23.8
NR 0.835 0.647 0.895 0.765 0.798 19
NFIX+NR 0.835 0.667 0.888 0.767 0.787 19.8
BUG-CAT 0.865 0.733 0.887 0.8 0.857 11.4
BUG-FIX 0.865 0.661 0.886 0.79 0.857 13.4
CK+OO 0.863 0.808 0.904 0.794 0.801 10
CK 0.857 0.763 0.894 0.769 0.731 17.8
OO 0.852 0.808 0.897 0.79 0.78 13.8
LOC 0.847 0.753 0.881 0.758 0.692 21.4
HCM 0.868 0.579 0.893 0.764 0.807 18.6
WHCM 0.872 0.624 0.888 0.788 0.804 17
EDHCM 0.823 0.625 0.892 0.772 0.829 18.4
LDHCM 0.826 0.619 0.898 0.788 0.825 17.2
LGDHCM 0.822 0.603 0.898 0.778 0.826 17.8
CHU 0.873 0.8 0.883 0.791 0.826 12.2
WCHU 0.88 0.799 0.899 0.793 0.828 8.2
LDCHU 0.875 0.789 0.904 0.813 0.847 5.2
EDCHU 0.858 0.795 0.901 0.806 0.842 8.4
LGDCHU 0.878 0.768 0.908 0.803 0.851 5.8
HH 0.879 0.803 0.903 0.795 0.834 6.6
HWH 0.884 0.769 0.894 0.8 0.808 10.4
LDHH 0.878 0.792 0.908 0.812 0.835 5.6
EDHH 0.86 0.798 0.902 0.805 0.837 8.2
LGDHH 0.886 0.777 0.909 0.796 0.845 5.2

peff
MOSER 0.837 0.787 0.863 0.748 0.828 6.8
NFIX-ONLY 0.661 0.582 0.798 0.563 0.716 23
NR 0.761 0.578 0.852 0.711 0.766 18.2
NFIX+NR 0.757 0.609 0.85 0.712 0.767 17.6
BUG-CAT 0.825 0.685 0.837 0.764 0.841 10.2
BUG-FIX 0.825 0.598 0.837 0.744 0.841 13.8
CK+OO 0.822 0.773 0.861 0.751 0.753 10.4
CK 0.816 0.671 0.836 0.718 0.704 18.4
OO 0.805 0.769 0.845 0.74 0.741 14.8
LOC 0.801 0.67 0.793 0.701 0.614 21.4
HCM 0.815 0.452 0.837 0.69 0.769 19.8
WHCM 0.827 0.576 0.812 0.749 0.781 16.6
EDHCM 0.753 0.536 0.808 0.728 0.81 20.2
LDHCM 0.73 0.499 0.85 0.756 0.81 15.8
LGDHCM 0.627 0.453 0.861 0.741 0.812 16.6
CHU 0.832 0.753 0.843 0.75 0.812 10.8
WCHU 0.839 0.76 0.859 0.754 0.827 7.2
LDCHU 0.849 0.729 0.85 0.774 0.849 5.6
EDCHU 0.832 0.753 0.807 0.76 0.847 9.4
LGDCHU 0.852 0.652 0.862 0.75 0.846 7.4
HH 0.844 0.77 0.867 0.75 0.819 6
HWH 0.857 0.689 0.835 0.739 0.811 12.8
LDHH 0.85 0.738 0.855 0.772 0.844 5.6
EDHH 0.828 0.759 0.814 0.761 0.847 8.8
LGDHH 0.857 0.673 0.864 0.747 0.843 7.2

Table 6 popt and peff values for all systems and all predictors.

26 Marco D’Ambros et al.

The best performers are MOSER (6), LGDCHU (6.2), LDCHU (7), CK+OO,
and EDCHU (tied 7.2). After that, performance drops gradually until approaches
ranked around 14, when it suddenly drops to ranks around 17. Overall, process,
churn of source code, and regular source code metrics perform very well. Entropies
of source code perform next (ranking from 7.6 to 11.6), followed by defect metrics.
Somewhat surprisingly, entropy of change metrics perform quite badly (sometimes
worse than LOC), while simple approximations of process metrics (NR, NFIX-
ONLY), close the march. A possible explanation of the counter-performance of
the variants of entropy metrics is that each approach amounts to a single metric,
which may not have enough explaining power to correctly classify files as defective
by itself. This is also the case for the defect metrics and approximations of process
and source code metrics, which likewise feature one or very few metrics.

Ranking with popt. We start by recalling the results of our previous experiment
[DLR10], where we used the spearman correlation to evaluate the performance
of the approaches. In this experiment, we found that the best overall approaches
where WCHU and LDHH, followed by the previous defect approaches BUG-FIX

and BUG-CAT.
If we compare our previous results with the average rankings obtained by popt

in Table 6 (top), we see some overlap: LDHH and WCHU are ranked well (5.6
and 8.2). However, defect prediction metrics have comparatively low ranks (11.4
and 13.4). The top performers are LDCHU and LGDHH (tied at 5.2), followed
by most churn of source code and entropy of source code metrics. Among the nine
of these set of metrics, the last one ranks at 12.2, and seven of those rank at 8.2
or below. Still performing better than the defect metrics (BUG-CAT), we find
process metrics (MOSER–9.2) and source code metrics (CK+OO–10+). As we
observed before, sets of metrics relying on few metrics—entropy of changes, cheap
approximations of source code or process metrics—perform comparatively badly
(ranks 17 or below).

To explain the counter-performance of defect-based metrics with respect to our
previous experiment, we can posit that using a wrapper instead of PCA (as we
used before) may be better suited to deal with multicollinearity in models with
large amounts of attributes, which were previously disadvantaged by PCA.

Effort-aware ranking with peffort. Table 6 (bottom) sums up the performance and
relative rankings of all the predictors according to the peffort effort-aware metric.

In this case, the best performers are LDCHU and LDHH, both tied at rank
5.6. These metrics are good performers in both ranking scenarios. Again, most
churn and entropy of source code metrics provide good predictive performance:
All the ranks below ten are occupied by one of these, with the exception of the
process metrics (MOSER) which occupy rank 6.8 (placing 4th). Product met-
rics (CK+OO) perform similarly to the effort-unaware scenario (ranked 10.4 for
peffort and 10 for popt). We continue to see the general trends of approaches em-
ploying few metrics performing worse (entropies of changes, NFIX, NR), among
which defect-related metrics perform better than the other alternatives (ranks 10.2
and 13.8).

These findings corroborate those of Mende and Koschke [MK09], and of Kamei
et al. [KMM+10], which found that product metrics were outperformed by process
metrics when effort was taken into account.

Title Suppressed Due to Excessive Length 27

5.3 Statistical Comparison

In an earlier version of this work [DLR10], we compared bug prediction approaches
using a scoring system we devised. However, this scoring system, while providing
an indication of the performance and stability of the approaches across different
software systems, did not allow us to obtain a statistically significant ranking of
approaches.

