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Abstract
Software development involves iterations of writing, run-

ning, testing, and debugging code. When fixing a defect,

developers construct a mental model of the system that ex-

plains the defect and eventually identifies its cause. However,

filtering complete, coherent, and reliable information from

a running system is not an easy task: Using a simple ap-

proach, like generic logging, is often ineffective because it

deconstructs and flattens the state into textual data, thus re-

quiring ad-hoc understanding and processing. On the other

hand, collecting structured information in form of objects to

observe and understand a precise property of the system re-

quires specialized ad-hoc code, decoupled from the system’s

domain, and usually not reusable.

We present ShoreLine, a domain-specific data collection

framework that enables the developers to extract selected

information about a running system. The developer is able

to take a snapshot of all the information deemed relevant

about a piece of code by writing few lines of code, thus

enabling structured and effective logging and reporting of

errors. We detail our framework in the context of a bug

reporting platform, and illustrate how such an approach can

be used to create in-depth and reliable domain-specific bug

reports.

CCS Concepts • Software and its engineering → Soft-
ware maintenance tools; Software testing and debug-
ging;

1 Introduction
Computer systems have become pervasive in many human

activities, where the high penetration of machine-controlled

devices led to a tremendous increase in the complexity of

the involved software. This phenomenon turned modern

software development into a multifaceted activity, where the

key elements are collaboration and communication. Writ-

ing code is only a small part of the process: Several phases

such as design, testing, and maintenance, play a role as fun-

damental in the success of a project. In fact, maintenance

often represents a significative percentage of a developer’s

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

time: Researchers showed that the effort put in reading and

understanding code outweighs the effort needed to write

it [5, 9, 15, 19]. In such a scenario, one would imagine that

the effort to provide means to aid developers would focus

on refined tools to navigate, understand, and inspect the

code. Instead, many of the modern editors and IDEs put

the biggest accent on how developers write code, leaving

program comprehension as a secondary task.

The Curse of Text. It is easy to see why understanding

software is hard: Reading code requires reading text that

contains structured information in a language that does not

follow the same logic of natural language. To understand a

fragment of code, a developer has to mentally parse a source

file, identify and extract the necessary information, and build

a mental model of the (intended) behavior of the software.
The same process happens when printing log messages to

expose the state of the system: Log messages embody frag-

ments of information that the developer has to fit into her

mental model, and use it to reverse engineer the source of an

error by trial and error. To ease this process, both researchers

and industry built a plethora of tools like debuggers and code

inspectors, that allow developers to run a program in a con-

trolled environment, and to check the internal status of its

variables. Other tools, like code browsers, support fast link-

ing between the entities in the code, while loggers allow

to print and store useful runtime information. Finally, test

suites allow to define a set of expected behaviors, and to

constantly check if any of these rules is satisfied.

However, these tools do not change the fundamental way

we interact with the code: Eventually, the developer needs to

read the code, and therefore undergo the process of building

its mental model. This is because all these tools rely on the

same, strong, underlying assumption: Source code is text,

therefore the tools we are using to interact with it are shaped

around text editing tools. This assumption reflects the way

we use to store our programs, i.e., plain-text files containing
the declaration of our models.

We propose a novel approach for runtime data collection

as an extension for ShoreLine, a platform for automatic col-

lection of runtime exceptions [6]. We advocate the use of

reified entities to store information about an exception, in

order to preserve themultidimensional nature of the informa-

tion, and leverage the implicit properties that can be obtained

1
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by the data structure. Describing errors as first-class citizens

of a system without flattening the information into text, al-

lows us to leverage the expressive power of logs to support

a number of development activities. Using a structured data

source allows developers to build a set of specialized tools

to browse the data in an incremental fashion and discover

its implicit structure. It also enables the use automated anal-

ysis, by mitigating the need of a data cleaning phase. Finally,

these entities can later be sent for storage, thus creating bug

reports with a much higher level of detail and reliability than

simple plain text.

