
Bachelor Project

EclipsEye
Spying on Eclipse

Yuval Sharon

supervised by
Prof. Dr. Michele Lanza
Romain Robbes

Abstract

Software evolution analysis permits developers and researchers to analyze software sys-
tems. It allows seeing the trends that the development of software has, with its present
state and predict its future.
Today, researchers use the repositories of versioning systems to extract the history of
a software, by downloading several versions of a system and then analyzing it. The
problem with this approach is that versioning systems do not store all the important
details of the development process of software, such as the changes that occur between
two successive versions.
When developing software, programmers use an Integrated Development Environment
(IDE). IDEs make the life of developers easier, by providing automated or semi-automated
tools (e.g. refactoring actions). In order to gather accurate information about the de-
velopment process of a software system, a change-based system can be built, which
integrates within the IDE the developer is using. We can record relevant events gener-
ated in the IDE and process them incrementally. The events we are mainly interested
in are class addition, modification and removal, method addition, modification and re-
moval, refactoring actions, etc.
We implemented a plugin, called EclipsEye, for the Eclipse IDE, and more specifically
for the Java programming language. By implementing it we were able to validate the
applicability of the change-based approach and the plugin itself. For case studies we
installed the plugin on our own Eclipse and we monitored the development of the visu-
alization part. Furthermore we asked some of the second semester university students
to install it as well, since they were doing a Java project using Eclipse.

i

Contents

Abstract i

1 Introduction 1
1.1 Goals of the project . 2
1.2 EclipsEye . 2

2 Software Evolution Analysis 4
2.1 Software Maintenance . 4
2.2 Evolution Analysis . 5
2.3 Versioning Systems . 7

2.3.1 Introduction . 7
2.3.2 Versioning Systems for Evolution analysis 7
2.3.3 Example of information loss . 8

3 Solution 11
3.1 Change-based approach . 11
3.2 Porting the approach to Eclipse . 12
3.3 Differences . 13
3.4 Events . 14

3.4.1 High-level events . 14
3.4.2 Refactoring events . 15

3.5 The plugin . 17
3.5.1 Listeners . 18
3.5.2 Method modifications . 20
3.5.3 Refactorings . 21
3.5.4 Output . 22

4 Validation 23
4.1 Case studies . 23
4.2 Visualizing data and metrics . 25
4.3 Results . 28

4.3.1 IR Project . 28
4.3.2 Second Semester’s Project . 30
4.3.3 EclipsEye View . 32

5 Conclusions 34
5.1 Contributions . 34
5.2 Future Work . 35

ii

Yuval Sharon EclipsEye

A Plugin 36
A.1 How to use . 36
A.2 Architecture . 37

iii

Chapter 1

Introduction

Programmers and researchers are often interested in seeing the evolution of a software
system. They want to understand how the software evolved, and predict how it will
evolve in the future.
The history of a software system is usually extracted from the versioning systems de-
velopers use (such as CVS1 or Subversion2). These allow them to share a project within
a team and to see the changes that happened to it during its lifetime.
Versioning systems are widely used in the production of software systems. Their main
advantage is that they are not programming language specific. They can be used with
every programming language and even for other purposes (e.g. software documenta-
tions, any text document, etc).
For software evolution analysis developers and researchers need accurate data about
the system. Since versioning systems are file-based, and not language-specific, they
are not ideal to accomplish this type of analysis. The other problem is that changes
are stored in the repository only when a developer commits his work. This means that
we cannot control how often a commit will occur, since it depends on the programmer.
With this mechanism a single commit could consist of many changes to a piece of soft-
ware, but to us it would result as a single, merged change. This makes it hard and
time-consuming to link entities across different versions, since an internal language
specific model of each version has to be created. Furthermore it becomes difficult to
distinguish and extract the originating events. The exact sequence of the changes and
their time stamps are lost.
Today, most developers use an Integrated Development Environment (IDE). An IDE
makes the development process easier, by providing automated or semi-automated tools
(e.g. for refactoring actions). These IDEs contain all the information that is needed to
perform evolution analysis, since each programmer’s activity is performed within that
IDE.
Instead of using a versioning system’s repository as data source, an alternative is to
provide a fine-grained monitoring of the programmer’s activity extracted from the IDE
he is working with. Getting information directly from the IDE allows us to record much
more detailed and program-level events, such as: additions/removals/modification of
classes/methods/fields, refactoring actions, navigation, etc.
From these events a change-based representation of the software system can be incre-
mentally built.

1http://www.nongnu.org/cvs/
2http://subversion.tigris.org/

1

Yuval Sharon EclipsEye

Romain Robbes3 has developed a prototype of a change-based system as part of his
ph.D. studies , called SpyWare[RL06]. It monitors a programmer’s activity within the
Squeak IDE4, for the Smalltalk5 programming language. In order to validate this new
approach new systems have to be built.

1.1 Goals of the project

This project is aimed at porting SpyWare to the Eclipse IDE6, for the Java7 program-
ming language. The porting is needed to validate the applicability of the change-based
approach on different IDEs and different programming languages. Furthermore it gives
more opportunities for case studies.
An important objective of the project is to understand the differences between the ar-
chitecture of Squeak and Eclipse, and between the Smalltalk and Java programming
languages. Due to these differences the implementation of the plugin for Eclipse is quite
different from the one written for Squeak.
Eclipse is a file-based IDE, since each class in Java has its own file (except inner-classes
and anonymous-classes). Squeak instead is a structured IDE which has a single file
(called image) that contains the whole system. Java is a statically typed programming
language, while Smalltalk is a dynamic language. Java has some concepts that are not
present in Smalltalk (e.g. interfaces, enum types, explicit visibility, etc.). Furthermore
the notification mechanism of Squeak is different from the one of Eclipse.

1.2 EclipsEye

We built a change-based system as a plugin for the Eclipse IDE, called EclipsEye. It
monitors the developer’s activity within this IDE, and it is specific for the Java program-
ming language. EclipsEye implements specific listeners and participants in the Eclipse
environment, to be notified of relevant events. These events are stored in external files
to allow evolution analysis.
To validate the plugin we installed it first on our own Eclipse IDE. We have monitored
our own plugin development and another Java project. Furthermore we asked some
of the university students who were doing projects using Eclipse to install it. Some
of them agreed to be monitored, and provided us with the recorded data about their
projects.
With these preliminary case studies we were able to validate the change-based approach
and the plugin itself.

