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Abstract—Re-architecting a software system requires significant
preparation, e.g., to scope and design new modules with their
boundaries and constituent classes. When planning an intended
future state of a system as a re-engineering goal, engineers often
fall recur to mechanisms such as freehand sketching (using a
whiteboard). While this ensures flexibility and expressiveness, the
sketches remain disconnected from the source code. The alterna-
tive, tool-supported diagramming on the other hand considerably
restricts flexibility and impedes free-form communication.

We present a method for preparing the architectural software
re-engineering via freehand sketches in virtual reality (VR)
that can be seamlessly integrated with the model structure of
a software visualization and, thus, also the code of a system,
for productive use: Engineers explore a subject system in the
immersive visualization, while freehand sketching their insights
and plans. Our concept automatically interprets sketched shapes
and connects them to the system’s source code, and superimposes
code-level references into a sketch to support engineers in
reflecting on their sketches.

We evaluated our method in an iterative interview-based case
study with software developers from four different companies,
where they planned a hypothetical re-engineering of an open-
source software system.

Index Terms—Software Re-Engineering, Software Visualization,
Whiteboard Sketching, Reflexion Models, Virtual Reality

Video Demonstration—https://youtu.be/NKC5YpH3n4Y

I. INTRODUCTION

Re-engineering an existing software system is an endeavour
that requires significant preparation [1]. This preparation
encompasses cycles of (1) reverse engineering (exploring and
understanding relevant aspects of the system, such as its
architectural structure), (2) identifying re-engineering opportu-
nities (such as unintended dependencies between architectural
components), and (3) planning an intended future state as
re-engineering goal [2], [3]. Different methods exist that
support engineers in preparing for software re-engineering.
Time-proven means include software visualization [4], [5] and
architecture conformance checking techniques such as reflexion
modeling [6]–[9]. These support engineers in establishing a
high-level overview of a system that they deepen and refine
over time while exploring and planning. In doing so, it is crucial
for engineers (and their peers) to persistently externalize their
insights and intentions [10], [11]. Software engineers’ preferred
method for that is freehand sketching, e.g., on a whiteboard or
piece of paper [11]–[13]. It allows them to capture complex
problems and situations in intentionally incomplete sketches
that they refine over time [12], [14], [15].

Existing techniques for software re-engineering preparation
(such as software visualization or architecture conformance

checking) do not provide sufficient flexibility and expressive-
ness. Engineers prefer other mediums that provide the necessary
flexibility for capturing insights and plans such as, in most
cases, physical whiteboards. The result is a mix of separate,
disconnected artifacts that need to be maintained in parallel to
the system’s code itself [10], [16].

Fig. 1. Freehand Sketching in VR.

We present a method for extending existing VR software
visualizations with virtual whiteboards for creating freehand
sketches on a system’s structure (see Figure 1) while contin-
uously receiving automated conformance checks, similar to
those proposed by the reflexion modeling approach. Engineers
pin elements from the visualization (representing source code
elements such as classes or packages) on a virtual whiteboard
and draw freehand sketches on it using a virtual pen, as they
would on a physical whiteboard.

Our method enables the re-engineer to sketch outlines around
pinned elements and to connect these outlines with arrows.
It automatically interprets sketches and maps them on the
source code of the subject system such that it can subsequently
provide engineers with visual feedback on the conformance of
a sketch with the ground-truth structure of the subject system.
This helps engineers with reflecting on their sketches (“is
this what the system looks like?”) and planned re-engineering
goals (“should it really look like this?”). Engineers benefit
from the overview of a subject system provided by existing
software visualizations, while being able to capture insights and
plans via flexible freehand sketches with instant conformance
checks along the way. To support engineers with implementing
their plans, our method mirrors sketches captured on a VR
whiteboard to a traditional 2D-screen IDE. This closes the gap
between otherwise disconnected artifacts and the source code
of a system and, thus, facilitates the preparation of architectural
software re-engineering.
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II. RELATED WORK: PREPARING RE-ENGINEERING

Various techniques exist for preparing software architecture
re-engineering, to support engineers in analyzing the archi-
tectural structure and behavior of a system, identifying re-
engineering opportunities, and planning an intended future
state as re-engineering goal. We elaborate on three relevant
areas, highlighting a gap in the corpus of existing techniques.

A. Software Visualization
Software visualization techniques represent the intangible

structures, interrelations, and interactions of software via visual
metaphors in 2D and 3D [17].

Most 2D metaphors are abstract (e.g., graphs and tree
maps [2], [18]–[20]), whereas 3D metaphors range from being
abstract (e.g., 3D graphs [21]–[23]) to real-world inspired with
the information city [24]–[31] as one of the most commonly
applied 3D software visualization metaphors. Visualizations in
3D can be distinguished by their medium as being displayed
on a 2D standard screen or in immersive virtual reality (VR)
or augmented reality (AR) via head-mounted devices.

Software visualization is helpful for gaining an overview of a
system during re-engineering [2] [32] [33] and new techniques,
such as VR, have the potential to advance the state of user
interaction with visualizations for the purpose of documenting
and planning a re-engineering process.

A common shortcoming of many software visualization
techniques is that they remain disconnected from the source
code, and often run as stand-alone tools or web applications,
losing the crucial link to the IDE.

B. Reflexion Models
Software architecture compliance checking approaches sup-

port engineers with building an understanding of a software
system’s architecture by providing insights into how it conforms
to user-specified views or rules [7]. A prominent instance
are reflexion models by Murphy et al. [8], [34] which let
engineers specify a high-level view on a system’s architecture
via a graphical representation (boxes, arrows). Engineers then
manually construct a mapping from architectural entities to
software elements in a system. An automated analysis provides
engineers with feedback on their specified high-level view on
the system’s architecture. That is, which arrows were placed
in the high-level view where there actually are no relations in
the system, which arrows are missing in the high-level view,
and which arrows do conform with the code-level relations
in the system? This supports engineers in reflecting on their
high-level view and the structures these describe [6], [35].
They iteratively refine the high-level view until it reaches
a satisfactory state. Along the way, this workflow fosters
activities such as finding re-engineering opportunities, which
in turn makes reflexion models a valuable tool for preparing
architectural re-engineering.

