
Bachelor Project

StockHome - Analytical Framework
Underlying analysis framework for a financial analysis tool

Francesco Rigotti

supervised by
Prof. Dr. Michele Lanza

Abstract

Nowadays millions of people invest in the stock market. To make profitable invest-
ments, a complicated decision-making process is needed, therefore many investors hire
investment consultants. These consultants use various software solutions to perform
analyses and then interpret the results to give their customers the solution they believe
to be the best.
We built a framework performing analyses on stock market data. The result of these
analyses are investment solution proposals. We designed the system in such a way to
be extensible with other analysis techniques. The framework includes a system that
automatically fetches the data from internet.

i

Acknowledgments

I would like to thank all the people that supported me during these three years in all
different ways, especially my family and friends. A special thanking goes to Michele
Lanza, the supervisor of this project, for constantly helping me with my academical
decisions and for teaching me those key concepts that helped me during the rest of my
bachelor program.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Structure of the Document . 2

2 Problem & Related Work 3

3 Solution 5
3.1 Information retrieval . 7
3.2 Database maintainer . 7

3.2.1 Scheduling . 8
3.3 Database . 10

3.3.1 Data classes . 10
3.4 The analysis component . 13

3.4.1 Calculation core . 13
3.4.2 Filtering core . 14
3.4.3 Optimization core . 15

3.5 Virtual portfolio . 16
3.6 Hibernate . 17
3.7 Performance of the framework . 18

4 StockHome behind the scenes 19
4.1 Filtering example . 19
4.2 Search for a stock . 20
4.3 Optimization example . 21
4.4 Virtual portfolio creation . 22
4.5 Buy a stock . 23

5 Conclusions 24
5.1 Future Work . 24
5.2 Applications of the framework . 25

5.2.1 Gilad Geron’s web interface . 25

A Implementation 27
A.1 Technologies used . 27

A.1.1 Java . 27
A.1.2 Ruby . 27

iii

Francesco Rigotti StockHome - Analytical Framework

A.1.3 MySQL . 27
A.1.4 Hibernate . 28

A.2 Technology choices . 29
A.3 Framework structure in deep . 30

A.3.1 Filtering . 31
A.3.2 Optimization . 31
A.3.3 Hibernate . 32
A.3.4 Calculation Core . 33
A.3.5 Fetchers . 34

iv

Chapter 1

Introduction

Nowadays around 15 thousand companies have shares in the stock market and mil-
lions of people invest in this market. Such massive markets generate an enormous
quantity of data, making them more difficult to observe and understand. In fact a large
number of investors, both private and firms, hire investment consultants.

At the same time this massive amount of generated data is however extremely useful
for those who know how to interpret it : through statistical analysis techniques, vari-
ous factors determining the performance of each stock can be discovered, ad-hoc laws
can be inferred and investment strategies can be designed. In fact, investment consul-
tants use some software solutions to perform such analyses and give their customers a
promising investment proposal.

Stock markets are extremely complex and are very sensitive to changes in the global
economy situation. Researchers keep inventing new techniques to interpret the afore-
mentioned data. Many new techniques take inspiration from approaches used in other
sciences like artificial intelligence and biomedicine.

The goal of the project was to develop a framework performing statistical analyses
on stock market data and proposing various investment solutions. The framework in-
cludes also a component in charge of fetching stock market data from internet, collect
it in a database and keep this database up-to-date.

Because of the continuous increase in the number of analysis methods, we designed
a framework which is easily extensible with other analysis techniques.

In order to test the quality of the system, we went to the financial department in
the economics faculty of USI and asked a researcher for his help. We had him use
our framework for some days and compare it, in terms of precision and speed, to the
software solutions he usually uses.

1

Francesco Rigotti StockHome - Analytical Framework

1.1 Structure of the Document

In Chapter 2 we give a detailed description of the problem we wanted to solve and of its
context. We then describe our solution in detail from a conceptual point of view (Chap-
ter 3). In Chapter 4 we explain how the system accomplishes its tasks by showing the
internal activity with UML sequence diagrams. We draw our conclusions in Chapter 5.

2

Chapter 2

Problem & Related Work

Stock markets generate massive amounts of data, which gets outdated and overwritten
very fast; some data becomes old in a matter of minutes. It is extremely important
to collect, organize and manage this data, because, if correctly analyzed, it can reveal
many trends and laws of the market, therefore leading to better investment strategies.

The importance of stock market data is so big that there are companies collect-
ing and managing this information as a business. These companies maintain massive
databases and ask money in change of access to the data. The peculiarity of these
databases is that they are updated in real-time and are therefore very expensive.

Figure 2.1: Sample of data about the stock BIOS

The picture above shows a sample of data generated for the stock BIOS on 2008/04/22.
Out of the three prices in the sample, only the closing price is used to analyze the stock,
while ask and bid are used when trading the stock.

Stock exchange data is very useful if analyzed. One of the most common category of
analysis is optimizations. Optimizations are used when we want to perform a replica-
tion, the procedure of reproducing the performance of an expensive stock using a set
of cheaper stocks. To find out how many shares of each cheap stock we should buy in
order to obtain the best replication, we use optimizations.