3http://www.inf.unisi.ch/phd/robbes/
4http://www.squeak.org
5http://www.smalltalk.org
6http://www.eclipse.org
7http://java.sun.com

2

Yuval Sharon EclipsEye

Structure of the Document

Chapter 2 describes the domain of the project and the problems of the current ap-
proaches to software evolution. Chapter 3 presents the solution to the versioning sys-
tem’s problems and the EclipsEye plugin. Chapter 4 outlines the preliminary validation.
Chapter 5 concludes the document. Appendix A contains instructions on the installa-
tion of the plugin and its architecture.

3

Chapter 2

Software Evolution Analysis

Structure of the chapter

This chapter expands the main problems of software evolution analysis. Section 2.1
explains what is software maintenance, and why it is important in the development
process of software. Section 2.2 introduces to software evolution. Section 2.3 gives an
overview of the current approach to software evolution analysis: versioning systems.
The problems of these approach are explained, with specific examples.

2.1 Software Maintenance

Our work is located in Software Engineering, which is a discipline that is concerned
with all aspects of software production, development, and maintenance.

Software Evolution is a subfield of Software Engineering. Software Evolution is about
the life cycle of software, starting from the initial phase of the development process. It
includes software maintenance and reengineering[YW03, DDM+03].

In software development, after the initial phase, comes the maintenance phase, in which
developers have to maintain and enhance the software. This includes mainly fixing
bugs, adding new features and updating software to support new technologies and en-
vironments.
Fred Brooks states in his book The Mythical Man-Month[Bro75] that about 70-80% of
the costs of a system comes from the maintenance phase, which means that this phase
is very important in the software development process.

Software maintenance, in 1950 - 1960, was a very small part of the software life
cycle[YW03, Ben93]. Later, as software grew bigger and was used longer, it became
an important activity in the software development life cycle. Once the development of
software is complete, and it is ready to be deployed, its maintenance phase starts. This
means that software does not simply die after being developed.
Since the end of 1970 and the beginning of 1980, in some sectors, software maintenance
was even taking more effort and costs than the initial development of the software.
Since then, the need for doing changes to software kept increasing and today it is still
increasing. The main changes consist in fixing bugs, adding new features, updating

4

Yuval Sharon EclipsEye

software to support new technologies and making optimizations. Often, changes done
to maintain software, after being implemented, generate new problems that will need to
be fixed too.

Maintenance has been divided into four categories by Lientz and Swanson in 1980[LS80]:

corrective: When developing software systems it is very likely that a bug or a fault will
be present in the system. This leads to a behavior of the software that does not
follow its specifications. In corrective maintenance known bugs and faults in the
software are fixed.

perfective: During the process of developing software users (customers) often change
their requirements. They require new features and modifications to the software
system. Perfective maintenance takes care of modifying the system in such a
way that the new requirements are satisfied. This category is large in software
maintenance, since it includes addition of new features and it requires a lot of
effort.

adaptive: The environments in which software operates is often subject to change. For
example a modification in the operating system is done, or a computer hardware
is changed, which may require also to modify the software to support the new
environment.

preventive: In this category developers try to anticipate future changes to the software
in order to reduce future maintenance. For example by applying refactoring prin-
ciples to the current code will ease the future maintenance to that code. Another
example is the Y2K Bug: companies and organizations had to check their systems
before the year 2000 to prevent that software systems would operate incorrectly
after that date.

Software is hard to maintain. When developers have to apply maintenance to software
they have first to understand its structure, its design, and then modify it. Often, the
system documentation is incomplete, or outdated, and this makes it even more diffi-
cult to maintain a system. About 50-60% of the time spent in software maintenance
is used in reading and understanding code, before the actual modifications can be done.

2.2 Evolution Analysis

Software Evolution analysis is used by researchers and developers to understand soft-
ware. This field started in the 70’s with Lehman’s work, while he was studying the
OS/360 project. He formulated the laws of software evolution. They were derived from
a direct observation and measurement of the evolution of a number of systems.
The eight laws are[LB85]:

Continuing Change A large successful software system must be continually changed
and adapted, otherwise it will become progressively less useful. The process of
continuing change stops when the cost of changing the system is higher than
replacing it with a new one.

5

Yuval Sharon EclipsEye

Increasing Complexity As a software system grows and is often changed, its complex-
ity increases and it becomes more and more difficult to evolve, unless work is done
to maintain or reduce the system’s complexity.

Statistically regular growth The measures of a project and a system’s attributes are
cyclically self-regulating with statistically determinable trends and invariance.

Invariant work rate The work rate of a team evolving a large software system tends to
be constant over the operational lifetime of that system.

Incremental growth limit Generally, the incremental growth and long term growth of
a system is limited and it tends to decline.

Continuing Growth The functional capability of software systems must be continually
increased and adapted to maintain user satisfaction over system lifetime.

Declining Quality Unless rigorously adapted to take into account for changes in the
operational environment, the quality of a system will appear to be declining.

Feedback System Evolution processes are multi-level, multi-loop and multi-agent feed-
back systems.

An example of software evolution analysis can be done using the evolution chart visu-
alization. This visualization shows the evolution of a property (e.g. number of methods)
in the system. This mechanism is useful when we have to reason about the evolution
of an entity in terms of one property[DGF04, GD06].
The evolution chart shown in Figure 2.1 shows the evolution of two classes with the
property number of methods: class Foo, on the left, and of class Bar, on the right. Class
Foo is growing: its number of methods increases with time. Class Bar, instead, remains
constant: its number of methods does not increase quickly.