Subsequent techniques extended Murhpy’s approach with
advanced support for hierarchical structures [4], applying it to
a behavioral analysis of distributed systems [36], or easing the
detection of architectural flaws [37].

The aspect of reflexion modeling that was most picked up
by subsequent work is its mapping from architectural entities
(boxes) to source code elements. In the original work [8],
[34], engineers manually specify this mapping via regular
expressions over the system’s source code artifacts – which
can be tedious and, at times, inaccurate. Subsequent approaches
either improve the manual mapping process directly [38] or
they replace it with automated techniques [39]–[44].

With regards to note making, reflexion models have the
advantage of being able to capture incomplete views on a
system’s architecture, encompassing only architectural entities
relevant for a given context. However, reflexion modeling
(including its derivatives and extensions) requires engineers
to follow a strict, deliberately limited notation when defining
their architectural views. Deviations from that are not possible
while additional comments and notes need to be externalized,
resulting in different artifacts which need to be maintained
separately. Thus, reflexion modeling alone is not suitable for
documentation and planning purposes.

C. Freehand Sketching on Whiteboards and Paper
Engineers value flexibility when creating diagrams on

their software systems [12], [13], [16], e.g., for planning
purposes. More formal visual languages such as UML notations
or ER are used less and are often mixed with informal
sketches [10], [16], especially in early stages of planning,
where engineers deliberately improvise rough sketches to ad-
hoc capture thoughts [10], [12], [13], [45]. Generally, sketches
are incomplete abstractions of complex situations and structures
that incorporate only relevant aspects [46], [47], they serve as
cognitive tools that externalize ideas to relieve the mind [14].
The workflow is to sketch situations, discover new relation,
refine the sketch, and repeat [48], [49], which requires a high
degree of flexibility in the sketching process.

A popular medium are freehand drawings on whiteboards
and paper [10], [16], rated as the most effective [11]. Often,
complex problems and situations are not clear to engineers
who intentionally sketch incomplete diagrams and refine these
over time [13], [47], [50]. The relevant feature for supporting
engineers in expressing thoughts is being able to mix and
improvise notations without restrictions [13]. The problem is
how to persist drawings in a virtual format [10]: such diagrams
have a transient nature, are disconnected from the code, and
thus cannot provide feedback on conformance to reality.

Smart whiteboards let engineers freehand draw while auto-
matically capturing their pen strokes in a digital format [51]–
[53] [54]. Tools exist that interpret sketches to detect elements
from certain visual notations (UML) [52], [55]–[57]. The
general idea is to let engineers draw arbitrary forms and
map these to a certain notations, e.g., UML class diagrams.
While this is a useful step towards enabling engineers to
more conveniently document architectures and plans digitally,
a majority rigidly enforce conformance to certain notations
(whereas we discussed previously that liberty in notation
is important), and none maintain an explicit mapping to
represented elements on source code level.
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Fig. 2. Screenshots of an implementation of our method in an existing VR software visualization. The embedding visualization is not depicted.

III. FREEHAND REFLEXION MODELS IN VR

Our method extends an existing VR software visualization
with a virtual whiteboard for the purpose of externalizing
insights and plans on a system’s structure via flexible freehand
sketches that automatically integrate with the code of a system.
We provide a conceptual overview over our method in Figure 3,
which we discuss throughout this section.
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Fig. 3. Overview of our method for preparing software re-engineering via
model-backed freehand sketches in a VR visualization.

Figure 2 shows an example implementation of our method in
an existing VR software visualization1. The presented images
do not include the embedding visualization, into which we
implemented our whiteboard sketching method. However, the
reader should imagine how engineers interact with the embed-
ding visualization and bring source code elements (e.g., classes
in a Java system) from the embedding visualization over to the
whiteboard to pin them A . They then freehand sketch on the
whiteboard to visualize annotations, outline pinned elements, or

1https://gitlab.com/immersive-software-archaeology

establish relations between outlined elements as arrows between
them. Our method automatically interprets these sketches B
to establish an explicit mapping between sketched forms and
the source code they describe. It dynamically superimposes
code-level references (such as method calls) between drawn
elements on a whiteboard C , which supports engineers in
reflecting on their sketches as well as on the structures they
describe E , e.g., the architecture of a (sub-)system.

Engineers might then go back to the whiteboard to refine
or re-plan, or they implement their intended changes in code
using an IDE. To facilitate the latter, our method (i) mirrors
sketches made in VR to an IDE for supporting fine-grained
changes and (ii) offers automated code generation from within
VR based on sketches D . We elaborate on each of these steps.

A Freehand Sketching of Current and Future States
From a user’s perspective in VR, our method consists of a

virtual whiteboard (Figure 2) on which engineers pin software
elements and draw sketches on, similar to how they would
on a physical whiteboard ( A in Figure 3). Our intention is
to provide engineers with the means for flexible and rapid
freehand sketching that integrates with the embedding software
visualization (i.e., its visual elements, user actions, etc.) and
the code of a represented system.

Pinning Software Elements: Engineers attach software ele-
ments by grabbing their representations in the VR visualization
and pinning them on the whiteboard. Figure 2 1 depicts an
example implementation of this mechanism: It leaves behind a
pin on the whiteboard which represents and explicitly maps to
the represented software element. Each pin contains a small
avatar, a miniaturized version of the pinned visual element it
represents 5 . For one, these avatars facilitate the engineers’
mental mapping between pins and visual elements, which
helps with distinguishing pins. For another, because the gestalt
of visual elements in software visualizations usually encodes
relevant metrics, avatars on pins carry this information, too.
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Including software elements in a sketch by pinning them on
a whiteboard is quick and unambiguous and offers potential
for cross-fertilizing effects with existing mechanisms in the
embedding visualization (such as efficient means for navigating
the subject system). It is up to the developers of a VR
visualization that integrate our method to decide which software
elements can be attached to a virtual whiteboard. We illustrate
our method with high-level programming language constructs
such as classes, interfaces, structs, etc. as well as architectural
units that organize these, e.g., packages, namespaces, folders.