2 Related Work
Several tools in both academic and industrial contexts use the

data generated during development and debugging to enable

a number of different analyses. Many aspects of development

can benefit from leveraging this data, but among them it is

interesting to consider two main areas especially oriented

toward supporting software development: bug fixing, and
visualization for program comprehension.

Fixing bugs. The first major development activity that

benefits from runtime data is bug fixing. The purpose of the

research in this area is to support and automate the localiza-

tion of the code that contains an error, thus alleviating the

developer from the burden of walking through the whole

execution path to localize the cause of a bug.

Several approaches use techniques to gather system in-

formation and detect errors in an automated fashion. For

example, researchers collected large volumes of stack traces

to identify patterns in the errors of a system, to assist the

early detection of new problems or regressions, and to build

a knowledge base of common problems [2, 6, 12]. Zimmer-

mann et al. performed a survey asking developers about the

challenges they have to undergo while dealing with bug re-

ports, finding that one of the biggest problem comes from

the reliability of the reported data [20], hinting at the need

for an automated approach that collects meaningful data.

Cleaning the data in log files is also an issue when inspect-

ing the data, or while performing analyses. For example, Aye

proposed a preprocessing stage to overcome the problem

of huge log files in web applications, with the purpose of

cleaning the data to allow a subsequent mining step [3].

Comprehension and Visualization. Researchers also
used the massive amount of data produced by the execution

of a system to create a view of the system at a global level, to

detect hidden interactions or unexpected patterns and give

an overview of the system.

For example, Koike proposed a tool to visualize log files of

the Snort
1
intrusion detector and assist system administra-

tors to identify intrusion attempts in a system [13]. Moreta

and Telea visualized log files using hierarchical clustering to

uncover patterns of interest, with the purpose of monitoring

1https://www.snort.org/

dynamic allocation of memory and support the analysis of

software repositories [16]. Orso et al. proposed a tool to mon-

itor the logs of deployed software by means of visualizations

generated by data mining techniques applied on runtime

execution data [17]. De Pauw et al. built a tool to visualize
the execution of Java programs, with the purpose of aiding

the developer to understand the execution of the program

and identify problems like performance bugs [8].

The approach by Dal Sasso et al. collected data from differ-

ent data sources, and combined them to create a high level

view of the usage of the system [6]. They showed that large

amount of logging data and user interaction data can show

hidden paths of usage of the entities of the system.

Finally, researchers also tried approaches to improve the

textual representation of software artifacts by augmenting

their description with amarkup language [4, 14].While these

approaches are focused on describing source code, they are

still relevant for program comprehension to support bug

fixing, as they explicitly render the properties that are hidden

in the textual form of the source code.

3 A Domain Specific Reporting Engine
In this section we outline our approach for collecting in-

formation about runtime errors. We explain the benefits of

collecting this runtime data and show how and why develop-

ment can benefit from modeling this information. The final

goal is to integrate the resulting framework into a modern

development environment, to enable smooth and descrip-

tive fruition of debugging information, and to provide the

groundwork for building interactive tools that present the

data in a meaningful context.

3.1 Who Needs Models?
The purpose of a programming language is to equip the de-

velopers with the means to communicate, both to a machine

and to other people, the intended behavior of a program.

Therefore, we can view a program as the crossroads between

the high level intent of the developer and the machine lan-

guage that details the steps needed to accomplish it.

Clinging to the idea of a language that feels natural to

describe algorithms, developers kept using the tools used for

text editing to also manage source code. The large number

of specialized tools that usually enrich the development ex-

perience in a text editor never evolved beyond its underlying

representation, making writing source code mainly a string

manipulation process.

