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Abstract

Developers often rely on web resources, such as documentation, Q&A websites, and tutorials to solve the task
at hand. Once the information has been gathered, developers need to manually sort through the collected docu-
ments, and find the relevant parts to help them complete the task. Due to the high amount of information available,
developers tend to experience information overload, which can be mitigated with the use of summarization.

We introduce WebDistiller, a summarizer that monitors the pages viewed by a user, extracts the content and
creates interactive extractive summaries of a single page or multiple pages, that the user can interact with and decide
the amount of filtration she may want to see. By using the algorithm behind LIBRA [13], a holistic recommender
system, we allow the developer to obtain summaries which are pertinent to the previously browsed documents. The
project also allows developers to generate a summary of every web page they visited, giving an overview of the
documents that have been consulted, and once again allowing to extract the most relevant sections to solve the task
at hand.
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1 Introduction

To solve the task at hand, developers often rely on web resources. The knowledge that a developer may have is
usually not enough, requiring further exploration of documentation, Q&A sites, and tutorials [20]. Developers are
then faced with a large availability of material, which has to be filtered by either using a few keywords provided by
the search engine, or by consulting the results deemed more important. Developers then collect all of the information
found and filter it to find the relevant sections needed to solve the task at hand. Not only is this process straining,
but it can lead to information overload.

To mitigate this phenomenon, summarization can be used as an effective way to automate part of the process,
presenting developers only with a subset of the collected data. Summarization in software engineering is not new,
and has been attempted before. Existing approaches include the summarization of email threads [14] to generate
extractive summaries of bug reports as well as exploiting PageRank [9] to create general summarization approaches
for bug reports [6].

The common limitation in the aforementioned approaches is the way artifacts are treated. In both cases, the
techniques do not differentiate between purely text-based artifacts from code-based artifacts, but treat both as text-
based artifacts. This limits the amount of information that may be extracted from a resource.

Ponzanelli et al. [12] propose a novel approach where the heterogeneous nature of artifacts is considered when
performing summarization. The proposed approach augments LexRank [3] to deal with the heteregenous and mul-
tidimensional nature of complex artifacts, by providing a new similarity function for heterogeneous entities such as
code samples.

In this project, we introduce WebDistiller, a tool which provides the ability to create interactive extractive sum-
maries of a single page or set of pages. By integrating it with LIBRA [13], a holistic recommender system, through the
usage of HoliRank [13], an algorithm which builds on the foundations of PageRank[9], the heterogeneous nature
of artifacts is considered when determining the prominence of a certain section of a document. We use multiple
sources, to provide the most complete extractive summary to support developers in filtering and choosing the most
relevant parts of different documents.

In Section 2 we take a look at existing approaches for both summarization as well as recommendation systems
for Software Engineering. In Section 3 we analyze some of the challenges which we may be faced with, whereas in
Section 4 we go in depth and discuss the implementation and design choices to create WebDistiller. In Section 5 we
analyze the issues and limitations with our implementation, and in Section 6 we explore the results.

2 State of the art

In the past years there have been a few attempts at summarization for software engineering. Rastkar et al. [14] base
their approach on pre-existing techniques generally used to summarize the contents of email threads, and apply the
same principles to generate summaries of bug reports. Lotufo et al. [6] also summarize bug reports, but base their
approach on PageRank [9].

Mani et al. [7] proposes an implementation based on different techniques (e.g. Grasshopper, DivRank, Centroid)
to generate summaries in an unsupervised manner. All of these approaches only consider plain text artifacts, whereas
information retrieval techniques have been used to summarize source code. Such techniques include Vector Space
Model and Latent Semantic Indexing, which were used to summarize code samples [4] [18].

The above examples all generate summaries to reduce information overload. Other techniques include the usage
of recommender systems for software engineering [17], which suggest relevant artifacts to the developer and tend
to harness different sources. The sources can include APIs as presented by Rigby et al. [15] [16], or by extracting
information from Q&A sites, as presented by [10], or by analyzing existing code bases [2] [1] [5] [8].

Ponzanelli et al. [13] present LIBRA, a holistic recommender based on a meta-information system which is capable
of dealing with the heterogeneous nature of resources, as well as considering the current context.

