
Bachelor Project

StockHome - Web Application
User interface for a financial analysis tool

Gilad Geron

supervised by
Prof. Dr. Michele Lanza

Abstract

Stock exchange markets are dynamic and constantly produce vast amounts of informa-
tion. Investors use this information to perform various statistical calculations in order
to find what to invest in. This process can be considered a long and tedious task. In
our project we introduce a solution, which automates this process and therefore allows
investors to make decisions quicker and take into account much more information. Our
role in the project is to introduce a user interface that portrays the constantly changing
information and lets the user interact with this information with a strong emphasis on
usability.

i

Acknowledgments

I would like to dedicate this thesis to my family who made it all possible for me.

A special thanks to Michele Lanza for standing by our side and assisting us during
dark times.

Last but not least, I would like to thank my friends who spent those long sleepless
nights in the lab with me. You guys are great.

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Structure of the Document . 2

2 Problem & Related Work 3
2.1 General problems . 3
2.2 Financial information providers . 3
2.3 Financial statistical calculation tools . 5

3 Solution 7
3.1 Back-end framework . 11

3.1.1 Data fetching . 11
3.1.2 Statistical calculation core . 11
3.1.3 Filtering . 11
3.1.4 Optimisation core . 12
3.1.5 Summary . 12

3.2 Database . 12
3.3 Front-end framework . 12

3.3.1 Portfolio database handler . 13
3.3.2 Cart database handler . 13
3.3.3 Authentication servlet . 13

3.4 Browser . 13

4 Validation 14
4.1 Getting started with StockHome . 17
4.2 Portfolio Management . 17
4.3 Market observation . 20

4.3.1 Searching for a single stock . 20
4.3.2 Filtering stocks . 24
4.3.3 Cart . 25
4.3.4 Optimisation . 25

5 Conclusions 29
5.1 Goals achieved . 29
5.2 Future Work . 30

iii

Gilad Geron StockHome - Web Application

A Technologies 31
A.1 Ruby . 31
A.2 MySQL database . 31
A.3 Hibernate . 32
A.4 Apache Tomcat Java server . 32
A.5 JSP . 32
A.6 JavaScript . 32
A.7 Prototype . 33

A.7.1 Scriptaculous . 34
A.7.2 flotr . 34

A.8 AJAX . 34
A.9 JSON . 34

iv

Chapter 1

Introduction

Stock exchange markets are dynamic and constantly produce vast amounts of infor-
mation from the thousands of stocks being traded all around the world. Therefore,
choosing the right handful of stocks to invest in is like finding a needle in a haystack.
To help Investors find out what stocks to invest in, they use various statistical calcula-
tions and estimations.

These calculations require gathering and manipulating large amounts of data, which
makes it impractical to carry out by hand. The use of spreadsheets is a common way
to carry out this task more easily. Although this method is effective, finding the data
needed for the calculation, preparing the spreadsheet and manipulating the spread-
sheet can be long and error prone. It is sufficient for one field in the spreadsheet to
have an incorrect value and the rest of the data becomes corrupt. Another major flaw
with this approach is that as information inevitably changes, the calculations become
outdated and the whole process needs to be redone.

In our project we introduce a web-based solution, which automates this process even
further. Firstly, the gathering of information is done by information fetching scripts that
crawl through the web and dump financial information into a database. These scripts
are also in charge of maintaining the information stored in the database up-to-date.
Secondly, all the statistical calculations are done behind the scenes, which eliminates
the need of the investors to manipulate any raw data. Additionally, a top-down filtering
approach lets the user specify a certain criteria and find stocks that match it.

Our solution tries to reduce the amount of time spent by the user carrying out the
calculation and increase the amount time spent by the user experimenting with new
ways of investment. In essence, this tool helps investors become more efficient as they
can make decisions quicker and take into account much more information than they
normally would by using other methods. Furthermore, taking away from the user the
responsibility of carrying out the actual calculations and replacing it by a tested auto-
mated procedure, largely diminishes the chance of errors occurring.

Our role in the project is to develop a user interface that portrays the constantly
changing information and lets the user interact with this information with a strong
emphasis on usability.

1

Gilad Geron StockHome - Web Application

1.1 Structure of the Document

We start this paper by introducing the problem matter of our project, discussing the
different approaches currently used in the industry alongside their flaws.

We then move on to explaining our solution and how each feature we offer in the
solution minimizes or eliminates their respective problem.

Once the solution has been introduced, we move on to the solution validation part,
where we show how our tool operates, discuss how we attempted to maximize usability
and efficiency from the user interface point of view. Additionally, we explain briefly
what happens in each feature from the technical point of view. This is done by going
through various use-case scenarios.

Finally, we conclude the report by discussing how effectively our solution solves the
problem and future work that can be done to improve our solution.

2

Chapter 2

Problem & Related Work

As mentioned in the introduction stock exchange markets continuously produce large
amounts of data. Currently, there is no tool that is capable of gathering, storing and
managing financial information as well as carrying out statistical calculations on it.
The tools available offer either information providing related functionality or informa-
tion processing related functionality. This means that if the user would like additional
information, he would need to gather the necessary information and carry out the cal-
culations by himself. First, we will discuss general problems that apply to all tools then
proceed to introduce each approach and discuss problems related to tools of each ap-
proach.

2.1 General problems

Each tool requires some sort of installation phase. The installation phase may vary
in system requirement and complexity. However, the majority of tools work only with
Windows, meaning that mac OS and Linux users are left out. Furthermore, some of
these tools are offered as an addition to another product, meaning that the user needs
to buy or download the original software and install it before being able to install the
addition. This fact may also add additional costs to the user.

2.2 Financial information providers

This type of tools lets the user log into the database of the provider and retrieve de-
sired information. An example of such a tool is the service offered by Bloomberg called
Bloomberg Professional. Bloomberg is the largest financial software services, news and
data company in the world. They have an extensive coverage of real-time and historical
information of thousands of financial assets. Bloomberg Professional offers a terminal
access to that data. There are currently approximately 250,000 subscribers to this ser-
vice world-wide. However, although Bloomberg Professional provides a broad range of
features, it has several problems.