Plain text has numerous advantages, but it has one major

drawback: It employs a flat format do describe structured

data, thus losing many properties. This means that the infor-

mation that is contained in the data is not directly accessible

by the developer, but hidden in the underlying implicit struc-

ture that has to be rebuilt, for example with a parser. Para-

phrasing the allegory of the Cave of Plato, we are trying to

2
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learn the behavior of the entities in our system by looking at

the shadows they project on the wall, represented by the tex-

tual representations [18]. While the goal of this work is not

to criticize how we represent source code, it still helps us to

comprehend how developers perceive software development,

since the very beginning of their training. Unsurprisingly, if

we write and think about source code in terms of text, the

natural consequence is to treat as text also the product of the

execution of such code. As a result, the majority of logging

frameworks and bug reporting systems collect messages in

a text-like format. We think we can improve how we deal

with runtime errors by preserving their structure (e.g., the
structure of the involved objects at runtime), thus retaining

the relations among the entities of the system, allowing fine

grained analyses.

Researchers explored different representations for source

code, like srcML [14] or JavaML [4]. In a similar fashion,

the Smalltalk programming language proposes a system to

store and access its source code that differs significantly

from the usual text file approach. Smalltalk proposes an ap-

proach where the whole system is contained in a single file

named image. This file contains a serialized version of the

core system, its libraries, its IDE and tools, the code that the

user writes inside the system, and the entire execution state

composed of the existing objects when the image is saved.

Therefore, the user does not write a program through a nor-

mal text editor, but uses the internal browser of the system to

navigate its code, and can use inspectors to examine objects

at any time. Using this approach allows Smalltalk to achieve

full liveliness, as the whole system (both the source code and

the runtime) can be manipulated programmatically. Inspired

by the Smalltalk image example, there is no reason that pre-

vents us to apply this approach to runtime generated data,

to increase the capabilities of the development environment.

3.2 Design of the Framework
We want to record the behavior of a program in a structured

and customizable way, creating a logging system to talk with

objects and extract targeted information. Our first step is to

define a model that describes the data we want to observe.

The goal is to collect reified debug messages with a level

of detail as near as possible to the original objects in the

running system.

The model. A running system is a complex entity with

several unknown variables: It is not possible to provide a

complete and manageable description of its state. The usual

approach to trace the source of an error is to verify the state

of the program by means of log messages or of an object

inspector. Both cases have a fundamental problem: To iso-

late the error, the developer has to identify an unexpected

behavior, select the entities to observe, change the program

to output these properties, and finally correct the program.

This workflow implies that every change requires a new run

of the system. While this might not be a problem in simpler

development scenarios, it might become one when dealing

with nondeterministic code, like in concurrent systems, or in

programs depending on external input. Unfortunately, these

scenarios are also the hardest to manage, suggesting that

they require particular support from debugging tools. For

example, different executions of a multithreaded application

would result in different internal states: An error like unpro-

tected access to a resource would appear only under certain

conditions, resulting in what is called an Heisenbug [11].

Another important aspect during debugging is the repro-

ducibility of the error. Understanding the condition under

which a specific error occurred and reproducing is a com-

plicated and time consuming part of the debugging process:

Developers do not have access to the environment that gen-

erated the error, but they have to infer it from the data re-

ported by the user. Users, however, cannot be expected to

have the technical background to report a bug, which leads

to a problem in the reliability of the information available to

developers [20].

Our goal is to have an explicit and flexible model to al-

low developers observe the state of the system with a low

effort. Such model would alleviate the developers from build-

ing a mental model of the system they are debugging, thus

reducing the cognitive cost for fixing a bug.

We set the guidelines for designing such a framework for

reified data collection as:

1. whenever possible, we collect the original entity that

is involved in the event that we are observing;

2. when collecting the whole entity is not possible, we

create and store a simpler representation;

3. we want a framework easy to extend and customize;

4. we should not collect data we are not interested in;

5. we should be careful in handling possibly sensible data.

The guideline (1) defines the core of our approach: We

want information from an entity in the system. Therefore,

we avoid to prematurely flatten the colleceted information:

We store the whole entity, and delay its serialization, waiting

for future instructions on how to use the information.