Figure 2.1: The evolution chart

6

Yuval Sharon EclipsEye

2.3 Versioning Systems

2.3.1 Introduction

Version control (also known as revision control, source control, or source code manage-
ment) is the management of multiple versions of a system. It is most commonly used
in software development, as it allows to retrieve an old version of the system (or even
only of a single part of it) to fix bugs, update features, or generate statistics about the
differences between two or more versions.
With these systems it is very easy to setup a team-project environment. Developers can
check-out a project from a versioning system repository and start working on it. After
making some changes to the software system they can commit back to the repository
their files. The versioning system will create a new version for each file modified. To
allow a more efficient storage (less disk space usage) they usually use the delta com-
pression, which stores only the differences between successive versions).
The most commonly used versioning systems are CVS1 and Subversion2.

2.3.2 Versioning Systems for Evolution analysis

Analyzing the evolution of a software system requires detailed data about it, or more
precisely about its history.
Today, researchers and developers use versioning systems to acquire information about
a software system, since they store all the versions generated through its development
[RL05]. Although these versions are easily accessible they do not contain enough fine-
grained information.

The main reasons for which versioning systems lose information are:

File-based vs domain-based The most used versioning system (e.g. CVS, Subversion)
are file-based. Being file-based they are able to support any programming lan-
guage (they are language-independent), or even any other kind of information
which needs to be under revision control (such as text documents, images, etc.).
This means that to understand a version of a software system written in a specific
programming language extra computations are required.
All the entities of a software system (e.g. classes, interfaces, methods) lie within
text files that have to be parsed manually to reconstruct the system’s structure.
The relationships of entities among many versions has to be constructed too, to
discover what changed in the system between them. This last operation can be
very hard if we consider refactoring actions that a developer may do; for example
extracting some lines of code from a method and moving them to a new helper
method would create no behavior difference in the system, but for a file-based ver-
sion it would mean that a method has shortened, and a new method was added
(see Section 2.3.3 for Examples).

Commits Versioning systems create a new version of a file only when the developer
commits its work to the central repository. The action of committing is done at the
programmer’s will, and we cannot control it. This means that they may commit

1http://www.nongnu.org/cvs/
2http://subversion.tigris.org/

7

Yuval Sharon EclipsEye

every hour, day, or even week. In fact developers don’t commit after every single
change they do on the software system. This creates two problems:

Merged changes A single commit can contain several modifications to the sys-
tem, such as additions of classes, removal of others, and so on. All of these
changes are merged, and are seen by the versioning system as a single, large,
modification. This creates even more difficulties to discover all these changes.

Information loss Since changes are merged, they lose their time-stamps. By an-
alyzing different versions of a system it’s not possible to determine the exact
sequence of those changes. The only time stamp available is the one of the
commit action.

A real-world example is the patch practice that big open source projects adopt. Any
developer is allowed to modify source code of an open source project, but usually
he cannot commit it’s work directly to the main repository. Instead he has to fin-
ish its feature development and then provide its code to the administrators of the
project. They will analyze it and will commit it to the main repository by creating a
patch. This approach creates even more difficulties for software evolution analysis
through versioning systems, since with these practice changes can be very large.

2.3.3 Example of information loss

Using versioning systems to gather information about software systems to analyze their
evolution is not ideal.

In this example consider a developer who performs the following refactoring actions:

• 1. Extract some lines of code from method calc() to a new method calc2()

• 2. Rename action:

Rename method calc() to doCalculations()

Fix all references to that method

After performing these small changes the developer commits its work to the repository.
Using a versioning system we would have two versions to compare. Figure 2.2 shows
these versions and the intermediate step. The first version of class Util is the one with-
out any refactoring action performed. Version 2 is generated after all the refactoring
actions are executed. The intermediate step is only present in the IDE of the developer,
and it is instead lost by the versioning system.

8

Yuval Sharon EclipsEye

Figure 2.2: Versions example before and after the refactoring action is executed

By comparing only these two versions the physical changes that happened are:

• Method calc() was renamed to doCalculations() and some of its lines were moved
to calc2(). These changes are hard to understand, since now the method calc()
doesn’t exist anymore, and the new method doCalculations() is shorter than it was
before the extraction of code. This makes it even more difficult to find out whether
doCalculations() is the same entity as calc() was or it is just a new method.

• The constructor Util changed since it called calc() which is now renamed to doCal-
culations()

• One method has been added: calc2()

Figure 2.3 shows how it becomes difficult to link entities between two successive ver-
sions. This example is a very simple one that consists of small changes to the system.
In fact it would take a programmer about 1 or 2 minutes of work to do these changes. It
is important to notice that already these small changes create information loss, causing
evolution analysis not to be accurate enough.
Furthermore in real-life software development programmers do not commit their work
so often to have always such little changes. This causes changes to be much larger and

9

Yuval Sharon EclipsEye

detecting fine-grained differences between versions becomes even more hard.

In this specific example the method doCalculations() could be a new entity and thus
method calc() was removed. Or method calc() was renamed to doCalculations() without
creating or removing entities.

Figure 2.3: Difficulties in linking entities between two versions

10

Chapter 3

Solution

Structure of the chapter

Section 3.1 introduces the change-based approach with its advantages for software
evolution analysis. Section 3.2 explains why we want to port the SpyWare plugin to
the Eclipse IDE. Section 3.3 highlights the differences between the Squeak and Eclipse
IDEs, and between the Smalltalk and Java programming languages. Section 3.4 shows
the list of events that are recorded in EclipsEye. In Section 3.5 we describe how the
plugin is implemented, and the problems we encountered during its development.

3.1 Change-based approach

To be able to monitor software evolution, without losing detailed information (such as
time stamps, merged changes, etc.), a change-based approach can be used, based on
two concepts:

1. An integration with the IDE to record as much data as possible

2. A model that is based on first-class change operations which helps in matching
the incremental process of developing software.

Today most of the developers use IDEs for their programming work. These IDEs pro-
vide many useful tools to facilitate programming, such as automatic or semi-automatic
refactoring actions, advanced debugging, easy browsing of the whole system, etc. These
IDEs are usually extensible by plug-ins, to provide extra functionalities.

As said above, a programmer can easily browse the software system, perform refactor-
ing actions, etc. This means that an IDE has a very good knowledge about the system
being developed and the developer itself.
The idea is to integrate monitoring tools within the IDE and thus being able to record
high-level events that would not be possible to get with versioning systems repositories.