3 Project requirements and Analysis

3.1 Challenges

As previously stated, the goal of this project is to reduce the overload of information experienced by a developer when
searching for information online. While this is a challenge in itself, there are multiple other non-trivial challenges:

• Lack of structure
In general, each website is implemented in a different structure. Although the HTML constructs are the same,
there are no strict rules in how they should be used.
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• Integrity of information
Users will mostly have to deal with documents that may contain code snippets. Many websites tend to in-
clude code, which helps in the explanation of the problem at hand. Due to this heterogeneous nature of the
information, these section had to be kept intact.

3.2 HoliRank

HoliRank [13] is an algorithm that builds on top of LexRank [3], which itself is based on PageRank [9]. Before we go
any further, we describe how both LexRank and PageRank work from a high level perspective. PageRank simulates
a random surfer, a user which randomly surfs the web clicking on links and never going back until it gets bored and
starts from another random page. This random surfer is defined by the following formula:

PR(pi) =
1− d

N
+ d
∑

p j∈M(pi)

PR(p j)

L(p j)
(1)

where d is a damping factor (usually set to 0.85), M(pi) is the set of all pages that link to pi , L(p j) is the number of
outgoing links from pi , and N is the total number of pages in the network and serves as a normalisation factor. In
this approach, the probability that the random surfer may visit a page represents the degree of centrality of this page
in a network of pages.

In order to move to LexRank, some modifications are needed. Instead of considering a network of pages, the
approach considers a document as a collection of sentences that form a network. Then, PageRank is applied to this
network of sentences. This modification to the algorithm allows for sentences, which in theory have no proper link
between them, to be connected and used.

In theory, LexRank could have been used “as is” to perform summarization, as most of the documents developers
will consult are mainly composed of text. Issues arise when the page being viewed contains artifacts which are not
purely text-based, such as code snippets. The difference between the data can cause issues when LexRank determines
the similarity between the artifacts, since it does so by considering the pure textual similarity of the artifacts, which
hinders the whole information provided by source code. The approach followed by HoliRank is to consider the
heterogeneous nature of information in software engineering, i.e. the possibility of an artifact to be composed of
either text or code. By performing this distinction, the algorithm is able to access the multiple layers of information
provided by the different artifacts, since the way similarity is calculated varies depending on the type of the artifact.

4 WebDistiller

The following sections will illustrate WebDistiller and all of its features. We also illustrate the decisions taken to be
able to create this tool. We will start by explaining the general theory behind the approach, to then move onto the
general architecture, the server side components, and then the client side components.

4.1 Overview

A graph is a collection of nodes, which form a network. If we consider the world wide web, we can represent each
page as a node inside of that network. When a connection exists from a page to another, for example with a link, we
can say that the two pages are connected and an edge between them is created.

The same reasoning can be applied to a document. Each part of the document becomes a node, and the edges
between the different nodes in the network represent the similarity between the parts of the document. To pro-
vide a relationship between the nodes and the data displayed, we introduce the notion of an information unit. An
information unit is a piece of content extracted from a page, which can contain either code or plain text.

In our approach, an information unit is a paragraph where the content can either be plain text, or code. The
construction of the edges is the same as [12], and relies on the H-AST nodes composing the information units.

To create the extractive summary, a possible approach consists in using HoliRank to calculate the degree of
centrality of each information unit in the graph, and then select the most central ones according to a threshold set
by the user. An example of this process can be seen in Figure 1.
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First, the HTML content of the page is analyzed, extracting both 
the structure and the text. Thus, the data is packaged and sent to 
the web service, all using a dedicated Chrome extension. Once 
the data is sent, the service takes the incoming data, and 
calculates the importance of each section by determining the 
degree of centrality. This information is then returned to the 
extension, which allows the user to filter out the units deemed 
less important, reducing the amount of information currently 
displayed on the page, and only showing those that have more to 
do with the current context. 

WebDistiller is a novel approach to solve the issue of information 
overload in the development context. It leverages an holistic 
approach to ranking, enabling the global context to play an 
important role in determining the importance of the different 
sections when performing summarization of either a single, or 
multiple documents. 

By providing a simple, minimalistic slider, the user experience is 
kept as simple as possible. 