One such problem is the price. A basic subscription to Bloomberg Professional
terminal starts at $1,500 per month. Moreover, the installation phase of Bloomberg
makes it even more expensive and complicated as it requires special hardware in order

3

Gilad Geron StockHome - Web Application

Figure 2.1: Bloomberg user interface

to enhance user-friendliness. Such hardware may include, the Bloomberg dual 17 inch
screen set, the Bloomberg keyboard, an authentication kit and a communication kit.
Therefore, the price of such a tool might make it undesirable for the average person and
only appeal to big corporations who can afford this service.

Another major flaw with Bloomberg is its user interface. Despite the fact that
Bloomberg offers full customizability of its user interface, the design and color layout
gives the user an outdated feel and reduces usability. Figure 2.1 shows a screenshot of
the Bloomberg user interface. The interface resembles the MS-DOS interface and has a
black background. Moreover, the user interface is filled with an overwhelming amount
of data. The combination of a dark background and the amount of information shown
on the interface, makes it harder for the user to to navigate and find the functionality
and data he is looking for.

Even though Bloomberg provides a wide variety of financial data, it does not let the
user carry out additional on-the-run calculations.

4

Gilad Geron StockHome - Web Application

2.3 Financial statistical calculation tools

The main purpose of such tools is to carry out calculations. Different tools have differ-
ent ways to carry out calculations. The most commonly used method of carrying out
calculations on large amounts of data is using a spreadsheet. Spreadsheets are very
powerful tools, yet they are subject to be error-prone due to several reasons.

Firstly, the user needs to find a reliable source of information and import the data
from it. Usually, the user would carry out the same calculations on several stocks but
would have to collect the data for each stock. This process is time consuming and
repetitive, which may cause the user to collect the wrong data.

Once the user has fetched the data successfully, the user then needs to format the
data in a way which is appropriate for carrying out calculations. The fact that the user
has to manipulate thousands of cells, may cause the user to make a mistake. For
example, it is enough for the user to format one cell in the wrong way and the entire
calculation becomes incorrect.

Figure 2.2: An example of a spreadsheet used for statistical calculations

Finally, the user needs to input the formulas of the statistical calculations. These
formulas may be confusing and unintuitive to insert into the spreadsheet, which makes

5

Gilad Geron StockHome - Web Application

this process error-prone.

Moreover, there is no way of verifying if the results of the calculations are correct, let
alone pinpointing the source of the error in case the results are wrong.

As data changes constantly, the calculations become outdated, meaning that the
entire data preparation process has to be redone on a regular basis to portray the latest
image of the stock exchange market.

Spreadsheets can only handle a certain amount of data, however, in order to carry
out certain calculations thousands of values need to be taken into consideration. There-
fore even a powerful tool such as Excel cannot handle some calculations.

There are also plug-in tools that are used on top of Excel to automate the calculation
process. Yet, these tools do not automate the data gathering and preparation process.

6

Chapter 3

Solution

Figure 3.1: A screenshot of the single stock view interface

In the previous chapter we have introduced the problems of the stock exchange analysis
tools currently available in the market. In this chapter we describe how we tackle these
problems in our project.

7

Gilad Geron StockHome - Web Application

We decided to implement our solution as a web application in order to avoid the
dependencies on other software and/or the operating system. By doing so, we have
removed the whole installation phase which is required in order to run the application.
All one needs is a web-browser and an internet connection. This means that the appli-
cation can be executed from any computer anywhere in the world.

We have chosen to use an Apache Tomcat as the base for our application. Tomcat
runs the Java Enterprise Edition platform. The enterprise edition version of Java has
the functionality of the standard edition with additional libraries to support web ap-
plications. The HTML markup language was originally designed for publishing static
web pages, and is therefore insufficient for our needs (creating and maintaining a static
system is inefficient). Thus, alongside Tomcat, we have chosen the JavaServer Pages
(JSP) technology to create our dynamic web contents.

We have decided to implement the system using the Model-View-Controller (MVC)
design pattern [Mic02] . This design pattern separates the business logic from the user
interface. This design pattern enables the appearance and behavior to be completely
independent of each other. In other words, by doing so we can change the appearance
without affecting any of the functionality.

Controller

Servlet Core

Model

MySQL Database

Hibernate

View

JSP-HTML JavaScript

Figure 3.2: Model-View-Controller

An application applying the MVC design pattern is composed of three components.
The model part of the application handles the database. The controller part of the appli-
cation receives requests from the user and interacts with the model to get information
which it then uses to generate the view. The view represents the user interface of the

8

Gilad Geron StockHome - Web Application

application.

Figure 3.2 illustrates the control flow of such an application. In our case, the view
part represents the browser on the client side where the JSP is interpreted and ren-
dered. The view may interact with the controller which is found on the server side by
either submitting HTML forms via HTTP requests or by sending AJAX requests using
javascript. The controller receives these requests accordingly and calls the appropriate
function in the core to prepare the response JSP. This function may interact directly
with the database in the model using SQL or by using an abstraction persistence layer
called Hibernate. Once the response JSP is complete, the servlet sends it back to the
view, where the page or a section of a page is updated using the response JSP.

Figure 3.3 shows an overview of the solution we came up with. In this figure there are
a few main groups, namely Tomcat server, Browser, back-end framework, and front-end
framework. The tomcat server is where all the business logic and the database reside.
The server is split into 3 groups The database, the front-end framework and the back-
end framework.

The back-end framework has been implemented by Francesco Rigotti [Rig08]. The
user interface, which consists of both the browser functionality and the front-end
framework .

