
Bachelor Project

X-Ray
An Eclipse Plug-in for Software Visualization

Jacopo Malnati

supervised by
Prof. Dr. Michele Lanza
Dipl. Ing. Mircea Lungu

Abstract

Software is inherently intangible. Systems can be composed of a huge amount of soft-
ware entities linked together by different kinds of dependencies. Software designers use
visualization tools in order to raise the level of abstraction and reduce the amount of
information to the one needed. Most of these tools are stand-alone programs, that force
the user to switch between different windows and contexts. This context switch repre-
sents a problem, being time consuming and forcing the user to download, install and
use, tools or systems external to his favorite code editor. Developing an open-source
software visualization plug-in for the Eclipse framework represents a significant step
towards bringing the visualization tools in the forward engineering process.

i

Acknowledgments

First of all, I would like to thank Michele Lanza, one of my preferred and most appreci-
ated professors, as far as the advisor of my bachelor project. Three years ago he started
to guide me through the complexity and beauty of software systems, sharing some of
his precious knowledge. Also, many thanks to Mircea Lungu, my co-advisor. Thanks
for being around and spending so much of your time sitting next to me or providing
constructive feedbacks.

Finally I would like to thank my girl-friend Giulia, for being so understanding during
the long hours while I was coding and writing.

Jacopo Malnati

July 2, 2007

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Goal of the Work . 2
1.2 Roadmap . 2

2 Related Work 3
2.1 Information Visualization . 3

2.1.1 Scientific Visualization . 3
2.1.2 Visualization of Abstract Concepts 5

2.2 Software Visualization . 6
2.3 Software Visualization Tools . 7

2.3.1 Softwarenaut . 7
2.3.2 CodeCrawler . 8
2.3.3 Creole . 8

3 Eclipse 10
3.1 Eclipse Description . 11
3.2 Eclipse Infrastructure . 11
3.3 Plug-in structure . 11

3.3.1 Plug-in Directory . 12
3.3.2 Plug-in Manifest . 12
3.3.3 Plug-in Class . 12
3.3.4 Eclipse Plug-ins widely used by X-Ray 14

3.4 Eclipse Platform Overview . 14

4 X-Ray 16
4.1 The Idea . 16
4.2 Metrics . 17

4.2.1 Software Metrics . 17
4.2.2 X-Ray Metrics . 20

4.3 Views . 23
4.3.1 X-Ray view . 24
4.3.2 System Complexity View . 27
4.3.3 Class and Package Dependency View 31

4.4 The Plugin . 36

iii

Jacopo Malnati X-Ray

5 Validation 37
5.1 Case Study . 37

5.1.1 X-Ray . 37

6 Conclusions 41
6.1 Reached Goals . 41
6.2 Future Work . 41

6.2.1 Features . 41
6.2.2 Known bugs . 42

A Implementation 43
A.1 Architecture of X-Ray . 43

A.1.1 UML Diagrams . 43
A.2 Internal Code Representation . 43

A.2.1 Model Extractor . 43
A.2.2 Dependency Builder . 45

iv

Chapter 1

Introduction

Programming, and object-oriented programming in particular, is about defining a vo-
cabulary that will help to express a complex problem in a much simpler way. Object-
oriented design provides a good way to express systems in a simpler way, but it raises
different questions. While designing and developing an object-oriented system we have
to decide how the entities will interact with each other, how and if the vocabulary will
change or be extended, etc. [LM06].

Software is intangible and its design is about creating abstractions. Therefore is
more difficult to asses if the outcome is the desired one. Moreover its design and im-
plementation implies human communication that might become complex as soon as a
group of people tries to describe and understand the same abstract concepts. In addi-
tion, software systems are not immutable artifacts. Software evolves and changes, that
implies that its design is revised and improved continuously. While evolving, systems
become more and more complex and by simply reading their source code it becomes
impossible to analyze and understand them.

Software visualization is an important aid in software engineering and reverse engi-
neering. Graphically visualizing abstract concepts under different points of view, soft-
ware visualization provides a way to reduce the complexity of the underlying system,
making it easier to be understood and analyzed.

So far, almost all software visualization systems that have been implemented are
stand-alone tools, thus we thought about creating a software visualization plug-in for
the Eclipse framework (www.eclipse.org). Eclipse is an open source community whose
projects are focused on building an open development platform comprised of extensible
frameworks, tools and runtimes for building, deploying and managing software sys-
tems. A large community of universities, researchers and individuals are using and
supporting the Eclipse framework that, therefore, has a huge audience.

We created different views based on different abstractions provided by a set of met-
rics computed on the project’s source code. Although being just a prototype, our X-Ray
plug-in can already be used to analyze small and medium sized project, offering the
user the possibility to understand and browse any system without being forced to use
stand-alone tools or reading source code.

1

Jacopo Malnati X-Ray

1.1 Goal of the Work

The goal of the work is twofold:

• Experiment with Eclipse plug-in development. Eclipse is made up by a small ker-
nel and hundreds, thousands of plug-ins that, together, build its development
environment. Being able to contribute to Eclipse with a plug-in is an interest-
ing challenge, given the audience that the plug-in will have and the pleasure of
providing new functionalities to such an important framework.

• Build an eclipse plugin for software visualization. Once we experimented with the
plug-in development, we built on top of our tests the X-Ray plug-in. It provides
different views and abstraction to better understand any system.

1.2 Roadmap

In the next chapters we will go through scientific visualizations and software visualiza-
tion concepts. We will then describe the Eclipse framework and its structure, how to
create a plug-in and how to provide its functionalities to Eclipse. Once we described the
basis of software visualization and the Eclipse structure, we will introduce our plug-in:
X-Ray. There will be a discussion about metrics used by the plug-in and its polymetric
views. To better understand his functionalities we will validate it on itself and, then,
draw some conclusion about the reached goals and the future work. Finally, there will
be a section about design decisions and interesting implementation issues that we faced
during the development of X-Ray.

2

Chapter 2

Related Work

2.1 Information Visualization

A visualization is something that can be seen and observed. Any visualization can
be useful to model and represent an abstract entity, making evident attributes or any
meaningful property of the visualized object.

Most scientists state that the human brain has two different processing systems
which are placed on both hemispheres; they believe that our brain has a visual process-
ing system (”right brain”) and a verbal one (”left brain”). The human communication,
therefore, makes extensive use of the ”left brain” (while the ”right brain” becomes less
used from our childhood).

Even if our visual processing system tends to be less used than the one responsible
for verbal communication, temporal and sequential analysis, the ”right brain” still has
an important role while we have to face non verbal, synthetic, non temporal and parallel
analysis. There is a common proverb that summarizes this concept: a picture is worth
a thousand words. This piece of popular wisdom reflects the ability of our brain (the
right hemisphere) to process parallel information in short time intervals.

A nice example are weather forecasts. With a quick look, you can clearly identify
the borders of your country and symbols associated with different kinds of weather
conditions (the sun, clouds, etc.). It will take a short time before you will have a com-
plete overview and knowledge of the whole forecast, moreover if the forecast contains
some little animations, you will be able to understand the weather’s predicted trend.
The same knowledge will take a longer time if you have to read (or listen to) the same
information in a textual way.

2.1.1 Scientific Visualization

While handling huge amount of data or working on invisible forces, the possibility to
graphically represents them and highlight useful attributes becomes an indispensable
tool for scientific research.

Data and event visualization is not only a way of communicating results, but also
an excellent tool for discovering trends and property ”hidden” in the amount of data

3

Jacopo Malnati X-Ray

or simply invisible to human eyes. Today there is a wide set of visualizations used in
scientific research and they vary from bi-dimensional representation to n-dimensional
ones, using different techniques depending on the context.

The following are two examples of visualizations. They represent the past and the
present of visualization, from bi-dimensional, black and white, hand-crafted visualiza-
tion to three-dimensional, interactive, computer aided models.

Example. Figure 2.1 is the map by Charles Joseph Minard (1781-1870), published
in 1861, shows the advance of Napoleon’s Grande Arme into Russia in 1812. It maps
the thickness of the line as the strength of the army, with numbers indicating strength
at critical points. It’s important to notice that even if it’s just a black and white repre-
sentation, draw by hand on a sheet of paper, it clearly shows the strength of the army
during the advance and retreat of Napoleon as far as temperatures and some geograph-
ical locations.

Figure 2.1: Minard: advance of Napoleon’s Grande Arme into Russia in 1812

Due to the improvements in the computer science field and especially in its graphics
branch, scientists can now interpret potentially huge quantities of laboratory or simu-
lation data or the results from sensors out in the field with complex multi-dimensional,
interactive visualization (even reproduced on different types of devices).

Example. The next figure (Figure 2.2) is a three-dimensional representation of a
complex molecule. It’s a single image captured during an interactive, real-time visual-
ization of the molecule and its iteration with external entities. A sapient use of colors,
light and border, can be very helpful to detect more clearly atom intersections and the
overall structure of the whole molecule.

4

Jacopo Malnati X-Ray

This kind of simulations lets scientist to reproduce and study phenomena that would
be impossible to study without scientific visualization (and simulation). The possibility
to easily navigate in a three-dimensional space, zooming in and out, interacting with
the molecule, gives the scientist a new, powerful tool.

