Research

Visual Software Evolution
Reconstruction

Marco D’Ambrog, Michele Lanza

'REVEAL @ Faculty of Informatics - University of Lugano, Swftand

SUMMARY

The analysis of the evolution of large software systems is allenging for many reasons, such as the
retrieval and processing of historical information and thelarge quantity of data that must be dealt with.
While recent research advances have led to solutions to theproblems, a central question remains: How do
we deal with this information in a methodical way and where dowe start with our analysis?

We present a methodology based on interactive visualizatis which support the reconstruction of
the evolution of software systems. We propose several vidimations which help us to perform software
evolution analysis of a system “in the large” and “in the smal’, and apply them to 2 large systems.

KEY WORDS: Software Evolution Analysis, Software Visualization

Introduction

Real world software systems require continuous changettsfysmew user requirements, adapt to
new technologies and repair errors [22]. As time goes bywsoé increases in size and complexity,
and the original design gradually decays unless maintenack is done. Indeed, the problem of
understanding the evolution of software has become a viattlemin today’s software industry. Starting
in the early seventies, software evolution has in the meantiecome a recognized research field. Its
goal is to use the history of a software system to analyse addrstand its present state and to predict
its future development [4, 14, 15, 23, 28].

Apart from the technical challenges with respect to redogeand modeling the data, the main
challenge is how to deal with historical information in a fuseand methodical way to understand
and reconstruct the phenomenon of evolution itself. Mangpperegard the history of a system
as being the information contained in a versioning systent.tBe evolution of a software system
is not only the collection of all the versions of its compotgerDeveloping software is a human
activity, and the evolution of a software system therefdse @ncludes all the activities performed
by developers, testers and users during the entire hisfatyeasystem. This additional information
comes from various sources such as comments committed l®yogevs during the implementation,
problem reports delivered by users and stored in bug trgaystems, mailing list archivestc.

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 1

Acquiring a comprehensive understanding of a system’suéiesl implies two major challenges:

1. Retrieving and handling the dat®nce the data sources have been defined, the informatido has
be retrieved, processed and stored for the analysis. Wihe slata sources provide information
in a structured way (Bugzilla, a widely used bug trackingeys for example provides problem
reports in XML), others need to be treated (for example thdiles of CVS). Moreover, it is not
trivial to link the different sources. A problem report, Estample, refers to one or more software
artifacts developed with a versioning system. Since thenmiexplicit and formal link between
them, it must be established with data mining techniques.

2. Understanding the dataOnce the information has been retrieved and stored, tqubsiare
needed to support its analysis and understanding. Theyleuale to deal with huge amounts
of complex data.

We propose a technique calledftware archeologfB] which, by means of various visualizations,
helps us to reconstruct the evolution of a software systeannmethodical way. We omit the details on
the way we recover the data, but concentrate on the way wéesettieved data. We perform software
archeology in two ways: (1) “in the large” to understand thierall structure and evolution of a system
in terms of its high-level components such as modules, axihnthe small” to understand the internal
structure of the modules, going from the directories dowtnéolevel of file versions.

Software Archeology in a Nutshell.To reconstruct the evolution of a system, we need to retrieve
information about its history. We use as data sources the &\SSubVersion versioning systems and
the Bugzilla and Issuezilla bug tracking systems. The fiegi ef our approach consists in retrieving the
information from these data sources, parsing and storingitRelease History Database [3,12]. Then
we use interactive visualizations with our BugCrawler {6 a major extension of CodeCrawler [20].
BugCrawler uses polymetric views [21] to represent antifée.g., modules, directories, files, bugs) and
relationships. We provide a set of views to support archgoio the large (to get an overview of the
whole system and the relationships between system modandsih the small (to see the details of any
single system fragment). The visualizations are intevacfiroviding facilities like searching, zooming
and panning and our tool also provides navigation suppartdke it possible for the user to quickly
jump back and forth between the views and easily reach thees@ode representation. The main idea
of our approach is to provide visualizations concerningsavaspects of software evolution in order
to answer questions that the software “archeologist” masg hsuch as:

e Commit information: Which are the parts of the system with thost intense development?
Which are the stable/dead parts of the system? Which parésdrawn/shrunk?

e Author information: How many developers worked on the gftiow was the effort distributed

among them? Is there an “owner” of the entity?

Bugs: Which components are affected by many bugs? Which &ffegist many components?

Logical coupling: Which artifacts are most coupled?

Conceptual entities: How has an entity evolved over time®ivkas it introduced in the system?

When did it generate many bugs? When did it have intense agwveint?

