
Bachelor Project

Sapphire
Scripting Smalltalk

Daniele Sciascia

supervised by
Prof. Dr. Laura Pozzi
Prof. Dr. Michele Lanza
Paolo Bonzini

Abstract

GNU Smalltalk is an open source project whose goal is to create a scripting environment
based on the Smalltalk programming language.
The problem of creating such a scripting environment is that in Smalltalk there is no
syntactic construct to define a class. This is an elegant solution when the system can
rely on a development environment. In a typical Smalltalk environment it is possible
to interactively define classes and store them on the virtual machine’s image. This
becomes a problem when trying to develop a scripting environment. In our case it is
not possible to rely on them. That is, the programmer must be able to write down his
classes on normal text files.
GNU Smalltalk faces this problem by adopting the so called bang-separated chunks
format. It adopts this format as its language syntax. This solution actually solves the
problem; but this format was intended to be used as a machine-readable format for
sharing source code. As a result, reading and writing GNU Smalltalk scripts is hard.
We propose an extended Smalltalk syntax specifically designed to write GNU Smalltalk
scripts. By doing so we provide a better programming experience. In particular, the aim
is to make it easier to write code, but also to improve readability.

i

Contents

Abstract i

1 Introduction 1
1.1 Structure of the Document . 2

2 Project Description 3
2.1 Project Context . 3

2.1.1 Smalltalk-80 . 3
2.1.2 GNU Smalltalk . 5

2.2 Scripting Smalltalk . 6
2.2.1 Overview and problem statement . 6
2.2.2 Goals . 7
2.2.3 Solution and benefits . 7

3 Implementation 9
3.1 Syntax . 9

3.1.1 Class definition . 9
3.1.2 Class extension . 9
3.1.3 Instance variables . 10
3.1.4 Class variables . 10
3.1.5 Methods . 10
3.1.6 Metaclass . 11
3.1.7 Namespaces . 11
3.1.8 Summary . 11

3.2 BNF Grammar . 12
3.2.1 Analysis and disambiguation . 13
3.2.2 Parsing Table . 14

3.3 Testing . 14
3.4 Syntax Converter . 15
3.5 Example . 16

4 Discussion 18

5 Conclusions 19
5.1 Contributions . 19
5.2 Future Work . 20

ii

Chapter 1

Introduction

The use of scripting languages represents today a convenient way of developing a variety
of software systems. In this document we refer to scripting language as a programming
language that is usually interpreted and dynamically typed. In some cases these lan-
guages are based on the Object Oriented paradigm. Examples are: Perl, Python and
Ruby1.
Trends of the past few years show that the adoption of such languages is increasing.
Scripting languages are successfully used for web applications, system administration,
prototyping, simulation and all sorts of other activities.
The reasons behind this trend cannot be easily summarized. Some of them relate to the
concept of rapid application development; that is the ability to write a complete software
system in a small amount of time. This is usually due to the fact that these languages
come with a large set of available libraries. They represent, in some cases, easy to use
high level languages that lead to easily maintainable software. The choice of whether
to use a system programming language such as Java2, or a scripting language such as
Ruby strictly depends on the application being developed.

With this project, we propose an alternative scripting environment based on the
Smalltalk programming language. Although it is not as widely adopted as others,
Smalltalk is extremely well designed and introduced many concepts later adopted by
scripting languages, including dynamic typing itself. Adopting Smalltalk as the base
of a new scripting language represents an attractive alternative to the existing ones,
especially for its expressiveness.

One of the problems when creating a scripting environment based on Smalltalk is
that its design was heavily influenced by the introduction of IDEs (Integrated Develop-
ment Environment). In fact the syntax of the language itself does not include syntactic
constructs for the basic structures of a program. For example, there is no specific syn-
tax for declaring a class. In a Smalltalk system, this is typically done interactively in
the development environment. This is an elegant solution, because in this way the lan-
guage exposes just a minimal syntax, while declaration of classes can be easily ”hidden”
in the development environment.