Figure 2.2: A 3-dimensional representation of a complex molecule

2.1.2 Visualization of Abstract Concepts

Presenting abstract, invisible, information artifacts is difficult because it is not about
representing physical objects (that already have a graphical representation in our minds).
Abstract visualization is presenting a logical construction rather than a physical one.
One of the main questions in this kind of visualization is how to map abstract entities
and relationships to a graphical, meaningful representation. Moreover the complexity
lies also in the context in which the visualization will be used, in fact there are more
than one feasible and meaningful ways of modeling the same thing, but one could be
more appropriate to a context (designing, understanding, etc.) than another.

Coming back to the weather forecast example, let us discuss how the forecast is
mapped to a graphical representation. Every television channel has different layouts
and graphics for their forecasts, but it is really easy to find a pattern among them.
Every whether forecast basically models the country as a topographic map and weather
conditions as little symbols representing, say, the sun, the moon, clouds, lightnings
etc.. Given that they have to represents physical objects that we all well know from our
every-day life experience, it is easy to represent them as commonly accepted symbols
(i.e., the sun is a yellow disk with multiple lines coming out of his circumference, simu-
lating ray-lights. Even if this is not what we actually see looking at the sun, this is one
of the common symbolic representation that our culture gave to the sun). It is therefore
easier to model something that already has a widely accepted symbol than something
that is abstract.

Looking closer to the forecast, it might be noticed that even if it is absolutely possible

5

Jacopo Malnati X-Ray

that in different topological positions there are different set of clouds, our solar system
has just one sun, therefore the multiple sun symbols positioned on different locations
cannot make sense in a realistic representation; even a simple weather forecast is using
abstraction and rules outside our every-day life experience in order to give more, parallel
informations.

2.2 Software Visualization

Programming language researchers tried to design programming language structured
in order to make it easier to use and understand them, but they have been limited
by the structure of the western alphabet and the ASCII code. Software visualization
has the same goal of improving usability and understandability, but it doesn’t suffer
from the same limitations, given that it can use different, parallel and graphical way
of modeling and representing the same (and new) concepts. Software visualization is
concerned with static or animated multi-dimensional representation of software enti-
ties. It uses graphics and animations in order to show data, code, control flows, classes
and dependencies among them (algorithms animation has been separated by all of the
previous visualizations). It exploits the human visual perception system in order to
provide what’s lacking in a flat, sequential, text-based representation. The programmer
and designer will have therefore a new visualization other than lines of code displayed
in a textual editor.

There are multiple dimensions along which visualizations can be classified:

• Scope: Visualizing a single component vs. whole system

• What is visualized: Animate an algorithm vs. model the static structure of a system

• Goal: Understanding a system (reverse engineering) or quality assurance (hunting
defects)

Especially in object-oriented software systems this kind of visualization is useful to
model element-specific properties (i.e., the content of a class) or system-specific prop-
erties (i.e., dependencies among classes, hierarchies, packages composition etc.). The
possibility to browse a huge system and quickly spot defects highlighted by the visu-
alization or having the possibility to understand the ”shape” of the system to quickly
discover dependencies and structures is a key feature in terms of understandability
and maintenance.

But, how can the source code and its semantic meaning be mapped to a graphical
representation?

Software is made up by lines of code, encoded as 0s and 1s laying on a storing
device. There is no symbolic representation, there nothing in our daily experience close
to the software reality. As previously stated, when a physical object has to be modeled,
usually a well known symbol or ideogram is associated to that object but when, like in
the case of software, the thing to model is intangible and abstract, without any physical
form, the graphical representation tends to be more complex to design.

6

Jacopo Malnati X-Ray

2.3 Software Visualization Tools

A lot of different tools have been implemented so far, but just an handful of them are
not academic experiments without any practical application.

Three softwares that were source of inspiration for the X-Ray plug-in were: Soft-
warenaut [LL06], CodeCrawler [Lan03], and Creole [LMSW03].

2.3.1 Softwarenaut

Softwarenaut (Figure 2.3) is a software by Mircea Lungu targeted at supporting soft-
ware understanding and reverse engineering. The tool makes heavy use of visualization
and interactivity and provides multiple perspectives on a software system. It is lan-
guage independent (as far as a model of the program is provided) and provides multiple
simultaneous perspective on a system, showing system complexity views, package and
class dependencies as far as providing interactive refinements.

The X-Ray plugin, actually, was born as simplified porting of this system to the
Eclipse framework.

Figure 2.3: Softwarenaut: System complexity view and Packgae Dependency View

7

Jacopo Malnati X-Ray

2.3.2 CodeCrawler

CodeCrawler (Figure 2.4) is an information visualization framework created by Michele
Lanza. It is language independent and provides a variety of visualization, such as:
system complexity view, class blueprint, system hotspots, evolution matrix an many
others. Moreover it supports customizable views, it has been industrially validated
and is mainly used by software industry consultants. It provides coarse-grained views
in order to visualize very large systems and fine-grained views for the visualization of
small, internal structures.

Figure 2.4: CodeCrawler: System complexity view

2.3.3 Creole

Creole (Figure 2.5) is the integration of SHriMP with Java Development Tools (JDT)
included with the Eclipse platform. It gives the possibility to visually explore Java code,
allowing to see its structure and links (references, accesses, etc.) between its different
entities. SHriMP uses a nested graph view to present information that is hierarchically
structured. It introduces the concept of nested interchangeable views to allow a user to
explore multiple perspectives of information at different levels of abstraction. It provides
system complexity views, package and class dependencies as far as other, multiple
views. It also provides perspectives focused on visualizations about versioning systems.

8

Jacopo Malnati X-Ray

Figure 2.5: Creole: Package Dependency View

9

Chapter 3

Eclipse

Eclipse is an open-source, platform-independent software framework, written primarily
in Java. The framework itself has been used to develop an Integrated Development En-
vironment (IDE) and compiler that comes as part of Eclipse.

The next figure (Figure 3.1) shows a screen capture of the main workbench window
as it looks with only the standard generic components that are part of the Eclipse
Platform:

Figure 3.1: Eclipse Platform UI

The Package Explorer (top left) shows the files in the user’s workspace; the Text Editor
(top) shows the content of a file; the Console View (bottom right) shows the content of
the output stream; the Outline View (left) shows a content outline of the file being edited.

10

Jacopo Malnati X-Ray

3.1 Eclipse Description

Originally developed by IBM, it is now managed by the Eclipse Foundation, a non-profit
consortium of software industry vendors. It represents a stable platform, royalty-free
and has worldwide redistribution rights. The platform was designed from a clean slate
to be extensible and to provide exemplary tools. Eclipse development is based on rules
of open source engagements. This includes open, transparent, merit-based, and collab-
orative development. All individuals can participate and contribute with their plug-in.

A plug-in is a piece of software that interacts with a host application, in this case
the Eclipse framework. It adds functionality or it changes the existing ones (provided
by other plug-ins or the framework itself). A plug-in can also provide services that can
be used by other plug-ins. We say that a plug-in contributes to the framework adding
or modifying any new or existing service.

A huge community of developers has grown around this framework which, now, is
one of the most used world wide.

3.2 Eclipse Infrastructure

Eclipse is not a single monolithic program, but rather a small kernel surrounded by
hundreds of plug-ins of which X-Ray is one. Each plugin may rely on services provided
by Eclipse’s core, by other plug-ins or both. This modular design provides the possibility
to share and use code that can be run by different applications and plug-ins.

3.3 Plug-in structure

The behavior and functionality of every plug-in resides in its Java code, while the de-
pendencies and services are declared in the MANIFEST.MF (a file describing the runtime
aspect of the plug-in, such as identifier, version and dependencies) and plugin.xml

(an XML formatted file describing extensions and extensions point) files. By dependen-
cies, we intend all the external code (intended as classes, packages or plug-ins) that the
current plug-in requires, while as extensions are intended functionality of the current
product that can be extended by other plug-ins (using an extension point).

The reason behind the separation between the actual code and the rest resides in the
trade off between having the code available and accessible to the code itself and facing
the overhead of having to load each Java class. Most of the time a plug-in could (and
should) be loaded just on request, without executing its code during Eclipse’s startup
(this concept is called lazy-loading). Loading plug-ins on an as-needed basis reduces
both the startup and the memory footprint of the whole framework.

On startup, the plug-in loader scans the MANIFEST.MFand plugin.xml files for each
plug-in and then builds a structure containing this information, using a lot less space
than loading all the Java code contained in the plug-in. In some special cases, in which
the plug-in must be running all the time and from the start, a plug-in may require to
bypass the lazy-loading and get loaded and executed at startup.

11

Jacopo Malnati X-Ray

Figure 3.2 shows part of the structure of the X-Ray plug-in and the way it references
other plug-ins and itself within the MANIFEST.MFand plugin.xml files.

3.3.1 Plug-in Directory

The whole content of a plug-in resides in a single folder named after a specific name
convention: the directory must be a concatenation of the plugin identifier (which should
be the plug-in name, even if it’s not mandatory), an underscore and the plugin version,
in dot-separated form (i.e., org.malnatij.svplugin 1.0.0). Moreover, the (possibly
compressed) folder must be located in the plugins directory of Eclipse, as sibling of all
the other plug-in. The decision about how to deploy the plug-in is left to the developer,
who can choose among deploying it as a single JAR file (containing the compressed
plug-in directory), the directory itself or an hybrid, with links between the different
portions of the product.