Usually IDEs provide event notification systems, which are accessible through hooks.
These hooks allow plugins to be notified of events that occur in the IDE. Tools can react
to these events by creating first-class change entities.

11

Yuval Sharon EclipsEye

First-class change entities are objects which contain the history of a system. The his-
tory is constructed incrementally.
Each change operation contains interesting information for evolution researchers, such
as the time-stamp of the event, and who generated it.

Using the change-based approach only program-level differences between entities in
the system are stored. At the opposite, by using traditional approaches, the history is
modeled as a sequence of versions. When downloading several versions to analyze a
system it may happen that they contain duplications among them (e.g. when a part of
a system does not change in time).

The advantages of using a change-based system for software evolution analysis, rather
than using repositories data, are:

Accuracy of events The first-class changes are generated as they happen, provid-
ing more accurate information than the one retrieved from a versioning system’s
repository. These events occur one at a time, giving more context to process them.
Their time-stamps are more precise and they are not limited to the time-stamp of
the commit. The exact sequence of the developer’s actions are known.

Incremental processing By gathering events one at a time we are able to incrementally
process them. With this mechanism it is much easier to maintain a representation
of the model. The events generated by the IDE are high-level and their granularity
contains classes, methods, variables. Instead, by using a versioning system’s
repository it would have been text files and lines. Parsing code is only needed at
the method level, depending on the IDE.

3.2 Porting the approach to Eclipse

Romain Robbes has developed a prototype of a change-based system, called SpyWare.
This system integrates with the Squeak IDE, and is developed specifically for the Smalltalk
programming language.
The preliminary validation of this plugin has been done by monitoring SpyWare itself
and by installing the plugin on the Squeak environment that second semester students
used during their projects. SpyWare has limited case studies and it would need more
to be successfully validated. Case studies are important to validate both the monitoring
tool itself, and the change-based approach, which is still new in Software Evolution.
The main problem with Squeak and Smalltalk is that they are not widely used, and
there are not as many users as there are for Eclipse and Java.
This project is aimed at porting the SpyWare plugin into the Eclipse IDE, and more
specifically for the Java programming language. To accomplish this we had first to
investigate the Eclipse event handling and notification mechanisms, and then experi-
ment with the plugin development. We had also to understand the differences between
the Eclipse and Squeak IDEs, and between the Java and Smalltalk programming lan-
guages.
Eclipse is a widely used IDE for software development and mainly for developing Java
programs.
The plugin developed for Eclipse stores the monitored events in files, and the Squeak

12

Yuval Sharon EclipsEye

version will still be used for creating the changes: for example to be able to browse the
software system’s code at any point in time.

3.3 Differences

The differences between Squeak and Eclipse, and between Smalltalk and Java led to
different implementations of SpyWare and EclipsEye . Table 3.1 shows the main dif-
ferences between the two IDEs. Squeak is a structured IDE which use a single, large,
image file that contains all the environment of a software system. Eclipse, instead, uses
several files to compose its environment: each Java class has its own file (except for
inner-classes and anonymous-classes). This creates problems for example when mon-
itoring refactoring actions, since these can affect more than a single file and we have
to find which files have been modified and the program-level changes. In Squeak the
changes happen only inside the single image file.
Squeak has an explicit compile operation for methods, and thus recording method mod-
ification in monitoring tools is quite straight forward; in Eclipse these events are harder
to record (see Section 3.5). Eclipse has a continuous notification mechanism, where
more than one event can occur at a time and they need a lightweight processing.

Squeak Eclipse
structured editor file-based editor

explicit compile operation for methods continuous compilation
incremental compilation

single notification continuous notification

Table 3.1: The main differences between Squeak and Eclipse, relevant for change-based
systems

The differences between Smalltalk and Java led mainly to having different types of
events. Smalltalk has the concept of method protocols, which is not present in Java.
The elements in Java that are not present in Smalltalk are:

Interfaces An interface is a type whose members are constants and abstract methods.
This type has no implementation. Concrete classes can implement this interface
by providing the implementation of the abstract methods.

Enum types An enum is a type that was introduced in Java 5.0. It contains mainly
constants, but also methods, and fields.

Visibility In Java, classes, methods and fields can have different visibility: public,
private, protected, ”default”.

Abstract It is possible to define explicit abstract classes and methods. Abstract classes
can contain both concrete methods and abstract methods. Abstract methods have
no implementation.

Inner-classes Inner-classes are types declared inside an existing class.

13

Yuval Sharon EclipsEye

Anonymous-classes Anonymous-classes are classes that do not have a name.

Imports A class has to declare import declarations when it needs to access external
packages

Because of these differences we had to add java-specific events to our implementation
of EclipsEye, and exclude some events that were not needed.

3.4 Events

3.4.1 High-level events

Here is the list of events, with their description, that EclipsEye catches in the Eclipse
IDE:

Class Events:

A class entity contains a type, that can be a class, an interface, an inner-class, an
anonymous-class, or an enum type.

Class addition a class was added to the system

Class removal a class was removed from the system

Class modification a class changed superclass, the implemented interfaces, or its
modifiers

Method Events:

Method addition a method was added to a class

Method removal a method was removed from a class

Method modification the source code of a method was modified

Field Events:

Field addition an instance or a class variable was added to a class

Field removal an instance or a class variable was removed from a class

Field modification the type or the modifiers of an instance or class variable was mod-
ified

Package and Import Events:

Package addition a package was added to the system

Package removal a package was removed from the system

Import declaration addition an import declaration was added to a class

Import declaration removal an import declaration was removed from a class

14

Yuval Sharon EclipsEye

3.4.2 Refactoring events

Eclipse provides many useful refactoring actions. ”Refactoring is the process of changing
a software system in such a way that it does not alter the external behavior of the code
yet improves its internal structure. It is a disciplined way to clean up code that minimizes
the chances of introducing bugs.”[Fow99]. It useful to monitor the refactoring actions
because they show how the developer is working on a software system and how the
code changes without modifying the system’s behavior.
EclipsEye records the following refactorings:

General Refactorings:

Renaming java elements can be renamed. When a rename occurs all the references to
that element are corrected (also references that are in other files). These elements
can be renamed:

Methods

Method parameters

Fields

Local variables

Classes

Class parameters

Enum constants

Packages

Moving java elements can be moved. When a move occurs all the references to that
element are corrected (also references that are in other files). These elements can
be moved:

Static methods

Static fields

Classes

Packages

Changing method signature method’s signature can be modified (e.g. parameter types)

Conversion Refactorings:

Converting anonymous class to nested converts an anonymous-class into a inner-
class

Converting member type to top level converts an inner-class into a top level class (it
creates a new compilation unit - java file)

Converting local variable to field converts a local variable into a field

15

Yuval Sharon EclipsEye

Extract Refactorings:

Extract method extracting lines of code from a method to a new one

Extract a local variable creates a new variable assigned to the selected expression

Extract constant creates a static final field from the selected expression

Inline these elements can be deleted through inline:

Methods

Local variables

Static final fields

Hierarchy Refactorings:

Extract superclass extracts a common superclass from a set of selected sibling types.

Extract interface extracts a new interface from the selected class

Pushing down moves a set of methods and fields from a class to its subclasses:

Methods

Fields

Pushing up moves a field or a method to the superclass of its declaring type

Methods

Fields

Creation Refactorings:

Encapsulating fields replaces all references to a field with getters and setters

Introducing indirection creates a static indirection method delegating to the selected
method

Introducing factory creates a new factory method (static), which will call a selected
constructor and return the created object

Introducing parameter replaces an expression with a reference to a new method pa-
rameter

Generalization Refactorings:

Using supertypes replaces occurrences of a type with one of its supertypes (if possible)

Generalizing declared types change to a supertype of type references and declara-
tions, it applies on:

Fields

Local variables

Parameters

Infer generic type arguments replaces type occurrences of generic types with param-
eterized types (where possibile)

16

Yuval Sharon EclipsEye

3.5 The plugin

The solution is implemented as a plugin for the Eclipse IDE and specifically for the Java
programming language. In Figure 3.1 the main window of the Eclipse IDE is shown,
with the parts that are mostly used:

Package Explorer The package explorer shows the structure of Java classes and pack-
ages that are inside different projects.

Editor The text editor allows the developer to edit and write code.

Outline View The outline view shows in a list which methods and attributes are defined
inside a Java class. This view is always in synch with the editor part.

Console The console is used to display the standard output inside Eclipse itself.

Figure 3.1: Eclipse view

In the Eclipse of Figure 3.1 EclipsEye is installed, and it is completely invisible to the
developer. The only part that can be visible is the EclipsEye View, which is described in
Chapter 4.
When developing the plugin we had to decide when to get the events. The alternatives
are:

Save The developer can save the file he is currently working on when he decides to.
The problem is that we can lose information by waiting for notifications at the
point where the developer saves the file. Since he could have done many changes

17

Yuval Sharon EclipsEye

before saving we are back to the previously discussed problems of snapshot-based
versioning systems where we had to wait for the developer to commit its code.

Key stroke Being notified at key strokes level: each key pressed that causes modi-
fications to java elements generate events. With this method we get continuous
notifications about changes in the system, and we do not lose any event.

The strategy we adopted is to monitor changes at the key-stroke level. This allows us
not to lose any event, and we do not get merged changes.

3.5.1 Listeners

In order to build EclipsEye we installed specific listeners in the Eclipse environment.
These listeners send us notifications about changes that happen within the IDE.[CR04]
The alternatives that Eclipse provides for notifications are the Resource change listener,
or the JavaCore element listener.

A resource change listener can be notified of events indicating that resources have
been added, modified, or removed during the course of an operation. Interested objects
can subscribe to these events and react to them in such a way to keep themselves syn-
chronized with Eclipse. The resources that are monitored are:

• Files

• Folders

• Projects

• Workspace root

The problem of using the resource change listener is that notifications are at the file-
level, and therefore to find high-level changes (e.g. method addition) we would have had
to parse each file on each notification. We used this mechanism only to get comfortable
with the Eclipse plugin environment.

The JavaCore element listener provided by Eclipse notify of events that are specific
to the Java programming language. With this approach the resources that are moni-
tored are java elements:

• Classes

• Compilation Units

• Fields

• Import declarations

• Java Projects

• Methods

18

Yuval Sharon EclipsEye

• Packages

We adopted this solution, since it allows us to be be notified of events at the program-
level, such as:

• Class addition - modification - removal

• Method addition - removal (not modification)

• Field addition - modification - removal

• Package addition - removal

• Import declaration addition - removal

The events received are structured as java delta trees, and therefore we have to walk
through them to identify the modifications that were performed. In Figure 3.2 an exam-
ple of a delta tree is shown, where a field named foo was added and bar was removed
from the system.

Figure 3.2: Example of a java delta tree

19

Yuval Sharon EclipsEye

3.5.2 Method modifications

Changing source code of methods does not generate an explicit method modified event.
Instead it is only notified that the class containing that method was changed. In Figure
3.3 we show an example of a method modification event as a java delta tree: on the left
there is the actual tree that we get; on the right there is the tree that is not generated,
but that was expected.

Figure 3.3: Example of a java delta tree for method modification

Since method modifications are not notified automatically we had to implement our own
mechanism for recording this type of event. We experimented with several alternative
implementations:

Cursor position when there is a modification in a class we can see where the cursor
position is, and thus determine if it is inside a method. If it is the case that
method was modified. The problem with this solution is that the cursor position
is not reliable: one could quickly change its position before we actually get the
notification and thus losing the method modification event, or getting a wrong
method.

Outline view in the outline view of Eclipse the currently selected element (e.g. field,
method) is known. If there is a modification in a class we can determine if it was
done to a method and which one. The problem with this solution is that we rely on
a GUI part of Eclipse: the outline view. This view can be closed by the developer
and, when closed, it becomes unaccessible.

Modified class entities the solution we adopted consists in storing in memory the
class entities that are currently being modified. When a modification in a class
occur we compare the methods in the stored class entity with the current one.
With this mechanism we can determine which methods were modified without
relying on GUI parts or the cursor position.