In the following sections we present example visualizatimsupport for large-scale and small-scale
archeology. We apply the views on two large case studieselyalttozilla (http://www.mozilla.org)
and Gimp (http://www.gimp.org), both well-known in the apsource community.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

2 M. D’AMBROS AND M. LANZA

i

1 3
CVS module view CVS revision module view

Figure 1. Two visualizations of the Mozilla modules. Thearadf the figures represents the number of bugs and
the size represents the number of files (view on the left) @dévelopment effort (view on the right).

Software Archeology in the Large

Obtaining an Overview. The first goal is to get one’s bearings in a system as large adldn the
left part of Figure 1 we see a simple visualization of figurgsresenting all Mozilla modules, called
CVS module viewwe consider a module as a collection of directories and files does not always
represent the internal organization of a system, but itxalos to get the module decomposition from
CVS (with the command “cvs co -c”) and thus to analyze all tystems developed using CVS in the
same way. The size of each figure represents the number ofdifeained in the module and the color
represents the number of bugs affecting the module (theed#ink figure, the greater the number of
bugs). This view helps to answer questions such as: Whicthareey modules in the system (big and
dark figures), how big are the modules with respect to eaatradihd where are the most bugs located?
From the left part of Figure 1 we see that there are two typesoafules: The big modules affected by
many bugs (marked as 1, 2, 3, 4) and the small modules (allttte#s). The module SeaMonkeyCore
(marked as 1) is the biggest in terms of number of files (3286i)le SeaMonkeyLayout (marked as 3)
is the most affected by bugs (29'412 bug references). Toeedte development effort was distributed
among the modules, we can use a variation of this view, c&M8 revision modulevhere we map
the number of commits of each module to the correspondingdigize. The number of commits of a
module is equal to the sum of the number of commits of all tles filontained in the module. This new
view applied on Mozilla (right part of Figure 1) gives us auksimilar to the previous one. The four
biggest modules in terms of number of files are also the ontbstivé most intense development.

Taking Time into Account. So far we have obtained a mental picture of the current sfatesystem
and its history. In a sense we have looked at the system as afdtsiprevious states. The next thing
we want to do is to obtain a picture of how the system has tsaektime. We can do that by using a
visualization callediscrete Time Figurg5], which renders the history of an entity with respect f it
development intensity (the number of commits) and its grotd (the number of bugs).

The principles of this visualization are shown in Figure)2{thas 2 subfigures, each of which is
composed of a sequence of rectangles, representing atiatiom of time of the revisions and the

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION

3

bugs, respectively. Each rectangle is associated to asgrand parametrizable interval of time, where
2 vertically aligned rectangles having the same horizoptsition represent the same time period.
The rectangles are colored using a heat mayp, hot colors (in the red hue range) represent time
periods with many revisions (or many reported bugs), coldredin the blue hue range) represent few
commits (or few reported bugs). White rectangles reprasmetperiods without development activity
or without reported bugs. Black rectangles represent the intervals after the removal of the entity

Bugs Revisions
E}efore Birth High prodyction Dead :|
v 12 12
L]\ T [T
- 1 1
Birth Low production No production

Time

(a) Principles of a Discrete Time Figure.

bilediteclil 7/4/00 1/8/02 1113/04

3r28s98 Tr4/00 1/8/02 11/13/04

10

T A N I N
(1T EEEEENEEEENENNENENEENENNENENEEEEEN

T =

HHHH I\IHIIII\IIHIIEI

———————|

[EEE NN EEN NN TTTTTTTTf

14

_ ENENEEEE]
T
CITTITTTIT

’Elllllllllll-llllllllllllllllllllﬂ

(b) TheDiscrete time module vieapplied to the Mozilla modules.

Figure 2. Visualizing the evolution of code and bugs withddéte Time Figures.

from the system (the entity is “dead”).

Figure 2(b) shows th®iscrete time module viewdisplaying all Mozilla modules with this new
perspective. Since the time scale is the same for all thedgguve can understand which parts of the
system have changed more frequently, when these changeduoéd many bugs and when modules
were added to / removed from the system. The development @ffss mainly concentrated on the
modules SeaMonkeyLayout (3), RaptorLayout (4) and Sealgp@kre (1). During the observed time
many revisions were committed in these modules and many frigted to them were reported,
indicated by the red rectangles in respectively the firsttaerdsecond row of each figure.

Copyright(© 2007 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

J. Softw. Maint. Evol.: Res. Pra@007;0:0-0

4 M. D’AMBROS AND M. LANZA

1 <= SeaMonkeyLayout
RaptorDist - o ﬁ

F_‘
RaptorLayout -
SeaMonkeyCore~ E
~—CalendarClient
- B
- [
B i

il g

Figure 3. TheModule bug-sharing correlation vieapplied to the Mozilla modules.