The goal of this first experiment is to rank approaches –across several data
sets– following a statistically rigorous methodology. To this aim, we employ the
approach of Lessman et al. [LBMP08] and Jiang et al. [JCM08].

For each performance metric (AUC, popt, peffort), we compute the ranking of
all the classifier on each project, and from there the average rank of each classifier
on all data sets. We then apply the Friedman non-parametric test [Fri37] on the
rankings in order to determine if the differences of performance in terms of average
ranking are statistically significant (the null hypothesis being that all classifiers
perform equally). The Friedman test can be calculated using the following formulas
from Demšar [Dem06], where k denotes the number of classifiers, N the number
of data sets, and Rj the average rank of classifier j on all data sets:

χ2
F =

12N

k(k + 1)

(∑
j

R2
j −

k(k + 1)2

4

)
(22)

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(23)

FF is distributed according to the F-distribution with k− 1 and (k− 1)(N − 1)
degrees of freedom. Once computed, we check FF against critical values of the
F-distribution and accept or reject the null hypothesis.

When the test succeeds, we apply the Nemenyi’s post-hoc test to check if the
performance of each pair of classifier is significantly different. The Nemenyi’s test
computes a critical difference in the average ranking that two classifiers must have
in order to be deemed to perform significantly different. The critical difference can
be computed with the following formula:

CD = qα

√
k(k + 1)

6N
(24)

where k is the number of classifiers, N represents the number of data sets,
and qα is a critical value for the Nemenyi’s test that depends on the number of
classifiers and the significance level α. In our experiments, k = 25, α = 0.05 and
q0.05 = 3.658. Note that the Nemenyi’s test is known to be conservative, hence
achieving significance is difficult.

Comparing AUC. The Friedman test rejected the null hypothesis that all predictors
performed equally. However, the Nemenyi’s post-hoc test concluded that it could
only distinguish the best performers MOSER and LGD-CHU, from the worst
NFIX-ONLY, so our findings on the relative ranking have less support.

Figure 10 presents the results of Nemenyi’s test, using Lessmann et al.’s [LBMP08]
modified version of Demšar’s significance diagrams [Dem06]: For each classifier on
the y-axis, we plot the average rank on the x-axis, together with a line segment

28 Marco D’Ambros et al.

Average	
 rank

!"#$%&!'()

*+,)

'-.*+,)

!/)

!"#$0!/)

1.*+,)

'&+)

2*+,)

'.*+,)

34-"#$15)

+6)

34-%+78)

2)

&&)

'-.**)

+*4)

1.**)

'.**)

2+*4)

**)

+60&&)

1.+*4)

'.+*4)

'-.+*4)

,&51/)

9) :) ;9) ;:) <9) <:) =9) =:) >9) >:)

Fig. 10 Nemenyi’s critical-difference diagram for AUC.

whose length encodes the critical difference CD. All classifiers that do not overlap
in this plot perform significantly different.

Comparing popt and peffort. For popt and peffort the results are similar to the ones
of AUC: While the Friedman test rejected the null hypothesis, Nemenyi’s test
was only able to separate the best performers from the worst ones. Concerning
popt, LGDHH, LDCHU, LDHH, and LGDCHU are statistically better than
NFIX-ONLY; in the case of peffort, LDHH and LDCHU do not overlap with
NFIX-ONLY. We do not show Demšar’s significance diagrams, as they are very
similar to the AUC one (Figure 10).

NFIX-ONLY is clearly the worst approach for all evaluation criteria.

5.4 Discussion

General performance. Each task yields a distinct ordering of the approaches, show-
ing that each problem has differing characteristics. If churn of source code and en-
tropy of source code metrics are the best performers for ranking classes (especially
LDCHU and LDHH), they are comparatively less performant for classification,
where process metrics outperform these, and product metrics perform very well.
Overall, process metrics are a good performer, as their worse rank overall is 9.4 for

Title Suppressed Due to Excessive Length 29

ranking with popt. On the other hand, defect metrics alone did not exhibit good
performance, and other single-metric predictors (entropy of changes, lines of code,
number of revisions) performed very poorly as well.

The best performers are churn of source code and entropy of source

code metrics for ranking. They are also good performers for

classification, but are outperformed by process metrics, and exhibit

comparable performance with product metrics

Limitations of Nemenyi’s test. Similarly to Mende and Koschke [MK09], and to
Lessmann et al. [LBMP08], we found that the Nemenyi’s post-hoc test was not
powerful enough to reliably differentiate the performance of the approaches in
terms of relative ranking. More subject systems are needed in order to reduce the
critical difference in the rankings; this would also increase the generalizability of
the results. Another option is to employ a different and more powerful testing
procedure.

Another problem of Nemenyi’s test is that it does not take the actual per-
formance of the approaches into account, but only their relative ranking. In fact,
looking for example at the results of classification for PDE (Table 5), we observe
that most of the AUC values do not differ much—ranging from 0.84 to 0.87—so
the ranking among them is weak.

Because of these reasons, we devised and ran a second set of experiments,
presented next.

6 Experiment 2: Finding Statistical Significance

Our second set of experiments—inspired by the work of Menzies et al. [MMT+10]—
aims at evaluating the variability of the approaches accross several runs, and at
finding a statistically significant ranking of the approaches. The main difference
between these experiments and the previous ones does not reside in the experi-
ments themselves, but in the way we analyze the results. The only difference in
the experiments is that instead of averaging the results for each fold of the cross
validation (last line of Algorithm 1), we save the 10 results. Moreover, we repeat
each experiment ten times (with distinct stratified folds), ending up with 100 data
points—ten runs times ten folds—for each bug prediction approach, and for each
performance measure (AUC, popt, peffort). We thus end up with an approximation
of the expected variability of the performance for each approach.

To analyze the results we compute the median, first, and third quartile of
each set of 100 data points, as Menzies et al. did [MMT+10]. Then, we sort the
approaches by their medians, and we display them visually by means of a “mini
boxplot”: A bar indicates the first–third quartile range; a circle the median. In
contrast with normal boxplots, the minimum and maximum values are not dis-
played. Figure 11 shows the mini boxplot of the results for classification in Mylyn
(in terms of AUC), sorted by median. We can see that on this figure, as the per-
formance degrades (lowering median), the variability of the performance of the
approaches increases (with the exception of NFIX-ONLY).

30 Marco D’Ambros et al.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
OS
ER

CK
+O
O

CH
U
 OO

HH

LO
C

W
CH

U

HW
H

ED
CH

U

ED
HH

LD
HH

CK

LD
CH

U

LG
DC

HU

BU
G-
CA
T

LG
DH

H

BU
G-
FI
X

NF
IX
+N
R
 NR

ED
HC

M

W
HC

M

LD
HC

M

LG
DH

CM

NF
IX
-O
NL
Y

HC
M

A
U
C

Fig. 11 Mini boxplot for classification in Mylyn, in terms of AUC. The bars represent the
first – third quartile range, while the circles indicate the medians.