1see respectively: www.perl.org, www.python.org and www.ruby-lang.org
2www.java.sun.com

1

Daniele Sciascia Sapphire

In particular, for this project, we focus on GNU Smalltalk3, an open source imple-
mentation of Smalltalk, whose aim is to provide such a scripting environment. As the
GNU Smalltalk manual4 explains:

”[...] the goal of the GNU Smalltalk project is currently to produce a complete
system to be used to write your scripts in a clear, aesthetically pleasing, and
philosophically appealing programming language.”

GNU Smalltalk addresses the problems discussed earlier by using the so called bang-
separated chunks format as its language syntax. This format was originally designed for
exporting source code created in a development environment so that it was possible to
share it. It is not intended to be used as a language to create Smalltalk programs (even
if it is possible to do it), nor it is designed to have a comfortable and easy-to-use syntax.

The main goal of this project is to provide an alternative syntax, specifically designed
for writing GNU Smalltalk scripts.

1.1 Structure of the Document

Chapter 2 starts with a description of the basic concepts behind Smalltalk-80 and the
differences found on GNU Smalltalk. While the second part of the chapter presents
a complete description of project.

Chapter 3 describes the implementation details of the project. In particular it presents
the new syntax and the how the system was implemented and what was achieved.

Chapter 4 discusses the project in terms of strengths and weaknesses in the design
and implementation.

Chapter 5 draws conclusions about the whole project and indicates possible future
directions.

3www.gnu.org/software/smalltalk/
4www.gnu.org/software/smalltalk/manual/

2

Chapter 2

Project Description

2.1 Project Context

2.1.1 Smalltalk-80

This section should not be taken as a complete description of Smalltalk-80. It focuses
on those parts that are relevant for the understanding of the rest of this document. We
assume that the reader knows at least the basics of the object oriented programming
paradigm.

Smalltalk and its environment

When referring to Smalltalk, we can think of an environment made of:

• a language

• a class library

• a development environment

Smalltalk, the language, is the ground on which everything else is based on. It pro-
vides the basic framework for communicating objects. Basically, the language allows
to create objects described in classes, and exchange messages between the created ob-
jects. The rest of the features, from the most basic ones like predefined data types and
control flow, are entirely delegated to the class library. The language is therefore quite
small and elegant.

As in almost every language, the class library provides a set of predefined classes.
In the case of Smalltalk, the entire class library is written in Smalltalk itself. This is a
great benefit, because Smalltalk programmers have the entire source code of the class
library in their hands.

As already said, Smalltalk provides a complete development environment. It is not
only the place in which you see, write and debug your code, but it also shows the
source of the class library. The development environment plays an important role and
is considered an essential part of a Smalltalk system. Since the language is small and
has a minimal syntax, the development environment provides a way to interactively

3

Daniele Sciascia Sapphire

define programs and classes. Figure 2.1 shows the System Browser included in the
development environment of Squeak1.

Figure 2.1: Squeak’s System Browser

This is a typical code browser of a Smalltalk system. It provides five different panes:

• Leftmost pane - Shows categories under which available classes are grouped.

• Left center pane - Shows classes of the selected category.

• Right center pane - Shows categories of methods of the selected class.

• Rightmost pane - Shows methods of the selected category.

• Bottom pane - Shows the source code of the selected method.

The virtual machine and the image

Smalltalk runs on top of a virtual machine that isolates Smalltalk programs from the
actual hardware. Programs are therefore truly portable. The virtual machine basically
implements a bytecode interpreter.
However, another important piece of a Smalltalk system is the so called image. An
image is a file that is used by the virtual machine. As figure 2.2 shows, the image in-
tegrates the class library, the complete development environment but also user defined
classes. In particular, user defined classes are directly compiled into bytecode by the
development environment.