Modules marked as 2, 5, 6 and 7 have had an intense developsitiertany bugs, but in the last part
of the system history, their development tended to be legsrous (blue rectangles on the right part
of the figures). For system restructuring purposes, the egda focus on are the first three (3, 4 and
1) since they generated many bugs and they were heavily edaingany commits) during the entire
system lifetime and especially in the recent past. The uyidgrassumption is that components which
changed the most in the recent past are also likely to suffportant changes in the near future [15].
Other observable facts are: The modules marked as 9, 113B2dl14 were removed from the system
(9, 11 and 13 at the same moment, implying a big change in tstersy. Moreover, only the modules
1,2,3,4,5, 8, and 10 were part of the system from the begirenil “survived” until the present.

Discovering Hidden DependencieNow that we have an overview of the system and its history in
terms of the modules that compose it, we want to analyze thBaeships between them. We use the
dependency of two entities sharing the same bug: A bug iedhyrtwo entities when it affects both of
them,i.e.,when there is a link between the bug and each entity. The htgeenumber of shared bugs
is, the stronger the dependency between the two entitidsssong dependency of this type between
modules could point to misplaced entities, very much in figtof logical coupling [13] (the implicit
dependency between software artifacts that frequentiggénditogether during a system'’s evolution).

In the visualization shown in Figure 3, callédodule bug-sharing correlation viewve see all
Mozilla modules as icons and the bug sharing dependenciedges. The color of the modules is
proportional to the total number of commits of the files theptain, while the width and the color of
the edges is related to the number of shared bugs betweewadheohnected modules. The thicker
and darker the edge is, the stronger the correlation is. ntaal it is possible to filter out the
dependencies characterized by a humber of shared bugs bajpwen threshold: We have done so
in the figure eliding edges representing less than 30 shargsl fhe 3 strongest dependencies are
between SeaMonkeyLayoutand CalendarClient (1), betwatésn@arClient and RaptorLayout (2) and
between SeaMonkeyCore and RaptorDist (3). The first two hrawe than 500 bugs in common while
the third one is characterized by more than 100 shared buaden@arClient has dependencies with 6
other modules, where two of these dependencies are vengstB@aMonkeyCore plays a central role
in the system: It is connected with 8 other modules, pointiingotential signs of architectural decay.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 5

4|

W

(a) TheDirectory tree viewa visualization of all the directories.
il
it F“"”‘““W““’Wﬂ”“m UﬂTﬂﬂl M ll ‘ I 14
2
3

(b) TheFile size-effort-bug viewisualizing the files contained in ttegpp/ act i ons directory.

1

Figure 4. Two visualizations of Gimp.

Software Archeology in the Small

Software archeology “in the small” is aimed at understagdive internal structure and evolution of a
given module, a directory tree, even a single file or bug. &nftllowing we present 4 visualizations
designed for archeology in the small activities.

Detecting Key Directories. In Figure 4(a) we see a visualization of all the directoryriiehies of
Gimp calledDirectory tree view The height of the figures is proportional to the number ofsfile
the corresponding directory directly contains (withouhsidering the files contained in children
directories), the width is fixed and the color is proportidnahe number of bugs. The view is aimed
at providing a first insight into the system (or a module)atinee: Understanding which are the largest
sub-hierarchies, which ones contain many files and/or meaogrded bugs. Of particular interest in
this visualization are (1) outlierse.,figures different from the other figures in the same sub-hiérg
and (2) tall and dark figures representing directories wharitain a lot of files affected by many bugs.
In the Directory tree viewshown in Figure 4(a) the hierarclapp (marked as 1) is the biggest in
terms of number of files (2589) and number of bugs (2164). ftaios the main application and it
is composed of directories characterized by an high numbéles and bugs. To choose on which
directory or set of directories to continue the analysis,car apply theDiscrete time directory tree
which uses Discrete Time Figures to represent directories tree layout, to study their evolution.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

6 M. D’AMBROS AND M. LANZA

Another view which can be applied, to study the developdostefs theFractal directory tree which
represents directory in a tree layout as Fractal Figurgdaaed in a following section.

The directories marked as 2 are the libraries, where thetdingl i bgi np (marked as 3) is an
outlier with 275 files and 104 bugs. It should be further amatltaking time into account (using
the Discrete Time Figure) and at the file granularity. Thedrghypl ug- i ns (marked as 4) is the
biggest in term of number of directories. Most of these doges contain one file only (the plug-in)
and 0 bugs, with some exceptions. Of particular interestrealirectoriepl ug- i ns/ i magenmap
(marked as 5) with 130 files and 48 bugs gridug- i ns/ common (marked as 6) with 159 files and
423 bugs. Imagemap is a complex plug-in, which is also useshdsrlying engine by other plug-ins.
The following analysis at the file level should certainly ison thepl ug- i ns/ common directory,
where the common behaviors and interfaces are implemented/laere most of the problems related
to the plug-ins are located. This directory plays a cru@#d for thepl ug- i ns hierarchy.