However, since our goal is to compare approaches across different systems,
instead of reporting the results for each system, we combine them: For each per-
formance measure, we merge the 100 data points that we obtained for each system,
resulting in a set of 500 data points that represents all the five systems. Then, as
for individual systems, we compute the median, first, and third quartile and we
create the mini boxplot. Figure 12 shows the mini boxplot for all systems, for
classification.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
OS
ER

LD
HH

LG
DC

HU

LD
CH

U

LG
DH

H
 HH

W
CH

U

ED
CH

U

CK
+O
O

ED
HH

HW
H

CH
U

BU
G-
CA
T

OO

BU
G-
FI
X

W
HC

M

CK

LD
HC

M

LO
C

ED
HC

M

NF
IX
+N
R

LG
DH

CM

NR

HC
M

NF
IX
-O
NL
Y

A
U
C

Fig. 12 Mini boxplot for classification in all software systems combined.

Additionally, Menzies et al. [MMT+10] create a ranking by performing the
Mann-Whitney U test on each consecutive pair of approaches. Two approaches
have the same rank if the U test fails to reject the null hypothesis—that the two
distributions of performance values are equal—at the 95% confidence level. To
have a different rank with other approaches, the test must be successful on all the
other approaches of equivalent rank. This procedure is carried on in an ordered
fashion, starting with the top two approaches. Menzies et al. [MMT+10] advocate
for the usage of the Mann-Whitney test, as it is non parametric and—unlike, for
instance, the t-test—does not make assumptions on the distribution of the data.

Title Suppressed Due to Excessive Length 31

For example, with respect to Figure 12, MOSER and LDHH would be ranked
1 and 2 if the test reject the null hypothesis, otherwise they would be both ranked
1.

As shown in Figure 12, in our experiments, obtaining a meaningful ranking
is difficult, since many approaches have similar performances. For this reason, we
adapted the technique proposed by Menzies et al. [MMT+10] to better fit our
comparison goal: We are more interested in the usefulness of the data sources and
categories of approaches (process metrics, product metrics, defect metrics, entropy
metrics, churn of source code metrics, entropy of source code metrics), than the
performance of individual approaches.

Therefore, for each category of approaches, we select its best representative (the
one with the highest median), filtering the others out. For instance, in the case
of classification, we choose one candidate for the entropy of source code metrics
category; we only select LDHH, filtering out HH, HWH, EDHH and LGDHH
(see Figure 12). This selection greatly simplifies the comparison, as we have six
categories of approaches instead of 25 individual approaches.

Then, we create a mini boxplot for the categories, i.e., for the best performing
approaches of every category. Finally, to investigate which approaches are better
than others, we perform the Mann-Whitney test (at 95% confidence level) on each
possible pair of approaches, and discuss the ranking.

Mann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesis

Predictor median mini boxplotmini boxplotmini boxplotmini boxplot LDHH LGDCHU CK+OO BUG-CAT WHCM

MOSER 0.891 yes no yes yes yes

LDHH 0.885 no yes yes yes

LGDCHU 0.883 yes yes yes

CK+OO 0.875 no yes

BUG-CAT 0.866 yes

WHCM 0.849

Fig. 13 Comparing the best performing approaches for classification, for all systems (in terms
of AUC). The results include the medians, the mini boxplots, and the outcomes of the Mann-
Whitney test.

Classification with AUC. Figure 13 shows the classification results (in terms of
AUC) for all systems, including the medians, mini boxplots, and for each pair of
approaches, whether the Mann-Whitney test can reject the null hypothesis. The
median of all the selected approaches range from 0.849 to 0.891.

The outcomes of the U test indicate that the approaches based on process
metrics (MOSER–rank 1), entropy of code metrics (LDHH–rank 1), and churn
of code metrics (LGDCHU–rank 1), provide better classification performances
than the others, i.e., source code metrics (CK+OO–rank 4), previous defects
(BUG-CAT–rank 4) and entropy of changes (WHCM–rank 6). Note that this
difference is statistically significant at the 95% level. Another interesting fact is

32 Marco D’Ambros et al.

that the entropy of changes (WHCM) is statistically significantly worse than all
the other approaches.

With respect to the variability, we see that the entropy has a much larger
variation accross runs than other approaches—probably caused by its worse per-
formance on Mylyn (see Table 5).

Mann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesis

Predictor median mini boxplotmini boxplotmini boxplotmini boxplot LGDCHU MOSER BUG-CAT CK+OO WHCM

LDHH 0.852 no no yes yes yes

LGDCHU 0.851 no yes yes yes

MOSER 0.848 yes yes yes

BUG-CAT 0.839 no yes

CK+OO 0.834 yes

WHCM 0.823

Fig. 14 Medians, mini boxplots, and results of the Mann-Whitney test for all systems. The
prediction performances are measured with popt and only the best performing approaches per
category are considered.

Ranking with popt. Figure 14 shows the results for ranking, in terms of popt, for all
systems. The median of all approaches ranges from 0.823 to 0.852—clearly lower
than for classification. We observe that:

– The best performing approaches per category are the same as for classification.
– The order of approaches, sorted by decreasing median, is different: MOSER

was the top-performer for classification, but its median places it in third po-
sition for ranking. However, it still occupies rank 1 (tied with LDHH and
LGDCHU).

– The outcomes of the Mann-Whitney test are comparable with the ones of
classification: Process metrics, entropy and churn of code metrics provide better
performance than the other approaches (rank 1); and the entropy of changes
is worse than all the others (defect and source code metrics occupy rank 4,
entropy rank 6).

– Regarding variability, we observe that WHCM is the most variable approach.
On the other hand, MOSER and CK+OO exhibit comparatively lower vari-
ability.

Effort-aware ranking with peffort. The results for effort-aware ranking, measured
with peffort, are presented in Figure 15 for all systems. The median performance
of selected approaches ranges from 0.78 to 0.819, showing that this task is harder
than classification or regular ranking.

We notice that, apart from LGDHH that substitutes LDHH, all the other
best performing approaches per category are the same as for ranking with popt
and classification. Ordering the approaches by the median, we see that churn of

Title Suppressed Due to Excessive Length 33

Mann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesisMann-Whitney U-test reject null hypothesis

Predictor median mini boxplotmini boxplotmini boxplotmini boxplot LGDHH MOSER BUG-CAT CK+OO WHCM

LGDCHU 0.819 no no no yes yes

LGDHH 0.817 no no yes yes

MOSER 0.816 no yes yes

BUG-CAT 0.804 no no

CK+OO 0.791 no

WHCM 0.780

Fig. 15 Results of the effort-aware ranking for all systems, in terms of medians, mini boxplots,
and outcomes of the Mann-Whitney test. The performances are measured with peffort.

source code and entropy of source code switch places (albeit by a hair—0.819 vs
0.817). The other approaches keep their ranks.

However, the conclusions of the Mann-Whitney U test are more conservative:
Process metrics, entropy and churn of code metrics are better than code metrics
and entropy of changes, but not better than previous defects. On the same line,
the entropy of changes is worse than the best three approaches, but not worse
than previous defects and code metrics.