We said before that all analyses have to be run on massive data sets and, therefore,
cannot be carried out by humans. Because of this, in the last decade, many applications
performing such analysis have been developed.

3

Francesco Rigotti StockHome - Analytical Framework

If we take a look at the current set of tools on the market, we notice, first that
many of these are like add-on components to Excel, second that Microsoft’s tool itself
is broadly used.

Although flexible, Excel is a program with a more generic purpose and formulas for
the analysis need to be specified by hand. This is certainly an error prone procedure
and is used in an environment where correctness is crucial. Moreover, because of the
complexity of formulas, only users with a good experience in the field can use such
solutions.

When formulas are built in the software, unlike in Excel, users cannot corrupt them
by mistake and the software can be used also by people without an in-depth knowledge
of statistics. Another benefit of this approach is that user interfaces become simpler,
because less input has to be specified: formulas are no longer part of the input.

However, even such a tool, like all the others, still suffers from a great lack of au-
tomation on the input side. In all existing software solutions, users have to manually
feed the application with the data they want to analyze. In Excel, for example, the data
has to be copied into a spread sheet.
Given the amount of data and its mutability, users need to keep refetching data to avoid
analyzing out-dated information. This continuous refetching is extremely expensive in
terms of time and, for firms, of money.

During the market day, the price of a stock keeps changing; the price at the end of
the market day is called closing price. This price is the most useful for people willing
to analyze a stock. By keeping a record of the closing price of a stock for each day, we
obtain the history of this stock. The longer is the history of the stocks we analyze, the
more precise are the results of the analyses.
Therefore, in order to obtain results that are precise enough, we have to build the his-
tory of each and every stock we want to analyze. Building the history of a stock requires
fetched data to be collected and organized.

Because of the reasons mentioned afore, users must deal with the process of data
collection and storage; in other words they have to maintain some sort of a database by
themselves.

From the problems we illustrated in this chapter, we produced a set of requirements
that an application has to satisfy in order to be a possible solution.

• The application must completely automate the process of data fetching, organiza-
tion and storage;

• Users must have no access to formulas

• The application must be easily extensible with new analysis techniques

4

Chapter 3

Solution

As a solution to the problems illustrated in Chapter 2, we built a framework performing
statistical analyses on stock market data. The result of these analyses is an invest-
ment solution proposal. We designed the framework in such a way to be extensible with
other analysis techniques. The framework includes a system automatically download-
ing, managing and updating stock market data.

In order to illustrate the structure of the system we divide it in components, group-
ing in one component all entities that accomplish a determined task by collaborating
with each other. On the next page we present a scheme to give an idea of the frame-
work’s structure and to show how components interact with each other. After a brief
description of the scheme, we proceed by explaining in detail each component.

Figure 3.1, on the next page, shows a conceptual overview of the system. We de-
scribe this picture by illustrating the dataflow in the framework.

We start from the top with the database maintainer that tells the information retrieval
component to download stock market data from internet and store it in the database.
The same core now instructs the calculation core to calculate intermediate values used
to speed-up the analysis procedures. The calculation core reads the necessary data from
the database, performs the calculations and writes the results in the database.

Now the database contains all data necessary for the analyses: the filtering and
optimization cores are ready to offer their functionality when requested by the user
through the interface. Together with the analysis component also the virtual portfolios
component is ready to satisfy the requests of the user.

5

Francesco Rigotti StockHome - Analytical Framework

Internet

Database

Optimization
core

Calculation
core

Database
maintainer

Filtering
core

Hibernate

Analysis

Database

User Interface

Translated
request

Simple
request

Virtual portfolios

Portfolio
core

Translated
request

Information
Retrieval

Fetchers

Figure 3.1: Conceptual overview of the system

6

Francesco Rigotti StockHome - Analytical Framework

3.1 Information retrieval

This component is a set of Ruby scripts, the fetchers, which are used to download data
from internet. All the data fetched by the system is obtained using these scripts. For
each data class introduced in Section 3.3 belonging to the fetched group, we have one
script in charge of getting the data.
All the scripts download raw data from Yahoo! Finance1, parse it, clean it and validate
it; after these checks, the scripts can write data in the database, without the risk of
polluting it with wrong values. Some scripts take advantage of the remote API offered
by Yahoo!; but for some data classes, such as company, there’s no remote API and
scripts have to parse HTML pages in order to get the raw data.

3.2 Database maintainer

In Chapter 2 we expressed the need for a tool that automates the process of fetching,
managing and updating the data.
This core is in charge of these tasks and, in order to accomplish them, collaborates with
the fetchers and the calculation core. A schematic view of the collaboration follows.

Database

Internet

DB
Maintenance

Core

Calculation
Core

Fetchers

Get raw data

Trigger download

Report fetching complete

Trigger calcualtion
Report

calculation
complete

Dump
formatted

data

Get
fetched

data

Dump
calculation

results

Figure 3.2: Database maintainer and collaborators

This core has its own tasks organized into sets of operations executed at the sched-
uled time. Each task covers a certain class of data in the database. Depending on the
scheduled task, the core will trigger either one or both its collaborators.