Opening the Lid. After obtaining an idea of the structure and evolution of directories, we may
want to have a look “under the hood” and examine their costéntFigure 4(b) we see tHéle size-
effort-bug viewvisualizing all the files belonging to thepp/ act i ons directory of Gimp. Files are
represented as rectangle figures, mapping the number of tsrmmthe figure width, the number of
lines of code (in the last version of the system) on the figuwiglt and the number of bugs on the
figure color. The figures are sorted according to the widthriméte., the number of commits the
corresponding file has, because this facilitates the ifiesion of outliers.

While the LOC metric refers to the last version of the systtfra,number of commits and bugs are
computed according to the entire history of the files, sunmimay their evolution in a simple figure.
The view is helpful for detecting the biggest files (the tstiliigures) that need to be refactored because
they generated many bugs (dark figures) and files which hadtanse development (wide figures).
Tall and narrow figures represent big files with few commitsciSa pattern is due to copy-pasted
code or a late insertion of the file in the repository. Howet@iknow which is the case we need to
look at the history and/or the source code of the file. Thecfdat ext - act i ons. ¢ (marked as 1
in Figure 4(b)) is characterized by this pattern (more thafl. OC and 18 commits). Looking at its
history we found out that it was inserted late in the repogifm the last 1.5 years). Reading the source
code we discovered that the file contains only constant diefiisi another reason which explains the
small number of commits. In Figure 4(b) we also have the opp@sttern: Wide and short figures,
representing files with few lines of code in the last versiéthe system, which passed through an
intense development. The fiteel p- commands. ¢ (marked as 4) has 20 LOC and 218 commits. The
inspection of the history of its source code revealed thatai$ present from the first version of the
system and from that point on its size (in terms of LOC) hasstamtly decreased. At the beginning it
contained the implementation of all the actions of the hedmmand then, over the history, more and
more menu item actions were moved to other files to whiehp- conmands. ¢ delegates the calls.

The files most affected by bugs areayers-commands.c (1 KLOC, 35 bugs) and
i mage- commands. ¢ (600 LOC, 24 bugs), marked as 3 and 2 respectively.er s- commands. ¢
implements the actions present in the layer menu of Gimplawimage- commands. ¢ implements
the image menu actions. The high number of bugs calls forailddtinspection.

What about the Human Factor?The previous view provided an understanding of the evahuidiles
from the point of view of commits and bugs. Now we also wantde kow many developers worked

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 7

e .

Size metric

gerv@gerv.net

Empty Fractal Direction Direction —- Direction Complete Fractal

Figure Area=5/14 Area=2/14 Area=2/14 Figure

(a) The structural principles of a Fractal Figure.

HINEN IINEEEEE R =

M neo
adrian
M ritch
. sooft
|:| yosh
[pey
|:| amundsan
D akkana
. raph
B sopwith

(b) TheFractal file view Fractal Figures applied to Gimp files.

Figure 5. Visualizing development effort with Fractal Figs.

on the files and how the development effort was distributedrajthem. We can do that by using a
specific visualization calle#ractal Figure [8]. A Fractal Figure is composed of a set of rectangles
having different sizes and colors. Each rectangle, and ealch, is mapped to an author who worked
on the artifact. The area of the rectangle is proportiongh&percentage of commits performed by
the author over the whole set of commits. Fractal Figuresbtmaenriched by rendering a software
metric measurement on their size. Looking at a Fractal Eigsee Figure 5(a)) we can easily figure
out whether the development was done mainly by one authoaoymeople contributed to it and in
which terms. Fractal Figures are similar to slice-and-dieemaps [25] which recursively partition
the planar display area along both dimensions, alterrgtiegtically and horizontally. Fractal Figures
allow the definition of four different patterns [8] (one déyger, few balanced developers, one major
developer and many balanced developers), according tgetaltprinciple, with which the user can
immediately understand how the development effort wasidiged among the authors.

Figure 5(b) shows theFractal file view a visualization of all the files belonging to the
app/ act i ons directory of Gimp. The view shows the same entities of thealigation shown in
Figure 4(b), but from a different perspective: The devetapmntributions. Files are represented as

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

8 M. D’AMBROS AND M. LANZA

R\
\

/1
/
w}/
. 5

Figure 6. Detailing dependencies in Mozilla with theectory bug dependency view

Fractal Figures, where the size of each figure is proportionéie number of bugs the corresponding
file is affected by. The view is aimed at understanding howdihelopment effort is distributed among
the different authors, according to the code ownershipcipla. Is there an author mainly responsible
for the development of the files? Or is the development effquially distributed on many authors? Do
most of the files have the same development pattern?