9

Gilad Geron StockHome - Web Application

Tomcat - Java server

Back-end Framework

Fetchers

Optimisation
core

Calculations
core

Database
maintainer

Filtering
core

Front-end framework

Portfolio
servlet

Optimisation
servlet

Market
observation

servlet

Portfolio
database
handler

Cart
servlet

Cart
database
handler

Browser

JSP + JavaScript + Prototype + JSON data structure

Internet

MySQL
Database

Portfolio View Optimisation viewStock view Filtering view

ruby

SQL

SQL

HQL

SQL

HQL

JSON

SQL

JSON

HQL

Cart view

Figure 3.3: System overview

10

Gilad Geron StockHome - Web Application

3.1 Back-end framework

As mentioned before, this part has been implemented by Francesco Rigotti. The back-
end framework is in charge of carrying out 4 main features: data fetching, statistical
calculations filtering, optimisation core.

3.1.1 Data fetching

We have created a series of ’web crawlers’ implemented in ruby that connect Yahoo!
finance and fetch all the required data in order to show how the stocks behave and to
carry out the statistical calculations.

These crawlers are split into 2 groups:

1. Setup fetchers - fetch all historical data. These are used in the initial setup stage
where the database is populated.

2. Maintenance fetchers - fetch the latest data in order to keep the database up-to-
date. The execution of these fetchers is scheduled by the database maintainer
package.

By adding this feature we have tackled the problem of the user having to fetch the
information by himself in order to carry out calculations.

3.1.2 Statistical calculation core

We implemented a series of calculators to perform different statistical calculations and
store the results in the database. These calculations are done on a regular basis and
therefore keep the data in the database up to date. By doing so, the user no longer
needs to manipulate any raw data in order to get the results he desires.

3.1.3 Filtering

In order to help the users choose what to invest in, we offer a filtering feature that al-
lows the user to specify a certain stock description and find all stocks that match that
description. This feature helps the user because, as mentioned, the stock exchange
market is enormous and there are many stocks to choose from, therefore this feature
helps the user narrow down and select only the stocks he is interested in.

Since a lot of data is sent to the servlet, we have decided to attach a JSON data
structure object to the request (Section A.9). The conversion to and from JSON objects
is done in the browser with the use of Prototype (Section A.7), and in the servlet with
the use of Java. This makes it cleaner and easier to carry out the filtering, because by
using the JSON object we can persist with the same naming convention on both the
client and server side.

11

Gilad Geron StockHome - Web Application

3.1.4 Optimisation core

In order to help the user choose how to invest, we have introduced the optimisations
feature. This feature is similar to the calculators features only that instead of being
done in the background, it is done on the user’s demand. An example of such optimisa-
tion is ’style analysis’, where the user specifies which stocks he is interested investing
in and the style analysis optimisation tells him how much of each stock to buy.

3.1.5 Summary

By providing the back-end framework, the user no longer needs to fetch the information
and manipulate it. All one needs to do is specify a stock or a description of a stock and
the website handles all the rest. Due to the fact that the data is handled ”behind the
scenes”, the user can be reassured that the data he receives is safe as we have verified
the calculations with financial experts. The information provided to the user is also
up-to-date as the web application maintains itself by fetching all new incoming data
and carrying out the calculations with the new values.

3.2 Database

Figure 3.4 represents the database concerned only with the front-end framework. Its
use will be described in the front-end framework section.

portfolio_id
user_id

Portfolio user_id
username
password

User

cart_id
user_id

Cart
portfolio_id
stock_id
quantity

Portfolio_Stock
transaction_id
portfolio_id

Transaction

Figure 3.4: Front-end framework database representation

3.3 Front-end framework

This part of the project is dedicated to handling incoming requests from the user and
generating the appropriate response JSP by accessing the database.

12

Gilad Geron StockHome - Web Application

3.3.1 Portfolio database handler

The portfolio database handler is where all the portfolio management functionality is
located. This handler allows for creation and removal of portfolios in the database. A
portfolio is an information container that holds stocks which belong to it and transac-
tions that have been carried out while buying and selling stocks.

What happens when a user buys a stock is the following. The request is received by
the portfolio servlet that calls the logging function with the input values from the re-
quest and the current balance of the portfolio. It then attempts to buy the stock. When
finished the servlet generates the response view and sends it back to the browser.

By adding this feature, we allow the user to save his investment ideas and monitor
their performance as the prices of stocks fluctuate. Furthermore, the logging feature
makes the system more robust and fault tolerant. In case of a failure in the system or
in carrying out the transaction, data can be controlled and verified and in case of need,
restored.

3.3.2 Cart database handler

The cart database handler enables functionality similar to a shopping cart of an online-
shop, where the user can place the merchandise (in this case, potential stocks the user
would like to purchase) until he is ready to checkout. The user can add stocks to the
cart from the single stock view and from the filtering results view.

Our checkout functionality integrates the optimisations from the back-end frame-
work and lets the user call them on demand. By using AJAX requests several optimi-
sations can be done until the user is satisfied with the results without having to reload
the page or recreate the cart.

3.3.3 Authentication servlet

The authentication servlet offers a simple authentication functionality which takes a
username and password and matches them on the database.

3.4 Browser

This part of the solution is in charge of interacting with the server and providing a
dynamic interface. It is described in much more detail in the validation part where we
show the user interface and show how it communicates with the server.

13

Chapter 4

Validation

In the previous chapter we have described the solution and its different components.
Now we show you how to use them and explain why they are useful for the user. This
will is done as a walkthrough through different use-case scenarios, showing the typical
usage of the system.

This section contains many references to technologies which are very recent. We
therefore recommend to read the Technologies appendix before reading this section in
order to make this section more comprehensible.

Before going through the scenarios, we introduce the user interface and explain a
few design decisions we made. We wanted to design the interface in the most straight-
forward way possible to make it as user-friendly as possible. Therefore, we have decided
to go for a minimal design, containing only the bare minimum text and images to avoid
confusion on the user’s behalf. Another reason for having a minimal design is to min-
imize the loading time of each component, hence, improving the responsiveness of the
program and the overall user experience.