1www.squeak.org

4

Daniele Sciascia Sapphire

Hardware

Virtual Machine

Image

Class Library

User Classes

Development
Environment

Figure 2.2: Smalltalk virtual machine and image

2.1.2 GNU Smalltalk

GNU Smalltalk is an open source implementation of the Smalltalk-80 programming
language. This implementation strictly follows the design proposed in [GR83].
However the environment that GNU Smalltalk offers is fairly different from the usual
IDE provided by other Smalltalk implementations like VisualWorks2 or Squeak.
GNU Smalltalk offers a minimal working environment. Its environment is mainly a
command line virtual machine. There are two ways to operate with this tool. The first
one is to use as an interactive interpreter. The other one is to use it to launch a script
previously written on a file.

The virtual machine and the image

In the case of GNU Smalltalk, the virtual machine is not only a bytecode interpreter, but
it is also able to compile code. Instead of working on the image, in this case the virtual
machine works on files that contain the user code. This solution does not prevent the
virtual machine to take advantage of the image. In fact it is able to reconstruct an image
that contains the class library and is used as a cache during execution.

File-out syntax

As already mentioned, GNU Smalltalk uses the file-out format or bang-separated chunks
format as its language syntax. This format was described in [Kra83].
However, this format was intended to be used as an exporting format. The goal when
creating this format was to allow programmers to share their source code across differ-
ent implementations of Smalltalk development environments.

2www.cincomsmalltalk.com

5

Daniele Sciascia Sapphire

Namespaces

A missing feature of Smalltalk-80 is the possibility to work in multiple namespaces.
Classes are defined in one global namespace. Instead GNU Smalltalk implements mul-
tiple namespaces so that different classes and global variables, may have the same
name given that they are defined in different namespaces.

2.2 Scripting Smalltalk

2.2.1 Overview and problem statement

We believe that using the bang-separated chunks format as GNU Smalltalk’s language
syntax is not an adequate choice. Some reasons of why a new syntax is needed can
be intuitively seen by comparing a simple program written in a scripting language like
Ruby and its corresponding implementation written for GNU Smalltalk:

Ruby

class Person

attr_accessor :name, :age

def initialize(name, age)

@name = name

@age = age.to_i

end

def inspect

"#@name (#@age)"

end

end

GST (bang-separated chunks format)

Object subclass: #Person

instanceVariableNames: ’name age’

classVariableNames: ’’

poolDictionaries: ’’

category: ’’!

!Person class methodsFor: ’instance creation’!

name: aString age: anInteger

ˆself new name: aString; age: anInteger; yourself!

!

!Person methodsFor: ’accessing’!

name

ˆname!

name: aString

name := aString!

6

Daniele Sciascia Sapphire

age

ˆage!

age: anInteger

age := anInteger!

!

!Person methodsFor: ’printing’!

printOn: aStream

aStream << (’%1 (%2)’ % {name. age})!

!

This example clearly demonstrates that the bang-separated chunks format is more un-
comfortable, error prone and long than the corresponding Ruby code. Moreover, in
GNU Smalltalk, there isn’t a convention that implies one class for each file as in other
languages. That is, a file could possibly contain more than one class. In such cases,
the bang-separated chunks format results hard to understand, because there’s no clear
notion of scope.

2.2.2 Goals

The main goal of this project is to provide an alternative syntax for GNU Smalltalk. This
new syntax should address the shortcomings of the bang-separated chunks format.
The main problem lies in the fact that in Smalltalk there is no syntactic notion of a
class. The new syntax should introduce this notion, with the only reason that this will
help structuring source code in a better way. This should be done in a way that:

• writing code is natural and intuitive for programmers. The syntax should feel like
a natural extension of the Smalltalk language, appropriate for writing scripts.

• it improves the readability by introducing scoped definitions. That is, classes and
methods should have their own scope.

• it tries not to affect the rest of the syntax. Remember that this is an extension not
a complete remake.

• the current parser can be extended, without the need of rewriting it completely.

A problem that arises when changing the syntax of the language is that software al-
ready written in GNU Smalltalk has to be migrated to the new syntax. That is why the
second goal of the project is to provide a converter tool that takes as input a source file
written in bang-separated chunks format and translates it into the new syntax. This
tool has been written using GNU Smalltalk, and its new syntax. Notice that also GNU
Smalltalk’s class library is entirely written using the file-out format, and therefore has
to be converted.

