
Quantitative Approaches in Object-Oriented
Software Engineering

Report on the WS QAOOSE at ECOOP’06

Fernando Brito e Abreu1, Coral Calero2, Yann-Gaël Guéhéneuc3,
Michele Lanza4, and Houari Sahraoui5

1 Univ. of Lisbon, Portugal
2 Univ. of Castilla, Spain

3 Univ. of Montreal, Canada
4 Univ. of Lugano, Switzerland
5 Univ. of Montreal, Canada

Abstract. The QAOOSE 2006 workshop brought together, for a full
day, researchers working on several aspects related to quantitative eval-
uation of software artifacts developed with the object-oriented paradigm
and related technologies. Ideas and experiences were shared and dis-
cussed. This report includes a summary of the technical presentations
and subsequent discussions raised by them. 12 out of 14 submitted po-
sition papers were presented, covering different aspects such as metrics,
components, aspects and visualization, evolution, quality models and
refactorings. In the closing session the participants were able to discuss
open issues and challenges arising from researching in this area, and they
also tried to forecast which will be the hot topics for research in the short
to medium term.

1 Historical Background and Motivation

QAOOSE 2006 is a direct continuation of nine successful workshops, held at
previous editions of ECOOP in Glasgow (2005), Oslo (2004), Darmstadt (2003),
Malaga (2002), Budapest (2001), Cannes (2000), Lisbon (1999), Brussels (1998)
and Aarhus (1995).

The QAOOSE series of workshops has attracted participants from both
academia and industry that are involved / interested in the application of quan-
titative methods in object-oriented software engineering research and practice.
Quantitative approaches in the OO field is a broad but active research area that
aims at the development and/or evaluation of methods, techniques, tools and
practical guidelines to improve the quality of software products and the effi-
ciency and effectiveness of software processes. The workshop is open to other
technologies related to OO such as aspects (AOP), component-based systems
(CBS), web-based systems (WBS) and agent-based systems (ABS). The rele-
vant research topics are diverse, but include a strong focus on applying empirical
software engineering techniques.

M. Südholt and C. Consel (Eds.): ECOOP 2006 , LNCS 4379, pp. 87–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ws



88 F. Brito e Abreu et al.

2 Workshop Overview

23 people attended the workshop. They were representing 18 different organiza-
tions from 10 different countries.

Among the attendants, 6 people were not authors, as it is normally the case in
these kind of workshops. They have asked the organizers to attend the workshop,
which is an additional evidence of the interest raised by this area.

This workshop encompassed 4 sessions, the first 3 bring presentation sessions,
while the last one was a pure discussion session. The topics of each presentation
session were, respectively: (1) Metrics, Components, Aspects (chaired by H. A.
Sahraoui), (2) Visualization, Evolution (chaired by F. Brito e Abreu), and (3)
Quality Models, Metrics, Detection, Refactoring (chaired by C. Calero.

Each presentation, plus corresponding discussion, took around 25 minutes.
Those presentations were based on submitted position papers that went through
an evaluation process conducted by the organizers.

In the final session, a collective effort was performed to discuss open issues
that rose from the three previous sessions and to identify future trends for this
workshop.

In the next three sections (one per session), we will present for each discussed
paper an abstract and a summary of the consequent discussion.

2.1 Session 1: Metrics, Components, Aspects

“Measuring the Complexity of Aspect-Oriented Programs with Mul-
tiparadigm Metric” - N. Pataki, A. Sipos, Z. Porkoláb

The position of the authors, presented by Norbert, is that nowadays multi-
paradigm metrics are necessary to compare programs written using different
paradigms or to measure programs that use multiple paradigms. They defined
a complexity metric, called AV, that can be extracted from programs written
in AOP, OOP or procedural programs. They use this metric to compare the
complexity of design patterns when implemented in Java or in AspectJ. The
conclusion was that thanks to this multiparadigm metric, we can claim that
AOP is well suited for some patterns, but not for others, i.e., increases the com-
plexity in comparison with the OO version. The discussion that took place after
the presentation concerned two points. First, a participant asked whether it is
interesting to adapt a paradigm specific metric to other paradigms or to define
new ones. The position of Norbert is that existing metrics are paradigm depen-
dent. The adaptation can be biased by this dependence. for the second point,
a participant asked if the metric is defined using a model that contains the im-
portant concepts (from the concerned paradigms) involved in the measurement.
Norbert explained that this was the basis of the work. The paper presents the
part that concerns AOP.