3.3.2 Plug-in Manifest

Within each manifest there are string representing entries for name, identifier, version,
class and provider of the current plug-in. The following is an extract of the manifest of
the X-Ray plugin:

Bundle-Name: X-Ray Plug-in

Bundle-SymbolicName: org.malnatij.xray; singleton:=true

Bundle-Version: 1.0.0

Bundle-Activator: Bundle-Activator: org.malnatij.xray.XRayPluginActivator

Bundle-Vendor: Jacopo Malnati

While the Bundle-Name represents the name of the plug-in, the Bundle-SymbolicName

univocally identifies the plugin (usually named after Java package name convention).
The Bundle-Version states the version of the product and Bundle-Vendor holds in-
formation about the designer or the producer of the plug-in. The Bundle-Activator

declares the activator class, that is the class responsible for boot-strapping the plug-in.

Moreover every manifest might also contain declaration such as Bundle-ClassPath ,
Export-Package , Require-Bundl , responsible for, respectively, the set of libraries
which contain the plug-in code, which packages are accessible to other plug-ins and
which packages or plug-ins are require by the current one.

3.3.3 Plug-in Class

The plugin class (defined by the Bundle-Activator) provides methods for accessing
static resources associated with the plug-in and for setting up the plug-in preferences.
It’s the first class notified after the plug-in loads and the last one when the product is
about to be shut down.

As previously stated, Eclipse uses lazy-loading in order to decrease its memory foot-
print, anyway, if the plug-in requires an early startup, the start() method of the class
defined by the Bundle-Activator will be executed.

12

Jacopo Malnati X-Ray

MANIFEST.MF

plugin.xml

XRay.jar

...

 id="org.malnatij.svplugin.XRayView">
 </view>
</extension>
...

Manifest-Version: 1.0
Bundle-Name: XRay Plug-in
Bundle-ClassPath: XRay.jar

......

Bundle-Activator: org.malnatij.svplugin.SVPluginActivator

...
<extension

point="org.eclipse.ui.views">
 <category
 name="X-Ray"
 id="org.malnatij.SVPlugin">
 </category>
 <view
 name="X-Ray"
 icon="icons/tree.gif"
 category="org.malnatij.SVPlugin"

class="org.malnatij.svplugin.views.SVPluginView"

XRay Plug-in

 org.eclipse.ui

plugin.xml
..
<extension-point id="views">
..

 org.eclipse.core.runtime

Require-Bundle: org.eclipse.ui,
org.eclipse.core.runtime,

Figure 3.2: This is an example of how a new extension is declared in the plug-in man-
ifest (with lines highlighting how the plug-in manifest references various plug-in arti-
facts)

13

Jacopo Malnati X-Ray

X-Ray does not need any early startup, therefore its start() method will be called
as soon as the user require the plug-in to show up.

3.3.4 Eclipse Plug-ins widely used by X-Ray

Eclipse itself is composed by different plug-ins that cooperate and represents a source of
functionality for other plug-ins. There are hundreds of plug-in distributed with Eclipse,
but the ones that were heavily used during the development if X-Ray were:

• Core: a general low-level group of non-UI plug-ins providing basic services and
interfaces regarding extension processing.

• SWT: also known as the Standard Widget Tool, a general, platform independent, UI
library providing graphical 2D widgets (Lists, Figures, Labels etc.). All the graphics
created by X-Ray has been implemented using SWT components.

• Workbench Core: plug-in providing services and interfaces about the core of
Eclipse, its organization and internal data structures.

• JDT Core: non UI-based Java Development Tooling, handling the infrastructure
of the Java IDE, including an incremental Java compiler and parser, a Java Model
that provides API for navigating its structure, an indexed based search infrastruc-
ture that is used for searching, code assist, type hierarchy computation and so
on.

3.4 Eclipse Platform Overview

Now that the architecture of the framework has been discussed as far as some of its
main components, let us graphically summarize them in Figure 3.3.

The workspace consists of one or more top-level projects, where each project maps to
a corresponding user-specified directory in the file system. The workbench represents
the user interface through which the user access every action that the framework pro-
vides and it is made up by JFace objects, provided by the JFace plug-in which sits on
top of the SWT (Standard Widget Toolkit) library. Moreover the platform is composed by
the Core and JDT Core plug-ins, as far as hundreds of others. Within this context, the
X-Ray plug-in ”plugs” itself in the platform, becoming part if it, providing functionality
as far as other plug-ins that could be added to the framework.

14

Jacopo Malnati X-Ray

Workbench

Eclipse Platform

Workspace

Core

JDT Core

Workbench core

...
...

...
...

......
...

...

...

contributes to

...contributes to

X-Ray
plug-in

contributes to

SWT

JFace

External Libraries

uses

...

...
...

Figure 3.3: The Eclipse Platform and some of its component

15

Chapter 4

X-Ray

4.1 The Idea

Given that most of the software visualization tools are stand-alone and the Eclipse
framework is widely used, we built a plug-in for Java code visualization that gives the
possibility to the user to visualize the project on which it is working on without using
any external tool, with a simple click. Providing different views and using different
metrics, the user can navigate any system, analyzing its shape and spotting defects
and useful information.

Figure 4.1: The System Complexity View provided by X-Ray visualizing itself within the
Eclipse IDE

16

Jacopo Malnati X-Ray

4.2 Metrics

4.2.1 Software Metrics

Metrics are an important tool in summarizing large amounts of information.

A metric is a number resulting by the mapping of a particular characteristic of an
entity to a numerical value. Metrics are extremely useful because they express nu-
merically something that is not necessarily a number. It scales up and summarizes a
particular aspect of an entity, providing the possibility to have a meaningful represen-
tation of that aspect in the overall graphical representation.

A visualization that exploits different metrics in order to show a set of entities is said
to be polymetric.

Software metrics can be divided into two major groups [ML94]:

• Project metrics: they deal with the dynamics of a project, with what it takes
to get to a certain point in the development life cycle and how to know you are
there. Being at higher level of abstraction, they are less prescriptive, but are more
important from an overall project perspective.

• Design metrics: they deal with size and in some case complexity and quality of
software. They look at the quality of the project’s design at a particular point
in the development cycle. Design metrics tend to be more locally focused and
more specific, thereby allowing them to be used effectively to directly examine and
improve the quality of the product’s components.

Using metrics, one possibility is to model entities (such as classes, packages, meth-
ods, etc.) that can be abstracted and modeled as boxes, more precisely as rectangles,
while dependencies (such as hierarchy, dependencies, etc.) are modeled as edges be-
tween entities. This choice, even if it might seem over-simplistic, it is actually an excel-
lent trade-off between simplicity and the amount of information that can be expressed.

Recently, new ways of displaying data have been proposed an implemented, one of
them is modeling entities in three-dimensional spaces, moving the abstraction from
rectangles to cuboids, displaying dependencies without edges, but using different ab-
stractions; other techniques imply the usage of isotropic textures and spectral models.

The sizes (and positions) of entities and dependencies are computed through differ-
ent metrics and applied to the final graphical representation.

The following figure (Figure 4.2) is a small example of polymetric view. Let us say
that we have to model and represent 3 entities, named A, B and C. We will represent
them as rectangles and we want to model the number of attributes (NOA), number of
methods (NOM) and finally the lines of code (LOC) for each entity (say, Java classes).

Using these 3 metrics, it is possible to graphically display the 3 entities. A sim-
ple way of mapping the metrics is to use the NOA as width and NOM as height of the
rectangles. Moreover a color gradient has been associated to the LOC, giving to each

17

Jacopo Malnati X-Ray

A
C

B

NOA

NOM

Figure 4.2: A simple polymetric visualization

rectangle a different color (the darker, the more lines of code).

Now, even without knowing exactly the numerical value for each metric, it is easy
and quick to assert which entity has more lines of code, less attributes or more meth-
ods. Without even knowing the actual values, it is easy to compare the entities and
draw meaningful conclusions.

In this simple example the position of every rectangle did not model any characteris-
tic of the underlying entity, while, as it will be shown later, the position of entities could
be used to model relationships among them. Anyway, three specific characteristic of
the rectangles has been mapped by three different metrics: NOA, NOM, LOC. This was
just one of the possible ways of mapping these metrics to the rectangles. Before even
mapping them, there is the need for defining which and how many metric to use; this
really depends on the kind and aim of the visualization. Different characteristic of the
entity might be more or less important depending on the point of view of the observer,
or his current perspective (software visualization tools can provide different perspec-
tives, using different metrics in each of them). Moreover, just a handful of variables can
be simultaneously mapped to metrics in a single graphical image without overlapping
and creating confusion, providing too many information in the same location. With any
metric we use, we also must know if it is too high or low, too much or too little. Basi-
cally, a reference point is needed, in order to give a useful meant to the metric. There
are different way of applying and defining thresholds: thresholds based on statistical
information and thresholds based on generally accepted semantics. Then, it must be
decided how to map the metrics on the graphical representation. Using one metric for
width, or height, color, border or texture etc., might completely affect the understand-
ability of the visualization.

There are no precise algorithms in order to solve these problems, and any decision
must be taken accurately. Anyway there are some commonly accepted semantics like
the ones described in the next figure (Figure 4.3).