2.2.3 Solution and benefits

The following code snippet shows the same example program we used in Section 2.2.1,
but this time written using the proposed syntax:

7

Daniele Sciascia Sapphire

Object subclass: Person [

| name age |

Person class >> name: aString age: anInteger [

ˆself new name: aString; age: anInteger; yourself

]

name [ˆname]

name: aString [name := aString]

age [ˆage]

age: anInteger [age := anInteger]

printOn: aStream [

aStream << (’%1 (%2)’ % {name. age})

]

]

This example does not cover all the syntactic elements provided by this project. These
will be covered in Chapter 3. However, by comparing this example with the one shown
in Section 2.2.1, we can notice the following:

• Increased readability.

• Instead of separating different pieces of code using exclamation marks, scopes are
clearly delimited for both classes and method definitions.

• Apart from class and message definitions Smalltalk’s syntax remains completely
unchanged.

• Instance variables are defined in the same way as you would define local variables
inside a Smalltalk method.

• All of the features of Smalltalk are still supported.

8

Chapter 3

Implementation

3.1 Syntax

This section presents a complete overview of the syntactic elements introduced in the
grammar of GNU Smalltalk. Each element is described with a simple and commented
example.

3.1.1 Class definition

In order to define a class, the new syntax provides the following construct:

Object subclass: MyClass [

]

where MyClass is the new class that has to be created, and Object is the class from
which to inherit. An important fact to notice is that with the new syntax, we introduce
also the notion of scoping. In fact, the ”contents” of MyClass have to be written between
the ’[’ and ’]’ brackets.

3.1.2 Class extension

Smalltalk provides also a way to redefine the ”contents” of a class that was defined
earlier. Classes can be extended in the following way:

MyClass extend [

]

where MyClass is an already defined class. In the same way, it is possible to extend
the metaclass of an already defined class:

MyClass class extend [

]

9

Daniele Sciascia Sapphire

3.1.3 Instance variables

Instance variables are defined in the same way local variables are defined inside a
method. That is instance variables names must be listed between ’|’ and ’|’:

Object subclass: MyClass [

| anInstanceVariable anotherOne |

]

3.1.4 Class variables

Class variables are included in the class scope as the other kinds of variables with the
only difference that they can be initialized on the fly. This choice is due to the fact that
class variables are usually used for constant values. For example:

Object subclass: MyClass [

AClassVariable := nil.

]

3.1.5 Methods

Smalltalk provides three method patterns: unary, binary and keyword methods. GNU
Smalltalk obviously provides all of them, with the only difference that methods get their
own scope, between angle brackets, containing local variables and method statements:

Object subclass: MyClass [

aUnaryMethod [

]

< arg [

"This is a binary method"

]

aKeywordMethod: arg1 with: arg2 [

]

MyClass class >> aClassMethod [

]

ASuperClass >> overriddenMethod [

]

ASuperClass class >> overriddenClassMethod [

]

]

In addition, the example above shows another feature, that is the ability to define
methods in a superclass. This feature becomes useful in a number of situations, for
instance assume you are defining a new data type Foo. In that case you might want to
create the method #isFoo in class Object, that simply returns false. And then override
that method in class Foo so that it returns true.

10

Daniele Sciascia Sapphire

3.1.6 Metaclass

In order to define a class instance variable, we have to ”access” the metaclass. This can
be accomplished in the following way:

Object subclass: MyClass [

MyClass class [

| aClassInstanceVariable |

aClassMethod [

]

]

]

Notice that the metaclass scope behaves exactly as the class scope. Whatever can
be done in the class scope, can also be done in the metaclass scope. This means, as
the example shows, that we can define a method inside that scope.

3.1.7 Namespaces

As we explained in Section 2.1.2, GNU Smalltalk supports multiple namespaces. Using
the new syntax, the way to switch the current namespace is:

Namespace current: MyNamespace [

]

Every statement or declaration between the angle brackets is referred to namespace
MyNamespace.

