Science of Computer Programming 150 (2017) 31-55

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Mining structured data in natural language artifacts with @Cmsmrk
island parsing

Alberto Bacchelli ®*, Andrea Mocci®, Anthony Cleve ¢, Michele Lanza’

a Department of Informatics, University of Zurich, Switzerland
b REVEAL @ Software Institute, Universitd della Svizzera italiana (USI), Switzerland
€ Faculty of Informatics, University of Namur, Belgium

ARTICLE INFO ABSTRACT
Article history: Software repositories typically store data composed of structured and unstructured
Received 11 December 2015 parts. Researchers mine this data to empirically validate research ideas and to support

Received in revised form 18 November 2016
Accepted 13 June 2017
Available online 1 August 2017

practitioners’ activities. Structured data (e.g., source code) has a formal syntax and is
straightforward to analyze; unstructured data (e.g., documentation) is a mix of natural
language, noise, and snippets of structured data, and it is harder to analyze. Especially
the structured content (e.g., code snippets) in unstructured data contains valuable

Keywords: ; .

Mining software repositories information.

Unstructured data Researchers have proposed several approaches to recognize, extract, and analyze structured
Island parsing data embedded in natural language. We analyze these approaches and investigate their

drawbacks. Subsequently, we present two novel methods, based on scannerless generalized
LR (SGLR) and Parsing Expression Grammars (PEGs), to address these drawbacks and
to mine structured fragments within unstructured data. We validate and compare these
approaches on development emails and Stack Overflow posts with Java code fragments.
Both approaches achieve high precision and recall values, but the PEG-based one achieves
better computational performances and simplicity in engineering.

© 2017 Published by Elsevier B.V.

1. Introduction

Programmers are supported by a variety of development tools, such as version control systems (e.g., GIT), issue track-
ing systems (e.g., BugZilla), and electronic communication services (e.g., web forums or mailing lists), that accumulate and
record a wide range of data about the development, evolution, and usage of software projects. By mining this data, re-
searchers extract facts to validate research hypotheses and to support practitioners’ day-to-day activities.

Many software repositories archive data that comprises structured information, artifacts either written by humans for
a machine (e.g., source code) or generated by a machine for humans (e.g., execution traces). We call such information
structured software data, because of its clearly structured syntax, defined through a formal grammar. Knowledge within
structured data artifacts can be extracted and modeled with well-established parsing techniques.

Other software repositories archive information produced by humans for humans (e.g., emails and forum posts) and used
to exchange information among project stakeholders. We call it unstructured software data, because it is written according

* Corresponding author.
E-mail addresses: bacchelli@ifi.uzh.ch (A. Bacchelli), andrea.mocci@usi.ch (A. Mocci), anthony.cleve@unamur.be (A. Cleve), michele.lanza@usi.ch
(M. Lanza).

http://dx.doi.org/10.1016/j.scic0.2017.06.009
0167-6423/© 2017 Published by Elsevier B.V.


http://dx.doi.org/10.1016/j.scico.2017.06.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:bacchelli@ifi.uzh.ch
mailto:andrea.mocci@usi.ch
mailto:anthony.cleve@unamur.be
mailto:michele.lanza@usi.ch
http://dx.doi.org/10.1016/j.scico.2017.06.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.06.009&domain=pdf

32 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

to non-formal grammars, including natural language (NL). The knowledge encoded in these repositories is not available in
other artifacts: T. Gleixner, principal maintainer of the Real-Time Linux Kernel, explained that “the Linux kernel mailing list
archives provide a huge choice of technical discussions” [1]. Moreover, Question and Answers (Q&A) online services, such as
Stack Overflow,! are filling “archives with millions of entries that contribute to the body of knowledge in software development” [2].

To obtain objective and accurate results from software repositories, data quality is of utmost importance: The extracted
facts must be relevant, unbiased, and their contribution comprehensible.

Unstructured software data artifacts require the most care in terms of data quality, because they leave complete freedom
to the authors. The first step in ensuring data quality for unstructured software data is to conduct an accurate pre-processing
phase [3] to reduce irrelevant or invalid data. Assuming this phase is correctly conducted, the main problem with current
approaches is that textual artifacts are treated as mere bags of words: a count of which terms appear and how frequently.
The bag of words approach has been proven useful by Information Retrieval (IR) researchers on well formed NL documents,
generated by information professionals (e.g., journalists, lawyers, and doctors) [4]. However, most unstructured software
engineering artifacts are not written with the same care and comprise NL text interleaved with other languages. These languages
are made of the structured fragments often occurring in technical discussions, such as code fragments, stack traces, and
patches. When IR methods (e.g., VSM [4]) are used on multi language documents, they are less effective [5].

An analysis of artifacts containing both structured and unstructured fragments should exploit IR on relevant and well-
formed NL sentences and use parsers on structured content. Although structured elements are defined through a formal
grammar, separating them from NL is nontrivial because structured elements are rarely complete and well-formed in NL
documents (e.g., method definitions may appear without body), thus not respecting their own grammar, and NL text snip-
pets might respect the formal grammar accidentally (e.g., NL words are valid code identifiers), thus creating ambiguities.

This article investigates how to mine structured fragments embedded in NL artifacts. Our investigation stands on the
shoulders of island parsing [6]: A technique to extract and parse structured data found within artifacts containing arbitrary
text to extract and parse interesting structures, the “islands,” from a “sea” of uninteresting strings. Our article makes the
following contributions:

e An analysis of the state of the art of using island parsing to mine structured fragments in NL software artifacts (Sec-
tion 3).

o ILANDER, an approach based on SGLR to extract structured fragments in NL-based artifacts (Section 4).

e A benchmark comprising 185 emails pertaining to three open source software system, in which we manually annotated
embedded Java fragments.

e An assessment of the practical performance and effectiveness of ILANDER (SGLR based) in extracting JavA source code
fragments, using the aforementioned benchmark.

e An analysis of the limitations of SGLR, leading to the investigation of an alternative technique, based on Parsing Expres-
sion Grammars (PEGs) [7] (Section 5).

e PETITISLAND, an island parsing framework based on PEGs, implemented using the parser framework PETITPARSER [8].

e An assessment of the practical performance and effectiveness of PETITISLAND on the email benchmark.

e An improved benchmark, based on Rigby and Robillard dataset [9], comprising 188 Stack Overflow posts pertaining to
three project tags.

e A description of the usage and effectiveness of our PETITISLAND framework on the Stack Overflow benchmark and in
support of external studies, for which we successfully extracted other kinds of structured fragments, such as stack
traces and patches (Section 6).

Our results show that our approach based on the state of the art in island parsing (i.e., SGLR) achieves excellent results
in terms of precision (99%) and recall (95%). However, the SGLR approach is not practical when used to parse fragments
embedded in NL documents, because it suffers from serious performance issues, due to the precedence and filtering mech-
anism available in SGLR. The approach based on PEGs that we propose, instead not only shows that it achieves similar
performances in terms of accuracy, but also empirically demonstrates that the performances allows its practical usage in
real world scenarios.

2. Motivating example

Unstructured software data is noisy: It is not formal, it includes irrelevant data, and its content might be wrong, incom-
plete, or include jargon. Unstructured software data contains fragments written in languages other than NL, such as source
code, execution traces, or patches. To extract relevant and correct information from unstructured data, we need to remove
the unwanted data, recognize the different languages, and structure the content to enable techniques able to exploit the
peculiarities of each language.

1 http://stackoverflow.com/.


http://stackoverflow.com/

A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 33

) Alice wrote:

) > On Mon 23, Bob wrote:

) >> Dear list,

) >>When starting up ArgoUML on my MacOS X system (Java 2)
) >> it throws a NullPointerException very soon. You'll find the

) >> trace below. | hope someone knows a solution. Thanks a lot!

7) >> Exception in thread "main" java.lang.NullPointerException

8) >>at

9) >>javax.swing.event.SwingSupport.fireChange(SwingChange.java)
10)>> at javax.swing.AbstractAction.setEnabled(AbstractAction.java)

-]

11)>> at uci.uml.Main.main(Main.java:148)

RN

12)>I'm sorry | can't help you Bob but thanks for sharing the stack...
13)> Alice.

14)> --

15)> "Beware of programmers who carry screwdrivers." --L. Brandwein

(16) Alice, | believe we must change Explorer.java to fix Bob's problem:
(17) public void setEnclosingFig(Fig each) {

(18) super.setEnclosingFig(each);

( if (each !=null Il (each.getOwner() instanceof MPackage)) {

( m = (MPackage) each.getOwner(); }

(21) The problem is in the condition, | attach the diff with this version:
(22) --- src/org/argouml/ui/explorer/Explorer.java (revision 14338)

(23) +++ src/org/argouml/ui/explorer/Explorer.java (working copy)

(24) @@ -147,1 +1471 @@

[...]

(25) super.setEnclosingFig(each);

(26) - if (each = null Il (each.getOwner() instanceof MPackage)) {
(27) + if (each = null && (each.getOwner() instanceof MPackage)) {
(28) m = (MPackage) each.getOwner(); }

29) | hope this change is fine by you, if so, please apply it =)

30) Cheers, Carl.

31)-- l used to have a sig, but it took up much space so | got rid of it!
32)
33) To unsubscribe, e-mail: dev-...@argouml.tigris.org

34) For additional commands, e-mail: dev-...@argouml.tigris.org

| RO dde Recvvecive | s

I NL text E source code patch stack trace noise

Fig. 1. Example development email with mixed content.

For example, let us consider the example development email in Fig. 1. Due to the variety of structured fragments in-
cluded, not written in NL, if we consider the content of such a document as a single bag of words, we will obtain a motley
set of flattened terms without a clear context, thus severely reducing data quality and the amount of available information.

By automatically extracting, parsing, and modeling the embedded structured data, we can support tasks such as:

o Traceability recovery In Fig. 1, the email is referring to several classes (e.g., ‘Main’, ‘Fig’, and ‘MPackage’), but only
the class ‘Explorer’ is critical to the discussion: It causes a failure and the email’s author changed it to provide a
solution. We realize the importance of ‘Explorer’ by reading line ‘16’ and by reading which file was modified in
the patch (lines *21-22). As part of our investigation on email archives [10], we often found this pattern: Artifacts
mentioned in NL parts or headers of patches are more relevant to the discussion than artifacts mentioned in other
contexts (e.g., stack traces). A traceability method based on bags of words (e.g., [5]) cannot recognize in which context
references to artifacts appear. Such a method can only use the number of occurrences to assign a higher weight to
certain terms [4], leading to imprecise results. A weighting based on occurrences would give the most relevance to class
‘MPackage’ (mentioned five times), which is only marginal to the discussion.

e Fact extraction. To know the facts expressed in structured fragments (e.g., code snippets, patches, stack traces, or
system logs), one can use ad-hoc parsers [11]. In Fig. 1, using a parser for patches, one recognizes that the file being
modified is ‘Explorer’ (lines *22-23'). Ad-hoc parsers can only be applied to the expected data structure, and not to
mixed content, because they are not robust enough to manage unexpected data: The structured parts must be parsed
specifically in the document.

e Stop words removal. To better characterize documents, IR research suggests to remove stop words, i.e., common
words [4], thus assigning a higher weight to the peculiar terms of each document. This is suboptimal when applied
to documents with a mixture of structured and unstructured content: One reduces the redundant information in NL
parts, but also deletes information in parts with a different vocabulary (e.g., source code). For example, deleting the



34 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

(1) |Alice, | I believe | we [ must | change |public | void| foo() [to]fix | Bob |'s [ problem|
8 E—
N\ H—
B E—
—Em TN

[ ] water R partial method declaration
identifier &% method invocation

Fig. 2. A simple NL sentence with ambiguous structured fragments.

stop word ‘each’ from the content of the document in Fig. 1 means also deleting a variable name in a code fragment
(lines *17-20") and a patch (*25-28"). This is suboptimal, since variable names provide relevant information [12].

e Document summarization. Due to the amount of data produced during software system evolution, researchers inves-
tigated how to expose only the significant parts to reduce information overload (e.g., [13]). The proposed techniques
are tailored to specific types of artifact (e.g., code [14], NL documents [15]) and cannot be applied to documents that
includes a mixture of languages and structures. Each technique must be applied only on specific parts of the text.

The aforementioned tasks only constitute a subset of significant problems that would benefit from a parsing approach
able to analyze documents where structured and unstructured data are intertwined.