1See: http://finance.yahoo.com/

7

Francesco Rigotti StockHome - Analytical Framework

3.2.1 Scheduling

Depending on the frequency with which tasks are performed, we distinguish them in
two groups: high frequency tasks and daily frequency tasks.

High frequency tasks (every 15 minutes)

Up to now, the only task performed so frequently is updating real-time data.
Notice that in order to keep the latest correct values of real-time data, we don’t update
it when the market is closed.

Daily frequency

Tasks in this group are performed each day after the market has closed. The first
task performed in this group consists of checking whether new stocks were put in the
market or whether some stocks left it. In the first case the core will have to run a set
of initialization tasks. In the latter case a set of termination tasks will be performed.
After the former sets of tasks are completed, the system can proceed to perform a set
of updating tasks.
A description of which tasks the mentioned sets contain follows.

Initialization tasks

For each new stock s in the market, do the following:

• Fetch nominal data for s

• Fetch company information for s - only in case that s belongs to a new company
entering the market

• Fetch historical data of s - only one day is fetched since s is a new entry.

• Fetch daily data of s

• Calculate data belonging to common and filtering data classes

Note that analysis run on new stocks will not be very helpful until the mass of their
historical data grows with time.

8

Francesco Rigotti StockHome - Analytical Framework

Termination tasks

For each stock s leaving the market, do the following:

• Delete nominal data for s

• Delete company information for s - in case s is the only stock its company has in
the market

• Delete virtual portfolios data regarding s - as in reality, users owning bankrupt
stocks will lose the money invested on them

• Delete historical data about s

• Delete daily data about s

• Delete real-time data about s

• Delete common and filtering data about s

Updating tasks

For each stock s in the database do:

• Update historical data of s - add data of the market day that just ended

• Update daily data about s

• Recalculate data about s belonging to common and filtering data classes - new
historical data has to be considered in common and filtering data

9

Francesco Rigotti StockHome - Analytical Framework

3.3 Database

3.3.1 Data classes

We divided data classes in two groups: data fetched from internet and data generated
by the system, such as cached values for calculations.

Fetched data

Historical data
This class contains max, min and closing price of a stock for each day in the past.
Since it contains the essential data about the history of a stock, it is extremely
useful for any statistical analysis. Because of the quantity of data belonging to
this class, we limit the maximum history length of each stock to at most ten years.

Real-time data
Beyond some other values, this class of data contains the ask (buy price) and bid
(sell price), which keeps changing throughout the entire market day. Such data is
the most mutable in the whole system and is refetched every 15 minutes.

Daily data
Data in this class informs users about various factors related to the performance
of stocks. Because of this, such data is useful when filtering.

Company Information
This class contains data about the companies stocks belong to. Some of this data,
like the industry in which the company works, are used to filter stocks, while other
information, like the companies’ home page are used as additional source of infor-
mation offered to the user.

Nominal data
Data in this class can be seen as a simple list of stock and index names. In other
words this data just declares the existence of a stock or an index. Moreover, in
the database tables, this data is referred to from almost all the tables of the other
stock/index related classes (e.g. historical data).

10

Francesco Rigotti StockHome - Analytical Framework

System generated data

Common
In this class are contained the cached values calculated by the calculation core,
which are used by filtering and optimization cores. It is recalculated at the end of
each day because it depends on historical data.

Filtering
This class contains data calculated by the calculation core, which is used when
filtering. This data is recomputed at the end of each day, because it depends on
common data.

Virtual Portfolio
In this class lies all data necessary to maintain the virtual portfolios of each user.

Logging
Logged transactions of the virtual trading made by users (e.g. user i has bought
a certain amount of shares of stock j) are contained in this class. These transac-
tions are a sort of backup from which portfolios can be reconstructed in case of
non-hardware related failures.

User
Data like user login, password, e-mail etc. . .

The database tables for the User and Logging data classes have been designed in
strict collaboration with Gilad Geron, because they are tightly coupled with the inter-
face. Virtual Portfolio tables where designed with Mr. Geron too, since he implemented
the virtual portfolio feature in his interface .

11

Francesco Rigotti StockHome - Analytical Framework

Com
m

on
Index

Calculated

Stock
Calculated

Historical
Index

Historical

Stock
Historical

Com
pany

Com
pany

Stock

Com
pany

Virtual Portfolios

Portfolio
Stock

Portfolio

Cart

User
User

Logging

Transaction

Realtim
e

Current
Realtim

e

Filtering
Beta

 Nom
inal

Index

Stock

Daily

Current
Daily

Figure 3.3: Detailed database structure, with tables grouped in the various data classes

12

Francesco Rigotti StockHome - Analytical Framework

3.4 The analysis component

This component is in charge of performing all analysis on the data contained in the
database. While going through each of the subcomponents, we give details about what
these analyses and their results are.

Figure 3.4: The analysis component

3.4.1 Calculation core

This subcomponent reads from the database data that was previously fetched, runs
various calculations on it and writes the results back in the database. The purpose of
this subcomponent is to calculate data which will be subsequently used by the other
two cores to accomplish their tasks. We refer to the calculated data as ”cached values”,
because it is made persistent in the database and does not have to be recalculated each
time by the other subcomponents.
Moreover, after new data has been fetched, this component is activated by the database
maintenance in order to keep the calculated data up-to-date with the fetched informa-
tion. A list of the cached values and their definition follows.