In the directoryapp/ act i ons of Gimp (see Figure 5(b)) most of the files have the same patter
The author related to the blue colamifch, as shown in the legend in the right part) is mainly
responsible for their development. This information skidug carefully interpreted. There is no one-
to-one mapping between developers and CVS accounts: Aaferetan have multiple CVS accounts
and a CVS account can “hide” several developers behindthdrsituation shown in Figure 5(b) it can
either be thamitchdeveloped most of thapp/ act i ons code ormitchis a “proxy’, i.e.,an author
who is responsible to collect patches and commit them togpegitory. This is a common practice for
open source projects, where the write permission to thesiepy is given to few people and patches
are sent to them via e-mail. To verify whetheitchwas a proxy, we contacted him and discovered that
he is actually Gimp’s main developer, responsible for mbgt@app code.

Detailing Hidden Dependencies.The last activity in the large we have presented was disaayer
hidden dependencies among modules, based on bug-shaomgwi want to zoom-in onto these
dependencies and see the details about bug-sharing: Wiviclevel entities share bugs and which
bugs have the biggest impact? We do that by means dditeetory bug dependency vieshown in
Figure 6. A set of directories are placed within a grid. Fazhedirectory, all its bugs are positioned
around it in a circle. The directories are represented atefe| the bugs as crosses. The color of the
bugs maps the bug owner information: The same color repieiasame owner. Bugs with multiple
edges are shared bugs: The greater the number of edges, thelinectories are sharing the bug.

The visualization shows two interesting facts: “Self-@néd” directories and bugs linked with
many directories. Self-contained directories are charaed by not sharing bugs or by having a small
amount of shared bugs (with respect to the entire set of bliggy are likely to encapsulate specific

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 9

Diszrelle time Understand file
module
‘ . evolution Discrete time file
Discrete time
directory tree
Understand directory

Understand module '
relationships /

evolution ! N
Detect logical coupling

First contact / Understand module \
for large system CVS Module relationships Module Detailing module Directory bug- Detailing directory
—_— —_—

CVS Revision Detect logical bug-sharing _ relationships sharing correlation ~\oationships File bug-sharing correlation

Module coupling correlation / Directory -
File bug dependency
A bug dependency

Understand directory Understand directory
Understand module evolution relationships
First contact Understand file

structure —_
Directory tree Understand directory relationships
|

\ . structure > File size-effort-bug —
Understand module Understand directory
developer contributions developer contribution Understand file
\ * developer contribution,

N /> Fractal file
Fractal directory

tree ‘w

Figure 7. A general schema of our visual software evolutemonstruction approach. The schema suggests which
view should be applied according to the goal we want to a€hiev

data or responsibilities, especially if the number of dife bug owners is small. Examples of this
pattern are the directories marked as 2 in Figure 6 (notmspdmiigs) and the directory marked as 1,
which has 6 shared bugs on a total of 90. The directory markedreeeds to be further analyzed at
the file level, given the high number of bugs, while the dioeiets marked as 2 do not need further
inspection, since they are affected by two or three bugs &ugs linked with many directories point
to hidden dependencies between the directories and to tidhemisplaced files. Looking at their
description and comment fields is useful to understand tieeidiries’ responsibilities and the reasons
why they are shared. The two bugs markedaand3, in Figure 6 are respectively shared by four and
five directories. Reading the bug comments we discoverddhbagroblems are related to: “A virtual
function that should not be virtual” for the bug marked3sand “A general purpose stack which
creates a lot of confusion” for the bug marked3asSince the bug status field is “fixed” for both the
bugs, we found also the patches for these problems (patchesme of our bug metamodel, and they
can be reached from the context menu displayed when clickirggbug figure). The same visualization
can be applied at the file level with the same principles, tuitis g directories with files.

Methodology and Tool Implementation

Methodology. Figure 7 shows an overview of our approach to reconstruattbkition of a software
system. The schema is a graph in which each node is a partigsiialization (or set of visualizations)
and an edge going from the nodeto the nodeB with label L indicates that from viewd, to achieve
the goal described ih we should apply the vieu8. The schema is not strict: For example, the fact that
from a nodeC to a nodeD there is no edge, does not mean that it is not possible to applyiew D
from C. Figure 7 shows the most common “path” according to our égpee in using the tool. Such
a schema is useful for new users, who are learning how to ukmterpret the different visualizations
to reconstruct the evolution of a system.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

10 M. D’AMBROS AND M. LANZA

lgix
|

formatonColors_Layout

BE P QEQ|TIET(BOEI R8N "MFEF o

E DR BoETE s+ Q8@ TLET BOKI-RE N "M F¥F »

Hem formation

Vs e ISHMTML 1.2 - July 15, 1898 23:48:22.000 - vidur@netscape.com
width -0 Haght ‘- 1) ‘wm -0 Xpos ‘-.u ‘VPnl

[cvs procets

¥ God Procsts
Product Blck Holes
Prodct Bogs Tivle

& Discrete Tine Bug Frodct
181 Nodes, 184 Edges — 0 sebeler Dicrsts T Procict
S Discets Tie Cambo Procet
Proset Fractal Rectangle Checkerboaret

4 3 |
133 Nocks, 0 Elges ~ 0 selste Nocs

Figure 8. BugCrawler in action: The window on the top lefth®wing aDirectory Treevisualization and from a
selected directory Rile size-effort-bugiew is spawned, visualizing all the files contained in thecliory.

