
How to Gamify Software Engineering
Tommaso Dal Sasso, Andrea Mocci, Michele Lanza, Ebrisa Mastrodicasa

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Software development, like any prolonged and intel-
lectually demanding activity, can negatively affect the motivation
of developers. This is especially true in specific areas of software
engineering, such as requirements engineering, test-driven de-
velopment, bug reporting and fixing, where the creative aspects
of programming fall short. The developers’ engagement might
progressively degrade, potentially impacting their work’s quality.

Gamification, the use of game elements and game design
techniques in non-game contexts, is hailed as a means to boost the
motivation of people for a wide range of rote activities. Indeed,
well-designed games deeply involve gamers in a positive loop of
production, feedback, and reward, eliciting desirable feelings like
happiness and collaboration.

The question we investigate is how the seemingly frivolous
context of games and gamification can be ported to the technically
challenging and sober domain of software engineering. Our
investigation starts with a review of the state of the art of
gamification, supported by a motivating scenario to expose how
gamification elements can be integrated in software engineering.
We provide a set of basic building blocks to apply gamification
techniques, present a conceptual framework to do so, illustrated
in two usage contexts, and critically discuss our findings.

I. INTRODUCTION

Games have been a fundamental part of human civilization
for thousands of years. In 440 BC Herodotus wrote about the
Kingdom of Lydia in Asia Minor, where 3 millennia before
his time the Lydians invented several games, such as the dice
and the ball, to overcome an 18 year long famine. They would
engage in games one day so entirely as not to feel any craving
for food, and the next day to eat and abstain from games [1].
While it is unclear whether the story is true, its moral truths
reveal the essence of games, which is not escapism, but rather
a purposeful and helpful activity to cope with the sometimes
adverse or boring reality, which McGonigal goes even as far
as to call it a “broken reality” [2].

Gamification is defined by Werbach and Hunter as “The use
of game elements and game-design techniques in non-game
contexts” [3]. The concept, not to be mistaken with Game
Theory, was pioneered in the 1980s by Richard Bartle, the
inventor of the first MUD (Multi-User Dungeon) game, who
defined gamification as “turning something not a game into a
game” [4].

But, what is a game? According to McGonigal [2] all games
share four defining traits: a goal, rules, a feedback system, and
voluntary participation. The goal gives a sense of purpose. The
rules unleash creativity and foster strategic thinking. The feed-
back system provides motivation. The voluntary participation
makes the experience safe and pleasurable. Suits sums it up
with “playing a game is the voluntary attempt to overcome
unnecessary obstacles” [5].

McGonigal provides several examples of contexts where
the performance of subjects has been boosted through gam-
ification [2]. The contexts range from house holding chores
to physical exercise. While this may seem remote from the
software engineering domain, Werbach and Hunter provide an
illuminating example closer to our discipline: Microsoft’s test-
ing team in charge of the multi-language aspect of Windows
7 invented the Language Quality Game, recruiting thousands
of participants who reviewed over half a million dialog boxes,
logging 6,700 bug reports, resulting in hundreds of fixes [3].
Another example is StackOverflow, a popular Q&A website,
where asking and answering technical questions is rewarded
with points and badges. There is evidence that this gamifi-
cation mechanism is in part responsible for StackOverflow’s
success [6].

Lured by this success, one could be tempted to spread a
gamification layer on any kind of software engineering activity.
The questions we answer in this paper is not only how such
a thing can be done in a systematic way, but also whether
and when this can lead to a desirable outcome, i.e., higher
motivation in developers and increased productivity. First,
let us make a small digression in the realm of psychology.
Behaviorism is an approach to psychology that combines
elements of philosophy, methodology, and theory. Its tenet,
expressed in the writings of Skinner [7], is that psychology
should concern itself with the observable behavior of people
and animals, not with unobservable events that take place in
their minds. Skinner was a firm believer of the idea that human
free will is an illusion and that any human action is the result
of the consequences of that same action: If the consequences
are bad, there is a high chance that the action is not repeated;
however if the consequences are good, the actions that led to
it will be reinforced. Put simply, this is the approach “if you
do this, you’ll get that”.

Gamification is related to behaviorism, as it is built on
the concept of rewards (points, badges, etc.) for specific
actions. However, contrary to the intuition of many, there is
substantial evidence that behaviorism does not work: Kohn
describes several experiments (for diverse contexts, such as
losing weight, quitting smoking, etc.) which revealed that
“token programs show behavior change only while contingent
token reinforcement is being delivered. Removal of token
reinforcement results in a return to baseline performance” [8].
In essence: When the goodies stop, people go back to acting
the way they did before. Other studies done in schools and
work places even brought forth evidence that subjects who
were rewarded for doing certain things were performing poorer
than subjects who did not receive rewards.



A popular, almost archetypal example of a supposed failure
of gamification is the recent removal of the badges and points
from the localized search and discovery app Fourquare1. While
Foursquare’s gamification layer has probably been the cause
of its initial growth and success, it was so emphasized that
users ended up considering Foursquare just as a game, and
not as a business application. FourSquare’s CEO declared that
gamification was phased out because of a perception problem
of the real purpose of the app itself2.

How can the success stories mentioned previously be ex-
plained, then? Is gamification a lost cause? We believe the
answer is no, for a number of reasons.

First, gamification is only partially connected to behavior-
ism. A key point is that games represent voluntary efforts of
the subjects to do something, while behaviorism was conceived
as a way to (sometimes forcefully) influence the behavior.

Second, “simple” behaviorism is built on fairly tight feed-
back loops (do this and you get that), while well implemented
gamification, such as the one in StackOverflow, has a much
longer running time. Moreover, taking StackOverflow as an
example, the presence of an Avatar who is being assigned
rewards represents a key ingredient of successful gamification,
as we will later see.

Third, and most important, the rewards that come out of
successful gamification are not of a venal nature, but according
to McGonigal they fall into four categories, that in conjunction
represent “the foundation for optimal human experience [..],
they’re the most powerful motivations we have other than our
basic human needs (food, safety, and sex)” [2]. These four
categories are satisfying work, the experience/hope of being
successful, a social connection, and a deeper meaning. We
will discuss these aspects in the coming sections.

Summing it up, gamification is not about rewarding people
with trinkets and tokens, it is about enriching their activities
with “gameful” aspects. As this represents a fairly novel field,
we have performed an in-depth investigation of the topic [9],
which we distill here into a systematic approach for the
gamification of software engineering. With this paper we make
the following contributions:

• An in-depth discussion of the principles, promises, and
perils of gamification (Section II).

• A conceptual framework with which one can gamify
software engineering activities (Section IV).