Interacting with Attached Software Elements: Engineers
can grab pins on a whiteboard after they were placed and freely
reposition or entirely remove them 6 . This creates a rapid
editing process with low costs for subsequent changes, espe-
cially when compared to sketching on a physical whiteboard.
Engineers can also open a detail view for a pin ( 2 and 3 )
that displays information on the mapped software element, lists
related elements, and offers element-specific operations.

Navigation along Containment: When planning changes
to a system’s architecture, these will concern its organization
in architectural components (folders, packages, namespaces).
To support engineers in working with such components, and
given that many of these elements have nested elements, our
method provides an automated split operation ( 3 and 4 ) that
replaces one pin for an architectural component with pins for
all of their constituent elements, e.g., a pin for a Java package
can be replaced with pins for all of its direct children (i.e., sub-
packages, classes, interfaces, etc.). The split operation enables
the engineer to zoom in into the contents of an architectural
component when re-planning its internal organization.

We position constituent pins in a circle with noticeable gaps
in between clusters of strongly coherent pins (inspired by a
technique by Hoff et al. [58]). The coherence between pins is
computed based on a sibling linkage algorithm using references
in the source code they represent. Figure 2 4 depicts an
instance of that in our example implementation. With this
layout, we aim to support engineers in finding patterns in
the freshly revealed sub-structure, based on which they might
start re-organizing the pin layout manually. To implement
the opposite direction, i.e., gaining an overview of which
pins on a whiteboard represent software elements from the
same or a co-located architectural component, our method uses
a pin coloring scheme, which maps a unique color to each
architectural collection 5 . Sibling components receive similar
colors to emphasize their local relationship.

Navigation along References: Regardless of the software
element it represents, a pin’s detail view maintains two lists
of references to elements in the subject system as shown in
Figure 2 3 and 7 : on the left-hand side the “incoming
references” list contains one entry for each software element
in the system that has a code-level reference to the pinned
element; on the right-hand side, the “outgoing references” list
contains one entry for each element that the pinned element
has a reference to. Engineers can use the two lists to navigate
the code-level relationships of a pinned element and also attach
pins for related software elements.

Freehand Drawing and Writing: Engineers can pick up
a virtual pen and freely sketch on the surface of a virtual
whiteboard, e.g., to outline a selection of attached pins in a
group or to make comments. This enables them to use arbitrary
notations in the form of their own freehand drawings. Engineers
can choose between different pen colors and remove previously
drawn pen strokes with an eraser. An operation stack with undo
and redo functionality, as well as features for duplicating a
whiteboard, changing its size, and resetting it provide engineers
with further means for flexible sketching and low change costs.

B Semi-Automated Interpretation of Freehand Sketches
Figure 4 shows a meta model of the sketched diagram

structure of our virtual whiteboards.

Virtual 
White-
board

VR Vis.

Software 
System

Sketched Diagram

* * * 1

Pin Module Arrow Bitmap

represents

represents

1

1

*
contains

2
connects

Softw. Element

Visual Element
references

*

File/Class/.. *
1 Package/Folder/..

0,1*
*

Legend

Meta class

Relation with 
cardinality
Containment 
relation

Fig. 4. Meta model for the sketched diagram structure of our method.

Each diagram includes a simple bitmap that stores engineers’
sketches in terms of colorized pixels. It also maintains a list
of pins that engineers attached to a whiteboard, including their
position and a mapping to both the pinned visual element and
the represented software element. Our method interprets drawn
sketches ( B in Figure 3) in terms of two fundamental kinds of
shapes to lay the foundation for subsequent automated analysis
and operations. Our goal is to achieve a solution that is as
automated and reliable as possible while maintaining engineers’
freedom in their choice of visual notations.

To maximize reliability while ensuring a high degree of
automation and flexibility, our method expects user input on
the kind of visual element they currently sketch on a whiteboard.
That is achieved by letting engineers switch between different
drawing modes. We limit this input to the two most fundamental
types of elements used when visually representing elements
and relations between them [10], [14], i.e., (i) outlines around
elements (pins on a whiteboard) that group these into what
we refer to as modules and (ii) arrows between modules to
express directed relations. In addition, we incorporate a third
mode for uninterpreted drawing.

Uninterpreted Drawing 8 : Per default, engineers draw on
a whiteboard without having their pen strokes interpreted as
visual elements, e.g., to write textual comments or to draw
symbols and icons. We persist each pen stroke in the colored
bitmap and register operations in the undo stack.

Module Outlining 9 : When editing a sketch in module
drawing mode, our method automatically interprets freehand
drawn shapes as outlines around pins on the whiteboard and
assigns included pins as the containment of the module (see
Figure 4). These outlines can be arbitrarily shaped, so that
engineers can freely decide on the visual notation they use.
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We do not specify semantics to modules but, instead,
leave this decision to the engineer and/or visualization that
embeds our method. In our example visualization in Figure 2,
modules have no semantics beyond grouping together classes
and packages. When engineers interact with the pins on a
whiteboard, e.g., by grabbing and repositioning them on the
whiteboard, our method automatically updates its internal model
to re-evaluate the module contents.

In cases where two (or more) module outlines are nested
or intersecting one another, pins are assigned to all modules
that contain them (cf. Figure 4). While this means it is not
possible to construct module hierarchies – at least not in the
underlying model structure, visually it is of course possible
(cf. Figure 2 11 ) – this behavior is easy-to-grasp for users
and flexible because it allows for arbitrary module shapes.