The main idea was to put as much functionality as possible on one web page without
overwhelming the user with information. We did so by grouping together components
according to their functionality. For example, in Figure 4.1, we have grouped together
the functionality in the following manner: market observation, cart and navigation bar.
The market observation groups together all the stock searching functionality. It is where
the user can either specify a stock’s name or a stock description. The cart is part of the
market observation view, it is where the user holds potential stocks before purchasing
them. The navigation bar groups together links to the main components of the program.

14

Gilad Geron StockHome - Web Application

Main Content Div

Market Observation Navigation Bar

Cart

Figure 4.1: Main components of the user interface

The bar holding the market observation and navigation functionality is fixed no mat-
ter what the current view is. All the rest of the website is loaded dynamically according
to the user’s needs. This is done by sending AJAX requests to the server and then
updating the appropriate div within the ”Main Content” div. A ’div’ is an HTML element
offer a generic mechanism for adding structure to HTML pages. We have decided to
group these functionalities there, in order to improve usability, as they are the most
frequently used functionalities. More specific examples of how the divs are updated is
given during the use-case scenarios.

Figure 4.2 is an overview of the data flow of the application. Each section will be
describe more thoroughly in the following sections.

15

Gilad Geron StockHome - Web Application

W
eb

 B
ro

w
se

r (
Vi
ew

)

St
oc

k
pr

ofi
le

vie
w

St
oc

k
filt

er
in

g
vie

w
O

pt
im

isa
tio

n
vie

w
Po

rtf
ol

io
 lis

t
vie

w
Po

rtf
ol

io

pr
ofi

le
 v

ie
w

Ca
rt

vie
w

Ja
va

sc
rip

t

Ca
rt

fu
nc

tio
ns

Ja
va

Sc
rip

t
Ch

ec
ko

ut

fu
nc

tio
ns

Ja
va

Sc
rip

t

O
pt

im
isa

tio
n

fu
nc

tio
ns

Ja
va

Sc
rip

t
Se

ar
ch

 fu
nc

tio
ns

Ja
va

Sc
rip

t

Pr
ot

ot
yp

e

Se
rv

er

Da
ta

ba
se

 (M
od
el

)

Hi
be

rn
at

e

M
yS
Q
L

Co
nt
ro
lle
r

Lo
gi

c

O
pt

im
isa

tio
n

co
re

Po
rtf

ol
io

 d
at

ab
as

e
ha

nd
le

r
Ca

rt
da

ta
ba

se

ha
nd

le
r

Fi
lte

rin
g

co
re

Se
rv

le
ts

O
pt

im
isa

tio
n

se
rv

le
t

Po
rtf

ol
io

 s
er

vle
t

Ca
rt

se
rv

le
t

M
ar

ke
t o

bs
er

va
tio

n
se

rv
le

t

Figure 4.2: Data flow using MVC

16

Gilad Geron StockHome - Web Application

4.1 Getting started with StockHome

Our user, Bob, has just won the lottery and would like to try out his chances with the
stock exchange market. He decided to use StockHome to get some investment ideas.
Bob has average computer and financial knowledge. We show the essential actions Bob
carries out as he is interacting with the user interface.

Since our tool is a web-site, Bob does not need to download or install anything. He
simply opens up his favorite web-browser and types in the address of StockHome. He
is then prompted to log in to his account as shown in Figure 4.3. By logging into his
account he can access his account portfolios.

When he logs in, the username and password are sent to the authentication servlet
via an HTTP form using the HTTP POST method. The HTTP POST method is a way of
submitting information to the server. These values are then matched with the username
and password from the database. If the match is successful, the servlet puts the user
id on the session so that personal data will be shown where possible. Otherwise, the
user is requested to retry to log in.

Figure 4.3: Screenshot of the login interface

4.2 Portfolio Management

In order for Bob to save his investment ideas, he needs to create a portfolio. Therefore,
the first feature that the user needs to use is the virtual portfolio manager. Each portfo-
lio has a name, a budget and a collection of stock names and their respective quantities.

To get to the portfolios view, Bob presses on the ”Portfolios” link from the navigation
bar. This updates the main content div and updates it with the portfolio list JSP file,
which is generated with the user id to retrieve the appropriate portfolios owned by the
user. This interface is split into 2 parts; a list of portfolios owned by the user and add a
new portfolio. Below the portfolios list, the user can add a new portfolio to his collection.

17

Gilad Geron StockHome - Web Application

Figure 4.4: Screenshot of the portfolio list interface

Bob would like to create a new portfolio. He therefore fills in the name and budget
fields below the portfolios list, and presses on ’create portfolio’. By clicking the ’cre-
ate portfolio’ button, Bob submits POST request containing the filled in fields. On the
server side, the portfolio servlet takes the input values and inserts a new portfolio into
the database. After the database finishes adding the new portfolio successfully, it sig-
nals the servlet. The servlet then refreshes the page with the new portfolio list. This is
illustrated in the UML-sequence diagram presented in Figure 4.5:

JSP

if(conn
 SELEC
 WHERE
 print

JAVA
(Portfolio servlet)

Database

Server SideClient side

add portfolio

submit query to database
with stock name

insert complete

User

input portfolio
details

refresh page

send form details to portfolio servlet

Figure 4.5: Use case scenario where a user adds a new portfolio

18

Gilad Geron StockHome - Web Application

Throughout the rest of the portfolio interface we have used HTTP POST requests to
communicate with the portfolio servlet. In order to avoid repetition, we assume a simi-
lar process happens when Bob clicks the ’Delete’ button.

If Bob wants to inspect the contents of a portfolio, he presses on the ’Manage portfo-
lio’ button on the right of the portfolio name. This sends an HTTP POST request to the
servlet, which then refreshes the page with the appropriate portfolio information.

Figure 4.6 is an example of a page that would be loaded after Bob clicks on the
’Manage portfolio’ button:

Figure 4.6: Screenshot of the portfolio detail interface

This page contains the portfolio name and budget, and a list of the stocks currently
owned in this portfolio. The list of stocks allows shows the names of the stock and next
to it the quantity owned in this portfolio followed by the ’Update shares’ and ’Sell all
shares’ buttons. The box containing the quantity of each stock is actually editable.