Since we strive to create an approach that is usable in real world scenarios in software engineering tasks, we define the
following requirements:

e Enabling the automated and precise recognition of the structured fragments contained in the parsed document, while
preserving their meaningful contextual properties;

e Be sufficiently generic and extensible to be easily reused in various application contexts, considering structured frag-
ments of different nature, expressed in different languages and formats;

e Face the noisy nature of heterogeneous NL documents, potentially leading to ambiguous parse trees;

e Be scalable, to enable the processing of very large sets of textual artifacts in reasonable time.

In the following, we investigate the alternatives of implementing parsing of structured elements in NL artifacts by con-
sidering the above requirements.

3. State of the art

To parse structured fragments in NL language, an island grammar may reach the full complexity of context-free languages
in terms of expressiveness. In literature, island parsing has been tackled with different techniques: regular expressions?
(REs), SLGR parsing, and generalized top-down (GTD) parsing.

3.1. Island parsing concepts

Before discussing the state of the art about the use of island parsing to extract structured fragments in NL artifacts, we
briefly introduce the concepts related to island parsing. Island parsing refers to the task of finding constructs of interest
(the islands) among noisy information (the sea of water). It is based on island grammars, which define “detailed productions
describing certain constructs of interest (the islands) and liberal productions that catch the remainder (the water)” [6]. In
our case, structured fragments (e.g., source code fragments) are the islands to be extracted, and the rest (e.g., NL sentences)
is the water. Island grammars are inherently ambiguous, and the degree of ambiguity depends on the fragments that need
to be extracted. Consider the sentence in Fig. 2, and consider an island grammar which extract and parses Java identifiers,
partial method declarations (i.e., without body) and possible method invocations. Because of ambiguity, the number of
possible parse trees is enormous. Fig. 2 shows some possible (flattened) parse trees.

First, since the method foo has no parameters, it can be considered as both a method declaration or an invocation with
the preceding keywords considered as water. Second, a lot of words in NL are valid Java identifiers and thus they can be both

2 Regular expressions cannot perform real parsing but only pattern recognition, thus we refer to approaches using REs as island recognition approaches.



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 35

parsed as such or as water. To filter out undesired parse trees, island parsing require parsing that support disambiguation
mechanisms. Typically, such mechanisms are used to prefer complex productions over simple ones, or to identify a subset
of interesting identifiers with a particular lexical structure.

3.2. Island recognition with regular expressions

In a pioneering approach [16], Murphy and Notkin proposed a lexical approach based on REs to extract models of a
software system from diverse artifacts. Software engineers could obtain consistent models from any kind of textual artifacts
concerning software, by: (1) defining patterns (using REs) that describe source code constructs of interest (e.g., function calls
and definitions); (2) establishing the operations to be executed whenever a pattern is matched in an artifact being scanned;
and (3) implementing post-processing operations for combining information from individual files into a global model.

Existing approaches for the recognition of code and other structured fragments from NL artifacts (i.e., [17,18,9]) use
regular expressions to deal with the extraction, mainly for engineering simplicity and performance reasons.

Rigby and Robillard implemented an automated code element resolution tool, named ACE, to get the qualified name of
code elements (in freeform text and code snippets) [9]. ACE performs three stages in the code element identification process;
in the first stage they use an island recognition approach to identify code-like terms from each document. The approach “is
composed of a set of regular expressions that are approximations of [some] constructs in the Java Language Specification.”

Bettenburg et al. devised INFOZILLA, a tool to recognize patches, stack traces, source code snippets, and enumerations in
the textual descriptions of issue reports [17]. INFOZILLA is composed of four independent filters, one per category, which are
used in sequence to process the text. Each filter is based on text matching implemented through regular expressions. The
authors reported results on the effectiveness of INFOZILLA in differentiating documents (i.e., deciding whether they contain
or not each category): It achieved excellent results in this task. The authors did not conduct further code extraction and
provided little details about the island parser implementation. Subsequently INFOZILLA was used in a research investigating
the features that are important when submitting bug reports [19].

We created BEsc [18], an automatic method to identify lines of Java code in emails. We found that the last character is
a good indicator of the nature of a line and implemented simple rules, mainly based on regular expressions. For example,
we detected most JavaA lines by selecting lines ending with curly brackets or semicolons. BEsc is not a full-fledged parsing
approach: It loses the context between lines and cannot be used for fact extraction and modeling.

Regular expressions are not enough. REs support language structures that are less expressive than those necessary to
parse programming languages. In fact, programming languages are not regular languages, and contain recursive structures
(e.g., nested blocks) of context-free languages, which cannot be matched by REs. For example, with REs alone, it is impossible
to correctly parse parenthesized expressions or nested blocks, which are present in almost every programming language.
For this reason, REs are limited in both parsing and extraction of code as structured fragments embedded in NL artifacts.

A solid island recognition approach for code fragments immersed in a sea of NL requires—at least—the capability of rec-
ognizing context-free languages. Although the existing approaches can perform simple extraction and might appear simpler
to implement with REs, the context-free structure of programming languages hardens even the simple extraction.

Let us consider the extraction of code fragments in a programming language with nesting of blocks like Java or C and
in particular consider the nesting of conditional structures, such as if statements and loops. For example, INFOZILLA extracts
only conditionals and loops followed by a block of code:

if (1 > 0)

/* my code here */

}

However, both Java and C allow single statements as the body of loops and conditionals. For example, this is a valid
snippet of code in Java:
for (int i = 0; i < list.len; i++)

if (list.get(1).equals (x))
return true;

In INFOZILLA such a fragment would not be extracted. An approach that includes single statements as bodies of loops
and conditionals would need recursive structures, and thus a formalism that is more expressive than REs. An alternative
could be to write specialized REs that reach a certain depth of nesting, but this implies a loss of generality and the use of
complicated RE definitions.

Evidence of the presence of loop and conditional statements without blocks can be found in the StackOverflow posts.
Considering the latest StackOverflow data dump available,> we counted the number of posts containing at least a conditional
or loop statement, and then we calculated the amount of posts containing at least an occurrence of such statements without
subsequent block. For posts about Java (579,270), we counted 11% (62,722) of such posts, while for C posts (186,182) we
counted approximately 17% (31,753) of the posts. We conclude that, both from a theoretical and a practical point of view,
approaches based on REs are prone to low precision and recall for the extraction task.

3 http://www.clearbits.net/creators/146-stack-exchange-data-dump.


http://www.clearbits.net/creators/146-stack-exchange-data-dump

36 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

The use of REs may become problematic also from a language engineering point of view. Intuitively, it is harder to
construct specific REs that capture specific subset of context-free structures, such as nested loops without blocks, because
they must be manually derived from the grammar of a programming language. Instead, it would be preferable to reuse, if
possible, the rules of a grammar by using an extraction mechanism that supports them.

3.3. Island parsing with SGLR and GTD

Island parsing can be approached using a full-fledged parsing technique for context-free languages; however, some pars-
ing techniques are more appropriate for island parsing. In particular, island parsing benefits from scannerless parsing and the
support for ambiguous grammars.

Scannerless parsing. Parser generators for programming languages separate the tokenization phase from the parsing
phase. In the former phase the input code is scanned with REs to classify elements as keywords, identifiers, operators, or
other tokens (e.g., brackets); in the latter phase the tokens are given as input to the parsing algorithm. Island grammars are
ambiguous also at the token level. For example, it is impossible to determine, without its context, if the word ‘public’
belongs to a NL sentence (e.g., “This is a public APL”) or to a structured element like a JavA class definition (e.g., ‘public
class Tree();'). For this reason, the separation between tokenization and parsing in island grammars is inopportune, and
may complicate the grammar structure for parsing. For this reason, island parsing approaches favor scannerless parsing [6].

Ambiguous grammars. Island parsing requires handling of ambiguous grammars. Few parsing algorithms support the
full flexibility of context-free grammars with ambiguities, such as Generalized LR [20], a bottom-up parsing technique, with
its scannerless version called SGLR, or the Earley [21] algorithm. Both require O(n®) time complexity in the worst case.
The only distinction in performance between GLR and the Earley algorithm regards non-ambiguous grammars; GLR has the
advantage, with respect to Earley, that the cubic complexity is reached only when parsing ambiguous structures, and so
reaching the worst case depends on the amount of ambiguity in the grammar. Thus, concerning island parsing, the two
approaches perform similarly.

A possible alternative is to use generalized Top-Down (GTD) parsing [22] that supports ambiguous grammars through back-
tracking. The disadvantage of this approach is that it results in very long parse times in the context of island parsing [23].
The most efficient implementation of such technique has been recently proposed by Frost, Hafiz and Callaghan [22], and it
requires polynomial (® (n%)) time complexity to parse ambiguous context-free grammars. This approach is bound to perform
in a similar way to SGLR in the context of island parsing of structured fragments in NL artifacts. Other top-down alternatives
(e.g., GLL [24] that runs in linear time on LL grammars and facilitates the building and reading of grammars) are available
and present similar very long parse times in the context of island parsing.

The pioneering work that uses SGLR for island parsing is MANGROVE by Moonen et al. [6]. They showed how island
grammars may allow the derivation of robust parsers for programs written in a particular programming language; it has
been implemented by using the Syntax Definition Formalism (SDF) [25]. The approach has been used to extract and parse
specific code fragments of COBOL, like conditionals, embedded in different COBOL dialects. To the best of our knowledge,
no existing approach uses SGLR to perform extraction of structured fragments in NL artifacts.

An important related work that uses island parsing for a software engineering task is the work by Synytskyy et al. [26].
They describe a technique to extract fragments in different programming languages from dynamic web pages written in
ASP; the approach uses GTD parsing as implemented in TXL programming language [27]. The work has no experimental
evaluation; thus, it would be interesting to consider the use of top-down parsing approaches in the context of island
parsing of structured fragments in NL artifacts.

Kur§ et al. investigate the definition of the water production in island grammars and propose the concept of bounded
seas to improve the robustness of island parsers and to make grammars easier to reuse and define [28].

3.4. Other related work

Bird et al. proposed an approach to measure the acceptance rate of patches submitted via email in open-source software
projects [29]. They classified emails with source code patches, but provided little information about their extraction tech-
niques and no details on the evaluation benchmark. Tang et al. addressed the issue of cleaning email data for subsequent
text mining [30]. They proposed a sequence approach to clean emails in four passes: 1) non-text filtering, 2) paragraph,
3) sentence, and 4) word normalization. Dekhtyar et al. discussed challenges and opportunities related to using text mining
techniques to software artifacts written in NL [31]. Basten and Klint describe DEFAcTO [32], a generic fact extraction tech-
nique based on the ASF*+SDF technology, which includes SGLR parsing. The technique consists in annotating the grammar
of a language of interest with fact annotations. Based on those annotations, local facts are automatically extracted from
actual source code by a generic fact extractor. Specific software analysis tasks may then start by further enriching the ex-
tracted elementary facts. In Basten and Klint's approach, each extracted source code fact corresponds to one particular syntax
production.

4 Algebraic Specification Formalism.



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 37

Table 1
Basic grammar notation.

Metasyntax Description

a—> b production: The element ‘a’ can be replaced by ‘b’
ab the element ‘a’ is followed by the element ‘b’.

a? the element ‘*a’ is optional.

ax the element ‘a’ appears zero or more times

a+ the element ‘a’ appears one or more times.

Dean et al. proposed agile parsing, to support static analysis techniques by integrating the original programming language
grammar with a set of rules that support the analysis task at hand [33]. The approach uses TXL and in particular ambiguity
resolution techniques similar to the ones used in island parsing. Wu et al. propose a component-based LR parsing approach
(CLR) that allows to compose separate parsers for grammar components, with loose coupling, thus potentially enabling the
definition of ambiguous grammars such as island ones [34].

3.5. Summary

Parsing structured fragments from NL software engineering artifacts requires techniques that support context-free struc-
tures, ambiguous grammars, and scannerless parsing. The existing approaches using REs are limited for such task. By the
analysis of the state of the art, we found that SGLR is a good candidate for our application of island parsing. Hereafter, in
Section 4, we analyze the applicability of SGLR, discussing the benefits and limitations from a theoretical point of view,
and by implementing it we also discover the practical applicability. An alternative is the use of top-down based approaches.
While GTD could be a candidate, a different top-down parsing technique, called parsing expression grammars (PEGs), seems
promising to explore. PEGs are a powerful formalism that is essentially recognition-oriented, and have a non-comparable ex-
pressiveness with CFGs [7]; in fact, PEGs are able to recognize typical classes of languages associated with top-down parsers
(like LR(k) grammars), but they can also recognize a limited set of non-context-free languages. Because of their recognition-
oriented nature, and the use of ordered choice, PEGs parse languages in linear time [7]. For this reason, in Section 5, we
describe an alternative approach to extract and parse structured fragments which uses PEGs.