The major limitation is the granularity of the summarisation, as it 
is not possible to summarize the contents of the single 
paragraphs.

To solve the task at hand, developers often rely on the world wide web to find answers. Whether these answers come from Q&A sites, 
documentation, or tutorials, developers need to aggregate those resources, and select the pieces of information needed to complete the 
task. Due to the high amount of resources available, this process can lead to information overload which can be mitigated with 
summarization. In this project, we present WebDistiller, a tool that provides interactive extractive summaries of either a single webpage, or a 
set of web pages by considering the history of web pages visited by a developer.

1: Text

2: Code

3: Code

4: Text

5: Text

2: Code

4: Text

Figure 1. From website, to graph, to summary

A major issue with this approach is the lack of context when creating the summary. In other words, the knowledge
acquired by the user through the previously browsed pages is not considered while selecting the most relevant units.

In our implementation, we consider the history visited by a developer. We create a Context Graph ad-hoc for
each developer which aggregates information units from different sources. When the developer visits a new page we
extract the units from it, and add them to the graph. An example is shown in Figure 2.
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First, the HTML content of the page is analyzed, extracting both 
the structure and the text. Thus, the data is packaged and sent to 
the web service, all using a dedicated Chrome extension. Once 
the data is sent, the service takes the incoming data, and 
calculates the importance of each section by determining the 
degree of centrality. This information is then returned to the 
extension, which allows the user to filter out the units deemed 
less important, reducing the amount of information currently 
displayed on the page, and only showing those that have more to 
do with the current context. 

WebDistiller is a novel approach to solve the issue of information 
overload in the development context. It leverages an holistic 
approach to ranking, enabling the global context to play an 
important role in determining the importance of the different 
sections when performing summarization of either a single, or 
multiple documents. 

By providing a simple, minimalistic slider, the user experience is 
kept as simple as possible. 

The major limitation is the granularity of the summarisation, as it 
is not possible to summarize the contents of the single 
paragraphs.

To solve the task at hand, developers often rely on the world wide web to find answers. Whether these answers come from Q&A sites, 
documentation, or tutorials, developers need to aggregate those resources, and select the pieces of information needed to complete the 
task. Due to the high amount of resources available, this process can lead to information overload which can be mitigated with 
summarization. In this project, we present WebDistiller, a tool that provides interactive extractive summaries of either a single webpage, or a 
set of web pages by considering the history of web pages visited by a developer.

1: Text

2: Code

3: Code

4: Text

5: Text
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4: Text

Figure 2. Context graph

In Figure 2, different sources are represented by different shapes (Squares represent document A, circles represent
document B). When calculating the degree of centrality of a certain unit, the result is not based only on the content
of the page currently being viewed, but it depends on all of the other units, which represent the history of pages
visited. This means that anytime a new node is added to the context graph, the degree of a specific unit changes, as
the context has changed. Therefore, a summary of a web page will change depending on the web pages visited.

4.2 Architecture

The project has two main components:

• Chrome Web Extension
Used to gather the information contained in a page by following the rules set up for a certain domain, as well
as controlling the amount of information currently displayed

• Web Service
Instead of relying on the end user’s device to perform the calculations to determine the importance of each
section, we developed a web service.
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Figure 3. Architecture of WebDistiller

These two components interact with each other, in a typical client-server architecture, as shown in Figure 3.

Figure 4. Sequence diagram

Figure 4 shows the sequence for both the registration procedure, as well as a normal request. For the registration,
the procedure is as follows:

1. The user installs the extension, which triggers the registration request

2. The request is made to the service, which generates the user id and returns it to the client

3. The id is saved in in the local storage for the user

Whereas for the ranking request, the procedure is as follows:

1. The user navigates to a known page, which triggers the data collection phase

2. The data is sent to the web service to be ranked

3. Units are processed, and a request is made to the StORMeD service
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4. Once the data returns, the units are added to the user’s graph, and the prominence is calculated

5. Ranked units are returned to the Chrome extension, which now allows the user to manipulate the information
available on the page

4.3 Server side

4.3.1 Web Service

The first component of this project consists in a web service, that takes the information units given by the extension,
and returns the degree of centrality for each of the information units. This service was written in Scala, using the
Play framework, and has the following routes:

• GET /register

Used to register the user to the service. This is needed to identify the user in all subsequent calls to the service.
The response is a 32-character alphanumeric string, known as the user’s id. Once the user registers, a graph is
created unique to this id, allowing fadditional information units to be added, and therefore the ranking to be
performed depending on the entire graph, not only the current units being analysed.