Therefore, if Bob wanted to buy or sell some of his currently owned stocks, he would
put in the value accordingly and click ’Update shares’.

• In the case where the final value is smaller than the initial value, then the right
amount of stocks is sold at Bid price and the budget is updated accordingly

• In the case where the final value is bigger than the initial value, then the right
amount of stocks is bought at Ask price and the budget is updated accordingly. If
the total price of a certain stock exceeds the portfolio’s budget, then the maximum
amount of that stock affordable is bought.

The ’Sell all shares’ button sells all the shares of a certain stock.

19

Gilad Geron StockHome - Web Application

Right below the stock list there is the functionality to buy a new stock and add it
directly to the portfolio. Let us assume that Bob would like to buy some Google stocks.
Bob inputs the name GOOG and specifies the amount of stocks he would like. He
then clicks the ’Buy Stock’ button and submits an HTML form to the portfolio servlet.
The stock is added to the portfolio in the database by the servlet and then the page is
refreshed with the new information. As Bob types in the name of the stock, an autocom-
pletion suggestion box appears, letting Bob choose from a list of stocks that resemble
the name that he has already input. This effect will be discussed in the market obser-
vation section.

The ’done with management’ button takes Bob back to the portfolios list page.

4.3 Market observation

The market observation is the core feature of this application, because it is where most
of the functionality is found and where the user spends most of his time. Therefore we
attempted to maximize the usability for this interface.
The market observation allows the user to search for single stock details, or filter a list
of stocks according to a stock description. Another feature of the market observation is
the cart.

4.3.1 Searching for a single stock

After Bob has set up a new portfolio, he decides to review the financial information of
some stocks he is interested in. He therefore starts typing the name of the stocks in the
search bar. As he types in the name of the stock, the autocompletion suggestion box
appears. This autocompletion suggestion box contains the names of stocks and their
company’s name. This is done with the use AJAX and the help of Prototype (Section A.7)
and scriptaculous (Section A.7.1).

Figure 4.7: Autocompletion suggestions for stock name

20

Gilad Geron StockHome - Web Application

This feature improves the usability because many stock names are similar and/or
unintuitive for the user to remember. By offering the autocompletion suggestion box,
the user can save time finding the stock he was interested in.

What happens ”behind the scenes” to provide the user with the suggestion box is the
following. The user types in a letter which triggers an AJAX request to the server using
Prototype. In the server, the market observation servlet receives the AJAX request and
uses hibernate to query all stock names that have either their name or their company’s
name that resembles the input string. The database returns a hibernate (Section A.3)
object which is then interpreted and then generates a JSP response. The response JSP
is sent back to Prototype. Prototype then updates a hidden div with the response JSP.
This is illustrated in the UML sequence diagram in Figure 4.8.

JSPUSER

if(conn
 SELEC
 WHERE
 print

JAVA
(Market observation servlet) Database

Server SideClient side

<script
 var a=
 var xl
 if(xls

Prototype

Type letter
Autosuggest()

send ajax request
with current typed

stock name
submit query to database

with stock name

HQL object

prepare response JSP
JSP

update suggestion
div with the

response JSP

Figure 4.8: Use case scenario where user chooses a stock and receives possible stock
suggestions

Bob then chooses the stock he is interested in and clicks on ’search’. This causes
the stock’s financial information to appear. To improve the usability, we have grouped
together the different financial figures according to their nature. We have also added a
graph that illustrates the evolution of the stock price over a period of time. Figure 4.9
is an example of a typical stock detail page.

21

Gilad Geron StockHome - Web Application

Graph data

Stock data

Figure 4.9: Screenshot of the main interface

When Bob clicks on the ’search’ button, he triggers an AJAX request containing the
stock name. The market observation servlet receives the request on the server side
and uses hibernate to query for the stocks data. The resulting hibernate object is then
used to generate the response JSP containing the tables.This JSP is then sent back
to Prototype and the stock data div which is inside the main content div is updated
with the response JSP. Once the response JSP is successfully loaded, another AJAX
request is sent to the market observation servlet requesting for the graph of the stock.
The servlet then requests for the appropriate data from the database and builds a flotr
(Section A.7.2) graph object . This object is sent back to Prototype and then rendered
in the graph div.

22

Gilad Geron StockHome - Web Application

We decided to load the page in 2 parts is to improve the responsiveness of the page,
because fetching and showing the financial data is a rather light task, whilst the prepa-
ration of the graph and its rendering requires more time. Therefore, by loading the page
in 2 parts lets the user read the financial information as the graph loads up. This is
represented in Figure 4.10.

JSPUSER

if(conn
 SELEC
 WHERE
 print

JAVA
(Market observation servlet) Database

Server SideClient side

<script
 var a=
 var xl
 if(xls

Prototype

Show stock Stock Data
send stock name send ajax request

with stock name
submit query to database

with stock name

HQL object

prepare response JSP
JSP

update data
div with the

response JSP

show stock graph

Stock Graph
send ajax request
with stock name

submit query to database
with stock name

HQL object

prepare graph object
graph object

update graph
div with the

response JSP

Figure 4.10: Use case scenario where user asks for data of a specific stock

After examining the stock he is interested in, Bob clicks on the ’buy stock’ button.
This adds the stock to the cart. More about the cart will be explained later on in the
cart section.

23

Gilad Geron StockHome - Web Application

4.3.2 Filtering stocks

Bob wants now to specify a stock description, he therefore presses on the ’advanced’
button. This makes the advanced search box to appear in the interface. Bob then
enters the values to match his stock description, and clicks ’search stocks’.