4. ILANDER: island parsing with SGLR and ASF+SDF

In this section, we investigate the use of SGLR to perform extraction of structured fragments from NL artifacts. Inspired
by previous similar applications of island recognition for mining unstructured data, our island parsing approach targets Java
code fragments.

A number of choices in the implementation of an island grammar depend on the mining task at hand and the consequent
abstractions that one wants to derive from the fragmented information in a NL document. As an experimental scenario, we
consider the same situation proposed by the pioneering approach by Murphy and Notkin [16]: We suppose we want an
island parser able to extract models of a software system from diverse software artifacts. In other words, we consider a
scenario in which we are interested in recovering structural information (e.g., classes and methods, and their definitions
and relations) about the software system discussed in NL artifacts.

We devise ILANDER, our SGLR approach, by using the ASF+SDF Meta-Environment [25].

4.1. Notation

We adopt a EBNF-like notation, as presented in Table 1. With this notation we define, for example, the syntax of a Java
method header as in the following:

MethodHeader — Modifierx MethodRes MethodDeclarator Throws?

4.2. SGLR algorithm and ASF+SDF

By using SDF, we can define context-free grammars in a modular way, thus facilitating the derivation of an island
grammar from any existing programming language grammar. Within SDF, we can use SGLR, which does not impose any
restrictions on the grammar. This property is essential when parsing artifacts based on island grammars, which are ambigu-
ous by nature. For ambiguity management, we make use of the disambiguation constructs, such as priorities, restrictions, or
preference attributes to favor one particular production when several alternatives exist. The main benefits of using SGLR
algorithm and ASF+SDF for island parsing are:

e Support of context-free grammars and scannerless parsing;
e Support for ambiguous grammars, with their resolution mechanisms.



38 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

Because of problems with "argoHome" location, I imported
java.net.URLDecoder and added the line

URLDecoder.decode (argoHome) ; just below this one:

public void loadModulesFromDir (String dir) in ModuleLoader.java.

Another problem in ModuleLoader: since the cookbook explains
how to make a PluggableDiagram (that’s exactly what I am doing,
so I extend this class), I have not found where the JMenultem
9 returned by method getDiagramMenuItem() in PluggableDiagram

10 1is attached in Argo menus. It seems this is not yet

11 implemented, even though PluggableDiagrams implements Diagram.

0 JOo Ul ixWN

13 So I have added those lines:
14 void append(PluggableDiagram aModule) {

15 ProjectBrowser.TheInstance
16 .appendPluggableDiagram( (PluggableDiagram)aModule); }
17

18 Such modifications must be reflected in ProjectBrowser.

Listing 1: Example document enclosing structured fragments.

Table 2

Considered Java island productions in ILANDER.
Nonterminal Description
CompilationUnit class declaration with imports
ClassDecl complete class declaration
MethodDecl complete method declaration
ConstructorDecl complete constructor declaration

IncompleteClassDecl
IncompleteMethodDecl
IncompleteConstructorDecl
FieldDeclaration
MethodInvocation
ConstructorInvocation
IfThenStatement
IfThenElseStatement
TryStatement
WhileStatement
ForStatement, DoStatement
ClassRelationship

Block

incomplete class declaration
incomplete method declaration
incomplete constructor declaration
class field declaration

method invocation

constructor invocation

conditional blocks

try/catch blocks
loops

implements/extends relations
alone blocks

The potential disadvantages of SGLR for island parsing are:

e The worst-case time complexity of SGLR is O (n?) reached with highly ambiguous grammars: island grammars;
e The ambiguity resolution mechanism of SGLR in ASF+SDF is performed after parsing. For this reason, the parser con-
structs every alternative parse tree, and then applies a filter to derive the preferred ones [35].

By implementing ILANDER, we determine whether the SGLR algorithm can be effectively used to support our specific
application of island parsing in practice. In particular, we can verify whether and how the combination of cubic time
complexity and post-parsing filtering impacts the performances.

4.3. Specifying a Java island grammar with ASF+SDF

Common programming language grammars, such as the Java one, describe different constructs at different levels of
complexity, which range from identifiers and keywords (e.g., ‘private’ and ‘while’) to whole compilation units (i.e., the
full definition of a Java class in its file).

In principle, we could define an island as a piece of code that can be reduced to any possible nonterminal in the
grammar.

Consider the NL document in Listing 1. An interesting contained fragment could be a piece of code that can be parsed
and reduced to a nonterminal ‘MethodDecl’ (e.g., lines 14 to 16, Listing 1). Table 2 summarizes the nonterminals of the
Java programming languages that we extract as source fragments.

Irrelevant productions. The choice of productions is related to the mining task at hand. In our scenario (i.e., recover-
ing structural information about a system from discussions in NL artifacts), certain fragments are irrelevant. For example,
isolated expressions or generic statements seldom carry relevant information in terms of methods or classes of the system.
Instead, they carry structural information if, and only if, they contain specific sub-operands (as in the case of expressions)
or are specific statements. Consider the sentence “I think you should refactor the return statement, so that it returns getInte-



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 39

On 4/12/07 Bob wrote:

[..]
public class Bicycle {

void changeCadence(int newValue) {
cadence = newValue;

void changeGear(int newValue) {

>
>
>
>
>}
>
>
> gear = newValue * 2;
>

¥
Bob | believe you should change this method to fix the bug.

>}
Fig. 3. Examples of incomplete class declaration with partial body.

ger () /n.”. In the valid JAvA expression ‘getInteger () /n’, the interesting information is the method invocation. Thus,
instead of choosing the nonterminal ‘Expression’ as a valid fragment, we choose only the subexpressions that carry
information about the system structure, such as ‘MethodInvocation’ and ‘ConstructorInvocation’.

Incomplete productions. Incomplete productions are a source of differentiation from a traditional programming language
grammar. Consider line 4 in Listing 1: It explicitly references a method signature but the body is missing. The standard Java
grammar includes only method definitions that are followed by either a semicolon (when they appear in interfaces) or the
whole method body. By considering only the fragments that can be reduced to a nonterminal in the standard grammar,
we lose relevant information, such as the incomplete method declaration in Listing 1. For this, we also extract incomplete
information (e.g., ‘Methodbec1 ') corresponding to a subset of a production that does not reduce to any nonterminal in the
standard programming language grammar.

Considering every possible incomplete production is a source of ambiguity, which in turn would affect the performance
of the fragment extractor. Incomplete productions must be selected according to the kind of code fragments that need
to be extracted from the NL artifact, and according to the potential further analyses that need to be performed on the
extracted fragments. Our island grammar includes incomplete productions of nonterminals representing declarations of
methods, constructors, and classes. Such incomplete productions do not require a final semicolon or a block with the body
of the construct. For example, the following production has been introduced to extract incomplete constructor declarations:

IncompleteConstructorDecl — Modifierx ConstructorDeclarator Throws?

By supporting incomplete productions, we can also extract entity declaration even when a body is incomplete or contains
water. For example, for a class declaration with a partial body, our method extracts a single fact for the declaration, as an
incomplete class declaration, and parses the partial body as if it was a sentence of the island grammar.

Let us consider the document in Fig. 3: The declaration of the class ‘Bicycle’ is not correct, because line 12 is not valid
JAvA. In this case, we still extract a fact for the incomplete declaration of class Bicycle and parse the partial body as it was a
sentence of the island grammar, thus extracting the two complete method declarations (i.e., ‘changeCadence (int) ’* and
‘changeGear (int) ). An alternative is to support islands with lake [6]. Due to engineering difficulties we have not been
able to support this construct in ILANDER, using SGLR, while we successfully implemented it with PEGs (see Section 5.2).

‘ClassRelationship’ is another kind of incomplete fragments that we consider, for it contains structural information:
It expresses relations of inheritance or implementation between classes. For example, in line 11 of Listing 1, we find two
potential class names separated by the keyword ‘implements’; from this, we derive that there is an implementation
relation between the two entities and that ‘Diagram’ is an interface.

Ambiguity resolution: preferring islands. Island grammars are inherently ambiguous: Water is defined as anything that
is not an interesting fragment (i.e., an island), thus it should be avoided and islands preferred. Moreover, certain islands are
a subpart of more comprehensive ones: For example, consider the complete method declaration in Listing 1 (lines 14-16).
As shown in Table 2, at the same level of ‘MethodDecl’, we have ‘Block’ and ‘IncompleteMethodbecl’. Thus, the
construct in the example is ambiguous: It can be parsed either as a ‘MethodbDecl’ or as a sequence of ' IncompleteDecl’
plus Block. The solution that reduces to a single nonterminal, which keeps the binding among the parts, should be privileged.

Language definition systems, such as SDF, that support ambiguous grammars provide specialized constructs to resolve
ambiguities. To select between alternative derivations, we use the disambiguation mechanism provided by SDF, which is
based on the following two keywords:

‘avoid’: The parser removes alternative derivations that have ‘avoid’ at the top node, iff no other derivations have
‘avoid’ at the top node.
‘prefer’: The parser removes all other derivations that do not have ‘prefer’ at the top node.

By using the ‘avoid’ keyword for any reduction to water we prefer islands. We exploit the same mechanism to give
preference to some island structures over others. By using SGRL in SDF, avoiding water is concise, from an engineering
perspective, but declaring precedences among islands is wordy. Let us consider the following three productions:



40 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

isValidSource (#IncompleteMethodDecl) = true when
void #MethodDecl := #IncompleteMethodDecl

isValidSource (#IncompleteMethodDecl) = true when
#PrimType #MethodDecl := #IncompleteMethodDecl

isValidSource (#IncompleteMethodDecl) = true when
#Identifier #MethodDecl := #IncompleteMethodDecl,
isAClassName (#Identifier) == false

Listing 2: “isValidSource” ASF function.

extractCodeFragments (#Source, #ExtractedSourceFragments)
= #ExtractedSourceFragments
(MethodInvocation : getLocation (#MethodDecl)

#Identifier()) when

#IncompleteMethodDecl := #Source,

#MethodRes #MethodDecl := #IncompleteMethodDecl,

#Identifier() := #MethodDecl,

isValidSource (#IncompleteMethodDecl) == false

Listing 3: “extractCodeFragment” ASF function.

CompilationUnit
ClassDecl

IncompleteClassDecl

These three productions are in decreasing order of contained information: The second should be considered only if the
first is not available, and the third should only be considered if the first two are unsuccessful. To make this explicit with
the ‘avoid/prefer’ resolution mechanism, we have to write the following productions, which add further indirection:

Island — CompilationUnit prefer
Island — ClassDecl’

ClassDecl’ — ClassDecl prefer
ClassDecl’ — IncompleteClassDecl

Besides this syntactical hurdle, a critical aspect of ‘avoid/prefer’ resolution mechanism is that it is performed after
parsing: The parsing mechanism in ASF+SDF first constructs all the possible parse trees, then performs filtering according to
the resolution rules. Given the high degree of ambiguity of the island grammar, always constructing all the possible parse
trees could negatively impact the performances of ILANDER.

Ambiguity resolution: choosing water. Let us consider the fragment: ‘by method getDiagramMenultem()’ (Listing 1,
line 9). The island grammar described in the previous section would select ‘method getDiagramMenultem()' as a valid
‘IncompleteMethodDecl’ fragment: ‘method’ is a valid identifier, and thus a lexically valid return type for the Java
grammar. In this case, an element is wrongly recognized as a larger island, instead of water plus a smaller island.

To solve this problem, we exploit the naming conventions of the programming language. Java, as well as other pro-
gramming languages, prescribes how to capitalize artifact names. JaAvA naming conventions [36] prescribe that class names
must start with a capital letter. The word ‘method’ violates the naming convention. We exploit this to exclude reductions
to incomplete method declarations where the supposed return type is likely to be invalid. For every extracted fragment,
we define an AsF function (i.e., isValidSource) which takes a source fragment as input and returns true iff the fragment is
valid. The base case for that function is true for any fragment. For incomplete method declarations, we define isValidSource
to return true iff the return type is void, a primitive type, or an identifier that respects to naming conventions. With the AsF
syntax, the rule is declared with three different cases, as in Listing 2.

Similar definitions are done for potential constructor declarations, which must respect valid naming conventions.