• A set of reusable building blocks that serve as a founda-
tion for our gamification framework (Section IV-A).

• A illustration, through several concrete examples and
scenarios, of how our gamification framework can be
used for the gamification of diverse software engineering
activities (Section IV-B and Section IV-C).

• A critical discussion about our findings and a roadmap
for future work in this area (Section VI).

1https://foursquare.com
2See http://www.gamification.co/2013/03/15/the-removal-of-foursquare-

gamification/. Interestingly, the phasing out backfired, leading to a sensible
reduction of the user base growth.

II. GAMES AND GAMIFICATION

First, we discuss the principles of game design (Sec-
tion II-A) and gamification (Section II-B). This will help us
to understand how the obtained background can be leveraged
to apply gamification in software engineering.

A. Why Do We Play Games

The idea that games can be adapted to positively influence
tasks and activities in other domains is older than the term
gamification, which only gained popularity in the recent years.

In 1980, Malone [10] studied what makes computer games
captivating to extract the features that can be used to support
teaching. He considered two types of motivation: extrinsic
motivation, triggered by means of a reward, and intrinsic
motivation, triggered by the satisfaction of performing an
action. Malone identified three main elements that influence
the engagement in a game:
(a) Challenge introduces uncertainty through hidden infor-

mation, randomness, cognitive limitation of players, and
variable difficulty. Self-contained and small goals are
better than long term ones at sustaining performance and
interest in an activity.

(b) Fantasy refers to the mental images of things and situa-
tions out of the actual experience of the player. Malone
discerns two types of fantasies: Extrinsic fantasies that
depend weakly on the skills used in a game, and intrinsic
fantasies that the player feels while using a particular skill
in the game.

(c) Curiosity arises from incomplete or contradictory knowl-
edge. Sensory curiosity regards the attraction toward
changes in the environment, while cognitive curiosity
concerns the expectation of reaching a higher level of
cognitive structures.

Building on Malone’s work, Gee [11] identified 36 learning
principles crucial in video games and learning contexts, which
we present in summarized form to identify the salient traits:

• Learning Process: the learner creates a mental model
of the domain, and probes it to test her knowledge. The
cycle of creating hypotheses and testing them is a crucial
element of games and learning processes, and is present
in humans already at the infancy stage.

• Sources of Knowledge: Learners acquire knowledge
through several modalities including images, words,
sounds, symbols, interactions, abstractions, etc. All this
leads to an enrichment of the person playing.

• Path to Competence: Learners reach some achievements
for which they receive intrinsic rewards, which also works
as feedback. The learning process is performed slightly
outside the comfort zone of the learner, so that the learner
perceives the activity as “challenging but not unfeasible”.
This connects to the concept of “Flow”, defined by
Csikszentmihalyi [12] as the mental state of operation in
which a person performing an activity is fully immersed
in a feeling of energized focus, full involvement, and
enjoyment in the process of the activity.



• Safe Environment: The environment where leaners op-
erate is designed to keep low risks for each action, to
allow exploring without facing serious consequences. In
essence, dying in a game is not a bad thing, because it
usually leads to learning. Moreover, the environment is
disclosed gradually, to let the learner discover new parts
of the subject domain, thus also feeding curiosity.

• Learning Progress: The process of learning begins with
a simplified image of the real domain. What the appren-
tice learns in earlier steps leads to abstractions of the con-
cept that she can use again in similar situations. Learners
build their knowledge “bottom-up”, starting from basic
skills, and making up hypotheses when a more complex
case shows up, exploiting what they previously found.
This feeds again curiosity and reinforces self-confidence.

In “Reality is Broken” [2] McGonigal suggests that the use
of game elements can help making daily life and reality more
interesting and engaging. She defines games as a combination
of a goal, rules, feedback and voluntary participation; this
makes games perfect environments to (im)prove our own
capabilities. Pushing our skills to their limit, and then some
more, means “producing hard work”, and provide a sense
of achievement that is the exact opposite of depression. The
immersion created from voluntary work can improve the mood
for hours or days, “because when the source of positive emo-
tion is yourself, it is renewable” [2]. McGonigal identifies four
crucial elements that should be craved to achieve happiness:
satisfying work, hope of being successful, social connection,
and meaning. The use of games elicit positive participation
towards a common interest, thus helping the development
of communities. To improve the engagement in reality, she
proposes a sustainable engagement economy built around
intrinsic rewards. She defines collaboration as the sum of
three types of concerted effort: cooperation (acting voluntarily
toward a common goal), coordination (synchronising activities
and resources), and co-creation (producing a result together).

Massively multi-player online games are illuminating em-
bodiments of this concept: Even when competing for re-
sources, the players constantly collaborate in the definition
of the game world. McGonigal also proposes the idea that
different affinity groups can collaborate and give value to the
different qualities of each community, to create a superstruc-
ture that is able to solve problems that each single group
would not be able to tackle. “A superstructure brings together
two or more different communities that do not already work
together. A superstructure is designed to help solve a big,
complex problem that no single existing organization can solve
alone. A superstructure harnesses the unique resources, skills,
and activities of each of its subgroups. Everyone contributes
something different, and together they create a solution” [2].

In essence, games enrich gamers and provoke positive
emotion, which, if leveraged, help to structure experience
and provide a powerful tool for inspiring participation and
motiving hard work.

B. Gamification: Principles, Promises & Perils

Werbach and Hunter summarized the positive effects of a
well designed gamification system as [3]: i) Inherent relat-
edness, i.e., being part of something bigger than ourselves;
ii) Rewards for doing good, i.e., doing activities that are self-
rewarding; iii) Behaviour change, i.e., getting people doing
something that they did not use to do or they did not engage
in, changing their habits.

According to Huizinga [13], there is a virtual line that
separates the game world from the real world. When a person
is in this magic circle, the game rules matter over the rules of
the real world. The purpose of gamification is to put the user
in the magic circle, emphasizing the attitudes of voluntariness,
learning, problem solving and exploration.

The most common form of feedback used in games
is the PLB Triad, where PLB stands for Points-Badges-
Leaderboards. Points, Badges, and Leaderboards are also
widely used in gamification systems, because they appear to
work moderately well as extrinsic motivators. To introduce a
gamification layer on a real or virtual system, the first step is
to understand whether there are the right assumptions to make
it successful, which Werbach and Hunter [3] identified as:

• Motivation: Where to derive value from to encourage a
certain behaviour?

• Meaningful Choices: Are the target activities sufficiently
interesting?

• Structure: Can the desired behaviors be modeled through
algorithms?

• Potential Conflicts: Does the game avoid tension with
other motivational structures?