13

Francesco Rigotti StockHome - Analytical Framework

Daily rate of return (daily RoR)
It is the percentage change of a stock’s price between two subsequent days.
This data is useful to describe the trend of a stock.

Variance
It measures how much a variable is away from its expected value (mean). It is
defined as:

var(X) =
∑N

i=0(Xi − µ)

where µ is the mean of x and N is the number of observations of x

Beta

β = cov(X,Y)
var(X)

where cov(X,Y) is the covariance. [3]

Covariance
It is the measure of how two variables change together; if variables x and y have a
positive covariance, it means that they are both above or below their means.
When one is above and the other down, and viceversa, the covariance is negative.
Covariance is defined as:

cov(X,Y) =
∑N

i=0(X − µ)(Y − ν)

where µ is the mean of x, ν is the mean of y and N is the number of observations
of x and y.

3.4.2 Filtering core

When starting a new investment project, investors might have some preferences and/or
some constraints on the stocks to buy. For example one might not like to invest in
firms of the war industry or might be constrained, for some reasons, to invest only in
the Swiss market. Such an investor has no idea in which stocks to invest yet, so he has
to search through the stocks.

In order to restrict the set of stocks to examine and exclude the ones that do not
suit the investors’ needs, we included a filtering system in the framework. After the
user expressed his preferences and constraints as requirements, the system will make
a parameterized search in the database and return back the set of stocks that satisfy
the user’s requirements.
It is important to notice that filtering is using not only the data fetched from internet
regarding the stocks, but also data generated by the Calculation core like, for example,
beta.

14

Francesco Rigotti StockHome - Analytical Framework

3.4.3 Optimization core

Between the stocks on the market, we can identify various stocks that have a good
performance, but that are too expensive for many investors. What investors usually do
is to replicate the performance of expensive stocks using a set of cheaper stocks.

In a replication, the investor chooses the stocks he wants to use, then he invests
different percentages of his budget in each of them. In order to find the percentages
that lead to a good replication, the investor needs to run a type of analysis called opti-
mization.

There are many different optimization techniques and thanks to the way we designed
the framework, it is easy to add them. Due to time constraints, at the current version,
the framework features only one optimization technique, the Style Analysis.

Style Analysis

The purpose of this analysis is to help investors in performing good replications.
Here’s an example:

An investor wants to replicate the expensive stock e with a set of cheap stocks c.
Style Analysis is used to find out how much of the budget, in percentage, should be
invested in each one of the stocks in c, in order to best replicate e.

It is defined as Y = β̂X + ε , where

- Y is a vector of daily RoR, which describes the trend of the stock to replicate;

- X is a matrix of daily RoR built by joining the vectors of daily RoR describing each
stock used in the replication; the number of rows in X coincides with |Y |;

- β is a vector of coefficients;

- ε is the tracking error and represents the imprecisions that prevent us from getting
a perfect replication;

We aim to find a β̂ minimizing ε

min(ε) = min((Y − β̂X)2) ;

To do this, we will use a technique called OLS, which states:

β̂ = X′Y
X′X ;

To see how well β fits Y , therefore how good the replication will be, we calculate R2:

R2 =
PN

i=0(Ŷi − avgY)2PN
i=0(Yi − avgY)2

where

N = |Y |, avgY =
PN

i=0 Yi

N

Ŷi = βjXi,j; with j = 0 . . . |β| and i = 0 . . . |Y |

[4] [1]

15

Francesco Rigotti StockHome - Analytical Framework

3.5 Virtual portfolio

Our framework is meant to help investors by proposing them investment solutions.
Typically users would like to deeply inspect the investments proposed by the system
and have the possibility to save and modify them in the future.
In order to offer such features, virtual portfolios and a virtual portfolio management
system are necessary. As said at the end of Section 3.3 Gilad Geron implemented this
feature; since this feature affects the database and is very important, we think it is
worth to describe it shortly.

• budget - the amount of money available to buy new stocks or buy more shares of
stocks already in the portfolio

• entry - an entry consists of the name of a stock, the number of shares owned for
that stock and its price at the time of trading; a portfolio can contain zero or more
entries

Since portfolios are meant to group shares of traded stocks, the concept of portfolio
requires the existence of a concept of trading, which requires the concept of price.
This gives the need to keep the latest price data in the database; such data belongs to
the real-time data class discussed in Section 3.3.
As can be seen in the scheme below, the framework allows interfaces to access virtual
portfolios data through the subcomponent Hibernate, which is discussed in the next
section.

Figure 3.5: The virtual portfolio component

16

Francesco Rigotti StockHome - Analytical Framework

3.6 Hibernate

Hibernate 2 is an ORM (Object Relational Mapping) technology, which allows an appli-
cation to manage tables in a database by manipulating Java objects.
Thanks to this technology, a Java application using a database, is made independent
from the underlying database technology, being it MySQL, Oracle or SQLite, etc . . .

Moreover the application code in charge of database interaction is greatly simplified.
As a drawback of Hibernate, and all other ORMs, performance decreases.