18

Jacopo Malnati X-Ray

Color Metric

Width Metric

Height Metric

Position Metric
(X,Y)

Dependency
Edge Width

&
 Color Metrics

Entities

Figure 4.3: Common metrics semantic in a polymetric view

Rectangles could be used to model entities and edges between rectangles could rep-
resent relationship between the underlying entities (the software system is therefore
modeled as a directed or undirected graph). Moreover the size of any node represents
the combination of its width and height, where the wider and higher the node, the big-
ger the numerical value of the metric mapped on it. The node color is usually a gradient
between 2 colors, in most cases black and white. The darker is the node, the higher is
the measurement mapped to the gradient. The node position (X and Y values in a fixed
coordinate system) can represent 2 more metric, or can be used by a layout (say, a tree
layout or a circle layout) in order to position the node according to some constrain (i.e.,
hierarchy dependency). Edges width and color can be mapped to 2 more metrics, i.e.,
method invocation and weight of this invocations between the two entities connected by
the edge (moreover an edge can also have different styles (solid, dashed, dotted, etc.),
and decoration (arrows, dots, etc.) mapping other metrics).

Example. In Figure 4.4 it is represented a System Complexity View (which is a
special type of polymetric view) of the Eclipse plug-in X-Ray. The metric used are the
number of methods for the width, the lines of code for the height, colors for the Java
class type (blue = concrete class, light blue = abstract class, white = interface, green
= classes external to the project of unknown type). Edges represent inheritance rela-
tionship between classes (classes in higher positions are parents of classes in lower
positions). Using this simple visualization it is easy to spot the large classes in terms of
functionality (derived by the amount of lines of code and methods).

19

Jacopo Malnati X-Ray

Figure 4.4: A polymetric view. The metric used are the following: width metric = number
of methods, height metric = lines of code, color metric = Java class type (concrete,
abstract, interface, external to the project), edges represent hierarchy dependency

4.2.2 X-Ray Metrics

The plug-in uses different metrics in its views, modeling classes and packages entities
as nodes (rectangles) according to the view in which they are represented. It models
NOM, LOC, Class Type, Hierarchy, Dependency and their weights.

Metrics in the System Complexity View

In the System Complexity View the position of every node reflects the position of the
class represented by that entity in the inheritance hierarchy of the underlying project.
Nodes are positioned according to a tree layout which represents the class hierarchy.

Nodes are visualization of Java classes and they have different colors: white, light
blue, blue and green. Every color is mapped to one kind of Java class, respectively
they visualize interfaces, abstract classes and concrete classes. Green nodes represent
classes external to the project, their type is unknown (retrieving it would add a signifi-
cant parsing overhead to the whole parsing process) and they represent roots external
to the project. While analyzing a system it is useful to know the kind of the represented
entities; it might be therefore possible to spot design flaws (i.e., misplaced abstract key-
word)

The black border color represents a stand-alone class, while an orange border im-
plies that the visualized entity is an inner class (a class defined entirely within another
class). Knowing if a class is stand-alone or it is defined within another class is crucial
while spotting design disharmonies; inner classes should be smaller than stand-alone
ones.

The width of the node reflects the number of methods of the visualized class, while
the height reflects the lines of code in the underlying entity. Methods represent units

20

Jacopo Malnati X-Ray

of functionality inside a Java class, it is therefore interesting to quantify their number
for every entity and the number of lines of code reflects the number of instructions that
a Java class might execute, giving information about the weight of the functionalities
provided by the entity. In the case of a node representing an external class, both width
and height have a default size, being unknown the number of methods and lines of code
for that entity.

Edges represent hierarchy between nodes, they reflect inheritance relationships be-
tween classes. There is no color or width metric associated with hierarchy edges given
that X-Ray does not associate any other property to them other than inheritance.

The following table (Table 4.1) summarizes the metrics applied on nodes in the Sys-
tem Complexity View.

Metric Description

Position Computed following a tree layout (top-bottom oriented)
Color Green (external), white (interface), light blue (abstract) or blue (concrete)
Width Number of Methods
Height Lines of Code
Border It cab be black for a stand-alone class or orange for an inner class.
Edges Inheritance between classes

Table 4.1: Node metrics in the System Complexity View

Example. Figure 4.5 reflects graphically the metrics used in the System Complexity
View. There are 5 entities, and three edges. One node is green, therefore it is a class
external to the project, it is a root and parent of an internal abstract class (the light blue
one). Moreover there is an interface (the white node) and two concrete sibling classes
(the blue nodes, children of the abstract class) one of which is an inner class (the one
with the orange border). The external node has default width and height, while number
of methods and lines of code are used to compute the bounds of internal nodes.

Metrics in the Class & Packages Dependency View

In the Class & Packages Dependency View nodes represent classes or packages, de-
pending on the granularity of the visualization which can visualize class dependencies
or package dependencies.

• Class Dependencies. Nodes are visualization of Java classes and they have differ-
ent colors: white, light blue and blue. Every color is mapped to one kind of Java
class, like in the System Complexity View (except for external classes that are not
visualized, therefore there are not green nodes).

• Package Dependencies. Nodes are visualization of Java packages and they are
brown (the default package color used by the majority of Java IDEs)

Edges, for both classes and packages, represent dependencies between Java enti-
ties. They are arrows, each of them with a certain weight and color, highlighting how

21

Jacopo Malnati X-Ray

Abstract Class LOC

Node position
according to a

 class hierarchy tree
layout

Concrete
Class

Inherits

Concrete
Class

Inherits
Inheritance
 direction

Interface

Inherits

External Root
(Unknown type)

NOM NOM

NOM

NOM

LOC

LOC
LOC

(default size)

(default size)
Classes external to the project

Classes internal to the project

Inner class
(orange border)

Figure 4.5: System Complexity View node metrics in a nutshell

strength is the dependency between the two connected entities. Regardless of the kind
of entity, an arrow means that the entity from which the arrow is coming out has a de-
pendency to the entity the arrow is coming in (basically the first entity uses some code
implemented in the second one). The color of the edge and the size of the edge (intended
as the width of the arrow) represent the same metric: the weight of the dependency .The
more external code used (and by external we intend code implemented in another en-
tity) the stronger the dependency will be. There are six levels of dependence, as shown
in Table 4.2.

Level Nr.ofexternalcalls Color Width

Very Light 1 - 2 Light Pink Default, thin size (2 pixels)
Light 3 - 4 Pink Increased by a factor of 2 (4 pixels)
Moderate 5 - 9 Orange Increased by a factor of 3 (6 pixels)
Severe 10 - 19 Light Brown Increased by a factor of 4 (8 pixels)
Heavy 20 - 49 Dark Brown Increased by a factor of 4 (8 pixels)
Very Heavy more than 50 Black Increased by a factor of 5 (10 pixels)

Table 4.2: Edges (arrows) metric in the Class & Packages Dependency View

In the latest version of X-Ray we decided to include dependencies (on demand) even
in the System Complexity View, therefore Table 4.2 also refers to metrics applied to
edges (arrows) in the hierarchy tree drawn by the System Complexity View.

22

Jacopo Malnati X-Ray

The following table (Table 4.3) summarizes the metrics applied on nodes in the Class
& Packages Dependency View.

Metric Description

Color package: brown, class: white (interface), light blue (abstract), blue (concrete).
Edges Dependency between entities (colors and widths at Table 4.2).

Table 4.3: Node metrics in the Class & Packages Dependency View

Classes internal to the project

default
 size

Concrete
Class

default
 size

default
 size

Abstract
Class

default
 size

default
 size

Concrete
Class

default
 size

Figure 4.6: Class & Package Dependency View node metrics in a nutshell

Example. Figure 4.6 graphically reflects the metrics used in the Class & Package
Dependency View. This example shows a Class Dependency View, the represented
entities are three Java classes. All of them have the same size and their color reflects
their class type (one abstract class and two concrete classes). There are three arrows
between them, highlighting dependencies of different strength, according to Table 4.2.

4.3 Views

The same entity or the same system can be represented in different (potentially infinite)
ways. Depending on the point of view under which the user wants to see the system,
different abstractions and metrics should be used in order to reduce the complexity of
the displayed entity and let the user analyze it.

23

Jacopo Malnati X-Ray

4.3.1 X-Ray view

In order to provide different abstractions of the same system, X-Ray contributes to the
Eclipse framework its own workbench view which gives the user the possibility (being
a general purpose container) to display and browse different polymetric views: System
Complexity, Class Dependencies & Package Dependencies.

Description

Any Eclipse workbench view (a panel in which to draw and present any kind of data to
the user) must implement the org.eclipse.ui.IViewPart interface. Typically, views
are subclasses of org.eclipse.ui.part.ViewPart and thus indirectly subclasses of
org.eclipse.ui.part.WorkbenchPart , inheriting much of the behavior needed to im-
plement the IViewPart interface.

Views are contained in a workbench page and because there are potentially hun-
dreds of views in the workbench, they are organized into categories. The Window -
Show View dialog present a list of views organized by category so that a user can more
easily find a desired view.

By default, when a plug-in contributes to the Eclipse framework adding a new view,
the view is positioned in the bottom right part of the workbench. Anyway, the work-
bench itself is made up by different, dynamic, views that can be manually resized or
repositioned by the user at any time.

Initialization

The X-Ray workbench view appears by clicking on the Window - Show View dialog,
Others.., then X-Ray and finally on the X-Ray icon. The empty X-Ray view will there-
fore appear in the default position declared by the framework.

This is the default procedure to open a given view, but it is not really useful for
our plug-in. X-Ray is intended to visualize a specific project selected by the user,
therefore we contributed, as shown in Figure 4.7, to the project’s context menu an
action (Analyze Current Project) that will activate the plug-in and analyze the cur-
rently selected project; adding this specific action removed the difficulty of deciding
which project to analyze, given that the user might have multiple projects opened con-
currently as far as different files belonging to different projects in the workbench editor.
Thus the user is ”somehow” forced to select which project the plug-in will visualize.