Quantitative Approaches in Object-Oriented Software Engineering 89

“On the Influence of Practitioners’ Expertise in Component Based
Software Reviews” - M. Goulão, F. Brito e Abreu

Fernando presented his (and his colleague) position on the importance of exper-
tise in component code inspection. This position is supported by an empirical
study performed using student subjects. Expertise was determined based on
their independently assessed academic record. Inspection outcome was evalu-
ated by the diversity of defects found at two levels of abstraction. As a result, a
significant correlation was found between the two variables. Some participants
questioned the fact that the expertise was determined based on the student aca-
demic results in general and not on components specifically. Although Fernando
recognized that this is an issue, he explained that they consider only software
engineering results which attenuates the impact. Another possible threat that
was discussed is the influence of the domain knowledge of the inspected program
on the results. This threat is in fact circumvented by the training on the control
domain (application domain) that was given to the subjects. Finally one partic-
ipant wondered if the age of the expertise is important. As all the students have
recent expertise, it is difficult to evaluate the importance of this factor.

“A Substitution Model for Software Components” - B. George,
R. Fleurquin, and S. Sadou

The position of the authors, as reported by Bart, concerned the problem of
searching components in libraries. Indeed, in the context of CBSD, a software
component is described by its functional and non-functional properties. Then,
the problem is to know which component satisfies a specific need in a specific
composition context, during software design or maintenance. The position is that
this is a substitution problem in any of the two cases. From this statement, they
propose a need-aware substitution model that takes into account functional and
non-functional properties. Following this presentation, a participant asked for a
clarification on if the matching concerns at the same time the functional and non-
functional properties of the components. Bart explained that the non-functional
matching is evaluated only if there is a functional matching. The search strategy
was also discussed to see if it is better to compare concrete component between
them than to compare each component with an ideal one. The conclusion was
that as the search is done in a specific context, direct comparison is not suitable.
Many questions concerned the definition and the measurement of component
quality. More specifically, a participant questioned the use of ISO9126 to define
a single metric for each property. Some properties can be better measured using
more than one metric. Another participant highlighted the fact that the quality
of a component is different from the quality of the system after the composition,
i.e., finding the best component using local properties doesnt mean that this will
lead to the best option from the system point of view. Bart however, minimized
the impact of the locality by the argument that the composition is performed
sequentially. Finally, some participant warned the presenter on the risks of using
expertise-base weighting and on the need of evaluating the approach on real
component libraries.



90 F. Brito e Abreu et al.

2.2 Session 2: Visualization, Evolution

Four position papers were presented and discussed in this session. All of them
dealt with software visualization and/or software evolution aspects.

“Towards Task-Oriented Modeling Using UML” - C.F.J. Lange,
M.A.M. Wijns, M.R.V. Chaudron

The authors claim that since software engineering is becoming increasingly model-
centric, tasks such as the analysis or prediction of system properties require addi-
tional information, namely of quantitative nature, that must be easily visualized
along with the diagrams. For this purpose they have developed a prototype tool,
named MetricView Evolution tool, that allows 2D views of UML diagrams super-
imposed with a 3rd dimension for representingmetrics values. Industrial case stud-
ies and a light-weight user experiment to validate the usefulness of the proposed
views were reported. The presentation ended with a tool demo.

Several issues were raised in the discussion that followed the presentation.
Questioned on the forecasted improvements on the demonstrated tool, Christian
referred that there is an undergoing work with an industrial partner regarding
tool usability and integration with other UML tools. Another issue pointed out
was that of the ability to scale up to large systems. Christian recognized that
they are indeed having problems of this sort for systems above a few hundred
classes. However, he claimed that this problem can be somehow mitigated with
the appropriate usage of model partitioning (packaging) and zooming. Another
participant questioned which was the model input format used for the tool, since
it has no editing capabilities. Since the answer was XMI, a question was then
raised on the positioning information of model elements, which is only available
on the new XMI 2 version. Regarding this issue, Christian argued that they are
using Rose and Together tools, which generate extended (non-standard) XMI
files with positioning information. Finally, someone questioned if the new views
causes, or not, an increased navigation difficulty. While recognizing that UML
2 has already 13 diagram types and that adding more information may actually
reduce the navigability, Christian argued that integrating / tracing information
in the diagrams is a way of mitigating this problem.