• POST /rank

This path is used to rank the current units extracted from a document. By supplying the url of the webpage,
the units, and the user id header, the service will return the units with a degree of centrality.

• GET /all

Returns the entire graph for a certain user, with all units associated with their degree of centrality.

To better understand how a request looks like, consider Listing 1. The user id that is created upon registration is
attached to every request as a header as well as the URL of the page.

POST /rank

Content-Type: application/json

X-Libra-UserId: SsrktS2vrGPpHaAkYMsVDPo4qN6i38ei

{

"units": [

{

"idx": "-656298628_0000000001",

"parsedContent": "Creating an instance of a class:",

"tags": [

"plaintext"

]

},

{

"idx": "-656298628_0000000002",

"parsedContent": "MyObject myObject = new MyObject();",

"tags": [

"code"

]

}

],

"url": "http://www.mywebsite.io"

}

Listing 1. Sample request from Chrome extension to web service

As shown in the sequence diagram in Figure 4, an external call is made to the StORMeD service, an island parser
which we use to construct an Heterogeneous Abstract Syntax Tree (H-AST)[13] for all units. An H-AST is a structure
that is used to represent both textual fragments as well as code fractions of an artifact.
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{

"units": [

{

"idx": "-656298628_0000000001",

"degree": 0.5,

"url": "http://www.mywebsite.io"

},

{

"idx": "-656298628_0000000002",

"degree": 0.5,

"url": "http://www.mywebsite.io"

}

]

}

Listing 2. Sample response

The service will then add the nodes to the graph, and calculates the degree by using a library called Signal/Collect[19],
which allows high performance processing of large graphs. By describing the HoliRank algorithm using the provided
syntax, the library handles the calculations returning the degree of centrality for a certain unit. The results are then
returned to the user as seen in Listing 2.

This information is then used by the extension to associate the index with its degree, which is then used to decide
which units have to be hidden and which have to be shown depending on the threshold chosen by the user. This is
explained in details in the next section.

4.3.2 StORMeD

StORMeD[11] is an island parser capable of building the Heterogeneous Abstract Syntax Tree (H-AST) for a piece of
content. In out project, we use the service to analyze the code snippets which are parsed from the page. The web
service makes a call to the StORMeD service, which returns the full H-AST that is fed into HoliRank.

4.4 Client-side: Chrome extension

4.4.1 Parser

The first step consists in collecting the information currently being displayed, which happens when the page has
finished loading its content. As previously discussed in section 3.1, one of the main challenges of this project was to
handle the wide variety of structures among webpages, being as each page tends to use the same HTML constructs
but widely differ in the implementation. This hurdle was solved by implementing a parser for each domain we target
(i.e. Stack Overflow1, Spring Documentation2, DZone3, Android Documentation4).

Consider a Stack Overflow discussion, as in Figure 5. A Stack Overflow discussion consists of a question, and a set
of answers with their own set of comments. Therefore our parser needs to first obtain the question, more specifically
the paragraphs and comments that make up such question, and then repeat the task for each of the possible answers.

1http://stackoverflow.com/
2http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/
3http://dzone.com/
4https://developer.android.com/guide/index.html
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Figure 5. A typical Stack Overflow discussion

Since the structure of a Stack Overflow discussion differs from a tutorial from DZone5 , we needed to write a
parser for each website we wish to parse. To facilitate this situation, we created an an abstract parser, along with a
few standard models. We used TypeScript6, a language developed by Microsoft which is a typed superset of JavaScript
that compiles to plain JavaScript. This ensured that compatibility would not be an issue, while providing multiple
useful features. We started by defining the models that would be needed to parse a page, in a very general way. A
document diagram can be found in Figure 6.

Figure 6. Abstract parser class diagram

The “root” model is called LibraDocument which provides the main methods called by the Chrome extension,
namely parse() and getInformationUnits().