20

Yuval Sharon EclipsEye

3.5.3 Refactorings

An important part of the plugin is the recording of refactoring actions. In order to be
notified of these actions we registered a Refactoring Execution Listener in the Eclipse en-
vironment. This listener is notified of refactoring executions, before they are executed,
and after they have been executed. The problem with this listener is that it does not
contain detailed enough information (e.g. it does not contain all the elements that were
modified during the refactoring).
In Figure 3.4 an example of such a problem is shown: class A is declared in file A.java
and it has an instance variable of type B. Class B is declared instead in another file
B.java. Lets consider a rename refactoring in which we rename B to Foo. With this
refactoring not only class B is modified, but also A, since it had a reference to B.
By using the Refactoring execution listener we are not notified of the change to class A.

Figure 3.4: Example of a rename refactoring

Although external files modifications are not notified with this mechanism we are able
to record the internal file modifications, where the refactoring occurs. To accomplish
this we store two types of events:

Refactoring Start Event this event is recorded when a refactoring is about to start.

Refactoring Stop Event this event is recorded after the refactoring has been executed.

With this mechanism the events that are stored between a Refactoring Start Event and
a Refactoring Stop Event are the ones caused by the refactoring action itself.

Plugins written for Eclipse can register specific participants. Participants are regis-
tered at plugin-level, and not as Java code. Eclipse provides the participant mechanism
only for a small set of refactorings. We used the following:

• Rename

• Move

• Delete

These refactorings are the ones that are more likely to modify also other files. By
using these participants we are able to find exactly which java elements are going to be
modified in a refactoring action. And thus record these details.

21

Yuval Sharon EclipsEye

3.5.4 Output

The events that are monitored by the plugin are stored in external files using the Java
serialization. By using the serialization it is very simple to load the written files to ana-
lyze the recorded data.
Since the files can grow to be very large we added a zip feature: when the events stored
reach 10 Mb of size they are automatically zipped so that space is saved. The defined
size can be easily changed.
Once the events are stored they are also converted into the SpyWare output format, so
that we can generate the changes and use the visualizations that SpyWare provides.

22

Chapter 4

Validation

Structure of the chapter

Section 4.1 explains the setup of the validation phase, the case studies, and shows
the number of events we recorded. Section 4.2 shows the various visualizations we
implemented. Section 4.3 highlights the results we obtained by analyzing the data we
monitored.

4.1 Case studies

The change-based approach to software evolution still needs to be validated. By de-
veloping more and more systems monitored with this approach we will be able to un-
derstand its applicability on various IDEs and programming languages, and how it is
effective.
EclipsEye has been tested on various, small-scale, projects:

EclipsEye View The visualization part of the plugin development has been monitored
from the 3rd of June to the 26th of June 2007, recording 4161 events.

IR Project A pair project about building an information retrieval system (using the
Lucene framework) has been monitored from the 26th of May to the 13th of June
2007, recording 3284 events.

Java Projects Some of the java projects of second semester students has been moni-
tored from the 7th of June to the 12th of June 2007, recording 2132 events.

Table 4.1 shows the number of events that we recorded for the projects.

23

Yuval Sharon EclipsEye

Event type IR Project Second semester’s Project EclipsEye View

Class Added 161 30 143
Class Modified 28 24 24
Class Removed 112 26 117

Method Added 371 223 424
Method Modified 1265 1123 2375
Method Removed 236 155 265

Field Added 265 180 165
Field Modified 67 52 25
Field Removed 197 105 93

Package Added 36 2 6
Package Removed 16 0 1

Import Added 344 223 339
Import Removed 123 55 149

Rename Refactoring 21 9 14
Move Refactoring 0 0 5
Other Refactoring 0 0 2

Working Sessions 36 29 47

Table 4.1: Events recorded for the projects

24

Yuval Sharon EclipsEye

4.2 Visualizing data and metrics

The last part of the project consisted in developing a plugin that visualizes the informa-
tion gathered by EclipsEye.
Figure 4.1 shows the Eclipse IDE with the EclipsEye view opened. In this view it is pos-
sible to choose between several visualizations and then navigate through the history of
the system.

Figure 4.1: Eclipse showing the EclipsEye View

The visualizations we implemented are:

Histogram View The Histogram view shows all the events that were monitored, clas-
sified by each type of event (e.g. class addition, method modification, etc.). The
height of each figure is fixed, while its width represents the number of events of a
specific type. An example of a histogram view is shown in Figure 4.2.

Evolution Chart The evolution chart is a graph that shows the evolution of the system
reasoning on a single property (e.g. number of classes). On the y axis is the prop-
erty, while on the x axis is time.
The available properties that can be used for evolution charts are:

• Packages

• Classes

• Methods

25

Yuval Sharon EclipsEye

• Fields

• Import declarations

• All of the above

An example of an Evolution chart is shown in Figure 4.3. In this example the prop-
erty number of methods has been chosen. Therefore the events regarding methods
are shown: method added (green), method removed (red), method modified (blue).

System Evolution Chart Another type of evolution chart is available, that is a global
view of the whole history of the system. In this view all type of events are consid-
ered. An example is shown in Figure 4.4, in which the history of the last part of
the plugin development is shown.

Figure 4.2: Example of a Histogram view

Figure 4.3: Example of an Evolution Chart

Since the total number of events can be very high, we used the concept of a working
session. A working session is composed of successive events that are close to each
other. We decided to split each working session when there is 30 minutes of inactivity.
By using working sessions we have to visualize less events on a single screen. The
working sessions are used to display the evolution chart since it shows the evolution of
the system with respect to the time. If we had to display all the events on a single chart
it would have become too large to be easily readable. In the visualization it is possible
to navigate through the working sessions.

26

Yuval Sharon EclipsEye

Figure 4.4: Example of a Global Evolution Chart

27

Yuval Sharon EclipsEye

4.3 Results

4.3.1 IR Project

Figure 4.5 shows the IR Project evolution chart. The red circles are the particular de-
veloper sessions we analyzed.