“Animation Coherence in Representing Software Evolution” -
G. Langelier, H.A. Sahraoui, and P. Poulin

The authors start by recognizing that the study of software evolution requires the
analysis of large amounts of data, which is not easily tractable in a manual fash-
ion. To mitigate this problem they propose a semi-automatic approach based on
diachronic visualization to represent software versions. Animation is used to rep-
resent the transitions (code modifications) between versions. This representation
allows the user to perceive visually the coherence between two successive ver-
sions. The presentation included a demo of a 3D city-like class visualization tool,
where evolution situations provoked (re)placements plus characteristics modifi-
cations (e.g. building twist or height modification).



Quantitative Approaches in Object-Oriented Software Engineering 91

After the presentation, the participants were able to raise several questions.
Both the presenter and another co-author also present (Houari Sahraoui) an-
swered them. The first question related to the representation (in the tool) of a
typical basic refactoring operation class renaming. The authors replied that they
did not consider it, because they want to reduce automatic processing by just al-
lowing the user to detect the movement. Nevertheless this could be performed by
matching new classes (appearing) with discarded ones, by simply comparing their
contents (renamed classes keep the same features). Another participant asked
if some kind of patterns of modification were identified. Guillaume answered
that indeed several patterns such as the already mentioned appear/disappear
pattern, have been identified, but are still being systematized. A final question
tackled the suitability of visual attributes for evolution analysis. The presenter
mentioned that if we take the psychological perspective, some attributes such as
texture or colour can in fact be much less appropriate than, for instance, twist.
However, further investigation on this issue must still be performed.

“Computing Ripple Effect for Object Oriented Software” - H. Bilal
and S. Black

The work presented aims at proposing a quantification of the ripple effect, that
is, the impact that a local change causes on the remaining parts of a software
system. Keeping this effect low is typically a maintenance desideratum. The
authors propose to calculate the ripple effect based upon the effect that a change
to a single variable has on the rest of a program and consider its applicability as
a software complexity measure for object oriented software. Extensions to the
PhD work of Sue Black (2001) are proposed to the computation of ripple effect
to accommodate different aspects of the object oriented paradigm.

As in previous presentations, we had a period for questions after the oral
presentation. The presenter was first asked to prognosticate the deployment
of this ripple effect detection in industry. He was not able to produce such a
prognosis because, at the current stage of their research and tool support, they
cannot yet scale-up to real-world examples. Another participant asked what kind
of ripple detection model the authors are using. Haider replied that they have
not yet developed a ripple estimation model for object-oriented software. They
are planning to do so while extending a locally developed tool for calculating
ripple effect for C++ code (currently it only supports C programs).

“Using Coupling Metrics for Change Impact Analysis in Object-
Oriented Systems” - M.K. Abdi, H. Lounis, and H.A. Sahraoui

The authors start by recalling that maintenance costs are usually much larger than
development ones, and as such, systems modifications and their effects should be
assessed rigorously.Theypropose an analytical and experimental approach to eval-
uate and predict change impacts in object-oriented systems. This approach uses a
meta-model based impact calculation technique. They presented the conclusions
of an empirical study, upon a real system, in which a correlation hypothesis be-
tween coupling and change impact was evaluated, using three machine-learning



92 F. Brito e Abreu et al.

algorithms. This session ended with a final period for questions. A participant re-
marked that the authors apparently have only considered one granularity level the
class one which was corroborated by Houari. Then, the question was raised on the
justification for the absence of other granularity levels. Houari replied that consid-
ering other levels like package, subsystem or system will, in the end, imply, in this
case, computing coupling values at class level.

2.3 Session 3: Quality Models, Metrics, Detection, Refactoring

“A Maintainability Analysis of the Code Produced by an EJBs Au-
tomatic Generator” - I. Garćıa, M. Polo, M. Piattini

The paper presents the tool the authors have built for the automatic generation
of multilayer web components- based applications to manage databases. The goal
is to deal with the problem of the decrease of its quality and maintainability of
web applications due to the successive changes on the code and databases. The
source code of these applications is automatically generated by the tool, being
optimized, corrected and already pre-tested and standardized according to a set
of code templates. The paper makes an overview of the code generation process
and, then, shows some quantitative analysis related to the obtained code, that are
useful to evaluate its maintainability. Someone on the audience asked about the
ability of the tool for the detection of the errors of the database. This issue is not
considered yet but will be. The authors were also asked about the prediction of
the complexity of the program based on the complexity of the database and they
answered that this was considered. Also from a question the authors explained
that the business logic is considered in the solution.