Relation Arrow Drawing 10 : Previous work shows
that developers draw relations between elements as directed
arrows [10]. Our method includes a relation drawing mode in
which it automatically interprets arrows between the borders
of previously drawn modules as relations between these and
updates the sketched diagram model accordingly (cf. Figure 4).
Our method determines which modules a sketched arrow
connects by finding the closest module to the arrow’s start point
and the closest module to the arrow’s end point respectively.
This approach allows engineers to draw self references. To
make the direction of sketched arrows explicit, our method
automatically completes them with arrow tips at the end (cf.
Figure 2 10 ). By explicitly modeling the relations between
modules in a sketch, we lay the foundation for subsequent
automated steps, especially the visual superimposition of code-
level relationships.

C Visual Superimposition of Code-Level References
To support engineers with establishing and maintaining an

overview of the relations between software elements on a virtual
whiteboard, our method automatically superimposes code-
level references via arced, semi-transparent lines between the
respective pins on a whiteboard ( C in Figure 3). Figure 2 11
shows examples where pins represent classes in a Java system
and superimposed reference lines between them are based on
method calls, field accesses, and type references. The thickness
of reference lines indicates their weight (number of references
to another), while a texture on the lines indicates their direction,
which is further emphasized via a subtle animation.

Layout: To avoid occlusion of superimposed reference
lines, they bend perpendicularly to the normal direction of the
whiteboard depending on how far apart the connected pins
are located (see Figure 2). This achieves a layout where a
reference line between a pair of pins that is far apart bends
further out than a line connecting two nearby pins. In case of
mutual references between two pins, i.e., two pins are connected
by two superimposed lines (one in each direction), these are
slightly bent in a counter-clockwise rotation.

Color: Per default, our method renders reference lines as
semi-transparent black lines. To provide engineers with visual
feedback on their freehand drawn arrows (see Section III),

our method displays superimposed reference lines in the same
color as an arrow if they match the arrow’s path through the
structures depicted in a sketch. Examples of that are depicted
in Figure 2 11 , where reference lines between two module in
one direction are colored in red due to a red freehand sketched
arrows between them. Thereby, our method provides engineers
with continuous automated feedback on their freehand sketches
in the form of conformance checks with the ground-truth
relations between software elements ( E in Figure 3), similar to
the reflexion modeling approach by Murphy et al. [8], [34]. The
key difference is that Murphy et al. employed a deliberately
limited modeling notation and required a manual triggering
of the conformance checks at discrete time points, whereas
our approach captures models in the form of flexible freehand
sketches while continuously providing instant conformance
feedback. In combination with the workflow of pinning and
repositioning software elements on a whiteboard, our method
thereby achieves quick cycles of visualizing and reflecting
which are tied in closely with ground-truth information on a
system’s architectural structure.

D Integration with IDE and Automated Code Generation

When it comes to implementing planned changes, i.e.,
performing statement level edits to a system’s code, we argue
that the most suitable tool are IDEs with their well-established
features and user interfaces. To make insights and plans
sketched in VR available in an IDE, our method includes
an automated synchronization that mirrors diagrams from VR
to the IDE, where engineers are then able to zoom and pan in
the sketch as well as to click on pins to jump to the respectively
mapped source code artifacts such as a class.

To support engineers in implementing a plan captured
in a freehand sketch, our method provides automated code
generation operations ( D in Figure 3). These operations are
based on the model structure of a plan (see Figure 4), allowing
for coarse-grained operations, such as the generation of an
interface for a freehand drawn module.

IV. EVALUATION

The overarching research objective we aim to address
with our method is supporting engineers in representing and
reflecting on views and plans on architecture-level software
structures. We evaluate to what extent our method achieves
this objective by answering two research questions.

RQ1: How does VR freehand sketching support engineers
in representing architecture-level software structures?

RQ2: How does VR freehand sketching support engineers
in reflecting on architecture-level software structures?

We collected qualitative data to answer these research
questions via an iterative evaluation with software engineering
practitioners from companies located in 3 different countries
(anonymized, anonymized, anonymized).
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TABLE I
SHORTENED VERSION OF THE OVERARCHING TASKS OF THE CASE STUDY (COMPLETE INTERVIEW GUIDE IS AVAILABLE IN OUR ONLINE APPENDIX)

Task Task Description (shortened) Simulated Activity RQs

Task1 Sketch the package “svgbrowser” with its constituents classes: identify a sub-composition
into clusters of classes with strong cohesion and weak coupling.

Representing the inner structure of an
architecture-level software element

RQ1, RQ2

Task2 Analyze how the package “swing” is related with the package “svgbrowser”: which
classes are responsible for the relation from “swing” to the “svgbrowser”? Annotate that
you want to change this relationship between the packages.

Analyzing an interrelation between
architecture-level software elements and
planning to change it

RQ1, RQ2

Task3 Analyze which classes of the two previously investigated packages are potentially affected
by the changes planned in Task2.

Reflecting on planned changes (via a
change impact analysis)

RQ2

We divided our evaluation into three iterations, which each
consist of (i) a study phase where we let participants solve
tasks using an implementation of our method while collecting
qualitative data in a semi-structured interview and (ii) a
development phase in which we improved our concepts and
tool based on the results of the preceding evaluation phase.
Figure 5 depicts this process.

Iteration 1 Iteration 2 Iteration 3

Study
Phase Stud1

Development 
Phase Dev1

Study
Phase Stud2

Development 
Phase Dev2

Study
Phase Stud3

Development 
Phase Dev3

Fig. 5. Structure of our iterative evaluation. We alternated between study
phases where we tested our method with participants in a case study and
development phases where we improved and extended it.

The groups of participants were mutually exclusive across
the iterations with a distribution as follows:

• Iteration 1: Four developers from one company
• Iteration 2: Three developers from two companies
• Iteration 3: One developer from one company

A. Study Phases

The study consisted of tasks which guided the participants
through a step-wise re-engineering preparation for the open-
source software system “Apache Batik” (~2.600 Java classes).
To solve the tasks, participants used an implementation of our
VR freehand sketching method. After each task, we queried
participants’ verdict on the support they receive from our
method. The average duration of sessions was ~1 hour.