This schema must be considered in every phase of the gam-
ification of a system, and used to verify the ideas that survive
the review process. Depending on which game dynamics and
techniques the game designers exploit, a gamified system takes
a particular shape, often in the following forms:

• Inducement Prizes: They define a competitive game
environment concretized into a contest to motivate ef-
ficiency, creativity, and flexibility. Prizes can assume
several forms, where the PLB Triad is most frequent.

• Collective Action: This is a collaborative game context
where people come together and accomplish a task. The
main requirement is that the tasks can be split up to
exploit “crowd sourcing”.

• Virtual Economies: Small, complete and structured
economies that arise in virtual worlds. A well-known
example comes from loyalty programs (like the ones of
supermarket chains). The risk of crossing the line between
virtual and real economies is often underestimated.

Adopting a gamification system means modifying the be-
havior of people and influencing their routine, which, as we
have seen in the introduction might actually backfire. As such,
it represents a delicate matter that may negatively impact well
functioning parts of the system. Put simply: Adding a reward
to a boring task may help to motivate the user, but will not
turn it into an engaging activity.



Similarly, gamifying an already interesting activity may
move the focus from the activity itself to the reward system.
For example, Grant and Betts [14] carried out a study on the
behavior of Stack Overflow users, and showed that many new
users work intensively to acquire the easiest badges as quickly
as possible, with increased user activity immediately before
the awarding of a badge and a strong activity decrease in the
period afterwards.

In general, gamification succeeds at the workplace only
when it is well designed and the employees truly consent to
it. Also, it was discovered that the most reliable predictor of
consent to Gamification comes from the fact that employees
are used to play games in their free time or not: A person used
to gameplay has less difficulties in embracing the experience
of the game, catching its rules, and engaging it [15].

Alfie Kohn raised serious concerns about the use of re-
ward systems and virtual economies in education and the
workplace [8]. He argues that rewarding a certain behavior
educates the user towards obtaining the specific reward, hiding
the actual goal of the task. It is also possible that the users
perceives the rewards as a controlling mechanism, thus gener-
ating repulsion instead of engagement. While this is a crucial
aspect to consider, we believe it is still possible to successfully
use gamification to improve a system. If we consider the
StackOverflow example, the points obtained by answering a
question are used to build a reputation system that is used
through the platform to identify experts. At the same time, the
points awarded are subject to a quality review from the users,
who concur in the evolution and the quality of the platform.
As such, if gamification is used to enrich existing interactions,
rather than to force users to perform boring actions, it can be
a valuable tool in growing a successful community.

The last set of perils we discuss are of a legal and moral
nature, but not necessarily connected to the professional world.
First, there is the question of privacy, as gamified systems and
contexts can be misused to collect a vast amount of informa-
tion about the players. Second, as stated by Bogost3 in an essay
entitled “Exploitationware”, gamification might induce people
to do things that are not really in their interest, i.e., proposing
to “replace real incentives with fictional ones. Real incentives
come at a cost but provide value for both parties based on a
relationship of trust. By contrast, pretended incentives reduce
or eliminate costs, but in so doing they strip away both value
and trust.” Third, gamified systems can be easily tweaked to
implement deceptive marketing and advertising. Last, but not
least, since players spend vast amounts of time and effort in
building up their avatars/personas, they conceptually “own”
them, which in turn might lead to unforeseen issues about
property and ownership. This constitutes a new area of law,
further complicated by its borderless nature.

Overall, gamification is a double-edged sword, but it is
a rising phenomenon, which must be better understood to
leverage its great potential.

3See http://www.gamasutra.com/view/feature/134735/persuasive games
exploitationware.php

III. GAMIFYING SOFTWARE ENGINEERING:
(NOT) AN EASY GAME?

We use a concrete running example to explain why gamify-
ing software engineering areas is far from trivial. The running
example is the one of bugs, in terms of reporting, tracking,
and fixing them. Bug tracking systems (also known as issue
trackers) are being used to store and manage bug reports
since decades now. In short, developers and users use them
to report new bugs they encountered, by providing data about
the encountered bug, the situation in which it came up, etc.
They report those bugs using web-based systems, such as
Bugzilla and Jira. Developers then take up the bug report, try
to understand it also by reconstructing the context, and then
provide fixes and patches that hopefully correct the reported
bug. Despite their many benefits, modern bug trackers are far
from perfect, and suffer from redundant reports, incorrect data,
and in general a poor quality of the bug reports, as pointed out
by a number of researchers [16] [17]. Moreover, open source
communities suffer from lack of participation by the users in
this context. For example, at the time of writing, the Mozilla
Firefox4 bug tracker contains ca. 20,000 open bug reports of
which over 90% have not been assigned to anyone.

Enter gamification. How can it be used to ameliorate the
situation, and can it be used to increase participation from the
community as well as lead to higher quality reports?

A seemingly simple approach is to spread over bug trackers
a layer of points and badges, and every week post leaderboards
with the most active reporters and fixers. We believe that
such an endeavour would at the beginning be successful, and
probably there would be an increased participation of people.
However, soon enough what gamers call “pointsification”
would kick in, which is the focus of players on the rewards
(the points, the badges) and not on the actual (technical and
intellectual) achievement that led to the rewards. Put simply,
soon enough there would be users who would start reporting
non-existent bugs just to notch up their leaderboard ranking.
This would lead to a situation, similar to the one observed
in StackOverflow by Grant and Betts, where people would
stop reporting/fixing certain bugs as soon as they obtain the
corresponding achievement. The pun being intended, it would
be “game over” for such a gamification approach.

The real goal of gamification has to be a different one,
namely to improve the organization of the community, by
helping and stimulating experts, by highlighting important bug
reports, by making visible important achievements such as the
closing of a difficult bug report, and in general by fostering
and maintaining motivation over a longer period of time.

We need an approach which supports what McGonigal [2]
identified as the 4 key aspects of gamification: Satisfying work,
the experience/hope of being successful, a social connection,
and a deeper meaning. Next, we present our framework for
the gamification of software engineering, which we distilled
from a vast literature review [9]. Due to space constraints we
discuss and present only the salient underlying theory.

4https://bugzilla.mozilla.org/



IV. SOFTWARE ENGINEERING GAMIFICATION
FRAMEWORK

Our framework is an extension of Taje’s layered approach
to game design5. Taje lists six layers, from lowest to higest,
named Token, Properties, Dynamics, Goal, Meta, and Psycho.
Game design elements can be mapped into the six layers and
interact with each other by means of interactions. Our goal
is not to describe Taje’s approach here, but to describe our
framework. The reason is that Taje’s approach targets game
design in general, while our framework targets gamification
and in particular software engineering gamification. In essence,
Taje’s layers are a subset of the components of our framework.