Tool Implementation. Our environment for visual software evolution reconstiuttis composed
of the importers, the Release History Database (RHDB) andCBawler. Both the importers
and BugCrawler are written in Smalltalk. The importersies® the data from CVS/SubVersion
repositories and Bugzilla/Issuezilla bug tracking systeparse and process &.¢.,link CVS artifacts
with Bugzilla problem reports) and store it on the RHDB. Theporters are accessible from a web
interface, part of the Churrasco framework [7], where a#l pieces of information needed to run
the importers are the url of the repository and/or bug damb@nce a repository is imported, it is
automatically and periodically updated. The time requiceidnport and process a CVS repository or a
Bugzilla database mostly depends on the time needed to chettlie repository or download the bug
reports. Checking out the entire Mozilla CVS repositorykadout 2 hours, while downloading more
that 160’000 Mozilla bug reports took more than 40 hourssidgrand processing the data (CVS log
files and bug reports) took less than 1 hour.

Figure 8 shows BugCrawler “in action”: Each window rendergsaialization: The one on the top
left is aDirectory tree the second one iskle size-effort-buda visualization of all the files contained
in a directory selected in the first view). Navigating betwsews is possible through context menus:
The menu items depend on the entity represented by the sglgures. For example the menu of a
directory allows the rendering of views for the files it canga

BugCrawler provides flexibility to the user, by allowing Himer to customize the views parameters
(e.g.,figures, layouts, metrics mapping) and to design new vigatidins on-the-fly. However, for non
expert users, an extensive set of predefined visualizai®oasgailable, and these can be applied by
just selecting a menu item. Scalability is provided by usirsgializations in the large to see the entire
system, and then by focusing on the interesting parts wétvyin the small. The visualizations in the

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 11

tool are interactive: It is possible to inspect any entityhia visualization and to reach its original data
source (source file, problem report) using context menus.

Related Work

Visualization has long been used in software evolutionaedeto break down the data quantity and
complexity [2,17,19, 24, 26, 28]. Many approaches congiliféerent releases of a software system
(snapshots) and visualize their history and their diffeesn Jazayeréet al. in [19] used a three-
dimensional visual representation for analyzing a softwsystem’s release history. In [18] Jazayeri
proposed a retrospective analysis technique to evaluatéectural stability, based on the use of colors
to depict changes in different releases. In [27], Tu and @&ydfroposed an approach which integrates
the use of metrics, software visualization and origin asialyor studying software evolution. Girba
et al. used the notion of history to analyze how changes appeareirsdfftware systems [15] and
succeeded in visualizing the histories of evolving clagsdrichies [17]. The main difference between
these approaches and ours is that we consider the fine-gi@istery of a software systeme., all the
versions of all the software artifacts, while the listedhteiques consider snapshots of the system.

Another approach to software evolution visualization d¢stssn retrieving the history of a software
system from versioning system log files. Ball and Eick [1]udsed on the visualization of different
source code evolution statistics such as code versionrpistifference between releases, static
properties of code, code profiling and execution hot spaid program slices. Taylor and Munro [26]
used visualization together with animation to study thduimn of a CVS repository. The technique,
called revision towers, allows the user to find out where tttes@ areas of the project are and how
work is shared out across the project. Rysselberghe and yn28] used a simple visualization
of CVS data to recognize relevant changes in the softwatersysuch as: (1) unstable components,
(2) coherent entities, (3) design and architectural eimbitand (4) fluctuations in team productivity.
In [32] Wu et al. used the spectograph metaphor to visualize how changesiocsnftware systems.
Girbaet al.[16] analyze how developers drive software evolution byalzing code ownership based
on information extracted from CVS log files.