We decided to include this ORM in the framework when, while designing it, we dis-
covered the existence of a particular set of operations. Operations in this set access
the database, are not performance critical, are requested by users through an interface
and are preformed frequently.
Although it is an instance of the concept of ORM, for the sake of simplicity, we will refer
to this ORM component as Hibernate throughout the whole document. A more detailed
description of this technology is given in Section A.1.4.

Figure 3.6: Hibernate relation with database

2See: http://www.hibernate.org/

17

Francesco Rigotti StockHome - Analytical Framework

3.7 Performance of the framework

In order to show the performance of the system, we give a description of the setup phase
and of the functionality access performed by a user.
Before beginning to setup the system, the user has to specify in a configuration file the
details for the connection to the database to use. As first step of the setup the user has
to run the initialize-index.rb script from the fetchers, which downloads data about the
specified index and about the stocks it contains.

In our tests we used a line limited at 300 Kb/s. It took 80 minutes to initialize the
Nasdaq, one of the largest indexes, which contains more than 3.050 stocks. The table
stock historical contained more than 5.710.000 rows and weighted less than 350 MB.

After that data has been downloaded, the user has to activate the database main-
tainer manually. The core instructs the calculation core to calculate the cached values
for all stocks in the database.
In our tests with the Nasdaq we measured an execution time of almost 255 minutes,
which means approximately 5 seconds per stock. The table stock calculated contained
more than 4.101.000 rows and weighted less than 95 MB.

After the first two steps, the system setup is complete and users can access the
framework’s functionality through the interface. When testing the system through Gi-
lad Geron’s interface, we realized how effective the cached values are in increasing the
speed of analyses: optimizations took less than 5 seconds and filtering the stocks in the
Nasdaq was completed in less than 3.

It is important to understand that once the cached values have been calculated from
scratch, it takes much less time to update them according to the new historical data
fetched at the end of the market day.

18

Chapter 4

StockHome behind the scenes

4.1 Filtering example

Figure 4.1: Sequence diagram for filtering

The user gives constraints about the stocks through an interface. The interface formats
user input and send a request to Filter (filter[constraints]).
To filter the stocks, we rely on data of the daily data class and on cached values be-
longing to the filtering data class. Since everything is in the database, Filter has just to
build a query expressing all the constraints (constrainedQuery[]). As requested by the
filtering core, the database returns the names of the stocks that satisfy all requirements
(return[names]).
For the sake of easy interface programming, Filter uses Hibernate to abstract to objects

19

Francesco Rigotti StockHome - Analytical Framework

the stocks satisfying the requirements (abstract[names]). Hibernate requests additional
data from the database in order to perform the abstraction (getData[names]); after that
the database answers back (returnData[]), Hibernate abstracts the stocks to objects
and sends these objects to Filter (returnStocks[]), which forwards them to the interface.
The interface shows the stocks to the user.

4.2 Search for a stock

Figure 4.2: Sequence diagram for a stock search

The user searches for a stock by specifying its name via an interface. This interface
sends a request to the MarketManager class (searchStock[name]).
MarketManager sends a request to Hibernate (abstractStock[name]), which reads from
the database data regarding the stock (getData[stock] and returnData[]).
When Hibernate has all the necessary data, it creates an instance of the Stock class,
which represents a stock in the database. The stock object is returned to MarketMan-
ager and forwarded to interface (returnStock[]).
The interface shows the stock’s information to the user by accessing the stock object
(showInfo[Stock]).

20

Francesco Rigotti StockHome - Analytical Framework

4.3 Optimization example

User Interface Optimization ODBHandler DB

specifyOpt[rep,stocks]

optimize[rep,stocks] getRoRs[rep]

getRoRs[stocks]

dbGetRoRs[rep]

dbGetRoRs[stocks]

dbReturn[rors]
return[rors]

dbReturn[rors]
return[rors]

return[OptRes]
showRes[OptRes]

optimize[]

Figure 4.3: Sequence diagram for optimization

The user specifies, through an interface, a stock to replicate and which stocks to use in
the replication (specifyOpt[rep, stocks]). The interface formats user input and sends a
request to the Optimization class (optimize[rep,stocks]).
To perform its task, Optimization needs to read from the database some data belonging
to the common data class. This task is delegated to ODBHandler (dbGetRors[rep] and
dbGetRors[stocks]), which queries the database.
After the response from the database, ODBHandler sends the information back to Op-
timization, which performs the optimization procedure (optimize[]).
The result of the analysis is an instance of the OptResult class. This object contains all
the results of the optimization and provides easy access to them.
Optimization sends the OptResult to the interface (return[OptRes]), which shows the
results to the user by accesing the OptResult instance.