Activity
Role & ID

Description

Building Blocks

Analysis
Rationale

Emotional Goal

Implementation
Actors

Dynamics

Meta

Hazards

Testing
Target

Methodology

Expected Results

Actual Results

Fig. 1. Gamification Activity Template

Our framework is based on the concept of Activity (depicted
in Figure 1), which is composed of Analysis, Implementation,
and Testing. Each activity pertains to a specific user type (role),
present in gamification systems, which can be i) Observer,
who acts in read-only mode and does not contribute anything
new, ii) Writer, who only interacts by modifying existing
contents and iii) Solver, who accomplishes the objectives of
the gamification system. People interacting with a gamification
system dynamically switch between these roles.

An Activity consists of an ID formed by the initial letter
of the role plus an incremental number (e.g., the first activity
listed in Writer has the ID “W1”), a brief description, and a list
of pertinent gamification building blocks (which we describe
later). Each activity is structured in the following way:

1) Analysis: Each activity within the gamification environ-
ment must come with an easily understandable rationale
to connect to the global objectives of the environment,
and the emotional goal we want to achieve in the people.

5http://www.gamecareerguide.com/features/355/gameplay deconstruction
elements .php

Without this analysis step, a gamification effort risks
turning into a random set of arbitrary decisions.

2) Implementation: To implement an activity the actors
must be known and we need to understand which gamifi-
cation dynamics they will be involved in, which represent
the tactics to engage people in a specific activity. This
is instantiated with game components we call meta,
following Taje’s nomenclature. Last, one must ponder the
hazards that can arise from a game structure (algorithmic
issues, misbehavior, hardware requirements, etc.).

3) Testing: The last component is devoted to testing the
activities, where it must be understood which entities
are the target of the testing, which methodology can
be used to perform the testing, and lastly, which the
expected results and the actual results, to facilitate an
iterative approach to the development of a gamification
environment.

This description of the framework is given from a concep-
tual point of view, obtained through several iterations and pilot
tests we do not describe due to space constraints. Before we
can provide concrete examples of how the framework is to be
used, we need one last missing and fundamental piece: Each
activity hinges on one or more building blocks, which also
denote the particular categories of gamification it belongs to.

A. Gamification Building Blocks

The ten building blocks we present here have been identi-
fied during the construction of several software engineering
gamification environments we have constructed, and which
we briefly present in a latter section. We do not claim the
list of building blocks is exhaustive, but after constructing
the aforementioned gamification environments we did not see
other building blocks emerge from our efforts. The build-
ing blocks are denoted by a series of aspects recurrent in
the literature: According to Werbach and Hunter players go
through a journey, progressing through an environment, first
by “on-boarding”, then by “scaffolding”, and later by achiev-
ing “mastery” [3]. Adopting Lazzaro’s “keys to emotions”
[18], good emotions triggered by solving puzzles, accepting
challenges, and designing strategies are elicited by hard fun.
Moreover, the people factor, which stems from socializing
and working with people and giving/receiving gratitude is
fundamental in community-based gamification environments.
Embracing Seligman’s concept of resource building [19], it is
beneficial to provide some form of avatar of the player which
matures and grows as the gamification environment is being
explored. This in turn is tied to the concept of “leveling up”
described by McGonigal [2].

Before coming to the ten building blocks, one further
consideration: As opposed to existing gamification environ-
ments, one which is tailored for software engineering must
include the possibility of dynamically adapting itself. Since
software systems are developed for very long periods of time,
even decades, an environment should feature the possibility
of removing existing rewards and adding new ones as the
environment is being used.



Portal: When users cross the boundaries of the
gamified platform, they register a profile and provide

information that describes them to the virtual community.
Despite being a trivial operation, it has a relevant feature: It is
the very first action that users accomplish in entering the new
world, and should be acknowledged with a reward. Example:
Bob registers to the Bug Tracker and receives a “Welcome”
badge.

Production: After registering, users must become
immediately productive in the environment, because
delays in starting using the platform may result in a

drop of interest and cause users to quit. We split this block
into three sub-blocks, according to the ways in which users
have the possibility to produce content and receive rewards.

• Symbiosis: performing an activity that directly or indi-
rectly helps someone else’s activity or state. Acting well
in favour of others benefits both parties. Example: Bob
provides useful comments to a bug being handled by
someone else.

• Narcissus6: doing something to self-improve one’s posi-
tion in the community. This action helps users to under-
stand the structure and mechanisms of the community.
Example: Bob provides his first bug fix.

• Hive: proposing an idea to improve the platform and
community life. Example: Bob proposes to introduce a
“Bug of the day” notification mechanism.

Bravery: In the production process, users may
attempt hard tasks. The more skilled they become,
the more confidently they will attempt to achieve

bigger goals. Such bravery leads to important achievements
and should be equally rewarded. Example: Bob fixes an old
bug that made many people despair and is awarded by the
community with an “Unstoppable” badge.

Scrum: In Rugby, Scrum is a way of restarting the
game: Players bind together in order to make the
other team collapse and take possession of the ball.

The key is to rely on the strengths of everyone. Cooperating,
collaborating, sharing useful tools, competing against, socializ-
ing with other community members is intrinsically motivating.
The system should reward and promote teamwork. Example:
Bob spends time assigning bug reports to users that he knows
to be expert in the area, or tagging easy bugs for newbies.

Chameleon: While gaining skills and experience,
the user may do something unique, spectacular, or
never tried before. The environment should react by

introducing a new achievement and release an ad-hoc reward,
which becomes part of the gamification library of the system
and achievable by other users. Conversely, if a specific reward
has never been reached by any user for a long time, the reason
might be its impracticability; the system should dynamically
remove such an achievement from the library. We affiliate such
a dynamism with the ability of chameleons to change their
own skin colour according to the surrounding environment.

6Narcissus was a Beotian hunter in Greek mythology who was so proud
of his feats that he fell in love with his own image reflected in a pool.

Example: Bob closes five bug reports with a single fix. The
system administrators create a special “Epic” badge, and add
it to the possible badges users can achieve.

Thunderbolt: When users become experts, with
many obtained rewards, they might fall into a state
of boredom. The result is decreased motivation and

productivity. To awake them from inactivity, the system should
hit them like a thunderbolt with an announcement and direct
them toward a new challenge, such as a one-week long
quest where contestants can be awarded custom prizes. This
should spur many users to participate. Example: Bob has not
participated in any bug fixing activity for the last month. He
and similar users are notified about a complex bug and a
bounty for fixing that bug.