JSPUSER

if(conn
 SELEC
 WHERE
 print

JAVA
(Filtering servlet) Database

Server SideClient side

<script
 var a=
 var xl
 if(xls

Prototype

click filter
filterStocks()

SQL object

prepare JSON
object

update filtering
div with the

JSP

if(conn
 SELEC
 WHERE
 print

JAVA
(Filtering core)

Specify stock
description

Get stocks
information

Matching stocks

decode JSON object
into JAVA object

JAVA
optimisation object

filter stocks

JSON optimisation
object

prepare filter

prepare JSP for
 matching stocks

JSP

Figure 4.11: Use case scenario where user specifies stock description and filters all
stocks that match this description

The resulting list of stocks matching the stock description (if any exist) appear on
the main content div. The stocks are represented in a sortable table. If Bob wants to

24

Gilad Geron StockHome - Web Application

sort the stocks by a certain criteria, he clicks on the criteria’s name and the table is
then sorted accordingly. In order to buy stocks Bob ticks the tick boxes next to the
stock names he desires then clicks on the ’buy stocks’ button which adds those stocks
to the cart.

Figure 4.11 illustrates what happens when Bob clicks on the ’search stocks’ button.
Bob calls a JavaScript function, which assembles the various specified stock informa-
tion and forms a JSON object. This JSON object is then sent to the market observation
servlet, where it is decoded into the equivalent java object. This java object is then
used by the filtering core to formulate the appropriate database query in SQL form.
The database returns a list of matching stocks, which are then used to generate the
response JSP. The response JSP is used to update the main content div.

4.3.3 Cart

The cart is an intermediate container of stocks. The user may use the cart when he has
found a stock which he would like to buy. The Cart contains the list of potential stocks
to purchase, as well as their price.

Figure 4.12: Screenshot of a cart containing some stocks

In order to view the financial data of a certain stock contained in the cart, Bob
presses the on the stock’s name and the stock information is displayed accordingly
using the same AJAX call used in the single stock search. In order to add the selected
stocks into a certain portfolio, Bob presses on the ’Add to portfolio’ button that makes
the optimisation interface to show.

4.3.4 Optimisation

When Bob clicks the ’Add to portfolio’ button on the cart, the optimisation interface
appears. When the optimisation interface appears, the background becomes darker
and on top of it pops a window with all the portfolios list, a list of stocks and their
amounts and a few optimisation buttons. We have decided to give the optimisation
interface a dark background around it, in order to separate it from the rest of the
interface. We wanted to focus all the users’ attention on the optimisation or manual
allocation of funds. Figure 4.13 is an example screenshot of the optimisation interface.

25

Gilad Geron StockHome - Web Application

Figure 4.13: A screenshot of the optimisation interface

The optimisation interface has a few functionalities. It is where the user decides how
much of the available budget to use for the transaction and how much of that amount
to allocate to which stock.

We also offer a ”Style analysis” optimisation feature. What this feature does is, it
allocates the amount of each of the stocks in order to replicate the behavior of another
stock. For example, if Bob would like to invest in a google stock but the price of the
stock is too high, he might want to apply this optimisation on a bunch of cheaper stocks
in order to imitate the google’s stock performance.

This feature offers to calculate a statistical calculation on the fly, such a calculation
would take much longer if it was to be carried out by hand. Therefore, this feature
make it easier and faster for the user to make decisions.

In order to apply this optimisation, Bob chooses the portfolio he would like to ap-
ply the optimisation on. Then he enters the name of the stock in the ’Replicate’ field,
which has the autocomplete suggestion box and clicks on the ’Style analysis’ button
to apply the optimisation. This calls a JavaScript function that assembles together the
information needed to apply the optimisation in a form of a JSON object. This JSON
object is then sent as an AJAX request containing the JSON object. The optimisation
servlet transforms the JSON objects into the equivalent Java object and passes it to the
optimisation core. In the optimisation core the object is used to create a query to the
database and then carry out calculations on the data returned from the query. The re-

26

Gilad Geron StockHome - Web Application

sults are transformed into a JSON object in the servlet and then sent back to Prototype.
Prototype then updates the values with the optimisation results. This is illustrated in
the diagram below.

JSPUSER

if(conn
 SELEC
 WHERE
 print

JAVA
(Optimisation servlet) Database

Server SideClient side

<script
 var a=
 var xl
 if(xls

Prototype

Optimise
Optimise

HQL object

prepare JSON
object

update
optimisation
div with the

results

if(conn
 SELEC
 WHERE
 print

JAVA
(Optimisation core)

Specify stock
to replicate

Get stocks
information

JAVA response
object

decode JSON object
into JAVA object

JAVA
optimisation object

Get stocks data

JSON optimisation
object

Run optimisation

encode JAVA object
into JSON object

JSON result
object

prepare results

Figure 4.14: Use case scenario where user optimises his chosen stocks to replicate a
certain stock behavior

27

Gilad Geron StockHome - Web Application

Now that Bob has applied the optimisation on the stocks, he proceeds to the last
feature of the optimisation interface. This feature is the ’checkout’ feature. What this
function does is use the buy stock function from the Portfolio servlet for each stock and
its corresponding amount. To do so, Bob clicks on the ’Buy stocks’ button.

Alternatively, Bob can just apply the amounts manually, as long as they are within
budget, and press the ’buy stocks’ button.

28

Chapter 5

Conclusions

In previous sections we have introduced the various problems related to the current
financial analysis tools, provided a suitable solution that attempt to resolve these prob-
lems and showed how our solution resolves them.

In the beginning of the document we have mentioned that stock exchange markets
produce a large amount of data which is constantly changing. Due to this fact, it is
hard to examine all stocks one by one without the use of any tools, because there is
simply too much information to handle and also by the time one would finish examining
all the stock information in the world it will be already outdated.

To facilitate this task, analysts and investors use various calculations and tools to
assist them. These tools also present their own problems. The main issues with the
tools are the following:

• User interface is unintuitive and difficult to use.

• The user has to collect and format the financial data by himself, which is time
consuming and error prone.

• The user must manipulate the financial data in order to carry out information,
which is time consuming and error prone.

• The user has to continuously fetch data and carry out calculations on it in order
to stay up-to-date.