In general, for effort-aware ranking it is more difficult to demonstrate that
one approach is better than another, as witnessed by the many failures of the
(admittedly conservative) Mann-Whitney test.

We notice an increase of variability for LGDCHU and LGDHH, which exhibit
variability even greater than WHCM. On the other hand, MOSER and CK+OO

have a smaller amount of variability. The greater variability among top performers
may be a reason for the failures of some of the U tests.

6.1 Discussion

These results confirm our previous observations, as far as overall performance goes:
For classification, process metrics, entropy of source code and churn of source code
are the best performers. They are however undistinguishable from a statistically
significant point of view. The situation repeats itself for ranking with popt. For
peffort, these approaches are joined in the first rank by defect metrics, even if the
visual difference appears larger.

The best performers overall are process, entropy of source code, and

churn of source code metrics.

Unsurprisingly, the simpler problem of classification is the one where perfor-
mance is highest, and variability lowest. We note that effort-aware ranking is a
harder problem, with lower median performance and higher variability. We also
note that across evaluation types, process and product metrics feature a lower

34 Marco D’Ambros et al.

variability of performance, a factor that makes process metrics the preferred met-
ric set when considering both performance and stability. The entropy metric, on
the other hand, has a much higher variability in performance.

Process and product metrics exhibit the lowest level of variability

across all tasks.

7 Experiment 3: The Revenge of Code Metrics

Several works have shown that performance in prediction can vary wildly among
predictors. The “No Free Lunch” theorem [HP02] states that if ones does not
have specific knowledge about a particular problem domain, then every approach
to optimization problems will have the same average performance on the set of
all inputs—even random approaches. This result explains why some studies have
encountered contradicting conclusions, when run on other datasets, or with other
learning algorithms, such as the opposing conclusions of Gyimothy et al. [GFS05],
and of Fenton and Ohlsson [FO00].

This raises the question of whether the results we outlined above are valid with
other machine learning approaches. To account for this possible strong threat to
external validity, we once again took inspiration in the study of Hall and Holmes
on attribute selection [HH03]. Instead of reporting performance, we focus on the
attribute selection itself: Do different learning algorithms select the same attributes
in the feature selection phase? Attributes that are consistently selected are an
indicator of stability of their performance across learners.

We therefore replicated the classification task with two additional learners: De-
cision trees (DT) and Näıve bayes (NB)—in addition to generalized linear logistic
models (GLM). We opted for these two algorithms, as they represent two quite
different approaches to learning and are state-of-the-art algorithms that are often
used in data mining applications. We only replicated the classification task, as the
two machine learning algorithms above are inherently classifiers (giving a label to
instances, such as “Defective” and “Non-defective”), and as such are not optimal
for ranking.

More than attributes, we are interested in categories of attributes, as the data
sources available for each project may vary. All the projects in our benchmark
dataset are in the ideal situation: presence of version control data, defect data,
source code metrics, bi-weekly snapshots of said metrics. Other projects may not
have this luxury. As such, evaluating the stability of attribute selection should also
take into account the provenance of each attribute.

The attribute selection experiments are structured as follows:

– First, we combine all the attributes of all the approaches in a single set. For
example, in the case of process metrics we take all the metrics listed in Table 2,
for code metrics all the ones listed in Table 3, etc.

– Then, we employ an attribute selection technique to select the attributes which
yield to the model with the best predictive performance (in terms of AUC).
According to which learner we are testing, the model can be a GLM, a DT, or a

Title Suppressed Due to Excessive Length 35

NB classifier. We again use wrapper subset evaluation. The attribute selection
is performed with stratified 10-fold cross validation, i.e., the attributes selected
are the ones which provide the best results across the ten folds.

– Finally, instead of saving the performance results, we keep track of which at-
tributes were selected, and map them back to the approaches they belong to
(e.g., lines of code belongs to code metrics, number of revision to process met-
rics).

– As in experiment 2, we run each experiment ten times, obtaining ten sets of
attributes per software system, for each learner (for a total of 150 sets—5
systems times 3 learners times 10 sets).

Since the wrapper subset evaluation is computationally expensive, and we have
a total of 212 attributes, we reduce the complexity by removing some attributes.
Every variation of entropy and churn of code metrics includes 17 attributes, as we
consider 17 code metrics. Since these attributes largely overlap9, we decided to
consider only the best performing variation, as we previously did in experiment 2.
As indicated in Figure 13, the best performing variations for classification are the
linearly decayed one for entropy (LDHH) and the logarithmically decayed one for
churn (LGDCHU). This leaves us with 78 attributes in total.

Table 7 shows a sample result from Equinox, using decision trees. Every column
is a run of the experiment, and every row a category of prediction approaches. The
value of a cell indicates the number of attributes selected in the corresponding run,
belonging to the corresponding prediction category. The rightmost column reports
how many runs had one (or more) attribute from the corresponding category
selected—10 would mean always; 0, never. In some cases (process metrics, previous
defects and code metrics), the category of approaches corresponds to a single
approach. This is because the other approaches in the same category are subsets
of the general one (e.g.,LOC or CK versus CK+OO).

Run
Category of approaches 1 2 3 4 5 6 7 8 9 10 Count
Process metrics (MOSER) 0 0 1 0 1 0 0 1 1 1 5
Previous defects (BUG-CAT) 1 0 1 0 1 1 0 2 0 2 6
Entropy of changes (HCM, WHCM,
EDHCM, LDHCM, LGDHCM)

0 0 0 0 0 0 0 0 0 0 0

Code metrics (CK+OO) 2 1 1 1 2 1 2 1 1 4 10
Churn of code metrics (LGDCHU) 1 0 2 0 2 1 1 0 0 1 6
Entropy of code metrics (LDHH) 0 1 1 1 4 1 2 2 0 3 8

Table 7 Results of ten runs of attribute selection for Equinox, with decision trees.

Table 7 shows us that in the case of decision trees and Equinox, at least one
code metric is selected at every experiment; in contrast, entropy of change metrics
are never selected. Concerning the other categories, attributes belonging to them
are selected in a number of runs ranging from five to eight.

To compare prediction approaches, we evaluate the results for all the subject
software systems; we compute the mean and the variance of the selection counts

9 For instance, the churn of FanIn linearly decayed and churn of FanIn logarithmically
decayed have a very high correlation.

36 Marco D’Ambros et al.

(e.g., last column of Table 7) across the five systems, i.e., across 50 sets of attributes
(ten runs times five systems). Table 8 and Figure 16 show the mean and variance
values for the three learners: logistic regression, decision trees, and Näıve Bayes.