Phasing: Users may perform actions in the virtual
world that, in reality, produce a permanent impact
on the surrounding. Phasing suggests to mutate the

environment according to the progression of each user’s ex-
pertise. Two users, at different stages of their progression see
different representative phases of the same scenario and can
interact with it in different ways. Example: Bob tags bugs
that are old and inactive, but still interesting. The adminis-
trator then creates a new section highlighting such bugs, and
acknowledges the contribution of Bob.

Beautification: Appearance, even if only virtual,
is important to many. The users’ avatars change
appearance over time and become more appealing

as they progress in the environment. In the opposite case
of inactivity, the appearance of the avatars starts to slowly
degrade. Example: As Bob becomes an expert bug fixer, his
avatar (for example depicted as a warrior) is decorated with
better clothes and weapons. After a period of inactivity due to
his (real) holidays, Bob’s avatar is depicted out of shape and
with a broken sword.

Champagne: Since achievements inside the magic
world are important to users, they want to celebrate
their success not only within the virtual world, but

also in the real one. Example: Bob is looking for a new job
and on his curriculum puts a link to his profile in the bug
tracker, as proof of his expertise7.

Ascension: A game usually has an end. It
is intrinsically rewarding and fulfilling to see the

words The end on a screen, even though the actual satisfaction
comes by what was done along the way. This building block
does not come with a reward, as otherwise inactivity might set
in. If users collected vast amount of rewards and participated
in the community, they should be rewarded in the real world
as well. Example: Bob has been a productive bug hunter for
many years, and is rewarded by the environment admins by
being invited to become also an admin.

Putting everything together. In the following we provide
two concrete examples of gamification environments we have
been developing.

7Mozilla is already proposing a similar concept at http://openbadges.org/



B. Example I: The Myth and De-Bug

The objective is to develop a gamification system for a
bug tracking system. Fixing a bug is like struggling against
a monster that threatens a village. This image inspired the
overall theme of ancient Greece, full of heroes, gods, legends,
and epic battles with mythological beasts. We set the following
goals for a gamification system in bug reporting:
(1) improve the quality of bug reports: we want to stimulate

users to include meaningful information. Zimmermann et
al. showed that some elements are crucial to ease the fixing
process, such as stack traces [17].

(2) stimulate the participation of the community: we want
to create a friendly environment for newbies and with
engaging activities for experts.

(3) ease the fixing process: we want to reduce the time
spent dealing with cumbersome information, to allow
developers to spend their time in fixing the defects. We
want encourage users to deal with unsorted data in the
tracker, like assigning bug reports to the appropriate user,
closing duplicate reports, or highlighting important bugs.

The Myth and De-bug reflects the journey of a player
that begins with the on-boarding phase, continues with some
scaffolding, and terminates with mastery. We produced a large
set of activities, such as the one in Figure 2.

Due to space reasons we cannot depict all activities; the
goal is to clarify that creating activities is a lengthy process
which must be done in an iterative way.

As the player signs up for the game, she enters
the magic world of ancient Greece and receives her
first reward, the Newbie badge and a small amount

of drachmas (the ancient Greek currency), with which the
player can buy her avatar some equipment. The game awards
different amounts of Drachmas according to the difficulty of
the accomplished task. This first operation is trivially easy
(just registering and give some personal information for the
user profile), but it has a special feature: It is the first action
that the user does to get into the platform and the first active
contact with the community. Moreover, receiving immediately
an unexpected reward works as a bait for the new player who
is motivated to add another prize to her collection as soon as
possible.

The second unexpected reward is quite easy to ac-
quire too: Becoming conscious of the rules holding
in the world of Ancient Greece, the player earns

the Briefed badge. She does so by going through a tutorial
which explains the bug tracker and the rules of the game.

The system assists the player along the whole path to
mastery: It directly furnishes to the user practical tasks that
she can afford with her current skills. While writing a bug
report, the system supports the player by using mandatory
box fields asking for specific information or suggesting where
to look to find it. It helps reporters to not forget essential
information and provides some scaffolding to boost player to
mastery. Motivation is a precious good that some techniques
are able to elicit, but at the same time can be shut down easily.

Activity
Role & ID S4

Description Re-opening a closed bug

Building Blocks Bravery, Scrum, Champagne

Analysis
Rationale A bug that was not solved properly has been re-opened because it needs additional 

work

Emotional Goal Re-opening a closed bug is a brave feat. If someone closed thought to have solved it 
and did not, probably that bug is hard.

Implementation
Actors The system and the community

Dynamics Recognizing that a bug is still unsolved is already an important point that needs a 
reward. Additional rewards come from being able to actually solve it.

Meta As the user re-opens the bug, she earns 10 Drachmas and the event is published on 
the homepage of the platform. If the user also expresses the interest in trying to solve 
the bug:!
1. The system sends the bug report to 10 expert users (having more than 150 
accumulated Drachmas) and asks to estimate a time in days needed to solve it 
(considering not more than 3-4 hours of work per day). !
2. The least and highest returned values are removed, and the system computes the 
average of the other eight values. This averaged value is communicated to the user so 
that he knows that the community expects her to solve the bug in that number of days.!
3. When she solves the bug, her "Heracles" badge assumes a colour computed as the 
mathematical function of how many days totally other past programmers worked on that 
and how long it has been closed. Moreover, if she managed to solve it within the 
estimated time, she earns 50 Drachmas. If she employs 1 week more, she earns 40 
Drachmas, and so on. !
4. The user can share her success on her favourite social network. !
After the 5th week beyond the estimated time, the user gets no Drachmas and her 
badge remains white. At that time, she must declare to the community whether she 
gives up, or wants to assign the bug to another user, or wants to ask an extension of 
the available time. If she decides for the last option, she needs to publish on the bug 
report exactly what she did and what she thinks should be still done to solve it. The 
evaluation with the 10 expert users is done again and the user now has that time to 
solve the bug. The user can ask consecutively an extension up to 3 times, then she 
must give up or assign it to another programmer.

Hazards The bug was solved and should not have been re-opened in the first place. An expert 
user should check first whether re-opening is the right thing to do.

Testing
Target Average Time period to fix re-opened bug before gamification, and after the introduction 

of the gamification layer.

Methodology Compute the respective averages times and see whether the time decreases after 
gamification.

Expected Results Average time to fix re-opened bugs has decreased.

Actual Results to be determined

Fig. 2. Concrete Gamification Activity

A single apparently insignificant demonstration of disapproval
from some other member of the community can hurt a newbie.
The Myth and De-Bug avoids such an effect by impeding
questions and answers with scores smaller than 0 and avoiding
the so-called “Dislike” system.