3.1.8 Summary

Putting it all together, a complete class using the new syntax looks like this:

SuperClassName subclass: SubClassName [

| instanceVariables |

ClassVariable := initExpression.

SubClassName class [

| classInstanceVariables |

methodPattern [methodStatements]

]

methodPattern [methodStatements]

]

11

Daniele Sciascia Sapphire

3.2 BNF Grammar

Section 3.1 showed the details of all the syntactic elements available in GNU Smalltalk.
In this section we will discuss the grammar needed to represent those elements. The
following grammar is written using a BNF-like notation and represents only the addition
made to the original GNU Smalltalk grammar.

scoped_definition : class_definition

| namespace_definition

class_definition : qualified_name "subclass: " identifier "[" class_body "]"

| class_name "extend" "[" class_body "]"

namespace_definition : "Namespace" "current: " qualified_name "[" doits "]"

qualified_name : [identifier"."]* identifier

class_name : qualified_name

| qualified_name "class"

class_body : [class_body_elem]*

class_body_elem : instance_variables

| method

| class_metadata

| class_variable

| class_protocol_definition

instance_variables: "|" [variable_name]+ "|"

method : [class_name ">>"]? message_pattern "[" method_body "]"

class_metadata : attributes

class_variable : variable_name ":=" expr

class_protocol_definition : class_name "[" class_body "]"

message_pattern : unary_pattern | binary_pattern | keyword_pattern

unary_pattern : identifier

binary_pattern : binop identifier

keyword_pattern : [keyword identifier]+

method_body : local_variables attributes statements

local_variables : "|" [variable_name]+ "|"

12

Daniele Sciascia Sapphire

3.2.1 Analysis and disambiguation

The grammar we defined in Section 3.2 is in the class of LL(k) grammars. That is, a
grammar which is parsable in a top-down and left to right manner. Since the pre-
existent parser of GNU Smalltalk is a hand-written recursive descent parser, we are
interested in such a grammar because we can simply extend it to fit our needs.

However the grammar suffers from a common problem, namely it is ambiguous. In
particular the presented grammar is LL(3); this means that when using a recursive
descent parser, three lookahead tokens are needed in order to correctly recognize the
language. The following example clarifies the problem.

Assume that the following snippet of code has to be parsed:

Object subclass: Test [

| anInstanceVariable |

]

Suppose that the first line, the class declaration, has been already parsed. According
to our grammar we are now in the class body rule:

class_body : [class_body_elem]*

class_body_elem : instance_variables

| method

...

The first token that has to be parsed is the character |. At this point, we don’t know the
production we have to follow. As far as a parser could know there are two productions
that can be followed. For instance, it could follow the instance variables rule:

instance_variables: "|" [variable_name]+ "|"

or alternatively it could reach the binary pattern rule by going through the method and
the message pattern rules:

method : message_pattern "[" method_body "]"

| class_name ">>" message_pattern "[" method_body "]"

message_pattern : unary_pattern

| binary_pattern

| keyword_pattern

binary_pattern : binop identifier

It is clear that one single token is not sufficient to recognize the fact that we are parsing
an instance variable. Similarly, we can apply the same reasoning made before, and dis-
cover that even if we fetch the second token, that is the identifier ”anInstanceVariable”,
we are faced with the same problem. In order to choose the right rule, the parser would
have to get the third token to disambiguate this case.

13

Daniele Sciascia Sapphire

3.2.2 Parsing Table

In Section 3.2.1, we just showed that our grammar is LL(3) and also one case in which
three lookahead tokens are needed. However, by applying the same reasoning, it is
possible to find out that there are other cases in which the grammar needs more than
one token to recognize which production to follow. Table 3.1 can be used as a reference
for all those cases in which the grammar is ambiguous.