In the previous example, the ‘method getDiagramMenultem()’ is not a valid method declaration, but it can be restruc-
tured as a method invocation fragment ‘getDiagramMenultem()’. We define an ASF transformation rule to translate what
was parsed as a method declaration to a method invocation (Listing 3).

The rule takes a fragment parsed as an incomplete method declaration violating the naming conventions, extracts the
identifier corresponding to the method name, and produces a source fragment of type ‘MethodInvocation’. Like in the
case of avoid/prefer disambiguation mechanism, the ASF transformation rules are applied post-parsing.

4.4. Empirical evaluation
We evaluate ILANDER by performing a case study with NL artifacts pertaining to real world software systems.

Subject systems. To allow the replicability of our experiment, we focus on open source software systems, whose data
is fully available in public repositories. To improve generalizability, we picked systems from different domains that are



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 41

Table 3
Systems considered in the evaluation.
System Website Emails
Mailing list With code Sample
ArgoUML argouml.tigris.org 24,876 12% 50
Freenet freenetproject.org 22,095 9% 39
Mina mina.apache.org 12,869 29% 99

developed by distinct free software communities. Among these projects, the developers are likely to use different develop-
ment styles, as well as to make different use of the related NL artifacts. We consider the three open source systems (OSS)
developed in Java depicted in Table 3.

Subject NL artifacts. A rich archive of NL artifacts in open source systems are development mailing lists. We focus on
this kind of artifact not only for the availability of a large number of data points, but also because email data is noisy: It can
contain extra line breaks, extra spaces, and special character tokens; it can contain spaces and periods mistakenly removed,
words misspelled, badly cased or non-cased [37]. This makes mailing list data a veritable acid test to evaluate our approach.

In the 3rd column of Table 3, we report the size of the development mailing lists of the considered systems, after
removing automatically generated emails. We randomly chose a statistically significant sample of emails with code to inspect.
Based on our previous work on classifying emails and lines containing source code (i.e., BEsc [18]), we know the proportion
of messages with code in the chosen mailing lists (reported in the 4th column of Table 3). We use this information to
calculate the size of significant samples [38]. The 5th column reports the number of emails from which we randomly
selected samples.

Evaluation metrics. To analyze the effectiveness of our extraction technique from two perspectives, we measure the
capacity of our method in locating the chosen structured elements and assess whether the grammar production assigned to
the fragments is correct. We precision and recall [4]:

. |TP| |TP|
Precision= ———— Recall= ————
TP+ FP| TP+ FN|

In the formulas, TP (true positives) are code fragments correctly extracted, FN (false negatives) are correct code frag-
ments not extracted, and FP (false positives) are code fragments incorrectly extracted.

We can describe precision as the fraction of the extracted fragments that are correct, and recall as the fraction on the
total number of correct fragments.

Text normalization. Before manually creating a benchmark with all the emails in our samples, and computing results
with ILANDER, we processed emails to normalize the text: (1) We remove the email metadata and the occurrences of the
characters (i.e., >) used to mark different quotation levels; (2) we normalize patches by removing the lines marked as
deleted (to avoid recovering what is explicitly no longer valid) and the + signs at the beginning of the lines; and (3) we
normalize stack traces removing incorrect line breaks by using a regular expression.

Tackling performance issues with content splitting. The text of emails contains a high number of ambiguities, generated
by NL and incomplete or scattered fragments. As a result, we found that ILANDER requires up to hours (using a eight core
server with 40 GB of RAM) to parse emails longer than 150 lines. Since we would like to use ILANDER in real world
scenarios (i.e., handle tens of thousands of documents in a reasonable time), we try to reduce ambiguities—and thus the
parsing time—by creating an heuristic to split the email in self-contained blocks.

First, the splitting process divides the body in multiple parts according to the quotation levels: Each time we encounter
a change in the quotation level we create a new split, preserving the correct order. Different quotation levels are already
separate blocks, which respect the intention of the email’s author, thus they are not disruptive with respect to the meaning
of the parts. We analyze each split, and apply further splitting techniques when it is longer than 50 lines:

e Code patches Starting from the beginning of the split, when we encounter the header of a code patch, we create a new
split. Even when they are referring to the same file, blocks of patches are independent, and can be treated separately
by the parser, without losing information.

e Stack trace lines Starting from line 50 (to avoid the generation of too many splits), we split when we encounter a stack
trace line. These lines can be analyzed separately without losing any contextual information.

o Natural language lines: If we reach line 80 without having split before, we try to find lines with only NL, because they
can be separated without breaking the structure of any code fragment. To recognize NL lines, we use a technique we
previously devised [18], by which we can determine, with a considerable precision, whether a line is code. Since the
method does not assure perfection, we split when it finds four consecutive non-code lines.

e Forced splitting: If we reach line 150 without any split, we divide the content as soon as we encounter a line not
containing an open parenthesis, or curly brackets. This forced splitting can alter the context, but, in practice, is applied
to a very small fraction of emails.



42 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

Table 4

Systems’ mailing lists and results.
System Results

Precision Recall
ArgoUML 99% 95%
Freenet 99% 95%
Mina 99% 94%
1 ActionOpenProject.getInst () .openProject (ur

2 1);

Listing 4: Truncated code fragment.

With the splitting, we managed to reduce the parsing time of emails from hours to several minutes. Nevertheless, in
practice ILANDER took eight hours to process our benchmark of 183 emails.

Results. After the text normalization phase, we manually inspected each email and labeled all structured fragments
with the correct grammar production. Conducting the normalization phase before the annotation allowed us to verify the
normalization process. Afterward, we manually inspected and compared the output of ILANDER to the benchmark. Table 4
shows the results obtained by the approach applied to the 183 emails we manually labeled.

ILANDER achieved very high precision on the complete dataset for all three systems, with almost no NL words classified
as parts of structured fragment. The recall values are also considerably high, thus the method recognized almost all the
required fragments. We found no error in the grammar productions reported in the recognized fragments.

By manually inspecting the entire output of our technique, even though severely time-consuming, we gained a qualitative
knowledge of the cause of the few errors generated. The majority of the false negatives (which affect the recall) were
caused by the irregular text of emails. In particular, a few code fragments were truncated in the middle of an identifier,
thus hindering a correct complete identification (although the surroundings were correctly recognized).

In Listing 4, the ‘url’ of the invocation ‘openProject’ is truncated.

ILANDER outputs a false negative only recognizing the first method invocation ‘ActionOpenProject.getInst () ’. Ex-
amples of false positives are the strings Java(TM) and developer(s) wrongly reported as method invocations. These rare cases
can be removed through post-processing, e.g., with statistical parsing.

Summary. The SGLR-based implementation achieved high precision and recall when applied to emails coming from
real-world projects. However, the approach showed profound practical limitations. It is hard to implement for non-language
engineers: Despite previous knowledge of one of the authors with ASF+SDF, the implementation required more than 400
researcher-hour. Moreover, the approach does not scale to long documents, probably due to the characteristics of SGLR and
post-parsing ambiguity resolution. As a result, we had to split longer emails into chunks.

5. PETITISLAND: island parsing with PEGs

PETITISLAND is our approach to island parsing of structured fragments in NL based on PEGs. We implemented it with
PETITPARSER, a parser framework that supports scannerless parsing, parser combinators, and PEGs [8]. We adopted the
SMALLTALK version due to its convenient syntax.’

5.1. PEGs and PETITPARSER notation

Instead of expressing a language in a generative manner, like context-free grammars, PEGs avoid expressing equivalent
nondeterministic choices between alternative productions. They use an ordered choice operator (usually denoted with /"),
which lists each alternative in a prioritized order. As a result, in a PEG, the first of the alternatives that successfully matches
a given text is chosen. For example, the following PEG parses arithmetic expressions with sums and products, giving prod-
ucts priority without the need for further disambiguation.

Term — Prod '+’ Term / Prod
Prod — Number '+’ Prod / Number

In PETITPARSER, grammars are specified by means of parser objects (Table 5) that are composed into other parsers using
parser combinators (Table 6°).

For example, a parser for an identifier—in the form of a letter followed by zero or more letters or digits—can be imple-
mented as follows (we also provide a EBNF-like translation of each production):

5 http://scg.unibe.ch/research/helvetia/petitparser.
6 The entire list can be found in www.lukas-renggli.ch/blog/petitparser-1.


http://scg.unibe.ch/research/helvetia/petitparser
http://www.lukas-renggli.ch/blog/petitparser-1

A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 43

Table 5
Terminal Parsers in PetitParser, plus EBNF-like metasyntax.
Terminal Metasyntax Parser created
Sa asParser ‘a’ Parser for the character ‘a’.
'abc’ asParser Hzige™ Parser for the string ‘abc’.
#any asParser . Parser for any character, new line and spaces
included.
#digit asParser #d Parser for the digits *0..9".
#letter asParser #1 Parser for the letters *a. .z’ and ‘A..Z".
#uppercase asParser #L Parser for the letters ‘A. .Z".
Table 6

Parser Combinators in PETITPARSER, plus EBNF-like metasyntax.

Combinator ~ Metasyntax  Parser created

pl , p2 pl p2 Parser that combines parser ‘pl’ followed by ‘p2”.

pl / p2 pl / p2 Parser that tries parser ‘pl’, iff that fails uses ‘p2".

p star p* Parser that uses parser ‘p’ zero or more times.

p plus D+ Parser that uses parser ‘p’ one or more times.

p not “p Parser that uses parser ‘p’ and succeed when it fails, but does not

consume its input.

p end p$ Parser that uses parser ‘p’ and succeeds at the input end.

identifier := #letter asParser ,

(#letter asParser / #digit asParser) star.

EBNF-like: identifier — #1 (#1 / #d)»

The expressions ‘#letter asParser’ and ‘#digit asParser’ return parsers that accept a single character of the
respective character class; the *, * operator combines two parsers into a sequence parser; the '/’ operator combines two
parsers into an ordered choice parser, and the ‘star’ operator accepts zero or more instances of this ordered choice parser.

By subclassing the PETITPARSER class that implements composite parsers (i.e., * PPCompositeParser’), grammars can be
defined as parts of a class. Each production is implemented with an instance variable and a method returning the grammar
of the rule. For example, we can re-define our parser for identifiers through the following class ‘PPIdentifier’’:

PPCompositeParser subclass: #PPIdentifier
instancevVariables: ‘validCharacters’

Beginning with the mandatory method ‘start’, which specifies the starting production, the class ‘PPIdentifier-’
declares the following methods:

PPIdentifier>>start
~“#letter asParser , validCharacters

start — #1 validCharacters

PPIdentifier>>validCharacters
~(#letter asParser / #digit asParser) star

validCharacters — (#1 / #d)=*

We expanded the identifier production into two productions to highlight how instance variables and methods are used.
The result is a parser made of a graph of connected parser objects, which can be used to parse input text:

parser := PPIdentifier new.
parser parse: ‘exl’. This returns an abstract syntax tree.
parser parse: ‘2ex’. This returns a parse failure.

PEGs parsing is performed using packrat parsing [39]. Packrat parsing provides the same power and flexibility of top-down
parsing with backtracking, but instead of requiring super-linear time complexity, it exploits memoization to guarantee linear
parse time complexity. While memoization is inherently space-intensive, this is generally not an issue on modern machines
[39,7].

7 See www.lukas-renggli.ch/blog/petitparser-2 for more detailed examples.


http://www.lukas-renggli.ch/blog/petitparser-2

44 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

Advantages and drawbacks. The main benefits of using PEGs, packrat parsing, and PETITPARSER for island parsing are:

e The support for parsing with linear time complexity;
e The support for scannerless parsing;
e The support for parser combinators, which helps better reuse of parsers expressed with the PETITPARSER notation.

We previously discussed how PEGs have an expressive power that is not comparable with context-free grammars; the
potential disadvantages are:

e Reuse of typical grammar structures can be harder because some productions need to be rewritten, e.g., left-recursive
rules cannot be directly implemented into PEGs. However, EBNF syntax is supported by PETITPARSER;

e PEG does not produce all ambiguous parse trees as it only generates the first one that is correct, based on the specified
ordering. This implies that the decision on which production should be consider cannot take into account the result of
other high-level productions found in the document.

e Memoization required by Packrat parsing could negatively affect the performances of PETITISLAND.

Similarly, to ILANDER, by actually implementing PETITISLAND, we determine how these theoretical advantages and draw-
backs affect the approach to verify whether it can be used effectively to support our specific application of island parsing
in practice.