There are, however, some cases where the whole entity

is not suitable for reporting. This is especially true with

entities that might change their status for external causes or

entities that might expire, for example in the case of database

connections, or short lived sessions in a multiuser system.

In some other cases, we might not want our collection

to expose sensible data, like passwords or private source

code, as detailed in guideline (5). In this case, we apply the

guideline (2): if it does not make sense to collect a piece of

information, we anticipate the simplification process to cre-

ate a safe copy of the original entity, and collect the cleaned

version. Since it is not possible to generalize all the possible

cases where we do not want to collect specific data, we rely

on guideline (3): Our framework must allow easy customiza-

tion of its details.

3
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As an example, consider the case where we want to log

the errors that users get while accessing a resource. Usually,

we would write a line into a log file, to record the user and

the action, leading to potentially huge log files. Using the

approach we defined, we can setup a rule that activates only

when the system generates an error involving the user, and

store the entity of the user (guideline 1). In this way we can

access the actual entity related to the user, query it about its

associated session and the action that the user was perform-

ing.We can also avoid to collect sensitive data like passwords

(guideline 2). This enables a conversation with the entities in

the system, allowing the developers to customize interactive

tools that empower the user with the ability of browsing the

entities related to the error.

Collectors.Weneed a strategy to let the user of our frame-

work describe its own custom data collection, to implement

the flexibility required by our approach (guideline 3). To ad-

dress this aspect, we define the concept of collectors: Small

entities that describe how and when to observe a part of the

system. A collector has three main purposes: (1) define how

to collect some data; (2) define when to collect some data;

(3) describe itself. The main goal of the collector is to define

relevant data. For example, in the logging example, the sys-

tem will pass some context to the collector, that will copy the

user entity and remove the sensitive data, like the password,

or mask the username, if the purpose of the collection is to be

sent remotely and published in a bug report. When to collect

the data is the other crucial aspect of the framework: We

are defining an approach that defines a domain specific data

collection. Collecting data about a user action is meaningless

if we are dealing with an error generated by a string. Each

collector has to knowwhen to activate itself by analyzing the

context of the error and checking its internal activation rule

to decide whether to trigger the collection or not. Finally, we

need a description to tag the collected data and present it to

the user in an informative manner.

Using the approach of collectors we can build a system

monitoring framework that is fully customizable and that

collects first-class, reified entities. Such a framework can

be employed in place of logging messages with a detailed

snapshot of the state of a program, that can be then browsed

with interactive tools, or that can be employed to collect

failure data an pack it for remotely reporting an unexpected

behavior. This remote reporting mechanism can be the first

step towards a smarter bug reporting system, that allows a

deeper inspection of the state of a system, while preserving

the privacy of its users.

4 Implementing The Framework
We now present the implementation details of the frame-

work for the Smalltalk programming language. We chose to

implement and test the effective feasibility of our approach

using Pharo2, an Object Oriented programming language

inspired by Smalltalk. Pharo inherits a number of power-

ful properties from its Smalltalk origins, that can support

our task of implementing the data collection framework. In

particular, it is a live programming environment, with full

reflectivity capabilities, and a control over the whole sys-

tem that allows to access and manipulate programmatically

the complete state of the program. The fact that the entities

in the system are abstracted by means of objects allows us

to easily inspect faulty states of the system by interacting

through the Context object, and simplifies the reification

process of the interesting entities.

While the use of Pharo enables full flexibility and control

over the execution of a program, one may wonder whether

this hinders the applicability of the approach to more general

examples. We believe that this does not affect the possibility

to implement an analogous framework for a different pro-

gramming language. Section 6 contains a deeper discussion

about the generalizability of our approach.

4.1 Implementation Details
The main benefit of Pharo is that its abstractions describe

the whole system runtime, allowing us to inspect and manip-

ulate it by querying objects: We can stop the execution of a

program, and access the whole system status at the moment

of the interruption. The principal element we are interested

in is thisContext, a special variable that stores an instance

of Context. This object mimics the behavior of an activation
record and contains all the information about the current

execution of the program.