Interaction

The X-Ray workbench view provides general information about the project and different
actions to the user. Some actions are available for every polymetric view, while others
are specific to certain visualizations.

24

Jacopo Malnati X-Ray

Figure 4.7: The plug-in adds an action that will be visible after right-clicking on a
project in the Package Explorer (In this example, the X-Ray project itself). Clicking on
Analyze Current Project action, X-Ray will be activated, and it will create and show
its view containing the System Complexity View (which is clearly visible in the bottom
right part of figure).

The user will be able, clicking on a class entity, to select it; a red border indicates
that the node is selected and every action that requires a selection will be applied to
the currently selected node. The plug-in can even highlight nodes (with a green border),
while they are useful for a particular view or action.

Actions and general information (Figure 4.8) become visible as soon as the plug-in
analyzes a project, they are text and little icons on the top left part of the X-Ray’s view.
General information gives a short description of the analyzed project in terms of num-
ber of packages, classes, methods and lines of code (i.e., [X-Ray] P:8 C:38 M:307

L:3979 is the general information of the plug-in itself). The idea is to give a general
overview of the project, providing the number of entities (and metrics) that X-Ray is
visualizing.

The followings are the available actions:

• (B) Refresh. Refreshes the current visualization. The plug-in will parse and analyze
again the whole project, therefore it might be an intensive task.

• (C) Screenshot. Takes a screenshot of the current visualization and it saves it as a
jpeg image on the user’s Desktop.

• (D) Show Dependencies. The plug-in will overlay, to the current visualization, edges

25

Jacopo Malnati X-Ray

ZOOM

B C D E F G H IGeneral Information (A)
Actions

Figure 4.8: (A) = general information, (B) = refresh, (C) = screenshot, (D) = show de-
pendencies, (E) show Class Dependency View, (F) = show Package Dependency View,
(G) = show System Complexity View, (H) show implemented interfaces / interface im-
plementers, (I) open selected file

(arrows) between the selected class node and its dependencies (following the con-
vention declared in Figure 4.2).

• (E) Show Class Dependency View. Switches the current view to the Class Depen-
dency View (Section 4.3.3).

• (F) Show Package Dependency View. Switches the current view to the Package
Dependency View (Section 4.3.3).

• (G) Show System Complexity View. Switches the current view to the System Com-
plexity View (Section 4.3.2).

• (H) Show implemented interfaces / interface implementers. The plug-in will over-
lay, to the current visualization, edges (solid lines) between interfaces and imple-
menters. If the currently selected node represent an interface, X-Ray will create
links between it and all the nodes representing classes which implement the in-

26

Jacopo Malnati X-Ray

terface in the underlying system. if the currently selected node represents a class,
it will link that class to any interface that the class is implementing.

• (I) Open selected file. The plug-in will open the .java file corresponding to the
class represented by the selected node inside the source code editor provided by
the Eclipse framework. This action will also trigger the show dependencies action.

Actions may or may not be available, depending on the currently polymetric view.
Table 4.4 summarizes the availability of every action for every view.

Action System Complexity Class Dependency Package Dependency
B x x x
C x x x
D x - -
E x - x
F x x -
G - x x
H x - -
I x - -

Table 4.4: Actions and their availability within the three polymetric views provided by
X-Ray. ”x” means available, ”-” means not available

As we previously said, the X-Ray workbench view is just a container for different
polymetric views. Once the project has been parsed by the plug-in, the user can switch
between different views and analyze the selected system. Every view provides a different
abstraction and point of view to better understand the design and dependencies of the
current project.

4.3.2 System Complexity View

The System Complexity View is the default polymetric view that appears to the user
right after he/she selected a project as target for X-Ray.

Description

Nodes are rectangles that model classes of the underlying system while edges represent
inheritance between classes. Nodes are arranged in a vertical (top-down) tree that high-
lights inheritance hierarchy. Both nodes and edges are displayed following the metrics
explained in Section 4.2.2.

Figure 4.9 is the System Complexity View of the X-Ray project, drawn inside the
workbench view created by the plug-in. The workbench view provides general informa-
tion about the project and all the available actions for the currently shown polymetric
view.

Goal

The System Complexity View is particularly efficient while spotting disharmonies in the
design and implementation of a system. It is easy to find and identify big nodes (com-
pared to the others) or anomalies in the shape of the project (provided by the inheritance

27

Jacopo Malnati X-Ray

Figure 4.9: X-Ray’s workbench view containing the System Complexity View for the
selected project.

tree). The user is therefore able, with a single picture, to analyze and understand com-
plex systems in terms of methods, lines of code and inheritance hierarchies without
the need of reading source code. The System Complexity View highlight symptoms of
identity disharmonies that can be noticed by considering design elements in isoloation
[LM06].

Example of Usage

Right-clicking on a project in the Package Explorer and selecting Analyze Current
Project, X-Ray will be initialized and the System Complexity View will appear in the
workbench view created by the plug-in. Depending on the resolution of the monitor, the
size of the view and the complexity of the analyzed system, the project will be completely
visualized within the workbench view boundaries or it will require horizontal or vertical
scrolling. Every node (except green ones, representing classes external to the project)
can be selected and inspected.

Example. Let us say that we want to analyze the X-Ray project. Once the project
has been selected as target for the plug-in, the polymetric view appears as shown in
Figure 4.9. The most immediate information provided by the plug-in is the shape of the
system. The hierarchy tree offers information about inheritance and levels of inheri-
tance, as far as identifies sibling entities. Looking at the polymetric view it is easy to
see which are the major inheritance subtrees. Moreover, visualizing classes external to
the system, X-Ray shows inheritance hierarchy that would have been otherwise hidden.

Looking at the system, node, by node, one thing immediately stands out: a big node
in the right-hand part of the view. The name of the class (SVPluginView) represented by
this node is clearly visible, given that the width of the node is large enough to accom-
modate it without being truncated. If we want to have more information about the node
and investigate why it is so big, we just have to move the mouse pointer on the node

28

Jacopo Malnati X-Ray

body and wait for the tooltip to show up. The tooltip (Figure 4.10) gives information
about the name of the class, its superclass (if any) the package in which it is contained,
the implemented interfaces (if any), the number of methods, fields and lines of code,
the path of the Java file containing the source code and which other classes are used
by the current one (and how strong is the dependency, between parenthesis).

Figure 4.10: Tooltip of the SVPluginView node. The node represents the SVPluginView
class which is a subclass of the external class ViewPart. The SVPluginView class is
contained in the org.malnatij.svplugin.views package and is composed by 52 methods,
29 fields and 662 lines of code. The source code of the class is contained in the file /X-
Ray/src/org/malnatij/svplugin/views/SVPluginView.java and it uses 8 other classes;
5 times the classes ProjectRepresentation and ClassRepresentation, 14 times the class
Log etc.

The tooltip gives a textual description of the graphical representation of the project.
Moreover, it lists all the dependencies of the class; this information is missing, by de-
fault, in the graphics of the current polymetric view (given that it is fully covered by the
Class Dependency View), but it can be visualized and shown to the user by selecting
the node and clicking on the (D) Show Dependencies action, as shown in Figure 4.11.
Dependency arrows use metrics described in Section 4.2.2 and have a tooltip explaining
the strength of the represented dependency. By clicking on a blank area the SVPlugin-
View node will be deselected and all the dependency links will be removed.

If we still want to investigate the SVPluginView class, we can reach the lowest level
of analysis: the source code. Selecting the node and double-clicking it, the source code
of the class represented by the selected node will be opened in the Text Editor provided
by the Eclipse framework. The same result can be obtained by selecting the node and
clicking on the (I) Open selected file action. The Text Editor is made up by different
tabs, one for every Java file currently opened. While the user is switching between one
file and another, the plug-in will automatically react centering the System Complexity
View in the node corresponding to the class the user is browsing, visualizing its de-
pendencies. This feature is particularly useful: while reading or writing code, the user
will be able to see the position of the current class in the inheritance hierarchy and its

29

Jacopo Malnati X-Ray

Figure 4.11: The System Complexity View after selecting the SVPluginView node and
clicking on the (D) Show Dependencies action. Eight dependency arrows are created
and visualized. They have different sizes and colors, representing different levels of
strength. A tooltip describes the nature (origin class, strength, target class) of the
dependency. Every node representing a target class is highlighted (with a light-green
border).

dependencies.

Now that we have a better understanding of the SVPluginView class, of its depen-
dencies and inheritance, we can shift our attention to something that is still obscure.

The shape of the system highlights two isolated, white, nodes. They represent inter-
faces declared in the underlying project, potentially implemented by some of the classes
represented by other nodes. If we select the interface node and we click on the (H) Show
implemented interfaces / interface implementers action, X-Ray will create and visualize a
green edge between the interface and all the classes that are implementing it, as shown
in Figure 4.12. On the other hand, selecting a node that is implementing one or more
interfaces and clicking on the (H) Show implemented interfaces / interface implementers
action, the plug-in will create and visualize a green edge between the class and every
interface it is implementing.

Discussion

The System Complexity View provided by X-Ray achieves its goal of being useful while
spotting design disharmonies and it is an important aid in order to understand and
explore an unknown or complex project. Anyway, the implementation of this view is
still a prototype, therefore there are some of its aspects that might be improved. One of
the most important is scalability.