5.2. Specifying island grammars with PETITISLAND

Parsing combinators and PEGs allow us to concisely write and reuse parsers. From an engineering perspective, especially
for non-experts of language engineering, this is a considerable advantage over SGLR and ASF+SDF. With parsing combinators
and PEGs, we could define the basis of our entire island parsing approach in four productions. By using PETITPARSER, we
implemented this in the class ‘PPIsland’:

PPCompositeParser subclass: #PPIsland
instanceVariables: ‘island water waterBlob’

We define the first production in the ‘start’ method:

PPIsland>>start
~(island / water) plus end

start — (island / water)+$

The ‘start’ production builds on the ordered choice provided by PEG (Section 5.1): We specify that the ‘island’
production has precedence over the ‘water’ one (i.e,, *island / water’). Moreover, we set (using ‘plus’) that the text
might contain one or more occurrences of ‘island’ and/or ‘water’ and must be parsed to the end (using ‘end).

The second production we define is the ‘island:’ method:

PPIsland>>island: aParser
island := aParser

In this method, the ‘island’ production must be declared externally and passed to the ‘PPIsland’ parser as an
argument (usually done when the ‘PPIsland’ class is instantiated). Thanks to parsing combinators, we can leave the
definition of island(s) external and have an approach to island parsing that is reusable out-of-the-box, under any definition
of ‘island’.

The third and fourth productions regard the water:

PPIsland>>water
“waterBlob / #any asParser

water — (waterBlob / .)

PPIsland>>waterBlob
~(#letter asParser / #digit asParser) plus

waterBlob — (#1 / #d)+

The most conservative solution to define ‘water’ would use the expression ‘#any asParser’, which consumes one
single character of any kind (see Table 5). In practice, with this approach, the ‘start’ production first tries to match an
‘island’, then, in case of failure, it matches and consumes any character (i.e.,, ‘water’, defined as ‘#any asParser’),
and it starts again from the subsequent character. Structured fragments do not start in the middle of a word, so we also



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 45

Start reading
the input.
Consume input until end of

< match. Update AST and
\ input position accordingly.

3 A

Considering
island

Considering
water

Match with
#any asParser.

Fig. 4. The parsing process, showing the role of precedences.

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2fn] JEf[xfelmfe]r]e] [e]e]-]:

R wUp KESwaterBlob
island BaNJ#any asParser water

Fig. 5. Parts matched with a small island parser.

defined ‘waterBlob’, i.e., a production that consumes an entire word instead of a single character (also speeding up the
parsing).

To illustrate our island parsing approach, we present an example in which we plug a small parser into it. Let us assume
we want to create a parser to recognize, within an arbitrary text, all the occurrences of words starting with an uppercase
letter. First, we write a parser for the content we want to extract (i.e., words starting with uppercase letters):

wUp := #uppercase asParser, #letter asParser star

wUp — (#L / #1)~*
We plug this parser into a new instance of ‘PpPIsland’, creating a customized island parser, to parse an example text:

islandParser := PPIsland newWithIsland: wUp.
islandParser parse: ’‘an Example tExt.’.

Fig. 4 depicts the parsing process, underlining the flow and precedences of the parsers. Fig. 5 depicts the final result.

The ‘islandParser’ starts from position 1 (Fig. 5) containing the first character ‘a’. According to the ‘start’ pro-
duction, which specifies the main precedence, ‘islandParser’ tries to find a match with the ‘island’ parser (Point 1,
Fig. 4). The *island’ parser corresponds to the plugged ‘wuUp’ parser. Since ‘wUp’ fails, the islandpParser’ does not
consume the input and rolls back to the ‘water’ parser (Point 2). The ‘water’ parser tries to match with ‘waterBlob’
(Point 2a). From position 1, ‘waterBlob’ successfully matches (and consumes the input, Point 3) up to position 2 included
(Fig. 5); it also updates the resulting AST accordingly. The ‘islandParser’ continues from position 3 trying to match other
islands and water (due to the ‘plus’ in the ‘start’ rule), always giving precedence to the former. From position 3 the
only parser that matches is the ‘#any asParser’ (thus reaching Point 2b in Fig. 4), so a single character is consumed.
From position 4, the ‘wUp‘ parser matches the input and consumes it up to position 11. The process goes on similarly until
it reaches the end of input (due to the ‘end’ in the ‘start’ rule).

By using a transformation or subclassing *PPIsland’, it is possible to ignore water and return an AST with only islands.



46 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

Here you find a code example to answer your question:
public void setEnclosingFig(Fig each) {
if (each !=null Il (each.getOwner() instanceof MPackage)) {
m = (MNamespace) each.getOwner(); }

-~

0 J o) Ul W N

T

=

e key point is the condition. [...]

Fig. 6. Structured fragment embedding water and islands: Island with lakes.

Islands with lakes: In certain documents (e.g., emails) structured fragments often embed parts extraneous to their gram-
mar. In Fig. 6 the lines 2-7 contain a method declaration in which parts of the content are omitted and replaced with
ellipses (lines 3 and 6). These fragments are named islands with lakes [6], because the islands embed water.

We subclassed ‘pPpIsland’ with ‘PPIslandwithLakes’ and overrode the ‘start’ method, to support such con-
structs:

PPIsland subclass: #PPIslandWithLakes
instanceVariables: ’'startParser stopParser’

PPIsland>>start
~startParser ,
(island / (stopParser not , water) ) star , stopParser

start — startParser (island/(“stopParser water))s* stopParser

This parser also requires ‘startParser’ and ‘stopParser’ to define the boundaries. Again, any definition of island
can be plugged. After the starting boundary is found (i.e., ‘startParsers’ matches), the parser tries to match zero or
more islands and lakes (i.e.,, * (island / (stopParser not , water) ) star’). When no island is matched, ‘PPIs-
landWithLakes’ tries to match with ‘water’, but only if it does not find a ‘stopParser’. Whenever it finds something
matched by the ‘stopParser’, ‘PPIslandwWithLakes’ Stops.

To clarify the functioning of our island with lake parsing approach, we show how we can define a parser for recognizing
the structured fragment in Fig. 6. If we already defined a parser able to recognize the header of a method declaration
(e.g., the one in line 2 in Fig. 6), we would define the parser for the method declaration body, and combine them:

methodDeclHeader := [ definition of parser |
methodDeclBody := PPIslandWithLake
newWithIsland: blockStatement
start: ${ asParser
stop: $} asParser.
methodDecl := methodDeclHeader , methodDeclBody.

We embed the ‘methodDecl’ parser into a new instance of island parser (as previously done with the ‘wUp’ parser):

islandParser := PPIsland newWithIsland: methodDecl.

This ‘islandParser’ is able to correctly parse the example in Fig. 6, thus extracting the method declaration and its
non-water content.

5.3. Specifying a Java island grammar with PETITISLAND

We present an approach based on PETITISLAND to parse target Java fragments. We consider the same experimental sce-
nario used for ILANDER, in order to compare their results: We suppose we want an island parser able to extract models of a
JAvA software system from development emails.

Starting from the Java Language Specification [40], we created a class ‘PPJavaSyntax’ by extending the PETITPARSER
class ‘PPCompositeParser’ and implemented each production in the language specification with an instance variable and
a method returning the grammar of the production (see Section 5.1 for details). The authors of the language specification
described many productions with left-recursive rules, as in the following:

TypeDeclarations —
TypeDeclarations TypeDeclaration |
TypeDeclaration

Since left-recursive rules cannot be directly implemented into PEGs [7], we re-wrote the rules to avoid left-recursion.
The Java grammar has a starting production, which we implemented in ‘pPpPJavaSyntax’ through the following method:



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 47

Table 7

Considered Java productions, in priority order.
Nonterminal Description
compilationUnit class declaration with imports
packageDecl package declaration
importDecl import declaration
typeDecl class or interface declaration
methodDecl method declaration
incompleteTypeDecl incomplete class or interface declaration
incompleteMethodDecl incomplete method declaration
strictFieldDecl “strict” field declaration
creatorWithOptSemicolon constructor invocation with optional semicolon
assertStatement assertion predicate
ifStatement conditional blocks
switchStatement
forStatement loops
whileStatement
doStatement
breakStatement execution statements
continueStatement
tryStatement exception statements
throwStatement
synchronizedStatement mutual exclusion statements
returnStatement method return statement
classRelationship implements or extends relations

strictVariableDecl

strictExpressionStatement

strictMethodInvocation
strictAnnotation

“strict” variable declaration
“strict” expression statement
“strict” method invocation
“strict” annotation

PPJavaSyntax>>compilationUnit

~ (annotations optional , packageDecl) optional , importDecl star , typeDecl plus

compilationUnit — (annotations? packageDecl) ?

importDecl* typeDecl+

This can be plugged into an instance of ‘PPIsland’ by defining it as the ‘island’ (see Section 5.2). In this way,
however, only this production would be recognized within NL documents, while many others that often appear (e.g., method
invocations or declarations, if or do statements) would be lost. For this reason, we defined a catalogue of productions, listed
in Table 7, that we want to recognize regardless of their surrounding context of NL sentences.

Some of the grammar productions (Table 7) are directly translated to our approach from the Java language specification.
For example, this is the case for conditional blocks (e.g., ‘ifStatement’), loops, and execution or exception statements.
Other productions, described in the following, are derived or inspired from the original ones specifying correct Java syn-
tax and from other programming customs, e.g., naming conventions. Such novel productions are needed to support island
parsing and are a source of differentiation from traditional programming language grammars; they are needed, e.g., to
parse incomplete fragments or island with lakes. We implemented a Java PEG grammar for island parsing in a novel class:
‘PPJavaIsland’, which subclasses ‘PPJavaSyntax’, thus, we only had to implement the changed and new productions.

We defined the productions, shown in Table 7, in the new method ‘islands’:

PPJavaIsland>>islands
~(compilationUnit / packageDecl / importDecl / [..continues with all the productionsin Table 7,in order.])

islands — compilationUnit / packageDecl / importDecl / [...]
Then, we defined the island parser by plugging the parser for the consider productions into a new ‘PPIsland’ instance:

javaProductions := PPJavaIsland new.
islandParser :=
PPIsland newWithIsland: (javaProductions islands)

Irrelevant productions. The choice of irrelevant products depends on the task. Since we are addressing the same task of
ILANDER, we discard the same productions (e.g., isolated expressions or generic statements) at the top level.

Incomplete productions. Incomplete productions are also analogous to those presented for ILANDER. As an additional
example, we consider lines 2 and 3 in Fig. 7. By considering only the fragments that can be reduced to a nonterminal in
the standard grammar, we might lose several structured fragments, such as method signatures not followed by a body or a
semicolon. For this reason, we also extract fragments corresponding to a subset of a production that does not reduce to a
nonterminal in the standard language specification.



48 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

(1) [...]how I solved it. WallSetter implements AsyncTask, you

(2)  should not forget to implement the method protected void

(3) onPostExecute(String result).

(4)  Your other class, instead, should look like this:

(5) public class Square extends Shape {

(6) private length = 5;

(7) public Square(){...}

(8) -

(9) public double area(){ return length * length; }

(10) }

(11) So that your last class can call the method area() to get it.
Fig. 7. Example text with various source code fragments.

1) This is the class implementing the Fibonacci algorithm:

2) package com.stackoverflow;

3) import java.io.*;

4

5) )

)
)
)
) class Fibonacci {
]
)
6) Please note that this is a recursive solution.

(
(
(
(
[
(
(
Fig. 8. Example text with a compilation unit.

Although every possible incomplete production can be supported, for this validation we limit ourselves to the most
popular incomplete productions found in NL documents: incomplete method and type declarations. Such incomplete pro-
ductions do not require a final semicolon or a block with the body of the construct. For example, we implemented the
following production in ‘PPJavaIsland’ to support incomplete method declarations:

PPJavaIsland>>incompleteMethodDecl
“methodModifiers optional, typeParameters optional , (voidType / ncrType) optional, identifier ,
ncrStrictFormalParameters , emptySquaredParenthesis star , throws optional

incompleteMethodDecl — methodModifiers? typeParameters? (voidType / ncrType)? identifier

ncrStrictFormalParameters emptySquaredParenthesis* throws?

We also consider class relationships as they contain interesting information to be extracted. They express inheritance
and implementation relations between classes and interfaces. For example, in line ‘1’ of Fig. 7, we find two potential class
names separated by the keyword ‘implements’. From this fragment, we could derive that ‘aAsyncTask’ is an interface,
and there is an implementation relation between the two entities.