Implementing Collectors.We based our framework on

the idea of collectors. In Section 3.2 we defined a collector

as an entity that knows how and when to collect data. The

strategy of a collector can be implemented with a class, thus

decoupling the collector from the source code it is observing

and providing a behavior that can be plugged and un-plugged

seamlessly. While having a class for each collector might

seem overkill, it has the advantage of providing full control

to the user of our framework and the flexibility to select the

data she wants to observe. A user can create a new collector

by subclassing the class DataCollector, and implementing

the four methods that define its behavior: #tag — the name

of the method, used to reference the collected data by means

of an automated approach; #description — a short descrip-

tion of the data collected by the class, displayed to the user

when presenting the data or when asking for permission

to send the data to the issue tracking system; #when: — an

expression that evaluates the state of the system to decide

whether or not the collector is interested in observing the

current context; #initializeFrom: — the main method that

implements the strategy for extracting the data. Both the

#when: and #initializeFrom: method receive an object of type

2
https://pharo.org
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Figure 1. The workflow to collect data using collectors, showing the architecture of ShoreLine

Context as parameter, that contains the execution envi-

ronment. The #when: method determines if the context is

relevant to the collector, while #initializeFrom: performs the

actual collection.

Triggering the Collection. We decided to trigger the

data collection in two cases: For the handling of errors, or

arbitrarily triggered by the user. The former is invoked auto-

matically whenever an unhandled exception occurs, while

the latter needs to be explicitly invoked using the ShoreLine

public APIs. Figure 1 shows a diagram of the flow of the

data from the collection to its usage. The collectors evalu-

ate whether they should activate, and potentially perform

the data collection. Once the collection is complete, the

framework composes a Report object and announces its

creation using Beacon,3 an announcement-based (i.e., pub-
lish/subscribe) logging framework for Pharo. Beacon broad-

casts messages to the system to inform the interested tools

of the presence of a report.

By collecting complex entities in form of objects, rather

that text, we can initiate a conversation with the system and

allow a systematic and progressive exploration of the errors.

4.2 Using the Data
Once a report is broadcast, every interested tool receives the

data. This is intended to further improve the customizability

of the framework, allowing the developer of a system to

refine their tools for quickly inspect the data collected about

their code, as proposed by guideline (3).

The two applications proposed by default by our approach

consist in a local data browser, and a customized reporter. If

users are interested in browsing the data locally, for example

during the development phase of a project, they can inspect

the contents of the report objects. Moreover, they can ex-

ploit the tools provided by the Pharo ecosystem, like the

Glamour Toolkit [10] to create custom visualizations of the

3
See www.smalltalkhub.com/#!/∼Pharo/Beacon

data to support the browsing session. If needed, the system

can also serialize the report and send it to the issue tracker

with a comment of the user explaining how she encountered

the error. In the next section we show how to implement a

collector to solve common development problems.

5 The Framework in Action
In this section we show how accessing specific information

can support developers in quickly understanding the cause of

a defect and the behavior of a piece of code. We first present

an in-depth case study together with a possible implemen-

tation showing how our approach can support debugging

errors in applications using the Announcer framework. We

then outline a scenario about how our framework can sup-

port debugging third party libraries with complex entities.