Scalability is the ability of a system (in this case, the polymetric view) to handle grow-

30

Jacopo Malnati X-Ray

Figure 4.12: Selecting the IProjectAnalyzer interface and clicking on the (H) Show im-
plemented interfaces / interface implementers action, we discover that 2 classes are
implementing that interface: DependencyBuilder and ModelExtractor

ing amounts of work in a graceful manner. Software systems can be huge, composed of
millions lines of code and thousands classes. Visualizing 10 entities is really different
than visualizing 1000 of them. Software visualization was born to provide abstraction
and to give the possibility to focus on one or few aspects of a system, without getting
lost in millions of details. No matter which abstraction are we using, if there are too
many entities and information shown at a time, the user will not be able to exploit the
provided abstraction. Therefore zooming and filters must be implemented and offered
to the user while analyzing big and complex software systems.

The System Complexity View, so far, does not implement any filtering or zooming
mechanism, this implies that it is more difficult to browse and understand a big project
(that will require a lot of scrolling) than a small one.

4.3.3 Class and Package Dependency View

From the System Complexity View, clicking on the (E) Show Class Dependency View
action or (F) Show Package Dependency View action, the plug-in will create and show,
respectively, the Class Dependency View or Package Dependency View.

Description

Arranged in a bi-dimensional circle, packages or classes are linked together by de-
pendency links, each of them with a certain weight, highlighting how strength is the
dependency between entities. Nodes and edges are displayed following the metrics ex-
plained in Section 4.2.2. We say that a class has a dependency when the class uses
some code implemented by another class.

31

Jacopo Malnati X-Ray

Figure 4.13: A Class Dependency View. Classes are arranged in a bi-dimensional circle
and are connected by dependency arrows. Tooltips describe classes and dependencies.
The figure shows the Class Dependency View for the X-Ray project.

Goal

This visualization highlights design defects, providing information about coupling and
cohesion (making it easier, for example, to decide where and when to use a design
patter such as façade). Class and Package Dependency Views highlight disharmonies
that affect several entities at once in terms of the way they collaborate to perform a
specific functionality [LM06].

Example of Usage

In order to provide an example, let us analyze the Class and Package Dependency Views
for the X-Ray project.

Example. Once we initialized the plug-in visualizing the System Complexity View,
we can click on the icons responsible for creating and visualizing the two dependency
views. Clicking on (E) Show Class Dependency View, the System Complexity View will

32

Jacopo Malnati X-Ray

be replaced by a view containing something similar to Figure 4.13. We suddenly notice
that classes external to the project are not visualized (external libraries might add a
lot of noise to the representation) and that all the entities have the same dimensions.
In terms of metrics, this view is poorer than the System Complexity View because it
focuses exclusively on dependencies.

Weak dependencies are visualized as light and small arrows while strong dependen-
cies are bigger and darker so that it is easy to spot which classes are the most used and
which others use code and attributes defined by a many other classes. In other words,
this view provides information about collaboration disharmonies.

The view evinces that the most used classes (in terms of incoming dependencies) are:
Log, Node, and ClassRepresentation. Excessive incoming dependencies are undesirable
because the more one is used by the others, the more responsible and immutable one
becomes, given that any little change in the class will potentially affect all the entities
that are using it. The view also evinces that classes with more outgoing dependencies
are SVPluginView, TreeLayout and CircleLayout. Excessive outgoing dependencies are
undesirable because the more one uses the others, the more it is dependent and vul-
nerable. These ”interesting” outgoing and incoming dependencies for the X-Ray project
are highlighted in Figure 4.14.

High Incoming
Dependencies Class

dependency

dependency

dependency

dependency

dependency High Outgoing
Dependencies Class

dependency

dependency

dependency

dependency

dependency

Figure 4.14: Green circles highlight classes with high incoming dependencies (Log,
Node, and ClassRepresentation), while blue circles highlight classes with high outgoing
dependencies (SVPluginView, TreeLayout and CircleLayout)

While browsing source code using the Text Editor provided by Eclipse, the node cor-
responding to the class that we are currently editing or reading will be centered in the

33

Jacopo Malnati X-Ray

polymetric view and highlighted.

The X-Ray plug-in is a small project, made up by 48 classes, therefore the current
view is useful and understandable. Bigger projects might have a huge set of classes
which implies an intricate and complex dependency view. Browsing the resulting view
will require scrolling and resizing, making the user experience difficult and useless,
given that the user will not be able to exploit the provided abstraction (handling too
much information in a limited amount of space). In order to face this problem (which in
some sense is a scalability problem) the X-Ray plugin provides the Package Dependency
View which exploits the same abstraction offered by the Class Dependency View, but it
applies that concept to packages instead of classes. Packages are containers of classes,
therefore, modeling packages, we are raising the abstraction by one layer, visualizing
less entities.

Even if it is not strictly needed by the project (given its limited complexity), let us
say that we want to see and analyze its Package Dependency View. Clicking on the (F)
Show Package Dependency View action, a figure similar to Figure 4.15 will appear.

Figure 4.15: The Package Dependency View of the X-Ray plug-in and the
tooltip for the org.malnatij.svplugin package. The node corresponding to package
org.malnatij.svplugin.views is highlighted because one of the classes contained in the
package is currently visualized in the Text Editor.

As we clearly see, there are less nodes compared to the previous view, and each
node represents a package of the X-Ray plug-in. Given that Java packages follow the
dot-separated naming convention, their names can be extremely long. To improve the
usability, just the latest token of the package name is shown as node label. This way
the most significant portion of the name is immediately visible, while the full, longer
name is visible by reading the tooltip associated with each node. In this example we
wanted to further investigate the svplugin node, positioning the mouse cursor over it

34

Jacopo Malnati X-Ray

and waiting for the tooltip to appear.

Discussion

As the System Complexity View, the Class and Package Dependency Views suffer from
scalability. The entities are arranged in circles, therefore big project might imply a lot
of space, in order to be visualized. So far, the views have limited functionalities and
they do not provide any zooming, scaling or filtering mechanism. These limitations
moderately affect the usability of the plug-in, therefore will have high priorities in the
future work. The implementation of the Package Dependency View is one, first, step
toward providing different abstractions and layers of abstraction, in order to offer views
which focus on one or few properties, without visualizing too many entities or too much
information in the same context. The Package Dependency View has been implemented
as soon as we noticed that the Class Dependency View was completely useless with big
projects. The user wants to browse the system without too many clicks and scrolling,
having the possibility to understand a clear visualization of the whole system without
being forced to analyze it piece by piece.

Figure 4.16 shows how intricate and complex might be a Class Dependency View of a
system of 1700 classes. There are thousands of dependency arrows, classes are spread
through a huge circumference; even resizing the view to the size of the whole Eclipse
workbench, just a small portion of the view will be visible, too limited to be useful.

Figure 4.16: A portion of the Class Dependency View of the project Argo UML, composed
by 1700 classes. In this particular case, visualizing big projects without being able, so
far, to filter and zoom, this polymetric view results being useless.

35

Jacopo Malnati X-Ray

4.4 The Plugin

The plugin requires Java 1.5 and the Eclipse framework. It is written in Java, it is free
and open-source.

The plug-in can be downloaded at http://atelier.inf.unisi.ch/∼malnatij/xray/, un-
der the BSD license. Moreover, this document can be found within the X-Ray documen-
tation on the website.

Once the plug-in has been downloaded, it must be placed in the /plugins folder of
Eclipse, as sibling of all the other plug-ins. The next time that the framework will be
executed, the X-Ray plug-in will be available to the user.

36

Chapter 5

Validation

5.1 Case Study

The previous chapter gave an overview of the plug-in. We described its structure, poly-
metric views and functionalities using as case study the plug-in itself. In the whole
chapter we analyzed the X-Ray project and provided different visualization screenshots
without drawing any conclusion about the design of the project highlighted by the three
polymetric views.

In the next section, using the plug-in, we will try to draw meaningful conclusions
about a project, exploiting different abstractions and visualizations. We will analyze the
X-Ray project.

5.1.1 X-Ray

Analyzing the System Complexity View of the plug-in (Figure 4.10), we already noticed
a ”suspicious” node: SVPluginView (52 methods and 670 lines of code). The size of
the node is a symptom of identity disharmony: operations and classes should have a
harmonious size i.e., they should avoid both size extremities (proportion rule, [LM06]).

If we further investigate this class analyzing its dependencies (Figure 4.11) we clearly
notice that this class interacts with a lot of other classes. SVPluginView interacts with
the class Actions, Log, ClassRepresentation, ProjectRepresentation, both the TreeLayout
and CircleLayout classes as far as multiple subclasses of the Node class.

By its name and the comments inside its source code, it becomes clear that this class
is responsible for creating and maintaining the workbench view used by our software vi-
sualization plug-in. It is therefore legal a collaboration with the Actions and Log classes
as far as the the TreeLayout and CircleLayout classes (responsible, respectively, for the
layout exploited by the System Complexity View and the Class & Package Dependency
Views). All the other dependencies are suspicious, and require further investigations.
Double-clicking on the node corresponding to the class on which we are focusing, we
will be able to browse its source code and understand the details of its collaborations.

The suspicious class is one of the oldest class of the X-Ray system, its design has
been revised and modified different times. Originally, it was developed in order to han-

37

Jacopo Malnati X-Ray

Suspicious Class, its dimensions
and number of outgoing dependency links
could be a symptom of identity disharmony

Figure 5.1: The System Complexity View (top) and the Class Dependency View (bottom)
highlighting the suspicious dimension and number of outgoing dependency links for
the SVPluginView class.

dle just a single view (the System Complexity View) and then, with the necessity of
meeting new requirements, has been extended without any refactoring. New function-
alities, implemented on top of a previous design, made this class as big and complex
as X-Ray visualizes it, violating also the presentation rule ([LM06]): each class should
present its identity by a set of services, which have one single responsibility and which
provide a unique behavior.