We recognize these fragments as follows:

PPJavaIsland>>classRelationship
“ncrStrictIdentifier, (extends / implements), ncrStrictIdentifier

classRelationship — ncrStrictIdentifier (extends / implements)

ncrStrictIdentifier

Islands with lakes. Some of the considered productions, when appearing in arbitrary documents, might contain embed-
ded water. This mainly affects productions with a body, such as the one in declarations and loops, that includes multiple
statements. Fig. 7 shows an example of a class declaration (lines 5 to 10) and a method declaration (line 7) that con-
tain water. To correctly support these cases, in ‘PPJavaIsland’, we overrode the methods defining body productions; for
example, this is what the production for a *block’ (used, for example, by loops) looks like to support embedded water:

PPJavaIsland>>block
~"PPIslandwWithLake newWithIsland: blockStatement
start: ${ asParser stop: $} asParser.

Ambiguity resolution: ordering islands. Exploiting the PEG ordered choice, we can order the considered productions
from the most comprehensive down, before plugging them into a new instance of ‘PPIsland’. In this way, we do not
lose the binding among the parts in case of larger productions. For example, consider the fragment in Fig. 8. In this case,
by first trying to match a ‘compilationUnit’ (which also includes the optional ‘packageDecl’), we realize that the
‘Fibonacci’ class is defined in the ‘com.stackoverflow’ package. If we tried to match first the single ‘packageDecl’,
we would have lost the connection between the package and the class declaration.



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 49

Table 8
Results with PETITISLAND implementation, by system.
System Results
Precision Recall
ArgoUML 96% 96%
Freenet 97% 95%
Mina 97% 94%

Ambiguity resolution: naming conventions. The method named ‘incompleteMethodbDecl’ includes nonterminals that
start with the prefix ‘ncr’ and are extraneous to the official grammar (e.g., ‘ncrType’). The acronym ‘ncr’ stands for
naming convention respectful; the corresponding productions are included to reduce some of the ambiguities that might
arise from parsing JavAa fragments in NL documents, by exploiting JaAvA naming conventions [36]. This is the analog of the
approach used in ILANDER, but has the advantage (thanks to PEGs) that solutions that are not valid at parsing time are
immediately discarded instead of being post-processed at filtering time.

We also defined some productions whose name starts with, or includes, the prefix strict (e.g., *strictAnnotation’ or
‘ncrStrictIdentifier’). In these cases, we exploit the scannerless parsing approach for disambiguation.

Consider, for example, the fragment ‘I solved it. WallSetter implements AsyncTask’ (line 1 in Fig. 7). By using a standard
‘identifier’ (or even a ‘ncrIdentifier’) the ‘classRelationship’ parser would match: ‘it. WallSetter implements
AsyncTask’, thus recognizing *it. wWallSetter’ as an identifier. In fact, the JavA grammar allows identifier with qualifiers
separated by spaces. However, this is not recommended by the naming conventions. Since we do not have a separate
tokenization phase, as we rely on scannerless parsing, we can specify that certain productions require a more “strict”
tokenization, by not allowing whitespace between certain parts. For example, ‘ncrStrictIdentifier’ does not allow
whitespace in a type name, and ‘strictAnnotation’ does not allow whitespace between the ‘@’ and the subsequent
identifier.

5.4. Empirical evaluation

We evaluated our JAva island grammar implementation with PETITISLAND using the same benchmark that we used to
evaluate 1ILANDER. We used the same pre-processing normalization (Section 4.4), but it has been not necessary to split
the content of the emails to reduce the ambiguities. In fact, even without reducing the length of emails, our PEGs based
approach could parse the entire benchmark in less than two minutes (using a 4 core laptop with 8 GB of RAM).

Automated comparison. Since the text normalization phase and the quality of the benchmark were already assessed in
the manual evaluation of SGLR, to improve the replicability of the current evaluation, we adopted an automated approach.
We wrote a script to automatically compare what we extracted to what was labeled as code in the benchmark. The au-
tomatic comparison we set up is very strict. Consider the code fragment in Fig. 8. The expected outcome is a single code
fragment, which corresponds to a compilation unit. If our approach did not recognize this as a single piece, but as two
or more pieces (e.g., a ‘packageDecl’, followed by an ‘importDecl’, plus a ‘typeDecl’), we would have counted one
FN and as many FPs as the separated fragments proposed (e.g., three). Also in the case of partial extractions, we count
an incomplete fragment as both a FP and a FN. For example, if we extracted ‘onPostExecute (String result)’ from
Fig. 7 instead of ‘protected void onPostExecute(String result)’, we would have counted a FN (for the missed
fragment) plus a FP (for the partially wrong extraction). Table 8 reports the results achieved in terms of precision and
recall.

Summary. The implementation of PEG-based island parsing of Java fragments from NL artifacts achieved similar results
to the SGLR-based approach, in terms of precision and recall, when applied to the same dataset of emails pertaining to real-
world projects. As opposed to the SGLR-based approach, PETITISLAND required a shorter implementation time, corresponding
to 120 researcher-hour, despite all the authors being newcomers to the used PEG framework. Moreover, PETITISLAND did
not show practical time limitations. In fact, due to the characteristic of PEG and parsing time ambiguity resolution, the
approach scales to long documents, without incurring in memory problems that could have been generated by the mem-
orization technique. In particular, even though we did not split emails into chunks (as we had to do with SGLR), the PEG
based approach took minutes to parse the input, instead of the hours necessary to the SGLR one.

6. PETITISLAND: further evaluation

We tested our approach on three scenarios: (1) technical discussions; (2) classification of the lines of development emails,
(3) higher level code parsing.



50 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

Table 9
Dataset description and results, by project tag.
Project tag Answers Fragments Results
FP FN Precision-recall
Android 63 120 2 5 98%-96%
Hibernate 51 68 1 2 98%-97%
HttpClient 74 163 3 6 98%-96%

6.1. Stack overflow

To validate our approach to recognize Java code fragments in NL artifacts, we test it on Stack Overflow,® a web service
where developers exchange knowledge in the form of questions and answers. Post authors can include fragments of source
code and tag them, so that they appear formatted appropriately.

The advantage of using Stack Overflow data is that it is already code tagged by external people not involved with the
evaluation, and that it corresponds to another real-world scenario for applying our approach. Moreover, the sample of
questions considered in the benchmark is the same used by Rigby and Robillard [9], thus having the advantage that they
previously pre-processed and verified it. The dataset is composed of 188 answers, taken from posts with project tags related
to three Java applications: HttpClient, Hibernate, and Android.° The three project tags crosscut a diverse set of topics. We
downloaded the dataset kindly provided by Rigby and Robillard'® and adapted it to our task: We re-inspected all the 188
answers and fixed any incorrect tag. Incorrect tags regarded not tagged named code entities (e.g., ‘ConstraintViolationExcep-
tion’) in most cases (43 occurrences throughout all the documents) and untagged inline code (e.g., ‘runOnUiThread()’) in a
few others (5 occurrences); in these cases we added the missing code tag. In a few other cases (4 occurrences), we removed
the code tag to parts of sentences that were tagged by the sentence’s author as a way to highlight a term.

With the benchmark in place, we applied our approach to island parsing to the raw text and used the same comparison
approach used to evaluate PETITISLAND on the email benchmark. Table 9 reports the results.

Error inspection. We manually inspected the errors generated by our approach to understand their causes and whether
they could be addressed. Most errors were due to ambiguities that cannot be resolved without a deeper understanding of
the meaning of the text. For example, in the sentence “A new openConnection() method has been added”, our parser recognized
a constructor invocation: ‘new openConnection () ‘. This error could only be avoided knowing that ‘new’ was part of the
discourse, rather than a valid fragment of code. Fixing this error with a lexical parsing approach like ours is possible by
either excluding similar cases from the available productions or devising stricter rules for recognizing them. Both these so-
lutions would fix such a false positive, but they could introduce new false negatives, with the final result of only rebalancing
the trade-off between precision and recall.

Summary. We tested our approach to island parsing by extracting source code fragments from STACK OVERFLOW pOStS.
This task is useful for a number of applications, such as mining API usages [41], improving traceability methods [42,9],
or extracting diverse models of a software systems [16]. Concerning accuracy performance, results show that our approach
accomplishes the required task with a very low number of errors, in terms of both precision and recall. Moreover, concerning
time performance, our approach confirmed the positive results of the previous evaluation: It took a computation time of
less than one minute to parse 188 documents on a 4-core CPU with 8 GB of RAM.

6.2. Email content classification

Fig. 1 shows an example development email that embeds three different types of structured content: source code,
patches, and stack traces. Since these “languages,” together with noise, are very common to development emails, we de-
cided to create a classification technique to distinguish these different parts [11]. In particular, we classify the lines of
development emails in five categories: NL, noise,'! source code, patches, and stack traces. Given our technique, researchers,
before exploiting development email data, can apply a pre-processing phase to recognize the different parts, so that they
can conduct the subsequent data analysis with the most appropriate method for each part.

Since the categories to recognize are not only made of structured content (i.e., we also classify NL and noise), we decided
to use an hybrid approach: Exploiting island parsing to detect structured parts, and using machine learning to recognize NL
and noise, and to merge the results. In this article, we focus on the implementation details concerning the island parsers that
we created to recognize the structured parts. We have three parsers: source code, patches, and stack traces. We evaluated
them on 1,493 emails taken from the development mailing list of four open-source software systems (namely ArgoUML,'?

8 http://stackoverflow.com/.

9 http://hc.apache.org, http://www.hibernate.org, http://developer.android.com/about/index.html.
10 http://swevo.cs.mcgill.ca/icse2013rT.
11 We consider as noise the user signatures and mail headers, for example.

12 http://argouml.tigris.org/.


http://stackoverflow.com/
http://hc.apache.org
http://www.hibernate.org
http://developer.android.com/about/index.html
http://swevo.cs.mcgill.ca/icse2013rr
http://argouml.tigris.org/

A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 51

Table 10

Email line classification results, by parser and line type.
Parser Lines TP FP Precision-recall
PPStackTrace 1,069 1,054 4 99%-99%
PPPatch 2,082 1,996 0 100%-96%
PPJavalsland_v0.8 1,914 1,715 74 96%-90%

Freenet,'> Apache JMeter,'* and Apache Mina'®), totaling 67,792 email lines. We decided to focus on line classification,
instead of token classification, because hybrid lines (lines belonging to more than one category) account for less than 5% of
the population in our sample set, and line classification let us use simpler, yet effective, heuristics to complement the island
parsing approach. To mitigate the bias in the experiment, we include hybrid lines as separated instances.

The source code island parser is a preliminary and less refined version of the one presented in Section 6.1, while the
remaining two, i.e., patch and stack trace, were created ad-hoc. Each of these parsers is a pluggable extension of PETITISLAND,
thanks to the usage of PEGs and parser combinators.

Stack trace island parsing. We first define some terminology to refer to the various parts of the structure of stack traces.
Let us consider Fig. 1:

The ‘exceptionMessage’ refers to the NL message included at the beginning of stack traces (e.g., line 7);

The atLine refers to a line that reports a method invocation occurred in a specific file (e.g., lines 8-11);

The ‘ellipsisLine’ is a line used to reduce lengthy stack traces and has the form: “... <number> more”;

The ‘causedByLine’ is a line that might appear at any point in a stack trace to introduce a new nested trace and has
the form: “Caused by: <stacktrace>".

We defined a parser class for parsing stack traces:

PPCompositeParser subclass: #PPStackTrace
instanceVariables: ’'stackTrace stackTraceLine atLine ellipsisLine [..]’