A number of approaches use information from both differe¢ases of a software system and
versioning system log files. The EvoGraph visualizatior] fiimbines release history data and source
code changes to assess structural stability and recurrodifications. Pinzgeet al. [24] proposed
a visualization technique based on Kiviat diagrams whiadvioles integrated views on source code
metrics in different releases together with coupling infation computed from CVS log files. Collberg
et al. proposed a graph drawing technique for visualization afdagraphs with temporal component,
with the aim of understanding the evolution of legacy sofev2]. The main difference between the
mentioned approaches and ours is that these visualizadiom®ot provide bug related information,
while our visualizations integrate CVS log file and bug replata. Voinea and Telea [30] proposed the
CVSgrab tool which supports querying, analysis and viga#itn of CVS based software repositories,
integrating also Bugzilla information. Their tool allowset user to produce views, to interact with
them, to do querying and filtering and to customize the viessuljh a rich set of metrics computed
from the CVS data. They applied CVSgrab to assess changagatipn of buggy files [29]. The
same authors in [31] proposed several visualization teglas (and the corresponding tools), with the
aim of supporting software engineers manage the evolufitarge and complex software systems. A

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

12 M. D’AMBROS AND M. LANZA

point in favour of their toolset, with respect to ours, isttitacovers a wide granularity spectrum,
from the evolution of the entire system / subsystem levelyrddo the evolution of single lines

of code, while our finest granularity is at the level of files.diference to BugCrawler is that it

supports different evolutionary perspectives using diffe figures €.g.,Fractal Figures for the author

perspective) and layouts, while in Voinea and Telea todlsistis supported by changing the color
scheme, superimposing another visualization layer andyudustering.

Ducasseet al. proposed a general visualization technique, called Distion map [9], to analyze
how properties are distributed in a software system. A beoéthis technique over BugCrawler is
its generality, since it is applicable to any property. I®][Ducasseet al. introduced the Package
surface blueprint, a visualization approach to study theimmships among the packages of a system.
The main difference with our approach is that they addressipally the problem of understanding
package relationships, rendering packages and classiésywelstudy various perspectives of software
evolution, visualizing modules, directories, files and ©ug

Conclusion

We have presented a visual approach for reconstructingubletsn of a software system which
relies on information residing in versioning systems and tsacking systems. We discussed several
visualizations aimed at understanding the various aspéctte evolution of a system. The technique
supports the analysis of a system’s history “in the larged &n the small”. Our approach features
many additional visualizations that we did not list becaafsgpace reasons, which can be found in [3].
The main contribution of this paper, in particular with respto previously published work
presenting some of the visualization techniques used Her@],[is that it addresses the problem
of understanding software evolution “in the largég., starting from just a CVS (or SubVersion)
repository and a Bugzilla (or Issuezilla) database, carsid various aspects of the system’s evolution,
and going down to the single file history. In this paper we plsposed a methodology which provides
a systematical way to address the problem of understandfbgase evolution. It allows the software
archeologist to get a complete picture of the evolution obfivsare system, by combining several

aspects of the evolution of its components.
Acknowledgments.We gratefully acknowledge the financial support of the Siiatonal Science Foundation (SNF Project
No. 118063, ‘DiCoSA - Distributed Collaborative Softwaraalysis”).

REFERENCES

1. T. Ball and S. Eick. Software visualization in the lardEEE Computer29(4):33—43, 1996.

2. C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wamplesystem for graph-based visualization of the evolutibn o
software. InProceedings of the 2003 ACM Symposium on Software Vistiatizpages 77-86. ACM Press, 2003.

3. M. D’Ambros. Software archaeology - reconstructing theletion of software systems. Master thesis, Politecnico d
Milano, Apr. 2005.

4. M. D’Ambros and M. Lanza. Reverse engineering with lob@aupling. InProceedings of WCRE 2006 (13th Working
Conference on Reverse Engineeringages 189-198. IEEE CS Press, 2006.

5. M. D’Ambros and M. Lanza. Software bugs and evolution: $uél approach to uncover their relationship Phoceedings
of CSMR 2006 (10th IEEE European Conference on Softwaretbtance and Reengineeringlages 227-236. IEEE CS
Press, 2006.

6. M. D’Ambros and M. Lanza. Bugcrawler: Visualizing evaigi software systems. IRAroceedings of CSMR 2007 (11th
IEEE European Conference on Software Maintenance and Reming) pages 333-334. IEEE CS Press, 2007.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 13

7.

[ee]

11.

12.

13.
14.

15.

16.
17.
18.
19.
20.
21.

22.
. T. Mens and S. Demeyer. Future trends in software ewolutietrics. InProceedings IWPSE2001 (4th International

24.
25.
26.
27.

28.

29.
30.
31.

32.

M. D’Ambros and M. Lanza. A flexible framework to supportlaborative software evolution analysis. Pmoceedings of
CSMR 2008 (12th IEEE European Conference on Software Me&inte and Reengineering)ages 3-12. IEEE CS Press,
2008.

. M. D’Ambros, M. Lanza, and H. Gall. Fractal figures: Visaalg development effort for cvs entities. Rroceedings of

Vissoft 2005 (3th IEEE International Workshop on Visuatizoftware for Understandingpages 46-51. IEEE CS Press,
2005.

. S. Ducasse, T. Girba, and A. Kuhn. Distribution mapPioceedings International Conference on Software Mairgace

(ICSM 2006) 2006.