“Validation of a Standard- and Metric-Based Software Quality Model”
- R. Lincke and W. Löwe

This paper describes the layout of a project of the authors. The objective was to
validate the automated assessment of the internal quality of software according
to the ISO 9126 quality model. In selected real world projects, automatically
derived quality metric values shall be compared with expert opinions and in-
formation from bug and test databases. As a side effect, the authors create a
knowledge base containing precise and reusable definitions of automatically as-
sessable metrics and their mapping to factors and criteria of the ISO quality
model. After the exposition, and after a question, the authors explained that
the approach was proven on different languages. Also was remarked the fact
that the separation of models automated and manual is strange because ones
need the others. About the state of the quality model, the authors explained
that they were improving it. The authors also clarified that the metrics on their
proposal are calculated on the source code. Finally, somen one suggested to the
authors that to consider the semantics of the languages when translating pro-
grams in different languages the values of the metrics are calculated but perhaps
they are capturing wrong information.



Quantitative Approaches in Object-Oriented Software Engineering 93

“A Proposal of a Probabilistic Framework for Web- Based Applica-
tions Quality” - G. Malak, H.A. Sahraoui, L. Badri and M. Badri

In this work, the authors try to introduce into the web-based applications quality
some key issues inherent to this field such as causality, uncertainty and subjec-
tivity. They propose a framework for assessing Web-based applications quality
by using a probabilistic approach. The approach uses a model including most
factors related to the evaluation of Web-based applications quality. A method-
ology regrouping these factors, integrating and extending various existing works
in this field is proposed. A tool supporting the assessment methodology is devel-
oped. Some preliminary results are reported to demonstrate the effectiveness of
the proposed model. During the discussion the authors explained that they use
the uncertainty (that is different to weighting) because the result is not affected
even if some errors appear into the probabilities. The authors were asked about
some criteria of the proposal that are not automated and the problems derived
from this fact. Authors think that there are some aspects on the web that are
very difficult to automate. However, the important is not to automate but the
time needed to do the calculation. In any case, they assume that if we want to
measure a big amount of web sites, the subjective measures must be avoided.

“Investigating Refactoring Impact Through a Wider View of
Software” - M. Lopez, N. Habra

On this work, the authors work about refactoring and the fact that the activity
of refactoring is practiced by many software developers and when it is applied
well, refactoring should improve the maintainability of software. To investigate
this assumption, they propose a wider view of the software, which includes the
different wellknown artifacts (requirements, design, source code, tests) and their
relationships. This wider view helps analyzing the impact of a given refactoring
on software quality. In this study, authors analyze the impact of the refactoring
Replace Conditional with Polymorphsm by using this wider view of software.
And, at the light of this global view of software, it is more difficult to accept
that the analyzed refactoring Replace Conditional with Polymorphsm improves
well the maintainability of software. Unfortunately the authors were not able to
come to the session and there was no discussion.

“Relative Thresholds: Case Study to Incorporate Metrics in the De-
tection of Bad Smells” - Y. Crespo, C. López, and R. Marticorena

In order to detect flaws, bad smells, etc, quantitative methods: metrics or measures
are usually used. It is common in practice to use thresholds setting the correctness
of the measures. Most of the current tools use absolute values. Nevertheless, there
is a certain concern about threshold applications on obtained values. Current work
tries to accomplish case studies about thresholds on several products and different



94 F. Brito e Abreu et al.

versions. By other side, product domain and size could also affect the results. The
authors tackle if it is correct to use absolute vs. relative thresholds, seeing that
effects could have in metric collection and bad smell detection. In the questions
time the danger of using threshold values as a first step an after made them relative
was discussed. The fact that if you use a threshold value wrong for a system, then
the relative threshold will be worst, was remarked. So, some suggestion on the use
of the use of data for calculating the threshold accompanied by some techniques as
fuzzy logic, probability models, etc were suggested although the authors thought
that their approach is also correct.

2.4 Session 4: Discussion

In this session five (5) open questions were selected and discussed. This section
summarizes the discussions question by question.

1. Is it interesting to conduct empirical studies to prove obvious hypotheses
about software quality? The majority of the participants agreed on the fol-
lowing aspects:
– It is always worth to replicate previous studies that proved a particular

hypothesis although replication studies are still not well considered in
our community.

– Studying obvious hypotheses can be a good mean to train students.
– An obvious hypothesis can be transformed into a less obvious hypothesis

if we target a particular context. For example, it seems obvious that de-
sign patterns improve the quality of object-oriented programs. However,
is it really obvious that they improve a specific quality characteristic like
performance?