Figure 4.5: The evolution chart of the IR Project

Session 1 is shown in Figure 4.6. In this session we can see many removing events.
These are removals of a package and its classes. The package which is removed is
named org.apache.lucene.demo, and the classes removed are: IndexFiles, SearchFiles,
IndexHTML, DeleteFiles, HTMLDocument, Entities, etc. These classes belong to an ex-
ternal package provided by Lucene, that were copied into the project. These removals
are probably related to a small cleanup of the system, since the developer did not need
these external classes anymore.

Figure 4.6: Session 1 of the IR Project

Session 2 is shown in Figure 4.7. In this session there are many addition events, and
more precisely addition of import declarations. In Eclipse when code is copied and
pasted the imports are automatically added. Therefore in this session probably some

28

Yuval Sharon EclipsEye

code was copied and pasted, generating many import declaration additions. All the im-
port declarations are added to a class named TextSamplerDemo, and they are mainly
related to the Java Swing and AWT: javax.swing.JSplitPane, javax.swing.JTextArea,
java.awt.Cursor, java.awt.GridBagLayout, etc.

Figure 4.7: Session 2 of the IR Project

Session 3 is shown in Figure 4.8. This session is composed of several removals of en-
tities. This is a bigger cleanup than the one of session 1, since in this case several
packages, import declarations and classes are removed. The classes that are removed
are named: MainTest, ReaderTest, BrowserLauncher. Several import declarations are
removed from HTMLTest.

Figure 4.8: Session 3 of the IR Project

29

Yuval Sharon EclipsEye

Session 4 is shown in Figure 4.9. In this session the developer adds some methods to
the system, modify them and then removes them. It was probably a testing session.
The programmer didn’t really know how to accomplish what he had to do, and thus he
tested some code. In fact by analyzing the events we see that a class named Interface
is changed to implement the WindowListener interface, then methods related to this
interface are added: windowClosing, windowClosed, windowIconified, windowDeiconi-
fied, windowActivated, windowDeactivated, windowOpened. At this point some of these
methods are modified, and later removed.

Figure 4.9: Session 4 of the IR Project

4.3.2 Second Semester’s Project

In Figure 4.10 we present one of the second semester student’s projects.

Figure 4.10: The evolution chart of a second semester student’s project

Session 1 is shown in Figure 4.11. In this session a class called StatsColumnModel
is created. This class implements the interface TableColumnModel and many methods
are added to it. These methods are auto-generated by Eclipse. After a while the de-
veloper seems to have changed his ideas and removed all the methods, and the class
StatsColumnModel too.

30

Yuval Sharon EclipsEye

Figure 4.11: Session 1 of a student’s project

Session 2 is shown in Figure 4.12. The developer removes some methods from a class
named PanelBets, and immediately after he adds them again, probably by undoing his
action. In this session the programmer seems to be quite unsure.

Figure 4.12: Session 2 of a student’s project

Session 3 is shown in Figure 4.13. This session is similar to session 2. In this case
methods are removed from class PreferencePanel and are re-added immediately after.
These are methods of the interfaces MouseListener and KeyListener. In this session the
developer seems to be very unsure, since he removes and adds the same methods of the
same class four times in a row. After the fourth time he actually starts implementing
the methods.

Figure 4.13: Session 3 of a student’s project

31

Yuval Sharon EclipsEye

4.3.3 EclipsEye View

In Figure 4.14 we show the evolution chart of the EclipsEye View development.

Figure 4.14: The evolution chart of the EclipsEye View development

Session 1 is shown in Figure 4.15. In this session many methods, fields, inner-classes
and import declarations are added to a class named AnimationView at the same time.
Later in the session some of these java elements are removed from another class, named
SpyView. This indicates that the developer copied and pasted some code from one class
to the other, and then removed what he didn’t need from the original class.

Figure 4.15: Session 1 of the EclipsEye View development

Session 2 is shown in Figure 4.16. In this session an anonymous-class is created
with many methods, and immediately after all the methods are removed. By analyz-
ing the events we can see that the anonymous-class created was an IAction, which is
in a interface containing many abstract methods that have to be implemented, such
as: setHelpListener, setToolTipText, run, getId, etc. After removing the methods the de-
veloper changes the anonymous-class to be an Action, which is an abstract class that
allows him to implement only the methods he is interested in. In this case the method
he implements is called run, which is called when the action is executed.
Sessions 3, 4 and 5 are cleanup sessions in which classes are removed from the system.

32

Yuval Sharon EclipsEye

Figure 4.16: Session 2 of the EclipsEye View development

33

Chapter 5

Conclusions

Software evolution analysis requires accurate data about the system. Using versioning
system’s repositories to construct the history of software leads to information loss.
Change-based systems are integrated within the IDE the developer is using, and they
process the events incrementally, as they happen, without losing information.
SpyWare is a prototype of a change-based system developed for the Squeak IDE, and
for the Smalltalk programming language. Since the case studies for SpyWare and the
change-based approach are limited we ported it to the Eclipse IDE, and for the Java
programming language. This let us validate the applicability of this approach on a dif-
ferent IDE and language.
We built EclipsEye, that is a plugin for Eclipse which monitors the developer’s activity
within this IDE at the key-stroke level. Each change done to a Java element generates
an high-level event, that is stored in an external file. The files generated are used for
software evolution analysis.
During the development of the plugin we had to evaluate different possible solutions to
the problems we encountered.

5.1 Contributions

We developed a change-based system that monitors the programmer’s activity within
the Eclipse IDE:

High-level changes Monitoring high-level changes in a software system. These changes
contain detailed information about its development (see Section 3.4.1 for the list
of events).

Refactoring actions Refactoring actions done inside Eclipse are monitored. The mod-
ified elements that such action affects are recorded (see Section 3.4.2 for the list
of refactoring events).

Storing the events The recorded events are stored in external files that can be loaded
into the Visualization plugin.

Visualizing data The monitored data can be visualized with views, such as the His-
togram view, the Evolution Chart, or the System Evolution Chart.

34

Yuval Sharon EclipsEye

5.2 Future Work

This project can be extended by adding new features, such as:

Monitor navigation It can be useful to monitor the navigation of the developer inside
the Eclipse IDE. It can show the developer’s intentions and exactly what he does.