Tasks: The evaluation phases of our case study are organized
into three tasks. Table I provides shortened versions of these
along with the activity they required from participants and
the research question they cover respectively. The tasks were
consistent across all iterations. A complete version of our
interview guide with more elaborate task descriptions and
questions is available in our online appendix2.

In Task1, we asked participants to analyze an example ap-
plication package (38 directly contained classes and interfaces,
no sub-structure). The idea was to identify cohesive groups
and represent the resulting structure on a whiteboard.

2https://doi.org/10.6084/m9.figshare.22710490

In Task2, we asked participants, first, to investigate the
relationship of the example application investigated in Task1
to a package that it builds upon and, second, to re-plan it.
To achieve a plausible scenario for that task, we deliberately
introduced questionable design decisions into the subject system
as preparation for the case study. That is, we added method
calls that resulted in a mutual dependency between the example
application from Task1 and the package it builds upon.

In Task3, we asked participants to reflect on the change they
had planned in Task2 via a change impact analysis.

Questions: After each task, we collected qualitative feedback
from participants via open questions. These were consistent
across all iterations.

• How would you usually [solve this task]?
• How do you assess the support you receive from the virtual

whiteboard for [solving this task]?
→ Do you see benefits over your usual approach?
→ Do you see drawbacks compared to your usual approach?
→ Do you miss functionality that would be helpful?

We substituted task-specific terms in the questions above. Full
descriptions of each task and question are available in our
online appendix2.

Analysis: We recorded videos of each participant’s point
of view in VR along with audio of their responses to our
questions. After each iteration we analyzed the recordings by
transcribing them and applying an open coding procedure. First,
we highlighted verbatim statements in the transcript that we
identified as relevant for answering our research questions.
Second, we grouped these verbatim statements based on their
core statement. Tables with details on these two steps are
available in our online appendix2. Third, we sorted participants’
core statements and established categories among them. We
also identified recurring topics on the verbatim statements,
orthogonal to the established categories. Figure 6 depicts a
graphical representation of our results after Iteration 3.

B. Development Phases

Subsequent to each study phase, we conducted a devel-
opment phase in which we addressed identified problems
and suggestions. We discuss relevant instances of these in
Section IV-C. More detailed descriptions of changes with a
mapping to verbatim statements of participants can be found
in our online appendix2.

6

https://doi.org/10.6084/m9.figshare.22710490


Core Statement
from Task1

Core Statement
from Task2

Core Statement
from Task3Legend Addressed Problem

/ Suggestion Topic

T5

T1

T4
T8

T2

T6

T9

T7

T3

Usual
Workflow

Wishes / Suggestions

Drawbacks
/ Problems

Benefits

Flexibility

Overview

Efficiency

Knowledge
Retention

Potential
for Legacy

Code

Potential for
Communication

Intuitiveness

Pin Layout
Computation

Lack of Detail

Unintuitiveness

Inconvenient
Interaction

Pin Layout

Unclear
Pin Origins

Problems

Visual
Notations

/ UML

IDE

I use UML diagrams

The whiteboard provides 
overview

The whiteboard
is fun and intuitive

Whiteboard provides 
good user feedback

My usual workflow
is cumbersome

I read through code

The whiteboard might 
ease communication 

between stakeholders

The whiteboard might 
ease communication 

between programmers

The whiteboard 
repositioning is clumsy

The pen pushes
through the whiteboard

I cannot read this
(font or icon too small)

The whiteboard 
repositioning is clumsy

The pen pushes
through the whiteboard

I cannot read this
(font or icon too small)

Inspecting relations
is cumbersome

I orient along relations

Metrics provide guidance
Big circle pin split layout 
is helpful for inspecting 

relations.

Displaying and 
highlighting relation
lines is beneficial

The whiteboard provides 
natural interaction

The whiteboard helps 
with knowledge retention

Standard notations
are not ideal

I use pen and paper

Relation lines
provide guidance

Text labels
provide guidance

Structural metrics on
pins provide guidance

The whiteboard hides 
implementation details

I want to use my hands 
for all interaction

I want arrow tips to 
auto-complete

Random pin layouts
are messy

An optimal pin layout
is hard to find

I want automated 
layouting

Layouting rules must
be easy to grasp

The whiteboard hides 
implementation details

I want to use my hands 
for all interaction

I want arrow tips to 
auto-complete

Random pin layouts
are messy

An optimal pin layout
is hard to find

I want automated 
layouting

Layouting rules must
be easy to grasp

The whiteboard offers 
flexibility

I see potential for 
re-documenting

legacy code

I remember this element

It is a full-body 
experience

The whiteboard allows 
for a fast workflow

The whiteboard is 
powerful

Pins from different 
packages look alike

I found a bug

I did not immediately 
understand the relation 

line semantics

I am confused about
the element stamping

I am confused about 
module nesting

I did not understand
the pen modes

I want pixel-perfect 
prefarbicated shapes

I want to inspect 
individual relation lines

I want to copy pin layouts 
from another whiteboard

Pins from different 
packages look alike

I found a bug

I did not immediately 
understand the relation 

line semantics

I am confused about
the element stamping

I am confused about 
module nesting

I did not understand 
the pen modes

I want pixel-perfect 
prefarbicated shapes

I want to inspect 
individual relation lines

I want to copy pin layouts 
from another whiteboard

The whiteboard provides 
convenience and speed

The whiteboard bears 
potential for old niche 

languages

My usual workflow is 
error-prone

I want multiplayer

VR headsets are not 
(yet) suitable for 
long-term usage

My usual workflow is 
complex

I lost track of pin
origins (packages)

Feedback for arrow 
drawing not prominent

I am confused about 
drawing arrows between 

nested modules

The whiteboard
hides code

I want to see metrics

I want automated
pin sorting

I want to resize
the board

I lost track of pin
origins (packages)

Feedback for arrow 
drawing not prominent

I am confused about 
drawing arrows between 

nested modules

The whiteboard
hides code

I want to see metrics

I want automated
pin sorting

I want to resize
the board

Fig. 6. Overview of participants’ core statements during the three study phases organized into a hierarchy of categories and recurring topics. Each core
statement summarizes one or more verbatim statements. A complete table with the mapping from statements to topics is available in our online appendix2.