In our implementation of the information unit, called LibraInformationUnit, we also store a few other useful
parts such as the index of the unit and the tags attached to the DOM.

The last component is LibraPart, which separates the multiple parts of a document.

5http://dzone.com/
6https://www.typescriptlang.org
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Figure 7. Abstract parser

These models are then used in the abstract parser (see diagram in Figure 7). This way the developer writing a
new parser has to simply extend the different methods and models.

A remark has to be made about the extractInformationUnitFromInputAndTextDOM and
extractInformationUnitFromDOM methods. These two methods were created to keep the data extracted consistent
among multiple parser implementations. The consistency is achieved by requiring the DOM element that contains
the artifact to be extracted, and returning a ready to use LibraInformationUnit. What is hidden behind this im-
plementation is a tagging procedure that allows the Chrome extension to connect the data returned by the service
with the content being displayed. To provide a unique identifier for each of the elements on the page, we used a
combination of the page’s URL with a global counter. The structure of this index is as follows:

Hash of url + "_" + 10 digit padded counter

When extracting the content of the DOM, the two previously mentioned methods inject the index into the DOM of
the page as seen in Listing 3.

<pre class="lang-java prettyprint prettyprinted" libra_idx="-656298628_0000000001">

...

</pre>

Listing 3. Index injection example

Then, when the service has returned the degree of centrality associated with a certain index, we can perform a
simple search inside of the page and link the data to the related DOM.

Although hashing may introduce cases where the produced hash is not unique, the probability of such an event
occurring is small enough to be ignored.

The execution of the parser is performed once the loading of the page is completed, which itself fires the request
to the web service, discussed in the next section.

4.4.2 Chrome Extension components

A Chrome extension was created to parse the contents of a page, send it to the service, and then manipulate it. The
typical structure of a Chrome extension is divided into three components:

• Background script
The background script runs in the background for the whole browser, and is persistent. The session is not
unique to the tab, and therefore no data exclusive to a certain tab should be stored in here.

• Popup
The interface of the extension. It allows the developer to create a user interface, which can be shown every
time the icon of the extension is clicked. It is important to notice that the user interface is created every time
the icon for the extension is clicked, and completely destroyed once the user is not interacting with it anymore.

• Content script
The content script has access to the data currently being displayed. It is able to interact with the DOM, and its
session is unique to each tab open.

Each of these components has a very distinct and precise task. In order to make our extension work, all three
components were implemented.

Since each component of the extension has a different set of restrictions, the jobs have to be delegated to the
component designed to perform it. Chrome uses message passing, a method where the different components can
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subscribe to receive certain types of messages, and have the ability to broadcast messages themselves to the other
components. In our case, the three components were used in the following way:

• Content Script
The content script is responsible of loading the available parsers, as well as using the correct one for the current
page. Once this is completed, the data is handed over to the background script.

• Background script
The background script is responsible of connecting the content script with the popup, as well as making the
HTTP requests to the service.

• Popup
The popup is shown containing a range slider, which allows the user to interact with the information being
currently displayed on the page, and to manipulate it.

As previously explained, message passing is the way components communicate with each other. This feature was
used, for example, when the user had just registered to the service. Each component has its own local storage, but
the user id had to be used by multiple components which created an issue regarding where to store it. In the end,
message passing was used and a common local storage was chosen, this being the background script’s storage as this
component was always listening and active.

As we have seen in the previous section, the service returns the payload containing the different degrees of each
unit. It is the task of the extension as a whole to process this information, and make it usable to the user. This is
achieved by sorting the payload data, and adding in each of the units currently on the page a sort order index as seen
in Listing 4.

<pre class="lang-java prettyprint prettyprinted" libra_idx="-656298628_0000000001" sortorder="15">

...

</pre>

Listing 4. Sort order tag injection

In the next section, we describe the resulting application, with an in depth explanation of the functionality.

5 User Interface

The goal of this project was to provide a simple way for developers to reduce information overload. It was very
important that the user interface of the Chrome extension was as simple as possible to remove any possible hurdles.
Figure 8 shows the user interface for the popup component of the Chrome extension.