21

Francesco Rigotti StockHome - Analytical Framework

4.4 Virtual portfolio creation

User Interface Portfolio
Manager

Hibernate DB

create[name,$]

savePF[portfolio]

getData[user]

savePF[portfolio]

returnData[user]
return[portfolio]

done[]
done[]

done[]
norifyDone[]

create[userId,name,$]
create[userId,name,$]

PDBHandler

done[]

abstractPF[userId,name,$]

Figure 4.4: Sequence diagram for creation of portfolios

The user specifies a name and the initial budget ($) for the new portfolio. The in-
terface adds the id of the user to the input and sends a request to PortfolioManager
(create[userId, name, $]).
PortfolioManager delegates the portfolio creation to Hibernate,which , after reading data
about the user from the db, initializes a Portfolio. The object is initialized using both
information specified by the user and data read from db (getData[user]).
PortfolioManager performs some modifications to the returned Portfolio and then tells
Hibernate to save these modifications in the database (savePF[portfolio]).
After being informed by Hibernate that the portfolio has been created, PortfolioManager
acquaints the interface with the procedure’s completion (done[]).
The interface notifies the user about the task’s completion.

22

Francesco Rigotti StockHome - Analytical Framework

4.5 Buy a stock

Figure 4.5: Sequence diagram for purchase of stocks

The user specifies the name and how many shares (#) of a desired stock he wants to
buy. A portfolio in which to put the stock and take the necessary money from has to
be specified too. The interface sends a request to PortfolioManager, which forwards it
to PDBHandler (buy[name,#, pf]).
The handler requests Hibernate for an instance of Portfolio. Hibernate reads the related
data from the database and returns the requested objects.
To obtain the stock price, PDBHandler uses the same collaboration with Hibernate, but
this time requests a Stock object representing the stock the user wants. When the
handler has all the required data, it checks that the transaction can be carried out
(e.g. if the budget in the portfolio is enough) and executes it by modifying the Portfolio
instance (performBuy[]).
PDBHandler delegates to Hibernate the task of writing the changes to the database
(savePF[portfolio]).
When Hibernate reports completion, PDBHandler passes the message to the interface
through PortfolioManager(done[]). The interface notifies the user about completion.

23

Chapter 5

Conclusions

In four months we obtained a software solution bringing many novelties in the market
of financial tools and various advantages to users.
We targeted two groups of users, one formed by investment consultants and one con-
taining people willing to invest without the help of an expensive human consultant.
We started from the problems identified in the market that were discussed in Chapter 2
and built a tool overcoming all these problems.
However the framework is still missing features that other applications in the market
already have; these features are of great interest for the users we targeted and are dis-
cussed in the next section.

5.1 Future Work

The current version of the framework is able to fetch only one type of asset which is the
simple stock. So far we can run analysis on stocks and options (another type of asset).
However the database does not support options yet.
As part of the future work, we want to integrate in the framework support for two more
asset type: options and futures.
Supporting these assets means expanding the framework by:

- writing new fetchers for data regarding these assets

- expanding the calculation core to generate cached values for analysis on these
assets

- reorganizing the database to support the assets

- reviewing Hibernate to have it mapping the new database

- adapting filtering and optimization cores to support the new assets

- modifying the portfolio core to allow users to trade these assets

24

Francesco Rigotti StockHome - Analytical Framework

Another important feature is a way to simulate the solutions proposed by the sys-
tem. When simulating an optimization for example, we should measure how well the
allocation scheme proposed by the system replicates the expensive stock.
The best way to do it is using data from the past: measure how good the replication
would have been if done three months ago. This simulation technique is called back-
testing.
Since we have in the database all the necessary data, what we need to add this simula-
tion feature is a set of algorithms.

We also want to expand the analysis capabilities of the framework by adding new
optimization techniques and increasing the number of parameters that can be specified
when filtering the assets.

5.2 Applications of the framework

In order to obtain a financial analysis tool, our framework has to be integrated with
an interface. Any type of interface can be developed to work with the framework, but
if they interface does not bring any innovation, the outcome will be a tool without any
novelty.
Gilad Geron, a bachelor student at USI, developed an innovative interface as his bach-
elor project. We give now a description of Gilad’s interface.

5.2.1 Gilad Geron’s web interface

The main feature distinguishing Geron’s interface from the others, is the absolute porta-
bility he obtained. Gilad integrated our framework in Tomcat, a servlet container.
By having our framework, running on a server featuring Tomcat, offer its functionality
through a web interface, he created an on line service.
In this way, users will not need to go through any installation phase and would be able
to access the functionality of the framework even through a computer with very small
computing power.
In order to prevent his interface from missing the usability of interfaces running locally,
Mr. Geron took advantage of the newest web technologies such as AJAX1, Prototype2

and JSON3.
A screenshot of Gilad’s application follows.
[2]

1See: http://en.wikipedia.org/wiki/AJAX#Bandwidth usage
2See: http://www.prototypejs.org/
3See: http://www.json.org/

25

Francesco Rigotti StockHome - Analytical Framework

Figure 5.1: Screen from Gilad Geron’s web application

26

Appendix A

Implementation

A.1 Technologies used

A.1.1 Java

Java is a programming language originally developed by Sun Microsystems and released
in 1995 as a core component of Sun Microsystems’ Java platform.
The language derives much of its syntax from C and C++ but has a simpler object model
and fewer low-level facilities. Java applications are typically compiled to bytecode that
can run on any Java virtual machine (JVM) regardless of computer architecture.[6]
Sun recently released the majority of their Java technologies under GPL.