token 1 token 2 token 3 possible productions
| instance variables or method
| | instance variables
| identifier instance variables or method
| identifier identifier instance variables
| identifier [method

identifier method or class variable or class protocol
identifier identifier method or class variable or class protocol
identifier identifier binop method
identifier identifier [class protocol
identifier assignment class variables
identifier binop method
identifier [method
identifier . method

binop method
> method

keyword method
< method or class metadata
< keyword class metadata
< identifier method

Table 3.1: Parsing table

3.3 Testing

While developing the parser, part of the time was spent on writing regression tests.
Producing a complete coverage of all possible cases would be a waste of time, because
they are too many. When writing our regression tests, we put emphasis on valid cases,
that is, cases in which the parser should recognize the given input.
Taking into account that GNU Smalltalk has a good test coverage of the class library
which is about forty thousand lines of code. Once the class library is converted to the
new syntax, if everything still works and all of those test cases pass, it means that the
parser does what it should do.

14

Daniele Sciascia Sapphire

3.4 Syntax Converter

As we said, the second goal of the project was to provide a syntax converter. That
is, a program that takes as input a source file written in old syntax and produces a
corresponding implementation written in the new syntax.
In order to write this converter, we took advantage of a package called STInST that
comes with the GNU Smalltalk project. STInST provides, along with other utilities, a
parser for Smalltalk written in Smalltalk itself. Figure 3.1 depicts the class diagram of
the converter.

+ evaluate: node
+ compile: node
+ doEmit

SyntaxConverter

+ emitTo: aStream
EmittedEntity

+ emitTo: aStream
EmittedDoit

+ emitTo: aStream
EmittedComments

+ emitTo: aStream
EmittedClass

*

STInST.RBParser

STInST.STFileParser

1

1

+ evaluate: node
+ compile: node

STInST.ParsingDriver

+ evaluate: node
+ compile: node

STInST.ClassLoader

Figure 3.1: UML class diagram of the converter

As we can see from the diagram, the STParsingDriver hierarchy cooperates with STFileParser
through the “strategy” pattern. In turn, STClassLoader is a superclass for drivers that
need an in-memory model of the classes being parsed. This is a lightweight represen-
tation that is not executable, but still mostly polymorphic with the standard smalltalk
classes that implement reflection (Class, Metaclass, CompiledMethod, Namespace).

Our SyntaxConverter inherits from the class loader in order to grab this represen-
tation. In addition, after every chunk the SyntaxConverter tries to understand what
kind of content will have to be emitted. As chunks are processed, the syntax converter
creates EmittedEntity objects for each section in the output, and inserts them into an
ordered list. At the end of this process, the SyntaxConverter iterates over it. On each
EmittedEntity, #emitTo: is called so that the output is formatted on the given stream.

15

Daniele Sciascia Sapphire

3.5 Example

In this section we provide an additional example of using the new syntax. The original
example was taken from [Bec97].

Object subclass: Money [

| amount currency |

Money class >> amount: aNumber currency: aSymbol [

ˆself new

setAmount: aNumber

currency: aSymbol

]

amount [ˆamount]

currency [ˆcurrency]

setAmount: aNumber currency: aSymbol [

amount := aNumber.

currency := aSymbol

]

+ aMoney [ˆaMoney addMoney: self]

addMoney: aMoney [

ˆcurrency = aMoney currency

ifTrue:

[self class

amount: amount + aMoney amount

currency: currency]

ifFalse:

[MoneySum monies: (Array

with: self

with: aMoney)]

]

addMoneySum: aMoneySum [

ˆaMoneySum addMoney: self

]

printOn: aStream [

aStream

print: amount;

space;

nextPutAll: currency

]

]

16

Daniele Sciascia Sapphire

Object subclass: MoneySum [

| monies |

MoneySum class >> monies: aCollection [

ˆself new setMonies: aCollection

]

monies [ˆmonies]

setMonies: aCollection [

monies := aCollection

]

+ aMoney [

ˆaMoney addMoneySum: self

]

addMoney: aMoney [

ˆself class monies: (monies copyWith: aMoney)

]

addMoneySum: aMoneySum [

ˆMoneySum monies: monies , aMoneySum monies

]

printOn: aStream [

monies do:

[:each| aStream

print: each;

nextPutAll: ’ + ’].

aStream skip: -3

]

]

Eval [

| m1 m2 sum |

m1 := Money

amount: 5

currency: #USD.

m2 := Money

amount: 7

currency: #GBP.

sum := (m1 + m2) + (m1 + m2).

sum printNl.