5.1 The Announcer Story
The continuous evolution of software requirements results in

a codebase that is constantly growing, both in size and com-

plexity. To tame this problem, developers design software

systems using a modular architecture, where large tasks are

split into smaller functionalities, so that complex operations

can be managed by composition of small entities. In such

a scenario, communication between the modules is funda-

mental in defining the behavior of the system. Modularity is

invaluable in developing, testing, and maintaining a system,

but it comes at a cost: Integrating different modules can cause

errors generated by the interaction between components and

might also trigger nondeterministic behaviors. Since the flow

of the execution is distributed into different locations, track-

ing the source of a defect can become a complicated and time

consuming task. To enable communication among system

components, Pharo offers the Announcer framework: a tool

that implements an improved version of the Observer pat-

tern and reduces coupling. The strength of the Announcer

framework is that announcements are first class entities:

5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PLATEAU’17, October 23, 2017, Vancouver, CA T. Dal Sasso, A. Mocci, M. Lanza, A. Chiş, and T. Girba

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Table 1. Summary of the collected stack trace data

# of developers 257

# of stack traces 41,129

# of traces involving announcements 4,840

% of traces involving announcements ∼12%

Once it occurs, an event is represented by an object that

can contain arbitrary data. The use of announcements to

manage the communications between different applications

has numerous advantages, like loosing the coupling between

the publisher of an event and its subscribers, and is a recom-

mended best practice in developing an application in Pharo.

However, as discussed earlier, fragmenting the control

flow of the program into a set of disjoint components car-

ries the drawbacks of event-based programming with the

consequence that finding the right fragment of code that is

responsible for an error becomes a convoluted process of

navigating through the callbacks to find the correct location

in the system. This complicates the debugging process, as

understanding how an announcement propagates through

the system requires accessing information that is usually not

expressed in the stack trace generated by an exception. The

problem with debugging an announcement is that it follows

a different logic than the usual sequential style of the rest of

the system. Therefore, while all the information necessary

to understand an error is available during an exception, this

is usually not exposed by the tools used to catch and report

the errors, like the system logger.

Usage of Announcements. During the development of

Pharo 6 a problem emerged, where selecting an item from a

menu would trigger the opening of two duplicate windows,

instead of one. During the discussion on the bug report it

became clear that the incident was compatible with the case

of an entity registered twice in the announcer responsible

for opening the window. Debugging such a problem consists

in locating the entity that contains the double registration

and remove one of the two snippets of code that perform the

subscription. While this case is not directly a consequence

of an exception, it shows how debugging the behavior of

code using announcements can be tricky, and that develop-

ment tools could be improved to support similar cases. We

therefore conducted a brief experiment to investigate how

common are problems involving announcements in the ex-

ceptions that developers usually trigger while writing code.

We inspected the data collected through ShoreLine, a tool

to intercept stack traces from development exceptions and

report them to a central server to support debugging [7]. We

considered the stack traces collected from 10 June 2014 to

28 February 2017. Table 1 shows a summary of the collected

data. The collecting tool can be set to submit every exception

automatically, or to ask the developer for explicit submis-

sion. The stack traces come from exceptions generated by

users and developers in the Pharo community during their

daily development. We collected 41,129 stack traces from 257

different developers, on a time period of almost three years.

We queried the collected data looking for references to An-
nouncementSubscription, the class responsible to dispatch the

announcement to the registered entities, finding that 4,840

stack trace contain at least one reference to this class. This

means that almost 12% of the exceptions that were collected

by our tool as a result of a system exception, involve the

usage of the Announcement framework. While this result

does not imply that the Announcer framework is directly re-

sponsible or involved with the error, it shows that more than

one exception every ten has in its source a relation with an

announcement, hinting that the scenario is frequent enough

to require a dedicated support by the debugging tools.

Implementation of the collector. Our goal is to collect
and present domain-specific information about the message

dispatching. We can use this information to refine the in-

spection tools used to investigate the system, or to create

interactive bug reports that allow to inspect the objects of the

original exception. To implement the collector we need to

define its activation conditions and the data extraction. The

twomain causes that can generate errors using an announcer

are multiple registration and the potentially nondeterminis-

tic behavior, given by the fact that messages are dispatched

in no specific order, causing bugs that are hard to repro-

duce. We therefore focus on four features: (1) the subscribers

of the announcer listening for the specific announcement,

(2) the announcement being dispatched, (3) the subscriber

that generated the exception, and (4) the list of subscribers

that already received the announcement compared to the list

of subscribers that did not receive it yet. Figure 2 shows the

implementation of AnnouncerCollector the class responsible
for gathering data about an announcement.