A.1.2 Ruby

Ruby is an object oriented programming language created by Yukihiro Matsumoto in
1995. It is dynamic, reflective, open source and features a set of incredibly powerful
libraries.
Ruby has many similarities to SmallTalk in its object model, but includes also features
that belong to scripting languages like Perl.
Ruby’s impressive growth is largely due to its killer application: Ruby on Rails, a very
popular open source web framework.

A.1.3 MySQL

MySQL is a multithreaded, multi-user SQL database management system, which has
more than 11 million installations. It is popular for web applications and . . . for open-
source bug tracking tools like Bugzilla.
Its popularity for use with web applications is closely tied to the popularity of PHP and
Ruby on Rails, which are often combined with MySQL. PHP and MySQL are essential
components for running popular content management systems such as Joomla!, e107,
WordPress, Drupal, and some BitTorrent trackers. [7]

27

Francesco Rigotti StockHome - Analytical Framework

A.1.4 Hibernate

Hibernate is an object-relational mapping (ORM) library for the Java language, pro-
viding a framework for mapping an object-oriented domain model to a traditional rela-
tional database. Hibernate solves Object-Relational impedance mismatch problems by
replacing direct persistence-related database accesses with high-level object handling
functions. [5]

Figure A.1: Where Hibernate fits between application and database

Hibernate makes applications independent from the underlying database technol-
ogy. However it becomes too slow when used with large databases with many references
between tables; moreover its setup phase is heavy and time-consuming. In the case of
our framework, all the benefits we gained from this technology weren’t worth the efforts
to set it up.

28

Francesco Rigotti StockHome - Analytical Framework

A.2 Technology choices

• MySQL
We decided to use this technology for our database because we are used to its
syntax and to MySQL ’s graphical tools

• Java (for core functionality)
We were determined to implement all the functionality regarding the analysis, as
the whole framework, in Ruby.
But in the end we decided to use Java, because we needed a certain level of speed,
which Ruby is not yet able to offer, and a threading model taking advantage of
multiple cores (Ruby does not support native threads in its stable version).

• Hibernate
We wanted to have an ORM system in order to facilitate the development of inter-
faces to the framework. Before choosing Java as the language of the framework,
we wanted to use ActiveRecord, Ruby’s ORM. Hibernate was the only choice for an
ORM for Java.

• Ruby
We decided to write data fetchers in Ruby because of its powerful libraries for
network interaction.

29

Francesco Rigotti StockHome - Analytical Framework

A.3 Framework structure in deep

Filtering Core
<interface>
IFilter

BasicFilterO
ptim

ization Core

<interface>
IO
DBHandler

O
DBHandler

O
ptResult

StyleAnalysis

<abstract>
O
ptim

ization

 Calculation Core

Com
m
on

Calculations

SDBHandler

<interface>
ISDBHandler

DBM

aintenance
Core

DBM
aintainer

Database

Fetchers

Hibernate

INTERFACE

portfolio operations

Figure A.2: A detailed view of the framework

30

Francesco Rigotti StockHome - Analytical Framework

A.3.1 Filtering

IFilter offers filtering functionalities to the interface. It contains a single method, filter,
which allows to filter stocks on data belonging to the company, daily and filtering data
classes.
In its implementation of the method, BasicFilter, builds one query for each data class
and then nests them using the in clause: we want an intersection of the results.

A.3.2 Optimization

Optimization is an abstract class featuring the following methods:

• RoRs(stock)
a method returning an array of daily RoRs of the stock to replicate; this data is
read from the database using an implementor of the IODBHandler interface.

• initializeX(stocks)
this method returns a matrix of dailyRoRs where rows represents different days
and columns represent the different stocks. An implementor of IODBHandler is
used in this task too.

• replicateStock(rep, stocks)
this abstract method returns an OptResult instance

OptResult represents the result of all optimization techniques, and contains the
following:

• weightsMap - a HashMap where stock names are keys and budget percentages are
values.

• R2 - the score of the obtained set of weights (more details are given in Section 3.4.3)

In order to add an optimization technique to the framework, a class extending Opti-
mization and featuring an implementation of replicateStock has to be written.

IODBHandler features the two methods in charge of building the array of RoRs and
the matrix of RoRs; ODBHandler is the only implementor.
When not enough data is available for one stock, 0s can be used to fill the empty cells in
the matrix: a value of 0 for a RoR does not affect results, like multiplying a number by 1.

SytleAnalysis contains all methods used to perform this type of optimization.
Some of them follow:

• replicateStock(rep, stocks)
after getting the RoR matrix and the RoRs for rep, it calculates β̂ and R2.

• calculateStimatedY
starting from β̂, it builds an array of RoRs representing the performance of a virtual
stock built as β̂X .

31

Francesco Rigotti StockHome - Analytical Framework

A.3.3 Hibernate

This package contains the classes representing the tables in the database and the map-
ping files from which the ORM generates these classes.
Here is an example mapping file:

Figure A.3: An example Hibernate mapping file

In this file we map the class Company to the table tbl company.
Setting to identity the attribute class in the generator element tells Hibernate to let
the management of ids to the underlying database.
The property element declares an attribute of Company of Java type String mapped to
the column company name.
The set element is used to declare that a set of instances of another class is attached
to each instance of, in this case, Company. A relation in the objects, is representing a
relation in the tables of the underlying database. In this case the set is representing a
one-to-many relation between tbl company and tbl company stock.