5.1 Goals achieved

One of the most important feature we have implemented is the data fetching scripts.
Although it is not directly part of the user interface, it greatly improves the user expe-
rience. The user no longer has to fetch and format the information before carrying out
the calculations, which saves him time and ensures that the data is collected correctly.

Another important feature is the calculation core, like the data fetching scripts, this
feature is done behind the scenes and greatly improves the user experience. It carries
out several statistical calculations in the background, meaning that the user no longer
has to carry out the calculations by himself or even know the formulas. Again, like the

29

Gilad Geron StockHome - Web Application

previous feature, this saves the user a great deal of time and ensures that the calcu-
lations are done correctly as they are done automatically, which removes the human
error factor from the equation.

Also, the server schedules running the scripts and calculation core so that the in-
formation in our database is always up-to-date.

Our filtering feature helps the user find what he wants more easily by specifying
a stock’s description which is then matched with all the stocks in the database and
returns only the ones the user is interested in. Given the large number of stocks there
are in the world, this feature saves the user a lot of time.

Our solution also offers the user with advice on how to invest his money and carry
out calculations on the fly. This is done in the optimisation feature where a user can
request for a calculation, the server carries out the calculations and sends back the
results. Again, this feature saves the user time and ensures that the calculations are
done correctly.

We have used the newest and most advanced web technology when implementing
the user interface. This was done in order to provide the user with a dynamic and
highly interactive interface.

In a sense, our implementation offers a black-box abstraction to stock exchange
markets, because the user doesn’t need to care about how the calculations are done
and just rely on the application to do it for him. In fact, by creating such an abstrac-
tion, the level of pre-required financial knowledge is diminished. This means that less
statistically savvy people can take advantage of our tool.

5.2 Future Work

Although our solution tackles many problems, there is still a great deal of improvements
that can be done. Here is a list of things that may be done to improve our solution even
more.

• Currently, we have only verified the calculations with a financial expert. However,
to ensure that the calculation are always correct, they can be verified by using
unit testing.

• So far, we have only offered a way to facilitate the creation of portfolios. However,
there is no way of verifying how the portfolio will perform. It is possible to add a
feature that simulates the performance of a portfolio and indicate how promising
the investment is.

• We have built the solution in such a way that additional statistical calculators can
be easily added. In order to improve the user-experience, more calculators should
be added

• We have built the solution in such a way that additional optimisations can be
easily added. In order to improve the user-experience, optimisations should be
added

30

Appendix A

Technologies

We used a wide variety of technologies in our project. We have chosen to do so in order
to take advantage of the speciality of each technology.
Before discussing each technology, here is a diagram illustrating the technologies used
in the different layers of the application.

• Ruby

• MySQL database

• Hibernate

• Java on top of Apache Tomcat server

• JSP

• JavaScript

• Prototype

• AJAX

• JSON

A.1 Ruby

Ruby1 is a dynamic, interpreted, open source programming language with a focus on
simplicity and productivity. It is a pure object-oriented programing language that com-
bines the syntax inspired by Python and Perl with Smalltalk-like features.
We have chosen to write our fetcher scripts in Ruby due to its flexibility and simplicity.

A.2 MySQL database

MySQL2 is an open source database software. It is fast, reliable and easy to use. It is
compatible with all of the other technologies we use. Therefore it was a perfect choice
for our design.

1http://www.ruby-lang.org/en/
2http://dev.mysql.com/

31

Gilad Geron StockHome - Web Application

A.3 Hibernate

Hibernate3 is a relational persistence service for Java. It lets you query for data from
the database and manipulate the result in an object orientated fashion. We chose to
use this technology because it provides a higher level of abstraction, hence, making
queries and manipulating data from the database more seamless. We chose to use this
technology only when creating the web content. Carrying out calculations on thousands
of objects is extremely heavy on the server, so instead we use simple SQL for that
purpose.

A.4 Apache Tomcat Java server

Apache Tomcat4 is a servlet container, which implements the Java Servlet and JavaServer
Page (JSP) specifications. It provides a pure Java HTTP web server environment for Java
code to run on.
We have many calculations to be run, hence, performance and thread safety are con-
straints. Java offers many libraries for mathematical operations, it is thread safe, and
it is fast. For these reasons we have chosen to implement our system based on Tomcat.

A.5 JSP

JSP5 is a technology that provides a simple way to create dynamic web content used
alongside the Java code run on Tomcat. JSP can import java classes and use their
functionality when writing the page contents. In JSP the code is written as a mix of
HTML code and Java code. This code is compiled upon page request with the current
dynamic values and generates an HTML code to be rendered by the web browser. We
chose to use this technology because it comes alongside Java and Tomcat.

A.6 JavaScript

JavaScript is a rather ”ancient” technology, it was first introduced in the early 1990ś,
when the world wide web was created and all web pages were static. This meant that
all pages, once loaded, could not be interacted with. In order to add this interactiv-
ity, a certain form of language had to be used to describe the actions. This is where
JavaScript came in. JavaScript came built in with web browsers because of the need to
interact with the web page without having to reload the page which requires sending a
request to the server.
We decided to use JavaScript in our project because it is the backbone of client-side
interactivity.

3http://www.hibernate.org/
4http://tomcat.apache.org/
5http://java.sun.com/products/jsp/docs.html

32

Gilad Geron StockHome - Web Application

A.7 Prototype

The Prototype JavaScript framework is an open-source framework that extends JavaScript
functionality and aims to ease the development of dynamic web applications. Prototype
creates a ”ruby-like” abstraction to JavaScript, making coding easier and more concise.
It can be argued that Prototype is a mixture between a library and a framework, be-
cause on one hand, Prototype offers library convenience methods to facilitate the code
which is written most frequently. On the other hand, Prototype offers a class-based
inheritance system, something which is not offered by JavaScript.
An example of a library convenience method is the dollar method ($()). The dollar
method is a shorthand for getElementById(),

document.getElementById("element_id")

and reduces it to:

$("element_id")

One of the most important feature that Prototype offers its simple XML object handling
such as XMLHttpRequest. which is in essence, AJAX.
Before prototype was created, using JavaScript to handle XMLHttpRequest was a tricky
task and would look something like this [Cou],

function ajax(url, vars, callbackFunction)

var xhr;

// Firefox, Opera, Safari, IE7

if (window.XMLHttpRequest)

xhr = new XMLHttpRequest();

// IE 5-6

try { xhr = new ActiveXObject("Msxml2.XMLHTTP"); }

catch (e) {

try { xhr = new ActiveXObject("Microsoft.XMLHTTP"); }

catch (e) { throw ’Ajax not supported!’ }

}

However with prototype the same function is reduced to this:

new Ajax.Request(’/some/url’);

AJAX will be discussed in more detail in the following section.