The classmethods #tag and #description describe the collec-
tor, for indexing and user interaction purposes. The method

#when: verifies if there is a reference to aAnnouncementSub-
scription object in the first 10 lines of the method invoca-

tion stack, to ensure that announcements are involved in

the exceptions in the immediate surroundings of the cur-

rent context. #initializeAnnouncementFrom: extracts the an-
nouncement that triggered the broadcasting process and the

data it contains; #initializeSubscribersFrom: extracts all the
entities registered to the announcer, regardless of the kind of

announcement they are listening to; #initializeInterestedSub-
scribersFrom: extracts the distribution list of the announcer.

Since this data is collected during the execution time, this

list contains the order in which this announcement is being

distributed, thus removing the nondeterminism. Moreover,

the method also extracts the index of the current entity: In

this way the developer can access the list of the entities

that already received the announcement and the one of the

entities that did not receive the message, thus helping the

detection of conflicts between different subscribers.
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AnnouncerCollector class>>
tag

^ #'story-announcer-collector'

AnnouncerCollector class>>
description

^ 'Story Announcer collector'

AnnouncerCollector>>
initializeAnnouncementFrom: aContext

announcement := aContext stack second arguments first

AnnouncerCollector>>
initializeSubscribersFrom: aContext

| announcer |
announcer := (aContext stack detect: [ :e | 

e receiver class = AnnouncementSubscription ])
receiver announcer.

subscribers := announcer subscriptions subscriptions
collect: #subscriber

AnnouncerCollector>>
initializeInterestedSubscribersFrom: aContext

| arguments |
arguments := (aContext stack detect: [ :e | e method =

(SubscriptionRegistry>>#deliver:to:startingAt:) ])
outerContext arguments.

interestedSubscribers := arguments at: 2.
index := arguments at: 3

AnnouncerCollector>>
when: aContext

| stackSelectSize |
stackSelectSize := aContext stack size min: 10.
^ (aContext stack first: stackSelectSize) anySatisfy: [ :e |

e receiver class = AnnouncementSubscription ]

Figure 2. The Smalltalk code implementing the extraction

strategies for the Announcer collector

The data collected is still composed of objects, that can be

further queried: This process allows to retain the maximum

amount of information for the longest time needed, while still

allowing for a later flattening or serialization. The entities

could also be sent to the issue tracker as serialized objects,

so that the maintainers of a software can navigate the errors

generated by the users with a higher degree of flexibility and

introspection than just plain text.

This scenario shows how our framework can help devel-

opers to extend the behavior of the logging mechanism and

collect domain specific data about their code. By distributing

software together with custom collectors, a developer can

effortlessly obtain detailed information about the behavior

of selected parts of her code.

5.2 Debugging Third Party Libraries
Library developers can benefit from collectors to observe

for specific data about their project. For example, in the

Smalltalk ecosystem Roassal is a popular visualization en-

gine [1]. Roassal codebase consists of more than 800 classes

and almost 6,000 methods, and it is constantly evolving us-

ing community feedback. Such a large project poses several

maintainability challenges, especially since the community

is split among stable, legacy, and development releases.

Understanding and reproducing the causes of an error can

become complex, as the developers need information that

might not be easy to provide. The maintainers of Roassal

can improve this situation observing data specifically related

their model: They can either set default collectors to detect

problems that can arise, or they can react to existing bugs

to detect specific errors. For example, when an exception

occurs, a collector can verify if the source entity is a sub-

class of RTObject, or if the error happens inside a builder —a
Roassal object to generate visualizations from a collection

of data. By collecting domain specific information, the main-

tainers can get a detailed picture of the error, and restrict

the possible causes without the need to access the whole

data of the user. For example, by knowing the number of

nodes that a visualization is rendering, one could tell if the

error is due to a memory problem, or if the visualization has

scalability issues. Also, knowing the settings that were used

to configure a builder can tell if there is a bug in the builder’s

code, or if the public API is poorly designed and therefore

often misused by the users. Finally, knowing the kind of data

that a visualization received can help in finding if there is a

bug in managing objects of different (specific) types.