In the following, we elaborate on our technical implementa-
tion1, which we provided to participants.

Implementation: We integrated the concepts presented in
Section III into the open-source VR software visualization tool
“Immersive Software Archaeology” (ISA)1. Figure 2 depicts
screenshots of that implementation. ISA already provides users
with immersive functionality for grabbing and moving its visual
elements. This integrates well with our method. Because our
research objective is concerned with architecture-level software
structures, we built upon ISA’s existing grabbing functionality
to allow participants to pin packages and classifiers (classes,
interfaces, and enums) of a Java subject system.

C. Participants’ Answers
During the analysis of our interview transcripts (see Sec-

tion IV-A), we extracted recurring topics in participants replies
to our questions. In the following, we elaborate on these (T1-
T9). We highlight a number of potential obstacles in technical
implementation of our method and how we addressed them
as well as conceptual challenges that participants identified.
The graphical representation in Figure 6 provides an overview
of the core statements made by the participants, grouped into
categories and summarized into topics (T1-T9). Furthermore, we
annotate whether any of these statements referred to issues that
were resolved during the prototype’s development (indicated
by strikethrough in the figure).

T1) Usual Tools Are Not Ideal: A majority of participants
stated that their usual approach for solving Task1 (sorting

package contents) would entail graphical notations, most
notably in UML. One participant emphasized that relations
between classes are hard to track in class diagrams. In contrast,
participants answered to usually solve problems like Task2
(analyzing and re-planning a relation between packages) purely
by reading through code with metrics and references as
guidance, e.g., “looking at each class [in an IDE] and seeing
if it is being used in the browser app or not.” When describing
their usual workflow for tasks similar to Task3 (impact analysis
for the changes planned in Task2), participants reported on
problems with their current practice. One participant stated
to use an IDE for similar tasks and continues “It’s time
consuming. It’s possible, but it’s time consuming” while another
concludes after solving Task3 “It would be very complex.
Much more complex than what just happened now.” Another
participant comments “Oftentimes, I do not have documentation
or visualizations. Oftentimes, I only have code [..] which I have
to consider as black box. [..] If I now have a possibility to say

‘okay, I draw a rectangle’ and then I say ‘okay, it includes this
and that method and so on’, then I can myself document code
that was previously undocumented in an easy way.”

T2) Whiteboard Interaction Must be Realistic: In Iterations
1 and 2, participants made remarks on VR interactions in our
concrete technical implementation which they perceived as
cumbersome to use.

We addressed all encountered obstacles in the development
phases of our evaluation. Because these points are specific
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to the concrete technical implementation of our method, we
refer to our online appendix2 for further points and details. We
discuss two aspects in the following which we deem relevant
for implementations of our (or similar) concepts.

Whiteboard Repositioning: In our initial implementation,
whiteboards snapped to the user’s hand when grabbed, adopting
its position and rotation. This led to confusion. We addressed
this problem in Dev2 by reworking the grabbing mechanism
to attach to the user’s hand relative to its current position and
rotation so that when grabbed, the whiteboard always remains
in place until the user moves the grabbing hand.

Pen Clipping: In the real world, physical whiteboards
provide feedback on when a pen touches them simply because
the objects collide and the pen cannot be pushed further. In
VR, this is not the case. Users can move their physical hand
further although, in the virtual space, a whiteboard should
block their movement. Major challenges for implementing
our method are (i) providing users with feedback on when
their pen touches the whiteboard and (ii) preventing, to some
degree, their virtual hand and pen to clip through a whiteboard
although the physical hand might move further. We solved
these challenges (i) via haptic feedback on the VR controllers
(vibrating upon touching the whiteboard with the pen tip) and
(ii) by temporarily disconnecting the physical and virtual hand’s
synchronization and projecting the virtual pen on the surface
of a whiteboard when users push their hands too far into a it.

T3) Layout Algorithm for Splitting Pins Should be Intuitive:
In iteration 1, we used a simple algorithm to determine the
layout of split pins by randomly searching for unoccupied
space on the whiteboard.

Participants complained about that: “Spaghetti. Yeah, it’s
very messy!” While manually sorting the randomly positioned
pins, they were wondering “Why is it me who’s doing that?”
For the subsequent iteration, we implemented layout algorithms
that built on a clustering technique [58] to group together pins
for interrelated software elements, i.e., (a) spawning one circle
of pins for each identified cluster and (b) arranging all pins
in a big circle with pins clustered together as neighbors and
noticeable gaps to other clusters (see Section III). Strategy
(a) was not perceived as intuitive and, thus, helpful because
splitting one pin resulted in multiple different circles. One
participant remarked “This layout seems to follow some concept.
And if I do not understand that concept [..], it does not help me.”
before going over to manually arranging the pins according to
strategy (b). Therefore, we decided for strategy (b) in Dev2
which, in comparison with strategy (a), was again assessed as
beneficial in Iteration 3 (Task1): “I like as basic layout this
outer ring [of pins], because it keeps the center tidy, and also
it provides a maximum transparency for the [reference] lines.
[..] And then I can say ‘okay, this [pin] seems relevant, I put
it in the center’.”

T4) VR Whiteboards Provide Overview But No Code:
Participants across all iterations commented on the overview
of the software structures they represented with our method.

One participant (Iteration 1) reported on a lack of detail
due to the high level of abstraction, pointing out that a more

thorough answer to Task2 would require to read through source
code: “This would be just a starting point for understanding
where to investigate” while another remarks “I think it is a
great tool for the overview and a lesser great tool for the
detailed look.” after finishing Task3 (Iteration 2).