A point of strength of this gamification layer is that
everyone, from the new user up to administrator,
has the chance to propose improvements for the

environment. The player whose proposal for an extension of
the environment has been accepted by the community, gains
the Phidias badge.

An open problem of gamification communities
(for example Stack Overflow), is keeping the mo-
tivation of users high or to recover it when it

naturally decreases [14]. We designed badges that level up
proportionally with the amount of work performed, e.g., Tomb
Raider is a badge achievable when a developer explores old
posted reports, finds something interesting, and sets the status
of the report back to active.

Heracles8 is a badge of the same nature of Tomb
Raider, but is awarded for closing re-opened bugs.

8Heracles was the greatest hero in Greek mythology. He had incredible
courage, physical strength and ingenuity. Among the many ventures attributed
to him, he defeated the Hydra monster, a sea serpent with nine heads. Every
time someone cut one away, it grew anew. This is a conceptual parallelism
with what happens with closed bugs that are reopened.



Our environment also deals with the issue of balance. If
a gamification layer is too linear in terms of dispensing mere
(and in a way meaningless) points, the danger of pointsification
comes up: Users start to hunt for points by performing mean-
ingless and contradictory actions, such as re-opening bugs that
do not need to be reopened. The building block Scrum is
crucial in this case, which means to rely on the community,
for example by setting time limits for specific activities.

Also, our environment does not make large use of leader-
boards because they are gamification elements that, in a
number of cases, may demotivate players. We designed the
leaderboard “Twenty Top Hoplites of The Week” by relying
on the fact that having a considerably high work rate is an
occasional ability. Since a developer cannot be constantly
productive, the leaderboard thus becomes dynamic.

When users are on the leaderboards for an ex-
tended period of time, they gain the Achilles9

badge and an amount of bonus Drachmas to
refurbish the avatar.

To foster epicness, one of the traits identified by McGonigal
as instrumental to gamification, our environment provides a
number of places where players can acknowledge the feats
of other players. This happens for instance when a developer
closes a difficult bug, or the community reaches a landmark
(e.g., closing the 1000th bug) collaborating as a team. The
environment also features specific leaderboards, in the form of
halls of fame, where important contributors are acknowledged
or where productive former newbies are entered into the
category “The New Greek Legends”.

The Myth and De-bug is an instance of inducement prizes:
Its goals are efficiency, development of creativity, and stimu-
lating collaboration among the community even while com-
peting. It is also “cheap” because it only involves virtual
goods, and pays a deep attention to balancing issues. We just
described a possible instantiation of this gamification system.
We could take exactly the same framework, substitute the
name of the badges and imprint the game toward modern
heroes (Spider Man, Batman, Superman, etc). They are just
fancy names, and we can use the fantasy we like to shape the
same gamification dynamics.

C. Example II: The Empire of Gemstones

The first example was developed in the context of a novel
bug tracker we are implementing [20]. We also devised a
number of other software engineering gamification environ-
ments, which led to the distillation of the building blocks
discussed previously. We now present another case study of a
gamification layer for a software engineering context: Modern
Code Reviews. Due to space limitations we do not present the
solution at the same level of detail as the previous example,
but focus here mostly on a concept that was only sketched in
the previous section: leveling up.

9We choose for this badge the figure of Achilles, the king of the Myrmidons,
son of Zeus and Thesis. The parallelism with the badge comes from the fact
that his most common epithet in Homeric works is “swift-footed” because
Achilles was known to be very fast at running.

Code reviews is a software engineering practice that consists
in manually reviewing source code written by other people, to
verify and improve the quality of the code. While the effective-
ness of this method has been proven during the years [21], this
practice is often considered expensive, cumbersome, and, as
such, difficult to adopt. Bacchelli and Bird proposed Modern
Code Reviews [22], a code review approach that is informal,
tool based, and performed on a frequent basis. They developed
CodeFlow, a tool where the user can annotate the source code
and interact with other users with a chat. A developer that
wants to propose his code for review has to create a package
with the changes, write a brief description and submit it to the
CodeFlow service.

The area of code reviews still has many open questions,
but the CodeFlow platform represents the ideal environment
to develop a gamification layer to stimulate the amount of
motivation necessary to turn code reviews into a habit.

In the context of a code review tool we are currently
building in the research group, we designed a gamification
environment named The Empire of Gemstones, to exploit the
parallelism between collecting gemstones and improving the
quality of the code. We employ gems as a virtual currency to
reward positive feedback while using proposed solutions. The
number and the type of gems compose a reputation system
based on noble titles, used by the system to rank users, which
also facilitates the finding of experts in specific areas.

It has been shown [22] that teams use code reviews for
the following purposes: (1) finding defects in the code; (2)
improving the code; (3) finding better implementations; (4)
transferring knowledge in the group; (5) increasing the team
awareness and transparency; and (6) sharing code ownership.

Given the strong implicit collaborative nature of code review
tools, we pose a strong accent on blocks that expect interaction
with other users, like Scrum and Champagne. However, also
the motivation of single users can be catalyzed, for example
by rewarding quality code, thus suggesting the use of Bravery
and Thunderbolt blocks.

In parallel with a set of badges devised with a similar
procedure to the one used to build The Myth and De-Bug,
we introduce a “leveling” mechanism to provide users with a
feeling of progression and growth while reviewing the code:
Leveling is one of the main drivers of gamification systems,
as it fosters positive competition among the players.

By reviewing other’s code, a user gets a gem. The kind of
gem depends on the number, size and difficulty of the reviews.
Each gem has a different value according to its rarity, as we
see in Table I.

For example, a reviewer may check some code that includes
changes for fifty lines of code over five different files, for
which she receives a Jade. Another user reviews three small
changes, each one involving only one file, and she receives
three Quartz. Reviews that spot bugs, that propose a better
implementation of the reviewed code (goals 1, 2 and 3)
get higher value gems, but since reviewing code also means
knowledge transfer (goal 4 and 5), users get a reward even if
the review causes no changes.



TABLE I
POINTS ACQUIRED PER 1 GEMSTONE.

Gemstone Points
Emerald 10
Sapphire 9
Tanzanite 8
Aquamarine 7
Ruby 6
Jade 5
Citrine 4
Topaz 3
Amethyst 2
Quartz 1

TABLE II
REQUIRED NUMBER AND TYPE OF GEMSTONES TO OBTAIN NOBLE TITLE.