Shipping their own collectors for observing their code, de-

velopers can support debugging in the context of the project,

therefore reducing the time required to understand an error

and the cost for maintenance.

6 Conclusion
We presented an approach to define ad-hoc collection of

runtime data to support debugging. By extending our frame-

work, a developer can define a custom strategy to gather

reified domain-specific knowledge about an application. By

preserving the structured, object-oriented nature of the col-

lected data, rather than flattening it into text, we are able to

query the state of a program and observe it by filtering the

relevant data, providing more expressive reports. We can use

this approach to create flexible inspection tools, that offer a

deeper representation of the execution context of a program.

By giving the possibility to report and collect specific in-

formation from the system, our framework offers data that

is more reliable than a stack trace submitted by a user, and

allows us to deal with the collected data in an automated

fashion, performing tasks that would otherwise weight on

the maintenance cost. Moreover, providing a trusted struc-

ture of the data, our framework enables a number of analyses

without the need of information retrieval and text mining

techniques to clean the data. Finally, dealing with data that

is not flattened allows to perform a progressive inspection

of a report, enabling the discoverability of complex data and

structuring the debugging session as a browsing process.

Generalizability of the approach. We developed our

approach using Pharo, an object-oriented, live programming

environment inspired by Smalltalk. The strong reflection
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and inspection capabilities of the platform allowed us to

access the unmodified execution context of the software.

Given these premises, one might wonder (1) why should

this approach be relevant in the Pharo ecosystem, and (2)

if it is still relevant outside Pharo, when trying to apply it

to other programming languages. To answer question (1),

this framework comes after a long collaboration with the

Pharo community, to understand the types of errors that

users get during the use and the development of the plat-

form. As we discussed through the paper, the data collection

mechanism can be integrated with the issue tracking system

of a project, allowing the developers of a project to integrate

our framework in their workflow, supporting debugging and

maintenance tasks. About question (2), we believe that such

an approach can also be employed in other programming

languages. The Pharo system provided the perfect candidate

to prototype such a framework, easing the implementation

process by providing the APIs to talk with the system and

the tools to navigate the collected data, but the use cases

we have shown in Section 5 can be implemented with any

language with reflective capabilities.

Given the current traction of DevOps technologies like

Docker, it is also interesting to consider how it is possible

to execute an application in a Docker container, stop it and

save its status during an exception, and submit the container

to a remote server. Analyzing the stored data would not

be simple, as there is a lack of tools to access the state of

applications in these circumstances, but our approach could

be an interesting match for these similar scenarios.

Current State and Future Work. Building collectors to

observe specific parts of the system can improve the work-

flow of debuggers, and reducemaintenance costs. The regular

collection of domain specific data can provide statistics on

the frequency of errors in selected parts of the system, and

hint how a software is used, hence helping developers not

only to debug a system, but also to optimize existing code

and improve its API. We plan to relase our framework for

Pharo, proposing a set of generic collectors to support stan-

dard difficult debugging tasks, like the one that we proposed

in Section 5.1 about the Announcer framework. By reaching

a larger user base we can collect more specific data about

the usage of the tool, refine further the collectors implemen-

tation and evaluate the impact of such an approach in daily

development activities.

We envision a future where development activities are

supported by the system using the language of the system,

without flattening the information into chunks of plain text,

but rather using first-class entities that narrate the precise

status of a program. Starting a conversation with the entities

we can develop a paradigm of programming that focuses

on models, rather than manipulating strings, and achieve a

programming environment that is really live and responsive.
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