– The evaluation of an obvious hypothesis can be interesting is the results
of the study are not a simple Yes/No answer. Detailed discussions of the
results, treats to validity, etc. can be very valuable.

– There is a gap between taught skills and required/performed skills in
industry. What can seem obvious in academia may be not trivial in an
industrial context.

– In conclusion, proving obvious hypotheses can be interesting if well mo-
tivated, discussed and documented.

2. How to deal with threshold values in general and for anomaly detection in
particular? The majority of the participants agreed on the following aspects:
– Threshold values have a relative impact if the goal is not to decide au-

tomatically what is good and what is bad but just what is suspicious.
Indeed, they can help to order suspected elements to prioritise the work-
load (for example testing activities).

– We need to have explicit thresholds to explain analysis results to de-
velopers in industrial context, i.e., to have clear criteria. In particular,
anti-pattern detection is hard to explain without clearly defined thresh-
old values.



Quantitative Approaches in Object-Oriented Software Engineering 95

– To determine threshold values, two approaches are used. The first deals
with expert knowledge or consensuses (practical approach). The second
abstracts threshold values starting from a representative set of data.
We need to define representative samples with respect to given sets of
particular data, using an adequate sampling technique, when possible.

– In any case, we need to take into account the used technologies, company-
wide standards, etc.

3. Generic model and uniform metrics, is it enough/possible? The majority of
the participants agreed on the following aspects:
– It is important to define metrics independently prom the programming

language.
– Achieving independence from programming languages means that any

intermediate representation must take into account the operation seman-
tic of each targeted language. In other words, Durant the mapping of a
program to the intermediate representation, we must interpret syntactic
constructs such as inheritance according to the used lookup algorithm.

– An additional direction that seems promising is the consideration of
domain ontologies to derive metric definitions automatically.

– Finally, traceability can be also an avenue as it bridges the gap between
models and source code.

4. Visualisation: what could be the paradigms to visualise data together? The
majority of the participants agreed on the following aspects
– It is important to go beyond tables andor aggregation of metrics (av-

erages, summations, etc.) to visualize and exploit metrics. Visualization
technique must allow displaying metric values for a large set of elements.

– It is important to find tradeoffs between visualizing little information
on large systems and visualizing lot of information on small systems. To
this respect, cognitive science and scientific data visualisation are two
domains were we can find inspiration.

– We must find a balance between contextual information that is supposed
to be present all the time and elements related to a specific problem that
must be in first plan.

– We have to find the balance also between offering customization capa-
bilities and overriding the users with too many options.

– Using metaphors is a promising direction for data visualization and nav-
igation.

5. Beyond evaluation, how to provide feedback to improve programs? The ma-
jority of the participants agreed on the following aspects:
– It is important to relate design/code anomalies (e.g., suspicious classes)

and opportunities of corrections (e.g., refactorings). This can be done
using metric definitions or general software engineering principles.

– It is also important to consider metric-based quality evaluation as a day-
to-day tool rather then a one-shot tool in an evaluation phase. After such
an evaluation phase, it is generally too late. The cost of corrections is
too high.



96 F. Brito e Abreu et al.

3 QAOOSE 2006 Participants

Organizers

Name Affiliation
Fernando Brito e Abreu Univ. of Lisbon, Portugal
Coral Calero Univ. of Castilla, Spain
Yann-Gaël Guéhéneuc Univ. of Montreal, Canada
Houari Sahraoui Univ. of Montreal, Canada

Other Participants

Name Affiliation
Regis Fleurquin Univ. de Bretagne Sud, France
Carlos Lopez Univ. Nova de Lisboa, Portugal
Guillaume Langelier Univ. de Montréal, Canada
Rüdiger Lincke Växjö Univ., Sweden
Macario Polo Univ. Castilla-La Mancha, Spain
Haider Bilal London South Bank Univ., UK
Javier Perez Univ. de Valladolid, Spain
Gabriela Arevalo LIRMM - Univ. de Montpellier, France
Thomas Fritz Univ. of British Columbia, Canada
Jaqueline McQuillan NUI Maynooth, Ireland
Norbert Pataki Eötuös Lorand Univ. Budapest, Hungary
Christian Lange TU Eindhoven, The Netherlands
Raul Marticorena Univ. of Burgos, Spain
Yann Prieto Ecole Centrale de Nantes, France
Cédric Bardet SNCF, France
Naouel Moha Univ. of Montreal, Canada
Christine Havart SNCF, France
Olivier Beaurepaire SNCF, France
Susanne Jucknath TU Berlin, Germany