Monitor copy and paste actions Copy and paste actions often occur in IDEs. By mon-
itoring these actions we can see how the developer write its code.

Monitor executions of programs Java applications can be executed within Eclipse.
It is possible to monitor these executions. We could see for example whether
the developer executes some JUnit test suites, or simply how often he runs its
programs.

Add views Adding more views to the visualization plugin can be useful. We could see
the evolution of a system reasoning on other properties. A 3D view can be also
implemented.

35

Appendix A

Plugin

A.1 How to use

In order to install the EclipsEye plugin copy the .jar file into the plugins directory of
Eclipse. Then restart Eclipse.

EclipsEye depends on some plugins. These plugins are included in the default installa-
tion of Eclipse, and are:

• org.eclipse.jface.text

• org.eclipse.jdt.ui

• org.eclipse.jdt.core

• org.eclipse.core.resources

• org.eclipse.core.runtime

• org.eclipse.ui

• org.eclipse.ui.editors

• org.eclipse.ui.part

• org.eclipse.ui.texteditor

• org.eclipse.ui.views

• org.eclipse.ltk.ui.refactoring

• org.eclipse.ltk.core.refactoring

The visualization plugin of EclipsEye uses the following plugins:

• eclipseye

• org.eclipse.draw2d

• org.eclipse.core.runtime

36

Yuval Sharon EclipsEye

• org.eclipse.ui

The draw2d plugin is not included within Eclipse, and has to be downloaded separately
from http://www.eclipse.org/gef/.

A.2 Architecture

The architecture of the plugin is shown in the next Figures as UML Class Diagrams.

37

Yuval Sharon EclipsEye

Figure A.1: Events (1/2)

38

Yuval Sharon EclipsEye

Figure A.2: Events (2/2)

39

Yuval Sharon EclipsEye

Figure A.3: Entities
40

Yuval Sharon EclipsEye

Figure A.4: Listeners and Participants

Figure A.5: Refactoring Changes

41

List of Figures

2.1 The evolution chart . 6
2.2 Versions example before and after the refactoring action is executed . . . 9
2.3 Difficulties in linking entities between two versions 10

3.1 Eclipse view . 17
3.2 Example of a java delta tree . 19
3.3 Example of a java delta tree for method modification 20
3.4 Example of a rename refactoring . 21

4.1 Eclipse showing the EclipsEye View . 25
4.2 Example of a Histogram view . 26
4.3 Example of an Evolution Chart . 26
4.4 Example of a Global Evolution Chart . 27
4.5 The evolution chart of the IR Project . 28
4.6 Session 1 of the IR Project . 28
4.7 Session 2 of the IR Project . 29
4.8 Session 3 of the IR Project . 29
4.9 Session 4 of the IR Project . 30
4.10The evolution chart of a second semester student’s project 30
4.11Session 1 of a student’s project . 31
4.12Session 2 of a student’s project . 31
4.13Session 3 of a student’s project . 31
4.14The evolution chart of the EclipsEye View development 32
4.15Session 1 of the EclipsEye View development 32
4.16Session 2 of the EclipsEye View development 33

A.1 Events (1/2) . 38
A.2 Events (2/2) . 39
A.3 Entities . 40
A.4 Listeners and Participants . 41
A.5 Refactoring Changes . 41

42

List of Tables

3.1 The main differences between Squeak and Eclipse, relevant for change-
based systems . 13

4.1 Events recorded for the projects . 24

43

Bibliography

[Ben93] K. Bennett. An overview of maintenance and reverse engineering. pages
13–34, 1993.

[Bro75] Frederick P. Brooks. The Mythical Man-Month. Addison Wesley, Reading,
Mass., 1975.

[CR04] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-Ins.
Pearson Higher Education, 2004.

[DDM+03] Serge Demeyer, Stéphane Ducasse, Kim Mens, Adrian Trifu, and Rajesh
Vasa. Report of the ECOOP’03 workshop on object-oriented reengineering,
2003.

[DGF04] Stéphane Ducasse, Tudor Gı̂rba, and Jean-Marie Favre. Modeling software
evolution by treating history as a first class entity. In Proceedings Workshop
on Software Evolution Through Transformation (SETra 2004), pages 75–86,
Amsterdam, 2004. Elsevier.

[Fow99] Martin Fowler. Refactoring – Improving the Design of Existing Code. Addison-
Wesley, 1999.

[GD06] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software
evolution. Journal of Software Maintenance: Research and Practice (JSME),
18:207–236, 2006.

[LB85] Manny Lehman and Les Belady. Program Evolution: Processes of Software
Change. London Academic Press, London, 1985.

[LS80] Bennett Lientz and Burton Swanson. Software Maintenance Management.
Addison Wesley, Boston, MA, 1980.

[RL05] Romain Robbes and Michele Lanza. Versioning systems for evolution re-
search. In Proceedings of IWPSE 2005 (8th International Workshop on Princi-
ples of Software Evolution), pages 155–164. IEEE Computer Society, 2005.

[RL06] Romain Robbes and Michele Lanza. Change-based software evolution. In
Proceedings of EVOL 2006 (1st International ERCIM Workshop on Challenges
in Software Evolution), pages 159–164, 2006.

[YW03] Hongji Yang and Martin Ward. Successful Evolution of Software Systems.
Artech House, Inc., Norwood, MA, USA, 2003.

44

	Abstract
	Introduction
	Goals of the project
	EclipsEye

	Software Evolution Analysis
	Software Maintenance
	Evolution Analysis
	Versioning Systems
	Introduction
	Versioning Systems for Evolution analysis
	Example of information loss

	Solution
	Change-based approach
	Porting the approach to Eclipse
	Differences
	Events
	High-level events
	Refactoring events

	The plugin
	Listeners
	Method modifications
	Refactorings
	Output

	Validation
	Case studies
	Visualizing data and metrics
	Results
	IR Project
	Second Semester's Project
	EclipsEye View

	Conclusions
	Contributions
	Future Work

	Plugin
	How to use
	Architecture