GLM DT NB
Category of approach Mean Var Mean Var Mean Var
Process metrics (MOSER) 6.4 0.64 6.2 1.36 7.2 3.44
Previous defects (BUG-CAT) 6.6 5.84 4.2 3.76 5.2 10.16
Entropy of changes (HCM, WHCM,
EDHCM, LDHCM, LGDHCM)

5.8 12.16 4.6 6.64 6.8 10.56

Code metrics (CK+OO) 9.4 0.64 7.4 5.84 9.2 1.36
Churn of code metrics (LGDCHU) 8.8 0.96 5.6 5.84 6.4 5.84
Entropy of code metrics (LDHH) 9.0 0.81 6.6 1.84 7.2 8.96

Table 8 Mean and variance values of the attribute selection counts across the five software
systems, for the three learners.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Process metrics
 Previous defects
 Entropy of
changes

Code metrics
 Churn of code
metrics

Entropy of code
metrics

M
ea

n
 GLM

DT

NB

(a) Mean

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Process metrics
 Previous defects
 Entropy of
changes

Code metrics
 Churn of code
metrics

Entropy of code
metrics

Va
ri
an

ce

GLM

DT

NB

(b) Variance

Fig. 16 Histograms of the attribute selection counts across the five software systems, for the
three learners.

Title Suppressed Due to Excessive Length 37

7.1 Discussion

Relation to previous performance. The fact that a prediction approach provides bet-
ter (in a statistically significant manner) predictive performance than another one,
when studied in isolation, does not imply that attributes belonging to the better
approach are preferred to attributes from the worse one. According to experiment
2, code metrics for AUC are ranked 4th using a GLM; yet, at least one of them is
selected on average more than 9 times out of 10, with a very low variance. This is
actually the best performance. Clearly, at least some of the attributes do encode
information very relevant to the learner.

The performance of a set of attributes taken in isolation does not

imply their selection when compared to other—worse performing in

isolation—attributes

Stability across learners. Different learners select different attributes, with the ex-
ception of code metrics: These are frequently selected—and with comparatively
low variance to boot—across all learners. We named this section “the revenge of
code metrics” for this reason: The previous sets of experiments found that other
techniques performed better, whereas this set of experiments shows that they do
encode very relevant information most of the time.

Entropy of code metrics is the second most selected across different learners,
but for Näıve Bayes it exhibits very high variance, leading us to believe that the
information it contains varies across systems for this classifier.

Process and code metrics exhibit the lowest variability, as in the previous ex-
periments; on the other hand, entropy of changes exhibits the highest variability—
again. This confirms its status of an erratic performer. Previous defects has also a
high variability for logistic regression and Näıve Bayes, and is still quite variable for
decision trees; it also had a degree of variability in the previous experiments. These
two approaches are also selected somewhat less often than the others. However,
the trend is difficult to discern; more data—additional systems and learners—is
needed to confirm or infirm this trend.

There is a degree of similarity between the variability in performance

in the previous experiments, and the variance in selection in these

experiments; more data is needed.

Variance in each learner. Decision trees provide the most balanced results, i.e., the
range of variance values across different approaches is more compact. In contrast,
Näıve Bayes has a very high variance for half of the categories of approaches. Were
it not for entropy of changes, logistic regression would perform better than decision
trees in this regards, as four of the six categories of approaches have a very low
variance in attribute selection. Obviously, adding more learning algorithms would
strengthen our initial observations.

38 Marco D’Ambros et al.

Different learners have different attribute selection strategies; some

are more stable than others.

8 Lessons Learned

In performing a number of bug prediction experiments, with a variety of case
studies, evaluation criteria and experimental setups, we learned several lessons
that we summarize in the following.

On performance in isolation. Even with the same learner (GLM) different experi-
ments provide somewhat different results. In experiment 2, we found that process
metrics, churn and entropy of code metrics are statistically better (with Mann-
Whitney test at 95% level) than code metrics, when studied in isolation. In experi-
ment 3, we discovered that some code metrics are selected most often, and with low
variability. Metrics evaluated in isolation and metrics evaluated alongside larger
sets of attributes have different behaviors.

On performance across learners and case studies. When given the choice, different
learners tend to select very different metrics. Some metrics are chosen in irregular
patterns even by the same learner, but on different projects. In other words, the
“No Free Lunch” theorem [HP02] is in full effect: Based on the data at our disposal,
whether a metric or set of metrics performs well in isolation, in a given project,
or with a given learner, does not necessarily indicate that it will be selected for
learning in another context. We did however see a general trend between best per-
formers in the previous experiments, and both a higher probability to be selected
across runs, with a higher stability across projects. Nevertheless, the evidence is
very slight and needs to be investigated much further.

In short, our current study did not yet demonstrate stability in the attributes
selected across five systems and three learners. Previous studies that advocated
the absence of stability in the domains of effort estimation [MSS05,FSKM03] and
defect prediction [MGF07] are still unchallenged.

This raises a serious threat to the external validity of any bug prediction study.
Beyond very broad guidelines, it is not possible to generalize results based on a
limited number of data points (these being either data sources, case studies, or
learning algorithms). Finding general rules appears to be extremely challenging.
This leaves us with two options: (1) Gather more data points (increasing the
number of case study systems to refine our observations, and increasing the number
of learning algorithms); or (2) use more domain knowledge to tailor the technique
to the software system and the exact prediction task to be performed.

On the granularity of information. The churn of source code metrics can be seen as
process metrics with a finer grained level of detail, with respect to MOSER, as 17
different code metrics are considered. The results of our experiments, especially
experiment 2, indicate that the churn of code metrics does not significantly outper-
form MOSER in every prediction task, i.e., classification, ranking and effort-aware
ranking.

Title Suppressed Due to Excessive Length 39

We conclude that—with process metrics—a finer grained level of information
does not improve the performance of the prediction in an observable manner.

On PCA vs Wrapper. A number of attribute selection techniques were proposed,
such as Relief [KR92,Kon94], principal components analysis (PCA) [Jac03], CFS
(Correlation-based Feature Selection) [Hal00], and wrapper subset evaluation [KJ97].
In our earlier work [DLR10] we used PCA, as was also proposed in [NBZ06]. How-
ever, according to a study of Hall and Holmes [HH03], who performed an extensive
comparison of attribute selection techniques, PCA is one of the worst performers.
They instead recommend wrapper subset evaluation, which might not scale to a
large number of attributes. In all our experiments we used wrapper subset eval-
uation, and found it to scale to our problems (up to 78 attributes in experiment
3).

Additionally, we compared the performance of PCA and wrapper subset eval-
uation. We ran experiment 1 with both techniques (on identical folds), and found
wrapper subset evaluation to be better than PCA—statistically—for AUC, peffort
(but not popt), confirming the finding of Hall and Holmes:

– For classification, the maximum performance improvement was +24.77%; the
minimum -13.06%; and the average, +3,06%. The Mann-Whitney U test found
that the difference between distributions was statistically significant at the 99%
level (p < 0.01).

– For ranking with popt, the range was from -5.05% (min) to +6.15% (max), with
average of +0.05%. This was not found to be statistically significant.

– Finally, for ranking with peffort, the range of differences was from -33.22%
(min) to +18.22% (max), with average +1,08%. The U test found that the
difference in distribution was significant at 95%, with p < 0.02.