Our analysis highlighted therefore that the System Complexity View can, potentially,
become a God Class. A God Class is a class that tends to centralize the intelligence
of the system performing too much work on its own, delegating only minor details to
a set of trivial classes and using the data from other classes. This has a negative im-
pact in the reusability and understandability of that part of the system [LM06] while in a
good object-oriented design the intelligence and functionalities should be uniformly dis-
tributed among the top-level classes [Rie96]. Thus, to have a better design, we should
consider to re-design this class and divide it into multiple classes, each of them with its
responsibility and behavior.

Now that the the behavior and design of the SVPluginView class is clear, we can an-
alyze the other class that catches out attention: DependencyBuilder, associated with a
big node on the left-hand side of the System Complexity View. This class could seem to
be a potential candidate for another God Class but further investigations will show that
this is not the case (Figure 5.2). Analyzing the dependencies of the DependencyBuilder

38

Jacopo Malnati X-Ray

class, we notice that there are just few dependency connections, therefore this class
doesn’t centralize the intelligence of the system, but rather it contains something sim-
ilar to a Brain Method, centralizing the functionalities of the class (in the same way as
the God Class centralizes the functionality of the system). A Brain Method often starts
as a ”normal” method but then more and more functionality is added to it until it gets
out of control, becoming hard to maintain [LM06].

Suspicious Class, its dimensions
could be a symptom of identity disharmony,

(but there is not an high number of
 dependency connection)

Figure 5.2: The Class Dependency View (top) and the System Complexity View (bot-
tom) highlighting the suspicious dimension of the DependencyBuilder class but also its
limited amount of dependency connections.

If we spend a little time browsing the source code of the class, we notice that the
processStatement method is composed of a lot of switch statements, which is a symp-
tom of a bad object-oriented design that ignores polymorphism. The DependencyBuilder
class, therefore, can become a Brain Class if in the future releases of the plug-in, as
scheduled, we will add even more functionality to it. To prevent this situation, before
adding any functionality, we will refactor the processStatement method in such a way
to cure its disharmonies.

Two other classes that can catch our attention for their high number of incom-
ing dependency links are the Log and ClassRepresentation, as previously stated in
Figure 4.14. Further investigating the two entities, we notice that the Log class just
contains static methods that provide basic and trivial logging functionalities. Its imple-
mentation is static and frozen, therefore, even being used by a lot of other classes in the
system, it does not have to worry about its responsibilities. For the ClassRepresentation
class, the scenario is different. Its size is over the system’s average size and is a crucial
entity of the project. Being used by a lot of other classes, its implementation must take
into consideration the issues generated by changing any of its implementation details.

39

Jacopo Malnati X-Ray

Actually, browsing its source code, we can notice that the methods used by external
entities are a sort of interface that provides a layer of abstraction between the methods
and the actual implementation of their functionality. Anyway, if more and more entities
will be dependent on this class, in the next releases of the plug-in, we should decide
how to limit the responsibilities of this class that might affect other entities.

40

Chapter 6

Conclusions

6.1 Reached Goals

So far, the plug-in provides 3 different views:

• System Complexity View

• Class Dependency View

• Package Dependency View

They are stable prototypes with limited functionalities but mature enough to be use-
ful while analyzing small and medium sized projects. With the System Complexity View,
the user can spot identity disharmonies and identify design issues only by looking at
the shape of the visualized system. With the Class and Package Dependency Views the
user can spot collaboration disharmonies and identify incoming and outgoing depen-
dencies. Exploiting the abstractions provided by all the three polymetric views, the user
can analyze any system at class and package level, deepening his knowledge browsing
dependencies and hierarchies.

6.2 Future Work

In the future releases of the system, we will perform some refactoring, fix some known
bugs and add more features. We will also perform a user study which will show us how
people use the tool, which are the useful parts and which are the ones that must be
improved. Moreover, we will provide a set of meaningful tests.

6.2.1 Features

• More polymetric views. As future work, we are planning to implement at least one
more view: the System Hotspot [LM06]. In this view nodes represent classes, while
their size represent the number of methods they define. Color represents the class
type. This simple view helps to identify large and small classes and scales up to
very large systems. The nodes are sorted according to the number of methods
which make the identification of behavioral outlier easy. If the implementation of
this view will be successfully, we might take into consideration the idea of imple-
menting any other view that will be requested by our beta testers. Moreover, all

41

Jacopo Malnati X-Ray

the views implemented so far are displayed in a single workbench view, therefore
the user can analyze them one at a time. In the next releases, X-Ray will create
a dedicated workbench view for every polymetric visualization, to offer a comple-
mentary representation of the system without forcing the user to manually click
and switch view.

• Scalability. So far, X-Ray suffers from scalability especially in the Class and Pack-
age Dependency Views. In order to solve this problem we will provide different
options and actions. The user will be able to visualize the whole system or just a
subset of it, he will moreover be able to zoom in and out his current view, showing
or hiding details. Filters and semantic zoom will be implemented.

• Options. The user will be able to change and set the color and metrics used by
every entity, as far as their default sizes. It will be possible to dynamically adjust
parameters while analyzing a view, in order to show, hide or spot out different
entities or relationships.

• Persistency. As future work, we will implement the possibility to move nodes from
their default position to new, user-defined, locations. Moreover this changes in
the layout will be preserved through executions, being stored.

• Incremental data collection. This feature regards both the time spent in the initial-
ization of the plug-in and the time spent while refreshing the visualized system.
One of the most intensive, time and space consuming task of the system is the
one that collects information about dependencies and fills the plug-in’s data struc-
tures. It is a particular heavy task because it has to create different parse trees
and resolve the binding for all the entities. So far, this task is executed by one
thread during the initialization, while in the future it will be exclusively executed
on demand and incrementally (just handling entities for which it was required).
This will result in an improved usability, decreasing the user’s waiting time.

6.2.2 Known bugs

So far, just two known bugs have been noticed.

Dependencies

While building the dependency data structures for the system, not all dependencies are
correctly handled. The actual version of the plug-in (1.0) doesn’t handle dependencies
declared outside expression statements.

Screenshot

While creating a screenshot of the currently selected polymetric visualization, if the vi-
sualization is bigger than a certain size (that still have to be quantified), a memory out
of bounds exception might occur. This issue, so far, can be solved by increasing the
virtual memory associated to the Java Virtual Machine.

We know where these two functionalities are missing or buggy in our code and where
to look for documentation, but the limited amount of time left before the upcoming
release did not permit to fix them.

42

Appendix A

Implementation

In the following sections we will describe some of the most important and interesting
design decisions about the X-Ray plug-in.

A.1 Architecture of X-Ray

A.1.1 UML Diagrams

The inheritance tree can be analyze executing the plug-in and visualizing the System
Complexity View, therefore it will be a useless duplication to provide a UML class dia-
gram containing this redundant information. Anyway, the most important part of the
plug-in is its core, the internal code representation. To better understand its compo-
nents, let us include a UML class diagram modeling the classes that are involved.

Figure A.1 shows how every Java entity is modeled by an EntityRepresentation .
Moreover, packages and classes are contained within another entity (respectively, a
project and a package), therefore we created the ContainedEntityRepresentation

class. The InternalCodeRepresentation class containes a ProjectRepresentation

that is made up by zero or more PackageRepresentation s that are composed by zero
or more ClassRepresentation .

A.2 Internal Code Representation

One of the most important part of the plug-in is the model extractor, responsible for
creating an internal code representation which reflects the underlying source code. The
model extractor is composed by 2 phases: the first is divided into two subtasks, the
hierarchy builder and metric computer, while the second is the dependency builder.

A.2.1 Model Extractor

This is the first task performed by the plug-in immediately after being initialized. It
is responsible for analyzing the source code of the project that the user wants to vi-
sualize. The class that performs this analysis is ModelExtractor.java . All the tasks
executed by the plug-in are, by default, executed by the Eclipse User Interface thread,

43

Jacopo Malnati X-Ray

Figure A.1: UML class diagram for the classes involved in the internal code representa-
tion

44

Jacopo Malnati X-Ray

therefore the ModelExtractor, its subtasks and the Dependency Builder (implemented in
the DependencyBuildre.java file) have been created as separated threads, in order to
minimize the impact of their intensive tasks on the overall Eclipse user interface (which,
otherwise, would remain frozen during their computations).

Hierarchy Builder

The Hierarchy Builder parses the project and collects information about the inheritance
hierarchy of every class in the system. Exploiting interfaces and functionalities pro-
vided by the org.eclipse.core and org.eclipse.jdt.core plug-ins and libraries,
the Hierarchy Builder fills the internal code representation (ICR) of X-Ray by gathering
information from the one used by Eclipse itself. The X-Ray’s internal code representa-
tion is a set of data structures containing meaningful data about the project, packages
and classes; moreover it stores every metric and dependency.

Once the Hierarchy Builder performed its task, the system, previously seen as a set
of files and directories, slowly takes shape.

Metric Computer

The Metric Computer is responsible for collecting information about the metrics used by
the System Complexity View. It retrieves the number of methods, attributes (even if, so
far, they are not visualized in any view other than in the class tooltip), number of lines
of code, etc..