Noble Titles
Family Prince Duke Marquis Count ViscountBaron Knight
Emerald 27 21 16 12 9 6 3
Sapphire 34 27 21 16 12 8 4
Tanzanite 41 33 26 20 15 10 5
Aquamarine 48 39 31 24 18 12 6
Ruby 55 45 36 28 21 14 7
Jade 62 51 41 32 24 16 8
Citrine 69 57 46 36 27 18 9
Topaz 76 63 51 40 30 20 10
Amethyst 83 69 56 44 33 22 11
Quartz 90 75 61 48 36 24 12

Submitting code for review implies willingness to collabo-
rate and accept critics, an not being protective of her code (goal
6). We decided however not to assign gems depending on the
outcome of the review to the submitter, to avoid pointsification
and because that would suggest an idea of code reviews
begin judgmental, which in the long run would discourage
a user from submitting his code for review. A submitter can
however still receive badges for particular behaviors, like the
Collector badge for users that submit regularly their code, or
the Houskeeper for users that submit large numbers of reviews
in a short time.

By collecting gems, a user can grow his estate and obtain
noble titles which reflect the expertise level in the community,
as depicted in Table II. For example, a new user in the team
is reviewing many small changes to understand the project he
is working on. He then collects many Quartz, slowly being
promoted to Knight after 12 reviews, and Baron after 24.

The avatar of the player in this environment is then also
depicted in a gameful way, such as a house which gets more
beautiful as the player obtains more gems. In the code review
tool, these avatars could then be shown to other reviewers
when they log into the tool.

As we anticipated, the leveling mechanism is useful in
stimulating positive competition among team members. Given
the context of code reviews, which by definition happen
inside the same team, company or community, we believe
that the level system is particularly effective in leveraging the
interpersonal bonds and endorse motivation in improving the
quality of the code.

V. EVALUATING GAMIFIED SYSTEMS

Once a system is gamified, we need to be able to measure
the impact of the gamification, and how much it contributed
to reach the business objectives. It is crucial not to confuse
business objectives with game objectives: with the coexistence
of “serious” and “fun” layers, it is easy to exchange the goals
of the two aspects, thus misjudging the effects.

In building our framework, we included a testing section,
whose purpose is to decide at design time a procedure to
state how successful the game elements applied to each single
activity are. But, a system is more than the mere sum of all its
parts: As such, testing all the single elements does not imply
the success of the whole gamification system, exactly as in
software development we need integration tests.

We propose five methods to assess the general performance
of the gamification on top of a software engineering context:
success metrics, analytics, conflicts, jen ratio and survey. The
first three focus on technical aspects to consider the business
objectives, while the the last two consider emotional aspects.
Due to their subjective nature, we cannot get a precise measure
of emotional response of the users and compare the obtained
values in a consistent way. The relative metrics have then to
consider the imprecise nature of the data they deal with.

Success Metrics: The first approach is to define a set of
goals at design time, and verify them after the system has
been in production for a while. We recommend to make a
list of the goals of the gamification system, define success
metrics (number of new users in the last month, average
activity increase per user, etc.) tailored to specific activities and
verifiable with usage data. A long enough timeframe must be
used to perceive a noticeable change: People’s habits take a
while to deal with novelties. A significative amount of data
must be collected before and after the introduction of the
gamification layer to enable before/after testing.

Analytics: A useful metric is represented by the measure
of users interacting with the enviroment: Daily Active Users
(DAU) is the number of unique users that interact with the
software tool during a day, while Monthly Active Users (MAU)
is the average number of unique users that interacted with the
software tool in the previous 30 days. By computing the ratio
DAU
MAU we have the trend of usage of the software tool in a
given moment. The result of such a ratio goes from 0 to 1: It
is close to 1 when the tool is engaging, and it is close to 0
when its popularity is decreasing. DAU

MAU is a relevant parameter
to keep under observation because, if it increases the number
of active users is growing; if it decreases they are decreasing.

Conflicts: Some gamification elements can create conflicts
with existing elements on the system. Listing and prioritizing
the conflicts, also by listening to the users through forums
and mailing list, is helpful. If a conflict persists, the involved
gamification elements should be pulled out of the environment,
as user dissatisfaction can be harmful to the whole community.

Jen Ratio: Establish two sets of interactions in the user
community: positive interactions (e.g., virtual gifts, acknowl-
edgements), and negative interactions (e.g., misbehaviours,



rude comments). Compute the Jen Ratio: total positive inter-
actions among users over the total negative interactions, in a
given period of time and context. The outcome is between 0
and 1. The jen ratio assesses how positive the attitude of the
users is: the closer to 1, the better the social well-being of the
community.

Survey: Selected users, of all expertise levels, should be
periodically surveyed, where key questions should not only
regard technical aspects, but also emotional aspects.

Beyond the use of these metrics, it is important to perform
an evaluation on the effective gain of the system, to quantify
how the use of gamification impacted the activity of the users
and if it brought actual benefits. For example, in a bug tracking
system we can measure the number of bug reports opened and
closed every day, the average duration of a bug report and the
number of bug reports that a user examines. However, it is
clear that such metrics are domain specific, and have to be
calibrated for each different gamification context.

VI. CONCLUSION

We presented a critical overview on the relevant literature on
gamification, and proposed a framework to support the design
of a gamification layer to support software engineering tasks.
We showed how to implement practical actions to successfully
gamify a system, and we distilled ten essential building blocks
that represent basic elements to be considered when design-
ing gamification activities. We then discussed two example
software gamification environments we are currently building,
highlighting a number of challenges. Last, we outlined a
proposal on how gamification systems can be evaluated.

A. Reflections
The examples in Section IV hint at a fact that should not be

disregarded about gamification: To create such environments
is a far from trivial endeavour. The reasoning that goes
into creating thematic environments, the way that leveling is
handled, how and when awards and badges should be assigned,
is a strongly iterative process. One might be tempted to bypass
such a labor-intensive work by using the simplest solution,
which is to award points and to base the leveling on such
points. However, apart from the danger of pointsification, there
is another risk, which we define as “stalling”: If the gamifica-
tion layer is not constantly revisited, maintained, and evolved,
it risks to quickly become obsolete, and therefore will not only
be ignored by the users, but it might even cause decreased
participation. Last, there is also the issue of adoption: Since
many software engineering activities are done with tools that
come from vendors or open-source communities, one would
have to convince those to introduce the gamification layer on
top of their tools. It is doubtful that this would happen if there
is no substantial evidence that the gamification layer actually
works, which brings us back to the concern of evaluating such
environments.