Comparing the individual results, we generated the same tables that we re-
ported in experiment 1 (Table 5 and 6) for PCA (omitted for brevity). We ob-
served that the improvement was not constant: Larger attribute sets (e.g., process
metrics, product metrics) benefitted more from wrapper subset evaluation than
smaller attribute sets (e.g., previous defect and entropy of changes). This might
be the reason why some of the results we report here are different from the ones
of our previous work [DLR10], in which previous defects performed much better
than in these experiments.

All in all, we recommend the use of wrapper subset evaluation instead of princi-
pal component analysis for future defect prediction experiments, or—even better—
using both and comparing the results.

On the evaluation of the approaches data-wise. If we take into account the amount of
data and computational power needed for the churn and entropy of code metrics,
one might argue that downloading and parsing dozens of versions of the source
code is a costly process. It took several days to download, parse and extract the
metrics for about ninety versions of each software system.

A lightweight approach that is an all-around good performer is MOSER, which
also exhibits relatively low variability. However, approaches based on process met-
rics have limited usability, as the history of the system is needed, which might
be inaccessible or, for newly developed systems, not even existent. This problem
does not hold for the source code metrics CK+OO, as only the last version of the
system is necessary to extract them.

40 Marco D’Ambros et al.

On the approximations of metrics sets. In experiment 1, we tried an approximation
of source code metrics—LOC— and two approximations of change metrics—NR

and NFIX-ONLY. We adopted these metrics in isolation, as according to previous
studies [LFJS00, GFS05, ZPZ07] they exhibit a very high correlation with post-
release defects. However, our results indicate quite low prediction performances
for these isolated metrics:

– LOC. It features an average ranking ranging from 17.2 for classification (see
Table 5) to 21.4 for ranking and effort-aware ranking (see Table 6). This is in
contrast with the average ranking of CK+OO, which ranges from 7.2 (classi-
fication) to 10.4 (effort-aware ranking).

– NR. The number of revisions NR is simpler to compute than the entire set
of process metrics MOSER extracted from the versioning system. However,
this approximation yields poor predictive power, as witnessed by the average
ranking of NR, varying from 18.2 for effort-aware ranking, to 19 for ranking,
to 19.4 for classification (see Table 5 and 6).

– NFIX-ONLY. Prediction models based on this metric consistently provided
the worst performances across all evaluation criteria. In fact, this approach was
also discarded by Nemenyi’s test (see Figure 10)—it was the only one.
If we compare the performance of NFIX-ONLY against BUGFIXES, we see
that the heuristic searching bugs from commit comments is a very poor approx-
imation of actual past defects: BUGFIXES has an average ranking ranging
from 13.4 (ranking) to 13.8 (classification and effort-aware ranking), whereas
NFIX-ONLY ranges from 23 (effort-aware ranking) to 24.2 (classification).
On the other hand, there is no significant improvement in BUG-CAT with
respect to BUGFIXES, meaning that categorizing bugs does not improve the
predictive performance with respect to just counting them.

As discussed in the description of experiment 1 (see Section 5.2), a possible
reason for the low performances of the approximations is that they amount to
single metrics, which might not have enough explanative power to provide an
accurate prediction.

9 Threats to Validity

Threats to Construct Validity regard the relationship between theory and observa-
tion, i.e., the measured variables may not actually measure the conceptual variable.

A first threat concerns the way we link bugs with versioning system files and
subsequently with classes. In fact, all the links that do not have a bug reference
in a commit comment cannot be found with our approach. Bird et al. studied this
problem in bug databases [BBA+09]: They observed that the set of bugs which
are linked to commit comments is not a fair representation of the full population
of bugs. Their analysis of several software projects showed that there is a system-
atic bias which threatens the effectiveness of bug prediction models. While this
is certainly not a satisfactory situation, nonetheless this technique represents the
state of the art in linking bugs to versioning system files [FPG03,ZPZ07].

Another threat is the noise affecting Bugzilla repositories. In [AAP+08] Anto-
niol et al. showed that a considerable fraction of problem reports marked as bugs
in Bugzilla (according to their severity) are indeed “non bugs”, i.e., problems not

Title Suppressed Due to Excessive Length 41

related to corrective maintenance. We manually inspected a statistically significant
sample (107) of the Eclipse JDT Core bugs we linked to CVS files, and found that
more than 97% of them were real bugs10. Therefore, the impact of this threat on
our experiments is limited.

Threats to Statistical Conclusion Validity concern the relationship between the treat-
ment and the outcome.

We used Nemenyi’s post-hoc test to determine if the difference in performance
of each approach was significant, but the test only succeeded in separating the very
best from the very worst performers. Nemenyi’s test is a very conservative test,
which has hence a higher chance of committing a type II error (in this case, failing
to reject the null hypothesis that the approaches perform equally). For this reason,
we conducted a second series of experiments, testing the differences between pair
of approaches with the Mann-Whitney U test. We ran the test at 95% confidence
level.

Threats to External Validity concern the generalization of the findings.

We have applied the prediction techniques to open-source software systems
only. There are certainly differences between open-source and industrial develop-
ment, and in particular because some industrial settings enforce standards of code
quality. We minimized this threat by using parts of Eclipse in our benchmark,
a system that, while being open-source, has a strong industrial background. A
second threat concerns the language: All considered software systems are writ-
ten in Java. Adding non-Java systems to the benchmark would increase its value,
but would introduce problems since the systems would need to be processed by
different parsers, producing variable results.

The bias between the set of bugs linked to commit comments and the entire
population of bugs, that we discussed above, threatens also the external validity
of our approach, as results obtained on a biased dataset are less generalizable.

To decrease the impact of a specific technology/tool, in our dataset we included
systems developed using different versioning systems (CVS and SVN) and different
bug tracking systems (Bugzilla and Jira). Moreover, the software systems in our
benchmark are developed by independent development teams and emerged from
the context of two unrelated communities (Eclipse and Apache).

Having said that, we argue that the threats to external validity of our ex-
periments in particular, and of all defect prediction studies in general, are very
strong and should not be underestimated. The controversial results of the experi-
ments presented in this article, show how findings obtained on a certain software
system, using a certain learning algorithm, and measured with a certain evalua-
tion criterion, are difficult to generalize to other systems, learning algorithms, and
evaluation criteria.

This supports the conclusions of Menzies et al., who argued that if a learner is
tuned to a particular evaluation criterion, then this learner will do best according
to that criterion [MMT+10].

10 This is not in contradiction with [AAP+08]: Bugs mentioned as fixes in CVS comments
are intuitively more likely to be real bugs, as they got fixed.

42 Marco D’Ambros et al.

10 Conclusion

Defect prediction concerns the resource allocation problem: Having an accurate
estimate of the distribution of bugs across components helps project managers to
optimize the available resources by focusing on the problematic system parts. Dif-
ferent approaches have been proposed to predict future defects in software systems,
which vary in the data sources they use, in the systems they were validated on,
and in the evaluation technique employed; no baseline to compare such approaches
exists.