As soon as the Metric Computer thread finishes its task, the Model Extractor has
filled the internal code representation with all the information needed by the System
Complexity View to create and show its graphical representation in the workbench (Fig-
ure A.2).

A.2.2 Dependency Builder

The Dependency Builder scans the source code of the system and collects information
about dependencies between classes. These dependencies will be used by the Class and
Package Dependency Views while creating dependency edges (arrows) between entities.

The task performed by this operation is so time and space consuming that we de-
cided to separate it by the Metric Computer (originally, Dependency Builder was a phase
of the Metric Computer). Creating a new component for this task, we had the possibility
to execute it on demand, as soon as the user visualizes the Class or Package Depen-
dency Views.

Later on, adding the possibility to visualize dependency links even in the System
Complexity View, we had to execute the Dependency Builder at initialization time, com-
ing back to the original design (but still maintaining the different threads). That’s the
reason we decided to provide, in the next releases of the plug-in, an Incremental De-
pendency Builder that will execute on a limited set of entities on request, improving the
usability of X-Ray.

45

Jacopo Malnati X-Ray

Project Folder

Model Extractor
Hierarchy Builder Metric Computer

Internal Code Representation Internal Code Representation

X-Ray plug-inEclipse workspace

Figure A.2: The source code that composes the project lays in the project’s folder, inside
the Eclipse workspace. This folder is made up by Java files, binaries, preferences and
subfolders. Once the plug-in executes the Hierarchy Builder phase, its ICR is filled by
nodes representing Java entities and their inheritance hierarchy. After the completion
of the Metric Computer phase, the ICR contains information about all the computed
metrics, reflected in the appearance of every node. At this point, the system could be
able to visualize the System Complexity View with limited functionalities (without the
dependency-related actions).

46

Jacopo Malnati X-Ray

As soon as the Dependency Builder collected all the data about the metrics used by
the Class and Package Dependency Views, the internal code representation contains all
the information needed by X-Ray to create and visualize all its views.

Internal Code Representation

Dependency Builder

X-Ray plug-in
X-Ray's views

Figure A.3: Once the Dependency Builder phase has been accomplished, the ICR con-
tains also information about dependencies between entities. The plug-in is therefore
able to display all of his polymetric views to the user.

47

List of Figures

2.1 Minard: advance of Napoleon’s Grande Arme into Russia in 1812 4

2.2 A 3-dimensional representation of a complex molecule 5

2.3 Softwarenaut: System complexity view and Packgae Dependency View . . 7

2.4 CodeCrawler: System complexity view . 8

2.5 Creole: Package Dependency View . 9

3.1 Eclipse Platform UI . 10

3.2 This is an example of how a new extension is declared in the plug-in man-
ifest (with lines highlighting how the plug-in manifest references various
plug-in artifacts) . 13

3.3 The Eclipse Platform and some of its component 15

4.1 The System Complexity View provided by X-Ray visualizing itself within
the Eclipse IDE . 16

4.2 A simple polymetric visualization . 18

4.3 Common metrics semantic in a polymetric view 19

4.4 A polymetric view. The metric used are the following: width metric = num-
ber of methods, height metric = lines of code, color metric = Java class type
(concrete, abstract, interface, external to the project), edges represent hi-
erarchy dependency . 20

4.5 System Complexity View node metrics in a nutshell 22

4.6 Class & Package Dependency View node metrics in a nutshell 23

4.7 The plug-in adds an action that will be visible after right-clicking on a
project in the Package Explorer (In this example, the X-Ray project itself).
Clicking on Analyze Current Project action, X-Ray will be activated, and
it will create and show its view containing the System Complexity View
(which is clearly visible in the bottom right part of figure). 25

4.8 (A) = general information, (B) = refresh, (C) = screenshot, (D) = show de-
pendencies, (E) show Class Dependency View, (F) = show Package Depen-
dency View, (G) = show System Complexity View, (H) show implemented
interfaces / interface implementers, (I) open selected file 26

4.9 X-Ray’s workbench view containing the System Complexity View for the
selected project. 28

48

Jacopo Malnati X-Ray

4.10Tooltip of the SVPluginView node. The node represents the SVPluginView
class which is a subclass of the external class ViewPart. The SVPluginView
class is contained in the org.malnatij.svplugin.views package and is com-
posed by 52 methods, 29 fields and 662 lines of code. The source code of
the class is contained in the file /X-Ray/src/org/malnatij/svplugin/views/SVPluginView.java
and it uses 8 other classes; 5 times the classes ProjectRepresentation and
ClassRepresentation, 14 times the class Log etc. 29

4.11The System Complexity View after selecting the SVPluginView node and
clicking on the (D) Show Dependencies action. Eight dependency arrows
are created and visualized. They have different sizes and colors, repre-
senting different levels of strength. A tooltip describes the nature (origin
class, strength, target class) of the dependency. Every node representing
a target class is highlighted (with a light-green border). 30

4.12Selecting the IProjectAnalyzer interface and clicking on the (H) Show im-
plemented interfaces / interface implementers action, we discover that 2
classes are implementing that interface: DependencyBuilder and ModelEx-
tractor . 31

4.13A Class Dependency View. Classes are arranged in a bi-dimensional circle
and are connected by dependency arrows. Tooltips describe classes and
dependencies. The figure shows the Class Dependency View for the X-Ray
project. 32

4.14Green circles highlight classes with high incoming dependencies (Log, Node,
and ClassRepresentation), while blue circles highlight classes with high
outgoing dependencies (SVPluginView, TreeLayout and CircleLayout) . . . 33

4.15The Package Dependency View of the X-Ray plug-in and the tooltip for
the org.malnatij.svplugin package. The node corresponding to package
org.malnatij.svplugin.views is highlighted because one of the classes con-
tained in the package is currently visualized in the Text Editor. 34

4.16A portion of the Class Dependency View of the project Argo UML, composed
by 1700 classes. In this particular case, visualizing big projects without
being able, so far, to filter and zoom, this polymetric view results being
useless. 35

5.1 The System Complexity View (top) and the Class Dependency View (bot-
tom) highlighting the suspicious dimension and number of outgoing de-
pendency links for the SVPluginView class. 38

5.2 The Class Dependency View (top) and the System Complexity View (bottom)
highlighting the suspicious dimension of the DependencyBuilder class but
also its limited amount of dependency connections. 39

A.1 UML class diagram for the classes involved in the internal code represen-
tation . 44

49

Jacopo Malnati X-Ray

A.2 The source code that composes the project lays in the project’s folder,
inside the Eclipse workspace. This folder is made up by Java files, bina-
ries, preferences and subfolders. Once the plug-in executes the Hierarchy
Builder phase, its ICR is filled by nodes representing Java entities and
their inheritance hierarchy. After the completion of the Metric Computer
phase, the ICR contains information about all the computed metrics, re-
flected in the appearance of every node. At this point, the system could be
able to visualize the System Complexity View with limited functionalities
(without the dependency-related actions). 46

A.3 Once the Dependency Builder phase has been accomplished, the ICR con-
tains also information about dependencies between entities. The plug-in
is therefore able to display all of his polymetric views to the user. 47

50

List of Tables

4.1 Node metrics in the System Complexity View 21
4.2 Edges (arrows) metric in the Class & Packages Dependency View 22
4.3 Node metrics in the Class & Packages Dependency View 23
4.4 Actions and their availability within the three polymetric views provided

by X-Ray. ”x” means available, ”-” means not available 27

51

Bibliography

[Lan03] Michele Lanza. Codecrawler – a lightweight software visualization tool. In
Proceedings of VisSoft 2003 (2nd International Workshop on Visualizing Soft-
ware for Understanding and Analysis), pages 51–52. IEEE CS Press, 2003.

[LL06] Mircea Lungu and Michele Lanza. Softwarenaut: Exploring hierarchical
system decompositions. In Proceedings of CSMR 2006 (10th European Con-
ference on Software Maintenance and Reengineering), pages 351–354, Los
Alamitos CA, 2006. IEEE Computer Society Press.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[LMSW03] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu.
Plugging-in visualization: experiences integrating a visualization tool with
eclipse. In SoftVis ’03: Proceedings of the 2003 ACM symposium on Software
visualization, pages 47–ff, New York, NY, USA, 2003. ACM Press.

[ML94] J. Kidd M. Lorenz. Object oriented software metric. 1994.

[Rie96] Arthur Riel. Object-Oriented Design Heuristics. Addison Wesley, Boston MA,
1996.

52

	Abstract
	Acknowledgments
	 Introduction
	Goal of the Work
	Roadmap

	Related Work
	Information Visualization
	Scientific Visualization
	Visualization of Abstract Concepts

	Software Visualization
	Software Visualization Tools
	Softwarenaut
	CodeCrawler
	Creole

	Eclipse
	Eclipse Description
	Eclipse Infrastructure
	Plug-in structure
	Plug-in Directory
	Plug-in Manifest
	Plug-in Class
	Eclipse Plug-ins widely used by X-Ray

	Eclipse Platform Overview

	X-Ray
	The Idea
	Metrics
	Software Metrics
	X-Ray Metrics

	Views
	X-Ray view
	System Complexity View
	Class and Package Dependency View

	The Plugin

	Validation
	Case Study
	X-Ray

	Conclusions
	Reached Goals
	Future Work
	Features
	Known bugs

	Implementation
	Architecture of X-Ray
	UML Diagrams

	Internal Code Representation
	Model Extractor
	Dependency Builder