Figure 8. Interface of the Chrome extension

The interface consists of two main sections. The first section shows information about the current session. This
was mostly used while debugging the application. The second section is used to interact with the user. The current
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view shows the slider, which means that the data gathering and ranking processes have completed successfully. In
case of errors, or while the content script is parsing the page, the slider is hidden and messages are shown to inform
the user of the current status.

An additional visual feedback is provided by the possible icons of the extension shown in Figure 9, which can
represent any of the following states:

• Inactive
Represented by a greyed out icon (Figure 9a), tells the user that the extension is not active in the current
website.

• Parsing
While the application is parsing, a yellow icon (Figure 9b) is shown to indicate that the Chrome extension is
working, and the results will be shown shortly.

• Ready
When the icon turns green (Figure 9c), the user has the ability to open the popup and start manipulating the
content by dragging the slider.

• Error
If an error occurs, a red icon is shown (Figure 9d).

(a) Inactive (b) Parsing (c) Ready (d) Error

Figure 9. Chrome extension status icons

When the Chrome extension has received the data back from the web service, the icon turns green and the slider
is shown in the popup. The user has now the ability to choose the amount of filtration required, which updates the
content of the page in real time. Any time the slider is dragged, the popup will fire an event caught by the content
script, which will take care of hiding or showing the different units, depending on their sort order.

Another feature of WebDistiller is the ability to generate an overview of all the pages in a user’s history. By
clicking the “Generate Summary” button from the popup (Figure 8), the extension will open a new page, containing
the documents. An example is shown in Figure 10.

For each page, a slider is available to once again filter the content independently from the other pages. An
additional slider is added at the top of the page, called a master slider, which controls the amount of information
displayed by each site, regardless of the value chosen by each individual slider. This allows the user to consult only
the highest ranked units in its history, giving a very quick overview of multiple sites at the same time.
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Figure 10. Generated Summary

6 Future Work

6.1 Granularity

Although this approach to summarization works, the biggest limitation is the granularity of it. As we have seen, the
service is able to correctly identify the importance of each unit inside of a document or collection of documents, but
what is still missing is a true summarization of the content. More specifically, what would be interesting to achieve
is a summarization algorithm that is able to take a text, and recreate a new one by following grammar rules and
keeping the context of such intact.

Although interesting, it would bring a new set of challenges, particularly when dealing with code that is embedded
inside of a sentence, forcing it to be shown no matter what in the summary. Making the summarizer understand
exactly how to connect code and text may prove to be quite the challenge

6.2 Persistence

The current implementation of the web service uses in memory storage, meaning that there is no real database behind
the service, and the data is kept in memory and destroyed once the service is shut down. Although not essential to
the project, a database would be useful, allowing the user to retrieve data that is older than what is saved in current
memory.

This brings the challenge of deciding what has to be kept, what has to be discarded and when. By keeping all
of the units stored in a database, the user may see information that is too old or has nothing to do with the current
context. A new way to tag the information would be required, tagging what the context was, when the information
unit was added, and whether to discard it once new units are added to the current graph.

6.3 Performance

To implement the algorithm behind WebDistiller, many libraries were used. These libraries tend to have their own
way of doing things, which our code had to adapt to. One example is the SimilarityParameters present in the
StORMeD devkit. These parameters have to be recalculated every time a new unit is added, which requires a lot
of time. If we were only to consider small graphs, this would be no problem as there is almost no impact on the
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general performance. Once we start to consider larger graphs, the limitations start to show, and the performance of
the whole system suffers.

7 Conclusion

We presented WebDistiller, a novel approach to reduce information overload through extractive interactive sum-
maries. We started by defining the possible challenges of the project, and how we may overcome them. We explained
how both LexRank and PageRank work, before giving an overview of HoliRank, the algorithm behind LIBRA, which
we used to perform summarization on documents. We discussed the general procedure, from the initial stage of
data extraction, all the way to filtering. We described our approach more in depth, by explaining the context graph
and how the development context may alter the resulting summary, even for a single document. The architecture
of the project was next, we explored the different components such as the web service, StORMeD and the Chrome
extension. We outlined the procedure of ranking the parts of a document and the criteria for filtering the elements
based on a user set threshold. The user interface was presented, and an example of a multi-document summary was
shown. Thus, we discussed the possible limitations of the project, and proposed possible solutions to mitigate those
issues.
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