We have introduced a benchmark to allow for a common comparison, which
provides all the data needed to apply a large array of prediction techniques pro-
posed in the literature. Our dataset, publicly available at http://bug.inf.usi.ch,
allows the reproduction of the experiments reported in this paper and their com-
parison with novel defect prediction approaches. Further, the dataset comes with
additional data beyond metrics that allows researcher to define and evaluate novel
metrics, and their variations over time as churn or entropy variants.

We evaluated a selection of representative approaches from the literature, some
novel approaches we introduced, and a number of variants. Our comprehensive
evaluation compared the approaches according to three scenarios: Binary classi-
fication, ranking based on defects, and effort-aware ranking based on defect den-
sity. For binary classification, simple process metrics were the best overall per-
former, slightly ahead of churn of source code and entropy of source code metrics;
a subsequent experiment found the differences between the top three not signifi-
cant. On the other hand, our results showed that for both ranking strategies, the
best performing techniques are churn of source code and entropy of source code
metrics—even if a second experiment found the difference with process metrics not
significant for regular ranking, and was unable to produce a ranking when effort
was taken into account.

However, according to a third series of experiments that we performed, these
results are to be taken with a (huge) grain of salt: Generalizing the results to
other learners proved to be an unsuccessful endeavor, as different learners select
very different attributes. We were only able to observe a very general trend that,
to be confirmed (or unconfirmed), needs to be investigated further by adding new
datasets and new learning algorithms.

This raises the importance of shared datasets and benchmarking in general:
Defect prediction is a field where external validity is very hard to achieve. The only
way to gain certainty towards the presence/absence of external validity in defect
prediction studies is to broaden our range of case studies; we welcome contributions
to our benchmark dataset.

In the absence of certainty, one needs to restrain his goals, and adopt the
opposite strategy: Fine-tune a defect predictor to the specific task at hand.

Acknowledgments. We acknowledge the financial support of the Swiss National Sci-
ence foundation for the project “SOSYA” (SNF Project No. 132175).

References

AAP+08. Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-
Gaël Guéhéneuc. Is it a bug or an enhancement?: a text-based approach to classify

http://bug.inf.usi.ch

Title Suppressed Due to Excessive Length 43

change requests. In Proceedings of CASCON 2008, pages 304–318. ACM, 2008.
AB06. Erik Arisholm and Lionel C. Briand. Predicting fault-prone components in a java

legacy system. In Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, pages 8–17. ACM, 2006.

ABJ10. Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction mod-
els. Journal of Systems and Software, 83(1):2–17, 2010.

AEO+10. Venera Arnaoudova, Laleh Eshkevari, Rocco Oliveto, Yann-Gael Gueheneuc, and
Giuliano Antoniol. Physical and conceptual identifier dispersion: Measures and re-
lation to fault proneness. In ICSM ’10: Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM), September 2010. To appear.

BBA+09. Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: bias in bug-fix
datasets. In Proceedings of ESEC/FSE 2009, pages 121–130, New York, NY, USA,
2009. ACM.

BBM96. Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Trans. Software Eng.,
22(10):751–761, 1996.

BDL10. Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Are popular classes more
defect prone? In Proceedings of FASE 2010 (13th International Conference on
Fundamental Approaches to Software Engineering), pages 59–73, 2010.

BDW99. Lionel C. Briand, John W. Daly, and Jürgen Wüst. A unified framework for
coupling measurement in object-oriented systems. IEEE Trans. Software Eng.,
25(1):91–121, 1999.

BEP07. Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. Improving defect
prediction using temporal features and non linear models. In Proceedings of IW-
PSE 2007, pages 11–18, 2007.

BS98. Aaron B. Binkley and Stephen R. Schach. Validation of the coupling dependency
metric as a predictor of run-time failures and maintenance measures. In Proceedings
of ICSE 1998, pages 452–455. IEEE CS, 1998.

CK94. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. Software Eng., 20(6):476–493, 1994.

Dem06. Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, 2006.

DGN05. Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Moose: an agile reengineer-
ing environment. In Proceedings of ESEC/FSE 2005, pages 99–102, September
2005. Tool demo.

DL10. Marco D’Ambros and Michele Lanza. Distributed and collaborative software evo-
lution analysis with churrasco. Journal of Science of Computer Programming
(SCP), 75(4):276–287, April 2010.

DLR10. Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison
of bug prediction approaches. In MSR ’10: Proceedings of the 7th International
Working Conference on Mining Software Repositories, pages 31–41, 2010.

DTD01. Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report, University of Bern,
2001.

EMM01. Khaled El Emam, Walcelio Melo, and Javam C. Machado. The prediction of faulty
classes using object-oriented design metrics. Journal of Systems and Software,
56(1):63–75, 2001.

FO00. Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures
in a complex software system. IEEE Trans. Software Eng., 26(8):797–814, 2000.

FPG03. Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of ICSM
2003, pages 23–32. IEEE CS, 2003.

Fri37. Milton Friedman. The use of ranks to avoid the assumption of normality im-
plicit in the analysis of variance. Journal of the American Statistical Association,
32(200):675–701, 1937.

FSKM03. Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. A simula-
tion study of the model evaluation criterion mmre. IEEE Trans. Software Eng.,
29(11):985–995, 2003.

44 Marco D’Ambros et al.

GFS05. Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Trans. Software
Eng., 31(10):897–910, 2005.

Hal00. Mark A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the Seventeenth International Conference on
Machine Learning, pages 359–366. Morgan Kaufmann Publishers Inc., 2000.

Has09. Ahmed E. Hassan. Predicting faults using the complexity of code changes. In
Proceedings of ICSE 2009, pages 78–88, 2009.

HH03. Mark Hall and Geoffrey Holmes. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Trans. Knowl. Data Eng., 15(6):1437–1447, 2003.

HH05. Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault prediction.
In Proceedings of ICSM 2005, pages 263–272, 2005.

HP02. Y C Ho and D L Pepyne. Simple explanation of the no-free-lunch theorem and its
implications. Journal of Optimization Theory and Applications, 115(3):549–570,
2002.

Jac03. E. J. Jackson. A Users Guide to Principal Components. John Wiley & Sons Inc.,
2003.

JCM08. Yue Jiang, Bojan Cukic, and Yan Ma. Techniques for evaluating fault prediction
models. Empirical Software Engineering, 13:561–595, 2008. 10.1007/s10664-008-
9079-3.

JV10. Natalia Juristo Juzgado and Sira Vegas. Using differences among replications of
software engineering experiments to gain knowledge. In MSR ’10: Proceedings of
the 7th International Working Conference on Mining Software Repositories, 2010.

KA99. Taghi M. Khoshgoftaar and Edward B. Allen. A comparative study of ordering
and classification of fault-prone software modules. Empirical Software Engineering,
4:159–186, 1999. 10.1023/A:1009876418873.

KAG+96. T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan. Detection
of software modules with high debug code churn in a very large legacy system. In
Proceedings of ISSRE 1996, page 364. IEEE CS Press, 1996.