Among the productions, we defined ‘atLine’ and ‘ellipsisLine’ because they have the most recognizable form. By
plugging ‘PPStackTrace’ into a new instance of ‘PPIsland’ and testing our approach on the whole corpus we found no
errors in extracting these parts of the stack trace:

PPStackTrace>>atLine
~at , qualifiedMethod ,
leftParenthesis , classFile ,
((colon , number)
/ (comma, compiledCode)
/ (leftParenthesis , compiledCode , rightParenthesis)) optional , rightParenthesis

PPStackTrace>>ellipsisLine
~ellipsis, number, more

The ‘exceptionMessage’ and the ‘causedByLine’ elements have a mostly unpredictable structure (e.g., different Java
virtual machine versions may output the same error message differently), thus they cannot be parsed with a specific gram-
mar. To overcome this issue we use a double-pass approach: In the first pass, we recognize and mark all the occurrences
of ‘atLine’ and ‘ellipsisLine’; in the second pass, we look for each line that contains strings such as “exception”,
“error”, “failure”, etc. When such a line exists, if the next n lines belong to those lines marked in the first step, we classify
it and all the lines up to the first ‘atLine’ as ‘stack trace’. We empirically found the n value equals to 3, to be a
good tradeoff between precision and recall. If we apply our stack trace parser to the email in Fig. 1, in the first pass, it will
classify lines 8-11 as stack trace; in the second pass, it will consider lines 5 and 7 as ‘exceptionMessage’ candidates,
since they both contain the string “exception”. Finally, it will only pick line 7, because in the next 3 lines there is an atLine
element (in this heuristic, we also count the empty lines, such as the line between 6-7). The results achieved by this parser
are reported in the first row of Table 10.

Patch island parsing. For the patch parser, we also define some terminology for their structure. Considering Fig. 1:

e The ‘patchHeader’ refers to the first two lines of a patch, which contain the reference to the modified file and,
optionally, the revision versions (e.g., lines 22-23);

e The ‘patchBlockHeader’ refers to the lines detailing the modification done by the patch on a chunk (e.g., line 22);

e The ‘patchBlock’ refers to all the lines in the chunk (e.g., lines 25-28).

13 https://freenetproject.org].
14 http://jmeter.apache.org/.
15 http://mina.apache.org/.


https://freenetproject.org/
http://jmeter.apache.org/
http://mina.apache.org/

52 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

A single patch has only one ‘patchHeader’, while it might have multiple occurrences of ‘patchBlockHeader’ fol-
lowed by the respective ‘patchBlock’.

We devised a parser, ‘PPPatch’, adopting an approach similar to the one of the stack trace parser: We started from
the most recognizable lines and expanded to include the more ambiguous ones. The parsing is done in a single pass:
We wrote a production for the ‘patchHeader’, even if split on multiple lines, by using the tokens ‘--’, +++’, and
‘@@’ as hooks; then we generated a parser that first recognizes the ‘patchBlockHeader’ (thanks to its clear structure),
then matches the following ‘patchBlock’. The patch blocks are problematic, since they have variable length and their
ending is not clearly defined. In fact, after the deleted and added lines (which are marked with initial *+’ or ‘-’ signs,
as in lines 26-27), patches include some contextual lines: Their number may vary between zero and three, or more if
not well formatted. Bird et al. tackled the patch block ending issue both by using the information about the range to be
found in the ‘patchBlockHeader’ and by analyzing how a line starts (usually the context lines should be preceded by a
space) [43]. However, in our dataset we found this information to be not reliable, because of unexpected line breaks and
wrong formatting. For this reason, we implemented a lookahead heuristic that checks whether the lines after the *+’ or
- signs might be good candidates as patch. The heuristics checks whether the lines are source code, by using a simplified
version of the ‘PPJavaIsland’ parser, and it classifies them as patch.

The complete results are reported in the second row of Table 10. As expected, since we used a conservative lookahead
threshold (maximum four lines), we have a higher precision and lower recall. A manually inspection of the false negatives
showed that the low recall is also due to some patch lines that have neither ‘patchHeader’ nor ‘patchBlockHeader’,
thus being ignored by our parser.

Source code island parsing. Among the three classes with structured language (i.e., stack trace, patch, and source code),
code is the most ambiguous. We used a preliminary version of the ‘PPJavaIsland’ presented in Section 5.3, which
we call ‘pPpJgavalsland _v0.8’. We note that our island parser for source code would match most of the content of a
‘patchBlock’, because they do contain valid source code. This increases the number of false positives. For this reason, we
chain the source code parsing to the patch parsing: We first detect the patches, then, on the lines not classified as patch,
we run the code parser.

The complete results are reported in the third row of Table 10.

Summary. We tested our approach to island parsing by recognizing lines of different languages in development emails.
This confirms the effectiveness of the island parsing approach with other kinds of structured data and shows how it is
possible to build additional parsers for structured data and plug them into our framework [11].

6.3. Extracting source models from code artifacts

One of the first application of island parsers was the extraction of source code models from source code artifacts
(e.g., CosoL files) [6]. Island parsing has the advantage, over traditional parsers, to be more robust and support the ex-
traction of models from problematic source code, e.g., it can deal with source code that does not compile, is incomplete, or
contains syntax and semantic errors. Island parsers can also help with legacy source code where the grammar is not fully
available; or they are useful to avoid implementing complete parsers and dealing with the intricacies of writing rules for
every “low level” productions, when these are not necessary for the models that researchers and data scientists need to
extract.

This is a real-world scenario in which we successfully applied our approach to island parsing. Since PETITISLAND works
with arbitrary text, we can also use it for extracting customized models from source code artifacts. In our previous work,
we dealt with the problem of recovering traceability links between emails and source code [5] to verify whether lightweight
lexical approaches based on text matching we devised [44] could be as effective as full-fledged IR techniques (i.e., vector
space model, with tf-idf and latent semantic analysis).

We decided to compare the effectiveness of the linking techniques when dealing with diverse syntaxes and naming con-
ventions. We considered three mailing lists pertaining to JAvA systems, one to a PHP system, one to an ACTIONSCRIPT system,
and one to a C system. To conduct our comparison, we had to extract information from the source code of these systems
written in four different programming languages. In particular, to apply IR techniques we had to extract a model with the
name of the classes and the terms included in their definitions (as depicted in Fig. 9), so that we could compare their
vocabulary (including, or not, keywords) with that of each candidate email. The traditional approach to extract the model
is to use specialized parsers for each language and model their output. However, the specialized parsers were available
in different programming languages, and generated AST in different formats that should have been visited with different
procedures. Although we adopted this approach in our previous work [5], when we had to reproduce the experiments and
extend them, we faced the drawbacks of using such diverse parsing approaches for model extraction, especially in terms of
maintainability and evolution.

For this reason, we devised an approach, based on PETITISLAND, to extract the models from the source code. This al-
lowed us to use the same technology for the parsing of each language, thus having consistent implementation, output, and
subsequent transformation procedure. This improved the maintainability and extensibility of our analysis.

In our analysis, we were only interested in extracting type declarations and their bodies, so that we could extract type
names and the terms contained in their body declarations and compare to the terms found in emails. For this task, a parser
that recognizes every detailed productions, such as statements or expressions, is not necessary: A parser that recognizes



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 53

package ch.usi.inf;

public class Fibonacci {
public static long fib(int n) {
if (n <= 1)
return n;
else
return fib(n-1) + fib(n-2);
}

public static void main(String[] args) {
int N = Integer.parselnt(args[0]);
for (int i = 1; i <= N; i++)
System.out.println(i + ": " + fib(i));

{

CLASS:
ch.usi.inf.Fibonacci

VOCABULARY:

public static long fib int n if n 1 return n
else return fib n 1 fib n 2 public static
void main String[] args int N
Integer.parseInt args 0 for int i 1 i N i
System.out.println i fib i
VOCABULARY WITHOUT KEYWORDS:

fibnn 1l n fib n 1 fib n 2 main String[]
args N Integer.parseInt args 0 i 1 i N i
System.out.println i fib i

Fig. 9. Class modeling for text analysis.

type declarations and collects the text within their body (without parsing it) is sufficient. Implementing such a parser
with our approach to island parsing is less time consuming than implementing a full-fledged parser. We implemented four
specialized parsers, one for each considered language.

For Java we took advantage of ‘pPPJavaIsland’ and we reduced it to a minimal version. We removed all the productions
more detailed than type declarations. For the other three programming languages, we wrote the parsers with a top-down
approach, starting from the most comprehensive production (i.e., compilation units) down to type declarations. Being type
declarations very high-level productions, our parsers required fewer than ten productions each.

To verify the quality of our parsing, we compared its output to the one generated by the specialized parsers we pre-
viously used [5]. For all the cases, except Java, the result of the different techniques were matching: We have been able
to replicate the output of the other parsers, by applying our approach to island parsing and using a limited number of
productions. In the case of Java, our parser was able to retrieve approximately 10% more classes and definitions than the
specialized parser. We informed the authors of the specialized parser about this issue and they found a bug in their mod-
eling procedure that got fixed in the subsequent release.

Summary. We showed that our approach can extract the fragments in which we are interested and conduct fact extraction
by modeling the fragments.

7. Threats to validity
7.1. Construct validity

Construct validity threats regard the relation between theory and observation, i.e., measured variables may not measure
conceptual variables.

Considering the development emails case study, to assess the island parsing phase of ILANDER, we relied on human
judgment, both to label emails with the expected productions, and to evaluate the output. This process can be error-prone;
to alleviate this, we did not directly evaluate the output on non-annotated emails, but we clearly separated the two phases.
In the first one, we labeled emails without knowing the results of our approach. This allowed us to effectively verify all
the expected source fragments. We decided to make use of human validation also for evaluating precision and recall. This
choice is guided by the fact that the errors in an automated process would have been probably more significant than those
of a human reviewer. Moreover, the human inspection allowed us to obtain a qualitative evaluation of our results.



54 A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55

In the case of the Stack Overflow case study, we relied on a benchmark provided by Rigby and Robillard [9]. An important
aspect of Stack Overflow posts is that users are required to tag code fragments before post submission. We discovered errors
in such tagging that we manually fixed.

7.2. Statistical conclusion

Statistical conclusion threats concerns the fact that the data is enough to support our claims. In our evaluation of Java
island parsing in development emails, we considered sample sets that represent the population with an error of 9% at a
confidence level of 95%. Instead, in the Stack Overflow case study, the sample set (again, the same benchmark of Rigby and
Robillard [9]) represent the whole population of posts with an error of 8% at a confidence level of 95%.

7.3. External validity threats
These are concerned with the generalizability of results.

Considered programming language In our analysis and in our experiments, we considered only JAvA as a programming lan-
guage whose structured fragments can be present in NL artifacts. Our results could potentially differ if we consider languages
with sensibly different constructs. For example the SMALLTALK syntax is similar to that of NL (e.g., less punctuation) so it
could be harder to derive an island grammar as we showed for Java. Thus, precision and recall of fragment recognition could
be lower for different programming languages. However, covering a language like JavA gives confidence about the applica-
bility of our approach to a large class of languages with similar syntax, like C and C#. Moreover, we relied on JavA specific
naming conventions (e.g., camel casing) to disambiguate some constructs; similar—and thus equally exploitable—conventions
are used in a number of other widely spread programming languages.

Parsing algorithm Other parsing approaches could exhibit better expressivity for ambiguity resolution, and possibly better
performances for island parsing than the ones we considered. In our analysis, we covered the two typical classes of parsing
techniques, that is, both bottom-up approaches (with SGLR) and top-down approaches (with PEGs). From a performance
point of view, we showed how PEGs are particularly effective for island parsing of structured fragments in NL artifacts,
mainly because they parse in linear time complexity. Their drawbacks i.e., memoization and not producing all ambiguous
parse trees were not manifested in our experiments and did not impact performances. Concerning the latter, in fact, the
possible connections among the high-level productions embedded in a document did not influence how precisely we could
identify the different fragments. Studies can be designed and carried out to determine if and how this limitation impacts
further analysis of the found structured productions.

Further, having implemented island parsing with a PEG-based approach opens the possibility to consider the use of
Adaptable Parsing Expression Grammars (APEG) [45] as a ripe opportunity to automatically update non-standard productions
and water rules as more edge cases appear in different contexts and more human input is provided.

Systems considered in island parsing evaluation We initially evaluated the fragment extraction and parsing on only three sys-
tems (ArgoUML, Freenet, Mina), and we considered development emails as NL documents. To further evaluate PETITISLAND,
we applied it to parse code fragments in Stack Overflow posts and classify lines of development emails. While development
emails and Q&A online services do not cover every possible NL artifact, they are significant examples, and relatively different
each other in nature.

8. Conclusions

Software is, above all, a product by humans for humans. By having at our disposal all the structured information stored
in unstructured NL artifacts, such as emails, IRC chats, documentations, bug comments, we can perform more accurate
analyses on software systems and their evolution.

In this article we presented an approach to perform island parsing and mine structured information within NL artifacts.
To implement island parsing, we considered two alternative parsing techniques, SGLR and PEGs, and implemented the island
parser in both. We, then, evaluated the effectiveness of these approaches, finding that they reached high values of precision
and recall for the extraction of structured fragments in development emails. However, the main difference we found was in
the time performances: the SGLR approach required document splitting to be applicable to the email domain and required
hours to parse the benchmark documents; the PEG-based approach, instead, did not require the splitting and parsed the
benchmark in less than two minutes.