32

Francesco Rigotti StockHome - Analytical Framework

A.3.4 Calculation Core

ISDBHandler offers methods for retrieving historical data from the database, inserting,
and removing, calculated data of the common and filtering data classes.
CommonCalculations is in charge of calculating all the cached values and storing them
in the database using an implementor of ISDBHandler.
The two main methods of CommonCalculations, computePropertiesInitial(stocks) and
computeProperties(stocks), calculate the same types of values, but in two different ways
and at two different times.

computePropertiesInitial is run only in the initial database setup and when new
stocks enter the market. Pseudocode follows:

read historical data of all indexes

compute RoRs and variance for all indexes

write RoRs and variance to db

for each stock s do:

read historical data of s

compute RoRs and variance for s

write RoRs and variance to db

for each index i do :

compute beta(s, i)

write calculated beta to db

end for;

end for;

computeProperties is run daily after new historical data has been fetched.
Pseudocode follows:

for each index i do:

read historical data of i

compute the RoR(yesterday, today)

read variance of i

recalculate variance and write it to db

end for;

for each stock s do:

read historical data of s

compute RoR(yesterday, today)

read variance of s

recalculate variance and write it to db

for each index i do:

compute beta(s, i) and write to db

end for;

end for;

33

Francesco Rigotti StockHome - Analytical Framework

A.3.5 Fetchers

constants.rb
Holds configuration data shared by all the fetchers like, for example, database
connection information.

data-preparer.rb
Holds methods used by other fetchers to format fetched raw data before storing it
in the database.

company-info.rb
Fetches, format and store company data in the database; no remote API from
Yahoo! exists for company data, so the script has to parse HTML files.

index-components.rb
Holds methods to fetch, format and store data of index components, including
nominal data and company names.

historical.rb
Holds methods used to fetch and store historical data for both indexes and stocks.

historical-init.rb
Uses various methods in historical.rb to fetch, and store historical data for indexes
and stocks. Can be run independently by specifying a bunch of stock names and
a history time slice to fetch.

update-historical.rb
Holds a method to remove the oldest stock in the history. It is run independently to
fetch and store new historical data and delete the most obsolete. It uses methods
in historical.rb to accomplish its tasks.

insert-current.rb
Fetches, formats and store real-time and daily data for a set of stocks. It is used
only once for each stock, either when initializing the database or when the main-
tenance core finds a new stock in the market.

update-current.rb
Fetches, formats and store real-time and daily data for a set of stocks. Unlike
insert-current.rb, it performs UPDATE queries. It is run every 15 minutes for real-
time data and every day for daily data.

initialize-index.rb
Given an index name, it calls methods from all the other fetchers to initialize
that index. This script is run once for each existing index when initializing the
database.

34

List of Figures

2.1 Sample of data about the stock BIOS . 3

3.1 Conceptual overview of the system . 6
3.2 Database maintainer and collaborators . 7
3.3 Detailed database structure, with tables grouped in the various data classes 12
3.4 The analysis component . 13
3.5 The virtual portfolio component . 16
3.6 Hibernate relation with database . 17

4.1 Sequence diagram for filtering . 19
4.2 Sequence diagram for a stock search . 20
4.3 Sequence diagram for optimization . 21
4.4 Sequence diagram for creation of portfolios 22
4.5 Sequence diagram for purchase of stocks 23

5.1 Screen from Gilad Geron’s web application 26

A.1 Where Hibernate fits between application and database 28
A.2 A detailed view of the framework . 30
A.3 An example Hibernate mapping file . 32

35

Bibliography

[1] Advances in Mathematical Programming and Financial Planning.

[2] G. Geron. Stockhome, 2008.

[3] H. M. Markowitz. Mean-Variance Analyses in Portfolio Choice and Capital Markets.
1987.

[4] W. F. Sharpe. Asset allocation: management style and performance measurement.
Journal of Portfolio Management, pages 7–19, 1992.

[5] Wikipedia. Hibernate. http://en.wikipedia.org/wiki/Hibernate (Java), May 2008.

[6] Wikipedia. Java. http://en.wikipedia.org/wiki/Java (programming language), May
2008.

[7] Wikipedia. Mysql. http://en.wikipedia.org/wiki/Mysql, May 2008.

36

	Abstract
	Acknowledgments
	Introduction
	Structure of the Document

	Problem & Related Work
	Solution
	Information retrieval
	Database maintainer
	Scheduling

	Database
	Data classes

	The analysis component
	Calculation core
	Filtering core
	Optimization core

	Virtual portfolio
	Hibernate
	Performance of the framework

	StockHome behind the scenes
	Filtering example
	Search for a stock
	Optimization example
	Virtual portfolio creation
	Buy a stock

	Conclusions
	Future Work
	Applications of the framework
	Gilad Geron's web interface

	Implementation
	Technologies used
	Java
	Ruby
	MySQL
	Hibernate

	Technology choices
	Framework structure in deep
	Filtering
	Optimization
	Hibernate
	Calculation Core
	Fetchers