KEZ+08. A. Güneş Koru, Khaled El Emam, Dongsong Zhang, Hongfang Liu, and Divya
Mathew. Theory of relative defect proneness. Empirical Software Engineering,
13:473–498, October 2008.

KJ97. Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97:273–324, December 1997.

KMM+10. Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken ichi Matsumoto, Bram
Adams, and Ahmed E. Hassan. Revisiting common bug prediction findings using
effort aware models. In ICSM ’10: Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM), September 2010. To appear.

Kon94. Igor Kononenko. Estimating attributes: Analysis and extensions of relief. pages
171–182. Springer Verlag, 1994.

KR92. Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In
Proceedings of the Ninth International Workshop on Machine Learning, ML ’92,
pages 249–256. Morgan Kaufmann Publishers Inc., 1992.

KSS02. Ralf Kollmann, Petri Selonen, and Eleni Stroulia. A study on the current state of
the art in tool-supported UML-based static reverse engineering. In Proceedings of
WCRE 2002, pages 22–32, 2002.

KZL07. A. Gunes Koru, Dongsong Zhang, and Hongfang Liu. Modeling the effect of size
on defect proneness for open-source software. In Proceedings of the Third Interna-
tional Workshop on Predictor Models in Software Engineering, pages 10–19. IEEE
Computer Society, 2007.

KZWZ07. Sunghun Kim, Thomas Zimmermann, James Whitehead, and Andreas Zeller. Pre-
dicting faults from cached history. In Proceedings of ICSE 2007, pages 489–498.
IEEE CS, 2007.

LBMP08. Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Bench-
marking classification models for software defect prediction: A proposed framework
and novel findings. IEEE Trans. Software Eng., 34(4):485–496, 2008.

LFJS00. Todd L.Graves, Alan F.Karr, J.S.Marron, and Harvey Siy. Predicting fault inci-
dence using software change history. IEEE Trans. Software Eng., 26(07):653–661,
2000.

Men10. Thilo Mende. Replication of defect prediction studies: Problems, pitfalls and rec-
ommendations. In PROMISE ’10: Proceedings of the 6th International Conference
on Predictor Models in Software Engineering, 2010.

Title Suppressed Due to Excessive Length 45

MGF07. Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code at-
tributes to learn defect predictors. IEEE Trans. Software Eng., 33(1):2–13, 2007.

MK09. Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect prediction
models. In PROMISE ’09: Proceedings of the 5th International Conference on
Predictor Models in Software Engineering, pages 1–10, New York, NY, USA, 2009.
ACM.

MK10. Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In CSMR
’10: Proceedings of the 14th European Conference on Software Maintenance and
Reengineering, pages 109–118, 2010.

MMT+10. Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, and Yue Jiang Ayse
Bener. Defect prediction from static code features: current results, limitations,
new approaches. Automated Software Engineering, 17:375–407, 2010.

MPF08. Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual
cohesion of classes for fault prediction in object-oriented systems. IEEE Trans.
Software Eng., 34(2):287–300, 2008.

MPS08. Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of ICSE 2008, pages 181–190, 2008.

MSS05. Ingunn Myrtveit, Erik Stensrud, and Martin J. Shepperd. Reliability and validity
in comparative studies of software prediction models. IEEE Trans. Software Eng.,
31(5):380–391, 2005.

NB05a. Nachiappan Nagappan and Thomas Ball. Static analysis tools as early indicators
of pre-release defect density. In Proceedings of ICSE 2005, pages 580–586. ACM,
2005.

NB05b. Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of ICSE 2005, pages 284–292. ACM,
2005.

NBZ06. Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In Proceedings of ICSE 2006, pages 452–461. ACM, 2006.

NM03. Allen P. Nikora and John C. Munson. Developing fault predictors for evolving
software systems. In Proceedings of the 9th International Symposium on Software
Metrics, pages 338–349. IEEE Computer Society, 2003.

NZHZ07. Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
Predicting vulnerable software components. In Proceedings of CCS 2007, pages
529–540. ACM, 2007.

OA96. Niclas Ohlsson and Hans Alberg. Predicting fault-prone software modules in tele-
phone switches. IEEE Trans. Software Eng., 22(12):886–894, 1996.

OW02. Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large
industrial software system. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 55–64, 2002.

OWB04. Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are.
In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium
on Software testing and analysis, pages 86–96, New York, NY, USA, 2004. ACM.

OWB05. Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting the loca-
tion and number of faults in large software systems. IEEE Trans. Software Eng.,
31(4):340–355, 2005.

OWB07. Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Automating algo-
rithms for the identification of fault-prone files. In ISSTA ’07: Proceedings of the
2007 international symposium on Software testing and analysis, pages 219–227,
New York, NY, USA, 2007. ACM.

PNM08. Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. Can developer-
module networks predict failures? In FSE ’08: Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
2–12, 2008.

Rob10. Gregorio Robles. Replicating msr: A study of the potential replicability of papers
published in the mining software repositories proceedings. In MSR ’10: Proceedings
of the 7th International Working Conference on Mining Software Repositories,
pages 171–180, 2010.

SBOW09. Yonghee Shin, Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. Does
calling structure information improve the accuracy of fault prediction? In MSR
’09: Proceedings of the 6th International Working Conference on Mining Software
Repositories, pages 61–70, 2009.

46 Marco D’Ambros et al.

SEH03. Susan Elliott Sim, Steve M. Easterbrook, and Richard C. Holt. Using bench-
marking to advance research: A challenge to software engineering. In ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering, pages
74–83, 2003.

SK03. Ramanath Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects. IEEE Trans.
Software Eng., 29(4):297–310, 2003.

TBM10. Burak Turhan, Ayse Basar Bener, and Tim Menzies. Regularities in learning defect
predictors. In PROFES ’10: Proceedings of the 11th International Conference on
Product-Focused Software Process Improvement, pages 116–130, 2010.

TMBS09. Burak Turhan, Tim Menzies, Ayse Basar Bener, and Justin S. Di Stefano. On the
relative value of cross-company and within-company data for defect prediction.
Empirical Software Engineering, 14(5):540–578, 2009.

WSDN09. Timo Wolf, Adrian Schröter, Daniela Damian, and Thanh H. D. Nguyen. Pre-
dicting build failures using social network analysis on developer communication.
In ICSE ’09: Proceedings of the 31st International Conference on Software Engi-
neering, pages 1–11, 2009.

ZN08. Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using net-
work analysis on dependency graphs. In Proceedings of ICSE 2008, 2008.

ZNG+09. Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process. In ESEC/FSE ’09: Proceedings of the 7th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, pages 91–100,
2009.

ZPZ07. Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
eclipse. In Proceedings of PROMISE 2007, page 76. IEEE CS, 2007.

	Introduction
	Related Work in Defect Prediction
	Bug Prediction Approaches
	Benchmark and Experimental Setup
	Experiment 1: Comparing Approaches
	Experiment 2: Finding Statistical Significance
	Experiment 3: The Revenge of Code Metrics
	Lessons Learned
	Threats to Validity
	Conclusion