We conducted further assessment of the PEG-based approach on three additional case studies: (1) island parsing of Java
code elements in 188 Stack Overflow posts, (2) recognizing and splitting of different structured languages (i.e., stack traces,
patches, code fragments) within a Java development email, and (3) extracting facts from source code artifacts, written in four
different programming languages. These applications showed how the approach can be used in practice and demonstrated
its extensibility.



A. Bacchelli et al. / Science of Computer Programming 150 (2017) 31-55 55

References

[1] T. Gleixner, The realtime preemption patch: pragmatic ignorance or a chance to collaborate?, in: Keynote of ECRTS 2010, 22nd Euromicro Conference
on Real-Time Systems, 2010, http://lwn.net/Articles/397422/.
[2] C. Treude, O. Barzilay, M.-A. Storey, How do programmers ask and answer questions on the web? (NIER track), in: Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 804-807.
[3] N. Bettenburg, E. Shihab, A.E. Hassan, An empirical study on the risks of using off-the-shelf techniques for processing mailing list data, in: Proceedings
of ICSM 2009, 25th IEEE International Conference on Software Maintenance, 2009, pp. 539-542.
[4] C. Manning, P. Raghavan, H. Schiitze, Introduction to Information Retrieval, Cambridge University Press, 2008.
[5] A. Bacchelli, M. Lanza, R. Robbes, Linking e-mails and source code artifacts, in: Proc. of ICSE 2010, 32nd Int’l Conf. on Software Engineering, 2010,
pp. 375-384.
[6] L. Moonen, Generating robust parsers using island grammars, in: Proceedings of WCRE 2001, 8th Working Conference on Reverse Engineering, 2001,
pp. 13-22.
[7] B. Ford, Parsing expression grammars: a recognition-based syntactic foundation, SIGPLAN Not. 39 (1) (2004) 111-122.
[8] L. Renggli, S. Ducasse, T. Girba, O. Nierstrasz, Practical dynamic grammars for dynamic languages, in: Proceedings of DYLA 2010, 4th Workshop on
Dynamic Languages and Applications, 2010.
[9] P.C. Rigby, M.P. Robillard, Discovering essential code elements in informal documentation, in: Proceedings of the 35th International Conference on
Software Engineering, ICSE 2013, 2013, pp. 832-841.
[10] A. Bacchelli, M. Lanza, V. Humpa, RTFM (read the factual mails)-augmenting program comprehension with REmail, in: Proceedings of CSMR 2011, 15th
IEEE European Conference on Software Maintenance and Reengineering, 2011, pp. 15-24.
[11] A. Bacchelli, T. dal Sasso, M. D’Ambros, M. Lanza, Content classification of development emails, in: Proceedings of ICSE 2012, 34th ACM/IEEE Interna-
tional Conference on Software Engineering, 2012, pp. 375-385.
[12] A. Kuhn, S. Ducasse, T. Girba, Semantic clustering: identifying topics in source code, Inf. Softw. Technol. 49 (3) (2007) 230-243.
[13] S. Rastkar, G.C. Murphy, G. Murray, Summarizing software artifacts: a case study of bug reports, in: Proceedings of ICSE 2010, 2010, pp. 505-514.
[14] S. Haiduc, ]. Aponte, A. Marcus, Supporting program comprehension with source code summarization, in: Proceedings of ICSE 2010, 2010, pp. 223-226.
[15] K.S. Jones, Automatic summarising: the state of the art, Inf. Process. Manag. 43 (2007) 1449-1481.
[16] G.C. Murphy, D. Notkin, Lightweight lexical source model extraction, ACM Trans. Softw. Eng. Methodol. 5 (3) (1996) 262-292.
[17] N. Bettenburg, R. Premraj, T. Zimmermann, S. Kim, Extracting structural information from bug reports, in: Proceedings of MSR 2008, 5th Working
Conference on Mining Software Repositories, 2008, pp. 27-30.
[18] A. Bacchelli, M. D’Ambros, M. Lanza, Extracting source code from e-mails, in: Proceedings of ICPC 2010, 18th International Conference on Program
Comprehension, 2010, pp. 24-33.
[19] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, C. Weiss, What makes a good bug report?, IEEE Trans. Softw. Eng. 36 (5) (2010) 618-643.
[20] M. Tomita, An efficient context-free parsing algorithm for natural languages, in: Proceedings of the 9th International Joint Conference
on Artificial Intelligence, vol. 2, IJCAI'85, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1985, pp. 756-764, http://dl.acm.org/
citation.cfm?id=1623611.1623625.
[21] J. Earley, An efficient context-free parsing algorithm, Commun. ACM 13 (2) (1970) 94-102.
[22] R.A. Frost, R. Hafiz, P. Callaghan, Parser combinators for ambiguous left-recursive grammars, in: P. Hudak, D.S. Warren (Eds.), Practical Aspects of
Declarative Languages, in: Lect. Notes Comput. Sci., vol. 4902, Springer, 2008, pp. 167-181.
[23] A.D. Thurston, J.R. Cordy, A backtracking Ir algorithm for parsing ambiguous context-dependent languages, in: Proceedings of CASCON 2006, Conference
of the Centre for Advanced Studies on Collaborative Research, 2006, CASCON.
[24] E. Scott, A. Johnstone, Gll parsing, Electron. Notes Theor. Comput. Sci. 253 (7) (2010) 177-189.
[25] M.G.J. van den Brand, A.v. Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, ]. Scheerder, ].J. Vinju, E. Visser, ].
Visser, The ASF+SDF meta-environment: a component-based language development environment, in: Proceedings of the 10th International Conference
on Compiler Construction, 2001, pp. 365-370.
[26] N. Synytskyy, J.R. Cordy, T.R. Dean, Robust multilingual parsing using island grammars, in: Proceedings of CASCON 2003, Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON, 2003, pp. 266-278.
[27] ]. Cordy, The TXL source transformation language, Sci. Comput. Program. 61 (3) (2006) 190-210.
[28] J. Kurs, M. Lungu, R. Iyadurai, O. Nierstrasz, Bounded seas, Comput. Lang. Syst. Struct. 44 (2015) 114-140.
[29] C. Bird, A. Gourley, P. Devanbu, Detecting patch submission and acceptance in oss projects, in: Proceedings of MSR 2007, 2007, p. 26.
[30] J. Tang, H. Li, Y. Cao, Z. Tang, Email data cleaning, in: Proceedings of KDD 2005, 11th ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, 2005, pp. 489-498.
[31] A. Dekhtyar, J. Hayes, T. Menzies, Text is software too, in: Proceedings of MSR 2004, 1st International Workshop on Mining Software Repositories, 2004,
pp. 22-26.
[32] H. Basten, P. Klint, Defacto: language-parametric fact extraction from source code, in: Proceedings of SLE 2008, International Conference of Software
Language Engineering, 2008, pp. 265-284.
[33] T.R. Dean, J.R. Cordy, AJ. Malton, K.A. Schneider, Agile parsing in txl, Autom. Softw. Eng. 10 (4) (2003) 311-336.
[34] X. Wu, B.R. Bryant, J. Gray, M. Mernik, Component-based Ir parsing, Comput. Lang. Syst. Struct. 36 (1) (2010) 16-33.
[35] E. Visser, Syntax Definition for Language Prototyping, Ph.D. thesis, University of Amsterdam, 1997.
[36] Sun Microsystems, Inc., Code conventions for the Java™ programming language, http://www.oracle.com/technetwork/java/codeconvtoc-136057.html,
1999.
[37] J. Tang, H. Li, Y. Cao, Z. Tang, Email data cleaning, in: Proceedings of SIGKDD 2005, 11th International Conference on Knowledge Discovery in Data
mining, 2005, pp. 489-498.
[38] M. Triola, Elementary Statistics, 10th edition, Addison-Wesley, 2007.
[39] B. Ford, Packrat parsing: simple, powerful, lazy, linear time, functional pearl, SIGPLAN Not. 37 (9) (2002) 36-47, http://dx.doi.org/10.1145/
583852.581483, http://doi.acm.org/10.1145/583852.581483.
[40] ]. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, The Java Language Specification, 4th edition, Oracle, 2012.
[41] T. Xie, J. Pei, MAPO: mining api usages from open source repositories, in: Proceedings of MSR 2006, 3rd International Workshop on Mining Software
Repositories, 2006, pp. 54-57.
[42] N. Bettenburg, S.W. Thomas, A.E. Hassan, Using code search to link code fragments in discussions and source code, in: Proceedings of CSMR 2012, 16th
European Conference on Software Maintenance and Reengineering, 2012, pp. 319-329.
[43] C. Bird, A. Gourley, P. Devanbu, Detecting patch submission and acceptance in OSS projects, in: Proceedings of MSR 2007, 4th International Workshop
on Mining Software Repositories, 2007, pp. 26-29.
[44] A. Bacchelli, M. D’Ambros, M. Lanza, R. Robbes, Benchmarking lightweight techniques to link e-mails and source code, in: Proceedings of WCRE 2009,
16th IEEE Working Conference on Reverse Engineering, 2009, pp. 205-214.
[45] L.V. Reis, V.O. Di lorio, R.S. Bigonha, An on-the-fly grammar modification mechanism for composing and defining extensible languages, Comput. Lang.
Syst. Struct. 42 (2015) 46-59.


http://lwn.net/Articles/397422/
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib547265753230313161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib547265753230313161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426574743230303961s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426574743230303961s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4D616E6E3230303861s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313062s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313062s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4D6F6F6E3230303161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4D6F6F6E3230303161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib466F72643230303461s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib52656E673230313061s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib52656E673230313061s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib526967623230313361s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib526967623230313361s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313261s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313261s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4B75686E3230303761s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib526173743230313061s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib486169643230313061s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib537061723230303761s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4D7572703139393661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib42657474653230303861s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib42657474653230303861s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313064s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230313064s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib5A696D6D3230313061s1
http://dl.acm.org/citation.cfm?id=1623611.1623625
http://dl.acm.org/citation.cfm?id=1623611.1623625
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4561726C3139373061s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib46726F733230303861s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib46726F733230303861s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib546875723230303661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib546875723230303661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib73636F747432303130676C6Cs1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib766442723230303161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib766442723230303161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib766442723230303161s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib53796E793230303361s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib53796E793230303361s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib436F72643230303661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib6B7572767332303135626F756E646564s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4269726432303037s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib54616E6732303035s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib54616E6732303035s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib44656B6832303034s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib44656B6832303034s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4261737432303038s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4261737432303038s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4465616E3230303361s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib777532303130636F6D706F6E656E74s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib566973733139393761s1
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4A69653230303561s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib4A69653230303561s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib5472696F3230303661s1
http://dx.doi.org/10.1145/583852.581483
http://doi.acm.org/10.1145/583852.581483
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib476F736C3230313261s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib5869653230303661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib5869653230303661s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426574743230313261s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426574743230313261s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426972643230303761s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426972643230303761s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230303961s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib426163633230303961s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib7265697332303135666C79s1
http://refhub.elsevier.com/S0167-6423(17)30130-2/bib7265697332303135666C79s1
http://dx.doi.org/10.1145/583852.581483

	Mining structured data in natural language artifacts with island parsing
	1 Introduction
	2 Motivating example
	3 State of the art
	3.1 Island parsing concepts
	3.2 Island recognition with regular expressions
	3.3 Island parsing with SGLR and GTD
	3.4 Other related work
	3.5 Summary

	4 iLander: island parsing with SGLR and ASF+SDF
	4.1 Notation
	4.2 SGLR algorithm and ASF+SDF
	4.3 Specifying a Java island grammar with ASF+SDF
	4.4 Empirical evaluation

	5 PetitIsland: island parsing with PEGs
	5.1 PEGs and PetitParser notation
	5.2 Specifying island grammars with PetitIsland
	5.3 Specifying a Java island grammar with PetitIsland
	5.4 Empirical evaluation

	6 PetitIsland: further evaluation
	6.1 Stack overﬂow
	6.2 Email content classiﬁcation
	6.3 Extracting source models from code artifacts

	7 Threats to validity
	7.1 Construct validity
	7.2 Statistical conclusion
	7.3 External validity threats

	8 Conclusions
	References