33

Gilad Geron StockHome - Web Application

Prototype can be easily extended by additional libraries such as Scriptaculous and
flotr to give the web interface even more functionality.

A.7.1 Scriptaculous

Scriptaculous6 is a ”special effects” add-on library to Prototype. This library lets users
move div around, appear/disappear, change color and much more. Scriptaculous pro-
vides a user-friendly API and its own documentation.
Scriptaculous is used extensively throughout our project. For instance, its used to
toggle the filtering panel in and out. Moreover, Scriptaculous offers an autocompletion
suggestion feature, which in our case is used to help the user find the name of the stock
that he wants.

A.7.2 flotr

Flotr7 is another library that works on top of Prototype. The purpose of this library is to
plot graphs and therefore enhance user’s experience and usability. This library allows
the user plot various types of graphs with various amounts of user interactivity.

A.8 AJAX

Responsiveness is a very crucial issue when designing and developing web-interfaces.
One way of improving the responsiveness of a web-page is by using AJAX. AJAX stands
for Asynchronous JavaScript and XML. This means data is requested from the server
and loaded ”behind the scene” without interfering with the display and behavior of the
existing page.
In order to retrieve data using AJAX, JavaScript is used to send an XMLHttpRequest
object to the server, which then carries out the requested task and returns an XML-
HttpResponse object. The XMLHttpResponse is then evaluated and rendered accord-
ingly, refreshing only the affected part of the page.

A.9 JSON

Prototype allows for objects to be serialized and sent over to the server, which then de-
codes them to an equivalent object in the technology used by the server. This serialized
object is a JSON object. JSON is a lightweight data format and stands for JavaScript
Object Notation8. The JSON notation is text based, which makes it easy for humans
to read and write and for machines to parse. A JSON object is basically an associative
array or in other words an unordered set of ”name : value” pairs. Such an object begins
with a left brace and ends with a right brace. The key is a string followed by a colon
and then the value is one of possible data types provided by JSON (see figure A.3). The
name : value pairs are separated by a comma.

6http://script.aculo.us/
7http://solutoire.com/flotr/
8http://www.json.org/

34

Gilad Geron StockHome - Web Application

Figure A.1: JSON object data format

A JSON array works in a similar way. It begins with a left bracket ([) , then possible
values separated by a comma and ends with a right bracket (]).

Figure A.2: JSON array data format

Figure A.3: JSON value data format

Here is a simple example of a JSON object declaration with prototype:

var data = {stockname: ’Google’, statistics: [1, 2, 11, 5, 8], price: 25 };

var JSONobject = Object.toJSON(data);

35

List of Figures

2.1 Bloomberg user interface . 4
2.2 An example of a spreadsheet used for statistical calculations 5

3.1 A screenshot of the single stock view interface 7
3.2 Model-View-Controller . 8
3.3 System overview . 10
3.4 Front-end framework database representation 12

4.1 Main components of the user interface . 15
4.2 Data flow using MVC . 16
4.3 Screenshot of the login interface . 17
4.4 Screenshot of the portfolio list interface . 18
4.5 Use case scenario where a user adds a new portfolio 18
4.6 Screenshot of the portfolio detail interface 19
4.7 Autocompletion suggestions for stock name 20
4.8 Use case scenario where user chooses a stock and receives possible stock

suggestions . 21
4.9 Screenshot of the main interface . 22
4.10Use case scenario where user asks for data of a specific stock 23
4.11Use case scenario where user specifies stock description and filters all

stocks that match this description . 24
4.12Screenshot of a cart containing some stocks 25
4.13A screenshot of the optimisation interface 26
4.14Use case scenario where user optimises his chosen stocks to replicate a

certain stock behavior . 27

A.1 JSON object data format . 35
A.2 JSON array data format . 35
A.3 JSON value data format . 35

36

Bibliography

[Cou] Prototype/Scriptaculous Crash Course. http://www.refreshaustin.org/

presentations/prototype-scriptaculous-crash-course/.

[Mic02] Sun Microsystems. Sun ONE Architecture Guide. http://www.sun.com/

software/sunone/docs/arch/, 2002.

[Rig08] Francesco Rigotti. StockHome - Analytical Framework. 2008.

37

http://www.refreshaustin.org/presentations/prototype-scriptaculous-crash-course/
http://www.refreshaustin.org/presentations/prototype-scriptaculous-crash-course/
http://www.sun.com/software/sunone/docs/arch/
http://www.sun.com/software/sunone/docs/arch/

	Abstract
	Acknowledgments
	Introduction
	Structure of the Document

	Problem & Related Work
	General problems
	Financial information providers
	Financial statistical calculation tools

	Solution
	Back-end framework
	Data fetching
	Statistical calculation core
	Filtering
	Optimisation core
	Summary

	Database
	Front-end framework
	Portfolio database handler
	Cart database handler
	Authentication servlet

	Browser

	Validation
	Getting started with StockHome
	Portfolio Management
	Market observation
	Searching for a single stock
	Filtering stocks
	Cart
	Optimisation

	Conclusions
	Goals achieved
	Future Work

	Technologies
	Ruby
	MySQL database
	Hibernate
	 Apache Tomcat Java server
	JSP
	JavaScript
	Prototype
	Scriptaculous
	flotr

	AJAX
	JSON