The high level of abstraction in our method was perceived as
positive. Participants across all iterations and tasks mentioned
that using our method provided them with a good overview over
what they have sketched compared to their usual approach, e.g.,
“In this whiteboard, I have a clearer overview of everything.”
(Iteration 1, Task1) One participant emphasized particularly
the reference lines between pins: “This isolated class would
maybe be hard to find [in code] because it has no relations.
But here it popped into my view.” (Iteration 2, Task1)

T5) Pins Should Visualize Meta Information: In our initial
implementation (used in Iteration 1), all pins for classes had
an identical appearance, i.e., white cylinders without further
geometry. We received multiple comments on this:

Visualizing Metrics: One participant remarked “Some of
the metrics [from the original visualization] are missing. [..]
They would help me pinpoint faster which are the classes
that have problems.” We implemented this suggestion in Dev1
by displaying a small avatar of the respective represented
visual element on each pin (see Section III). Because visual
elements in software visualizations are usually generated
based on relevant metrics for the software elements they
represent, the avatars on pins communicate these metrics as
well. In subsequent iterations, we observed that the avatars on
pins helped participants with identifying relevant source code
entities, e.g., only a few seconds after seeing all 38 pins of
the package in Task1, one participant grabs a pin for a large
class and states “I want to put this aside to demonstrate it is
a central element, from the relations and its size alone.”

Visualizing Pin Origins: A problem participants reported
on in Iteration 1 was keeping track of pin origins, e.g., “Did that
[pin] come from here or there? So that will kind of confuse
my box thinking.” We addressed that problem in Dev1 by
coloring pins according to the subsystem they stem from (see
Section III). It was not brought up in subsequent iterations.

T6) Module and Relation Sketching is (Mostly) Intu-
itive: Across all iterations and tasks, intuitiveness was often
mentioned. We received critique and suggestions regarding
unintuitive controls for the earlier stages of our implemen-
tation. Because we consider them relevant for technical
implementations of our method, we report on the two most
notable instances, both caused by insufficiently explained tool
functionality. Both instances could be resolved with a short
explanation during the respective sessions. We addressed them
via explanations in the UI.

Drawing Nested/Overlapping Modules: One point of
confusion brought up by two participants in Iteration 2 (Task2
and Task3) were the semantics of multiple modules outlining
one or more common pins (i.e., the modules are overlapping
or nested into one another).

For instance, one participant drew a large blue module around
~30 pins of which 4 were already outlined by a smaller yellow
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module. The participant stopped for a moment, pointed at
the pins and wondered “Are these both blue and yellow in
principle?” Although the behavior of our method in such cases
was easy to grasp for the participants once explained (in the
instance above, both modules indeed contained the 4 pins in
question, cf. Section III), it was not obvious to them initially.

Reference Line Directionality: A point of confusion for
one participant in Iteration 2 were the semantics of the reference
lines between pins. Instead of the “calls” relationship that they
display, one participant interpreted the direction of the lines as
“is called”, leading to wrong assumptions in Task3. The majority
of comments on our method’s intuitiveness was positive across
all iterations and tasks. One participant reported “[..] it feels
quite intuitive. It’s fun to keep grabbing [pins] and moving
them.” (Iteration 2, Task 2). Another participant comments “It
seems quite visually intuitive.” (Iteration 2, Task 1).

T7) Good Efficiency and Flexibility: Participants in all
iterations highlighted a high degree of flexibility and efficiency
in our method. While drawing modules and continuously
moving pins around to solve Task2, one participant in Iteration
1 comments “This is very powerful. I can, one, define modules
and, two, I can use the tool to provide me visual hints on the
kind of relationships and so on. [..] This is way better [than
my usual approach]. I mean, here I can see what I have to
do. Yeah, it’s very cool.” Another participant comments after
solving Task3: “The benefit in this approach here with this
whiteboard and especially these relations is being able to see
very quickly and in a very dynamic way – because I was able
to move classes around – where the dependencies lie and in
which direction they are. It’s just way faster than anything I
would do with an IDE, for example, because IDEs usually just
let you do one thing at a time. In this case, instead, it’s like
doing these kinds of analysis in parallel because I’m doing it
for [multiple] classes at the same time.”

T8) A Full-body VR Experience: While solving the tasks,
participants were using their bodies extensively – especially
their arms. They reached out to pins all over their whiteboards,
scribbled, outlined and wrote annotations, stepped back to
reflect over their drawing, walked to other visual elements
in the embedding visualizing to pin them on the board, and
so on. While this workflow contributes to the aforementioned
aspects of intuitiveness and flexibility, one participant pointed
out: “The drawback of VR is always that you need put on the
headset and change the environment you are in. VR is a great
supplementary tool, but you cannot use it for 8 hours a day,
that would not be pleasant at the state that VR is in right
now.” Another participant comments: “You are requiring your
body to be more used. [..] It’s a full body experience. I like
it personally, but it’s something to keep in mind. Why should
people be standing and using their whole body? What does it
add? It needs to add something. I think it does in this case.”

T9) Potential for Communication Purposes: Across all
tasks, participants hypothesized a usefulness of our method for
communication purposes.

Two participants each described scenarios where they imag-
ined using our method to demonstrate software structures to

other stakeholders on-screen, e.g., “I think it would be beneficial,
especially [for] a project manager or even a client trying
to understand the complexity of something. You could have
a shared dialog in a more visual way.” Another participant
imagined using the method to communicate with peers: “If I
were to communicate with someone else about this, it would be
much easier for me to introduce them to my thoughts here than
clicking through a thousand [IDE] windows and references.
This is much easier.” To facilitate the latter scenario, the
participant suggested functionality that allows multiple users to
enter the same virtual world simultaneously to collaboratively
edit and view VR whiteboards.

D. Answers to Research Questions
We use the results presented in T1-T9 above to answer

our research questions in the following, highlighting both
advantages and disadvantages.

RQ1: How does VR freehand sketching support engineers
in representing architecture-level software structures?

To answer this research question, we identify feedback and
comments related to pinning elements and sketching in different
pen modes to persist views and plans on software structures.