B. Related Work
There have been few other efforts in this direction so far.

Passos et al. [23] proposed to gamify the phases of software

lifecycle by splitting the whole process into tasks, and setting
achievements for their completion. While this is an interesting
approach, it is essentially a pointsification, and as such puts
too much emphasis on the rewards, thus being ineffective
on the long run. Singer and Schneider performed a study
on the gamification of commit messages [24]: they managed
to influence the workflow of the students in the experiment,
improving the workflow. They however received both pos-
itive and negative comments. Dubois and Tamburelli [25]
pointed out that software projects often produce mediocre
quality artefacts, do not respect the terms for milestones, or
exceed the financial budget. They claimed that gamification
could represent a solution to the issue, but only outlined a
possible approach to gamification based on the three steps
analysis, integration, and evaluation. Probably still being in
the inception phase they did not provide concrete suggestions
or a systematic set of recommendations.

We believe this paper provides a starting point to approach
the gamification of software engineering in a systematic way
and also provided recommendations on how to evaluate it.

C. Future Work

We composed the gamification layers presented in this paper
as part of the process to understand the basic concepts of
gamification and practically see what is meaningful or what
should be highlighted as dangerous. The main result of our
work were the gamification framework and the ten essential
building blocks to use as a reference in building the system,
but the presented scenarios are actual software engineering
problems currently investigated by researchers.

The focus of our work revolves around the activities per-
formed by the users. However, further insight can come from
considering the different types of users in a community, to
avoid the negative effect of marginalizing some users. For
example, Vasilescu et al. studied the difference between men
and women in approaching—and leaving—a community [26],
while Koivisto et al. showed how the ease of use of gamifi-
cation tends to decline with age [27].

The solutions developed to build The Myth and De-Bug
were designed with an actual use scenario in mind, and are
being integrated into ShoreLine, a comprehensive platform to
manage bug reports developed for the Pharo10 community.
Pharo is a programming language inspired by Smalltalk, with
an active development and an energetic community. Our hope
is that integrating gamification elements in ShoreLine will
allow us to build a tool where the potential of gamification
is leveraged to foster collaboration and contributions by the
community. In that sense: The game has just started.

ACKNOWLEDGEMENTS

We acknowledge the CHOOSE11 group for the sponsorship,
and the Swiss National Science foundation’s support for
project 146734 “HI-SEA”.

10https://pharo.org
11http://choose.s-i.ch/



REFERENCES

[1] Herodotus, The Histories, 440 BC.
[2] J. McGonigal, Reality is Broken. Penguin, 2011.
[3] K. Werbach and D. Hunter, For the Win. Wharton Digital Press, 2012.
[4] R. Bartle, Designing Virtual Worlds. New Riders, 2003.
[5] B. Suits, The Grasshopper: Games, Life and Utopia. Broadview Press,

2005.
[6] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:

Associations between software development and crowdsourced knowl-
edge,” in Proceedings of SocialCom 2013 (International Conference on
Social Computing), Sept 2013, pp. 188–195.

[7] B. Skinner, Reflections on Behaviorism and Society. Prentice Hall,
1978.

[8] A. Kohn, Punished by Rewards. Houghton Mifflin, 1993.
[9] E. Mastrodicasa, “Ludus opus proficit - a gamification framework for

software engineering,” Master’s thesis, University of Lugano, 2014.
[10] T. W. Malone, “What makes things fun to learn? heuristics for designing

instructional computer games,” in Proceedings of SIGSMALL 1980 (3rd
ACM Symposium and the First SIGPC Symposium on Small Systems),
ser. SIGSMALL ’80. ACM, 1980, pp. 162–169.

[11] J. P. Gee, “What video games have to teach us about learning and
literacy,” Comput. Entertain., vol. 1, no. 1, pp. 20–20, Oct. 2003.
[Online]. Available: http://doi.acm.org/10.1145/950566.950595

[12] M. Csikszentmihalyi, Flow - The Psychology of Optimal Experience.
Harper Perennial, 1990.

[13] J. Huizinga, Homo Ludens. Beacon Press, June 1971. [On-
line]. Available: http://www.amazon.fr/exec/obidos/ASIN/0807046817/
citeulike04-21

[14] S. Grant and B. Betts, “Encouraging user behaviour with achievements:
An empirical study,” in Proceedings of MSR 2013 (10th Working
Conference on Mining Software Repositories), ser. MSR 2013.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 65–68. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487101

[15] E. R. Mollick and N. Rothbard, “Mandatory Fun: Gamification and the
Impact of Games at Work,” SSRN eLibrary, 2013.

[26] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation
and online participation: A quantitative study of stackoverflow,” in
Social Informatics (SocialInformatics), 2012 International Conference
on. IEEE, 2012, pp. 332–338.

[16] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced? bias in bug-fix datasets,” in Proceedings
of ESEC/FSE (7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering). ACM, 2009, pp. 121–130.

[17] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 5, pp. 618–643, 2010.

[18] N. Lazzaro, “Why we play games: Four keys to more emotion
without story,” in Game Developers Conference, March 2004. [Online].
Available: http://xeodesign.com/xeodesign whyweplaygames.pdf

[19] M. E. Seligman and M. Csikszentmihalyi, Positive psychology: An
introduction. American Psychological Association, 2000.

[20] T. dal Sasso and M. Lanza, “in*bug: Visual analytics of bug reposito-
ries,” in Proceedings of CSMR-WCRE 2014 (1st Joint Meeeting of the
European Conference on Software Maintenance and Reengineering and
the Working Conference on Reverse Engineering), 2014, pp. 415–419.

[21] F. Shull and C. Seaman, “Inspecting the history of inspections: An ex-
ample of evidence-based technology diffusion,” IEEE Software, vol. 25,
no. 1, pp. 88–90, 2008.

[22] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), 2013, pp. 712–721.

[23] E. B. Passos, D. Medeiros, P. A. S. Neto, and E. W. G.
Clua, “Turning real-world software development into a game.” in
SBGames. IEEE, 2011, pp. 260–269. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/sbgames/sbgames2011.html#PassosMNC11

[24] L. Singer and K. Schneider, “It was a bit of a race: Gamification of
version control,” in GAS 2012 (2nd International Workshop on Games
and Software Engineering). IEEE, 2012, pp. 5–8.

[25] D. J. Dubois and G. Tamburrelli, “Understanding gamification mech-
anisms for software development,” in Proceedings of ESEC/FSE 2013
(9th Joint Meeting on Foundations of Software Engineering), ser. ES-
EC/FSE 2013. ACM, 2013, pp. 659–662.

[27] J. Koivisto and J. Hamari, “Demographic differences in perceived
benefits from gamification,” Computers in Human Behavior, vol. 35,
pp. 179–188, 2014.