]

17

Chapter 4

Discussion

Extending the syntax of Smalltalk is an arguable choice. However, since we do not rely
on a development environment, we fulfill part of its functionality with the support of a
more complete syntax on the language side. This solution is a compromise. The new
syntax does not propose a pure Smalltalk solution, but for the same reason, even the
bang-separated chunks format is a compromise.

From a theoretical point of view, both implementations are equivalent in power, but
our syntax is meant to be specifically used for scripting. Adopting the new syntax is
therefore a way to improve the GNU Smalltalk project. The examples we showed in
Section 2.2.3 and 3.5, look promising.
Our specialized syntax provides a concrete way to improve the scripting activity on GNU
Smalltalk. In section 2.2.3 we already mentioned the increased usability when writing
and reading scripts.

Another consideration is that our syntax is also editor-friendly and easiliy manage-
able. Constructs such as classes and methods are well scoped. Therefore, features like
folding or syntax highlighting can be easily implemented. It clearly depends also on
how the editor itself is implemented.

On the other side, in respect to other languages, there might be some missing fea-
tures. For example, Ruby provides a succinct way to define accessor methods. By using
the keywords attr reader, attr writer and attr accessor it possible to define respectively
a getter, a setter or both getter and setter for a given attribute of a class. (see the Per-
son example written in Ruby in Section 2.2.1). Using our syntax, accessors must be
explicitly written by hand. With the drawback that these still occupy a relevant part of
a source code file.

18

Chapter 5

Conclusions

A scripting environment based on Smalltalk represents an attractive alternative to the
existing scripting languages. Although the goal of GNU Smalltalk is to produce such
a scripting environment, the improvements proposed in this project considerably in-
creased its value. Defining an extended Smalltalk syntax is crucial for our purpose, for
at least two reasons:

1. In Smalltalk there is no syntax to define a class or a program. Because they can
be defined interactively inside the development environment and stored inside the
image. A scripting environment does not rely on a development environment, so
we introduce these notions inside the syntax.

2. The bang-separated chunks format does not represent an alternative which is
good enough. Remember that it was introduced as a machine-readable format to
enable sharing of source code.

Migrating to a new syntax is not an easy task. Providing tools, such as the automatic
converter, is important. The class library of GNU Smalltalk has been easily ported to
the new syntax. By using the same converter, users of GNU Smalltalk, can easily port
their own code base.

5.1 Contributions

We provide the following contributions to the GNU Smalltalk project:

• the definition of a new syntax for GNU Smalltalk scripts.

• an extended parser that recognizes the new syntax.

• a tool that converts source code from old to new syntax.

These contributions were already accepted and committed to the official GNU Smalltalk
repository1.

1http://savannah.gnu.org/projects/smalltalk

19

Daniele Sciascia Sapphire

5.2 Future Work

GNU Smalltalk comes with a number of tools. Some of them are based on the STInST
package discussed in Section 3.4. One of those tools is a documentation tool. That is,
a tool that loads source code and automatically creates documentation for it.
In order to support the new syntax, the documentation tool should use a new kind of
STFileParser. That is, a parser that recognizes the new syntax.
Having such a parser would be useful also when implementing new tools that need to
analyze source code. For example, it could be used in combination with the syntax
converter to implement a pretty printer.

20

List of Figures

2.1 Squeak’s System Browser . 4
2.2 Smalltalk virtual machine and image . 5

3.1 UML class diagram of the converter . 15

21

List of Tables

3.1 Parsing table . 14

22

Bibliography

[Bec97] Kent Beck. Smalltalk: best practice patterns. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1997.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[Kra83] Glenn Krasner, editor. Smalltalk-80: bits of history, words of advice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

23