Among that feedback were problems with the VR controls
(T2), requests for improved pin layout algorithms (T3), sug-
gestions for more meta information on pinned elements (T5),
and more unintuitive functionality (T6). In Dev1 and Dev2
(Figure 5), we addressed all points that emerged directly from
the technical implementation (e.g., problems with the VR
controls, T2) and extended our concepts and implementation
for all those that required further work on our method (e.g.,
adding semantic structure to pins via color and avatars, T5).

Positive feedback and perceived strengths of our method
related to RQ1 were its intuitiveness (T6) and its high degree
of flexibility (T7).

The workflow of pinning software elements on a diagram and
simply drawing on it was perceived as powerful and efficient
(T7): “I was able to just do it all at once: Just selecting all the
classes and [it was] telling me [..] which of these classes are
being used in the browser [package]. In that sense, it was way
faster.” This has shown to be particularly useful for planning
changes to the depicted software structures in Task2, because
participants were able to freely position, outline, highlight,
and annotate software elements and their interrelations. Other
key features were those that allowed participants to navigate
along the software hierarchies in a sketch, i.e., splitting pins
for architectural units (T3) while maintaining an overview of
the pins’ origins (T5).

RQ2: How does VR freehand sketching support engineers
in reflecting on architecture-level software structures?

To answer this research question, we consider feedback and
comments related to participants having high-level reflections
over (a) the software structures depicted in their sketches (“is
this what the system looks like?”) and (b) the sketches per se
(“should it really look like this?”).

Potential problems we identified were unintuitive semantics
of reference lines (i.e., directionality representing “calls” versus
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“is called”, T6). This was addressed in the subsequent develop-
ment phase via UI explanations. For another, it was a perceived
lack of detail in the drawn diagrams due to the unavailability
of source code (T4) reported by multiple participants. This is
the most relevant critique of our method. On one hand, our
method deliberately abstracts from target languages and leaves
it to the embedding software visualization to display source
code (should it allow this at all). This has advantages in terms
of overview (T4), programming language independence, and
communication (T9). On the other hand, using our method for
in-depth reflections on software structures “[..] would be just
a starting point for understanding where to investigate” (T4).

The majority of comments relevant for RQ2 are positive:
The level of abstraction employed by our method provided par-
ticipants with a good overview of the depicted structures (T4),
especially when compared to participants’ usual approaches
(T1): “it’s faster to get an overview [..] for a task of identifying
which are the problematic classes.” Reference lines between
pins and the continuous checks on their conformance to drawn
arrows were emphasized as particularly helpful, e.g., “It’s a
great tool for having an overview, especially when you’re
getting into a very complicated repository and packages are
cross-referencing as much as this is.” Lastly, participants saw
potential in our method for jointly communicating and reflecting
about view, ideas, and problems with peers and other (non
technical) stakeholders (T9).

Summary: How does our method support engineers in
preparing for architectural re-engineering?

Our method has positive effects on participants’ ability to
represent and reflect on software structures. Although our
study showed that the high level of abstraction in our concepts
comes at the cost of an unavailability of details, it was overall
perceived as flexible, powerful, and visually intuitive with
potential value for dissemination purposes. A more extensive
answer to how our method supports engineers in preparing
architectural re-engineering requires further investigation into
the full re-engineering circle, i.e., letting engineers enact plans
made on our virtual whiteboards by performing code changes.
The data gathered in this study alone demonstrates that our
method supports engineers in externalizing views on software
structures and plans to change these and, thus, that it facilitates
preparing for architectural re-engineering.

E. Reflections on the Evaluation
We collected qualitative data to answer our research ques-

tions. In the following, we critically reflect on that process.
Number of participants: One aspect to consider is the

number of participants in our study, i.e., 4 in study phase
Stud1, 3 in Stud2, and 1 in Stud3. Having only one participant
in Stud3 entails a risk to the evaluation of changes made in
Dev2. However, because we did not conceptually change our
method in Dev2, this risk pertains only to implementation
aspects, mostly regarding interaction problems noted in Stud2
for concepts developed and implemented in Dev1.

Biases in Feedback and Analysis: The most critical risk
to the results of our evaluation are potential biases in our

participants’ feedback and our analysis. To mitigate these,
we took several countermeasures. For one, to mitigate biases
towards answers that favor certain theories over others, we
formulated tasks and questions neutrally and in an open-
ended style. We recorded these in an interview guide2, which
additionally makes participants’ statements and assessments
comparable. As part of that, we explicitly invited both positive
and negative feedback. For another, to mitigate biases in our
analysis, we recorded and transcribed video and audio footage
of each session to analyze participants’ feedback verbatim and
in the context of what they were doing.

V. CONCLUSION AND FUTURE WORK

We presented a method for freehand sketching views
and plans on architecture-level software structures in virtual
reality. Our method integrates with the model structure of
an embedding VR software visualization to automatically
(a) augment sketches with information on relations between
depicted elements and (b) provide instant conformance checks
of sketches with the represented source code.

We evaluated our method in a qualitative study with 8
software engineering practitioners from 4 companies across
3 countries. Our results show that participants’ main point of
critique was a perceived lack ot detail due to the high level
of abstraction employed by our method. For the same reason,
however, they strongly emphasized obtaining a good overview
over the structures depicted in their drawings. All in all, our
method was perceived as flexible, efficient, and powerful with
a high potential value for communication purposes and eased
collaborative efforts.

In future work, we plan to conduct an empirical long-term
study on the usage of VR freehand sketching of architectural
views in industrial software development to observe practical
impacts and benefits with larger participant numbers than
presented in this work. That includes further investigations
of our method for facilitating the collaboration between
practitioners in exploring and re-documenting software systems.

We further plan to investigate supporting re-engineers with
enacting changes planned with our VR freehand sketching
method. In a first instance, this includes extending the currently
available code generation capabilities of our method, so that
re-engineers can start preparing source code changes based on
drawn diagrams from within VR. Detailed code edits on the
level of individual statements, however, should be done in a
traditional 2D-screen IDE. Thus, we further plan to extend our
method such that it transfers changes planned in a freehand
sketch into lists of action items displayed in the IDE.
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