. S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and |. Allouiackdge surface blueprints: Visually supporting the

understanding of package relationships.Pmceedings IEEE International Conference on Softwarentéanance (ICSM
2007) pages 94-103, Los Alamitos CA, Oct. 2007. IEEE CS Press.

M. Fischer and H. C. Gall. Evograph: A lightweight apmtodo evolutionary and structural analysis of large sofevar
systems. IrProceedings of the 13th Working Conference on Reverse ey (WCRE)pages 179-188, Benevento,
Italy, October 2006. IEEE Computer Society.

M. Fischer, M. Pinzger, and H. Gall. Populating a reldastry database from version control and bug trackingesyst
In Proceedings International Conference on Software Magmee (ICSM 2003)pages 23-32, Los Alamitos CA, Sept.
2003. IEEE Computer Society Press.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logicalupling based on product release history. Poceedings
International Conference on Software Maintenance (ICS8),’pages 190-198, Los Alamitos CA, 1998. IEEE CS Press.
H. Gall, M. Jazayeri, R. Kldsch, and G. Trausmuth. Safeevolution observations based on product release yistor
Proceedings International Conference on Software Maemee (ICSM'97)pages 160-166. IEEE CS Press, 1997.

T. Girba, S. Ducasse, and M. Lanza. Yesterday’s WeaBwdding early reverse engineering efforts by summarizirey
evolution of changes. IRroceedings 20th IEEE International Conference on SofvMaintenance (ICSM 2004pages
40-49, Los Alamitos CA, Sept. 2004. IEEE Computer Sociegs®r

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. Howlae®es drive software evolution. IRroceedings of
International Workshop on Principles of Software Evolot{w/PSE 2005)pages 113-122. IEEE CS Press, 2005.

T. Girba, M. Lanza, and S. Ducasse. Characterizing hkit®on of class hierarchies. IRroceedings |IEEE European
Conference on Software Maintenance and Reengineering FCEM5) pages 2-11. IEEE CS Press, 2005.

M. Jazayeri. On architectural stability and evolutidn.Reliable Software Technologies-Ada-Europe 2Qq@®jes 13-23,
Berlin, 2002. Springer Verlag.

M. Jazayeri, H. Gall, and C. Riva. Visualizing Softwareldase Histories: The Use of Color and Third Dimension. In
Proceedings of ICSM '99 (International Conference on SaféaMaintenance)pages 99-108. IEEE CS Press, 1999.

M. Lanza. Codecrawler — lessons learned in building twgwé visualization tool. IfProceedings of CSMR 2008ages
409-418. IEEE Press, 2003.

M. Lanza and S. Ducasse. Polymetric views—a lightweiggual approach to reverse engineeringEEE Transactions
on Software Engineerin@9(9):782-795, Sept. 2003.

M. Lehman and L. BeladyProgram Evolution: Processes of Software Changendon Academic Press, London, 1985.

Workshop on Principles of Software Evolutippages 83-86, 2001.

M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualgimultiple evolution metrics. IfProceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualizatigrgges 67—75, St. Louis, Missouri, USA, May 2005.

B. Shneiderman. Tree visualization with tree-maps: B 8pace-filling approach.ACM Transactions on Graphigcs
11(1):92-99, 1992.

C. Taylor and M. Munro. Revision towers. PRroceedings 1st International Workshop on Visualizingtv&ake for
Understanding and Analysipages 43-50, Los Alamitos CA, 2002. IEEE Computer Society.

Q. Tuand M. W. Godfrey. An integrated approach for stngyarchitectural evolution. 160th International Workshop
on Program Comprehension (IWPC'Q3)ages 127-136. IEEE Computer Society Press, June 2002.

F. Van Rysselberghe and S. Demeyer. Studying softwarkeiten information by visualizing the change history. In
Proceedings 20th IEEE International Conference on Sofwdaintenance (ICSM '04)pages 328-337, Los Alamitos
CA, Sept. 2004. IEEE Computer Society Press.

L. Voinea and A. Telea. How do changes in buggy mozills filopagate? I8oftVis '06: Proceedings of the 2006 ACM
symposium on Software visualizatigrages 147-148, New York, NY, USA, 2006. ACM.

L. Voinea and A. Telea. An open framework for cvs repagitquerying, analysis and visualization. MSR '06:
Proceedings of the 2006 international workshop on Mininfiveare repositoriespages 33—39. ACM, 2006.

L. Voinea and A. Telea. Visual data mining and analysisoffware repositoriesComputers & Graphics31(3):410-428,
2007.

J. Wu, R. Holt, and A. Hassan. Exploring software evolutiusing spectrographs. Rroceedings of 11th Working
Conference on Reverse Engineering (WCRE 208ijes 80-89, Los Alamitos CA, Nov. 2004. IEEE CS Press.

Copyright(© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingmrauth.cls

