
Università
della
Svizzera
italiana

Faculty
of
Informatics

University timetable scheduling

Bachelor Project Report
Aron Fiechter

2018

Advisor: Prof. Dr. Michele Lanza

Assistants: Dr. Andrea Mocci, Dr. Luca Ponzanelli

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Problem . 3
1.3 Goal . 4
1.4 Approach . 5

2 State of the art 6
2.1 Planning problems . 6
2.2 OptaPlanner . 7

3 Approach 8
3.1 Problem definition . 8
3.2 Technologies . 10
3.3 Domain model for OptaPlanner 11
3.4 Constraints . 12
3.5 Solver architecture . 13
3.6 Server and GraphQL API . 14
3.7 Web application UI . 16

4 Case study 18

5 Conclusion 20
5.1 Future work . 20

1

Abstract

Creating and managing timetables of courses is an issue for many institutions
because of the various constraints that need to be respected in the planning.
This is an even harder problem if the data needed to describe the planning
problem and its constraints is not well curated and stored in several different
places, a situation that often leads to a long and tedious manual work in
creating the timetables. In this project, we automate the process by means
of state of the art tools to solve planning problems. We describe the design
and implementation of a web application that offers an automated timetable
creator wrapped in a user-friendly web interface.

2

Chapter 1

Introduction

1.1 Motivation
Creating a school timetable is a difficult problem because of the various
constraints that need to be respected, such as different room sizes, instructor
availability, elective courses, and different frequency of courses.
Moreover, a timetable created for a specific academic year might be partially
or totally unusable the next year, because of changes in the program (e.g.
a course is cancelled or moved to a different semester) or in the constraints
data. This fact requires many institutions to recreate a new timetable from
scratch every year.
This task is even harder if the data for the courses, rooms and all the con-
straints is not curated and it is stored in separate and unrelated locations.
Even worse, some constraints (such as instructor availability) might arise dur-
ing planning, making the whole process even more tedious, requiring further
(manual) work.
Once a viable schedule is created, it is often necessary to change some details,
for example by moving some lectures to different periods or different rooms.
This could however violate constraints, and checking this manually, while not
very hard, still takes some time, and might require moving other lectures to
accommodate the initial change.

1.2 Problem
School timetabling is an NP-hard planning problem [1]. The problem consists
in scheduling a set of lectures on a weekly timetable. A single lecture can
vary on two variables, which are period (identifying a specific slot during the
week) and room.

3

The search space is huge; we can calculate it using a simple formula1:

(p× r)l

where p is the number of possible periods on the weekly timetable, r is the
number of available rooms and l is the number of lectures that need to be
scheduled.
For example, the spring semester of the Bachelor of Informatics at USI
Lugano, at the time of writing, entails 14 courses, each with a specific number
of lectures (calculated with respect to the ECTS weight). The total number
of lectures of all courses is 70; the Faculty of Informatics has 7 rooms avail-
able, and a school week is of 40 periods (5 days, each with 8 time slots). We
have:

(p× r)l = (40 · 7)70 = 28070 ≈ 2 · 10171

Even with constraints in place, the search space remains very large. The
search space contains all possible solutions, including the optimal solution,
which is not necessarily feasible2. There might be no feasible solutions: Con-
sider the case of scheduling two lectures over one single possible period, in
one single available room. The only solution is to schedule both lectures in
the same room during that single period, which of course is not a feasible
solution.

1.3 Goal
The goal of this project is to create a web application that automates the
process of creating a school timetable.
The web application is an interface to a constraint solver, which is part of
the back end.
Given the problem data and a set of constraints, the solver computes a good
solution and returns it as a list of lectures. The solution is proposed to the
user, which can then customize it by moving lectures to preferred times or
rooms and locking them in place. The customized solution can then be fed
back to the solver which can refine it while keeping the locked lectures in
place.

1http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.
html#searchSpaceSize

2according to the definitions in the OptaPlanner documentation available at
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.
html#aPlanningProblemHasAHugeSearchSpace

4

http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#searchSpaceSize
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#searchSpaceSize
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#aPlanningProblemHasAHugeSearchSpace
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#aPlanningProblemHasAHugeSearchSpace

1.4 Approach
The solver, which is the core of the application, has been developed using
OptaPlanner3, a state of the art constraint solver which provides many op-
timization algorithms to solve planning problems.
The interface to the solver, that is the back end of the application, is a server
written in Scala4, which exposes a GraphQL5 API.
The front-end application is implemented in Polymer 2.x6 and Typescript7,
and uses FullCalendar8, a JavaScript event calendar, to visualize and manage
timetables.

3https://www.optaplanner.org/
4https://www.scala-lang.org/
5https://graphql.org/
6https://www.polymer-project.org/
7https://www.typescriptlang.org/
8https://fullcalendar.io/

5

https://www.optaplanner.org/
https://www.scala-lang.org/
https://graphql.org/
https://www.polymer-project.org/
https://www.typescriptlang.org/
https://fullcalendar.io/

Chapter 2

State of the art

This chapter gives an overview of what it means to solve a planning problem
(Section 2.1) and explains on a high level how the chosen solver, OptaPlanner,
can be used to define such a problem and solve it (Section 2.2).

2.1 Planning problems
A planning problem1 is an optimization problem that aims to minimize or
maximize a goal using a set of resources under specified constraints. Some
examples:

. Minimizing travel time on a cyclic path to visit a set of cities, visiting
every city exactly once. This is widely known as the traveling salesman
problem, for short TSP2.

. Arranging n queens on an n × n chessboard so that no queen can eat
any other queen.

. Assigning talks of a conference each to a time slot and a room so that
several constraints are satisfied such as no overlapping, preferred rooms
for some speakers, etc.

. Assigning lectures to a room and a period in a weekly timetable. This
is the problem that we aim to solve in this project.

Planning problems are in general NP-hard or NP-complete. For most of
these problems, a brute force approach does not work except for very small

1http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.
html#whatIsAPlanningProblem

2https://en.wikipedia.org/wiki/Travelling_salesman_problem

6

http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#whatIsAPlanningProblem
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#whatIsAPlanningProblem
https://en.wikipedia.org/wiki/Travelling_salesman_problem

instances. Therefore, it is common to use metaheuristic algorithms3 to find
an approximate solution which is good enough. Metaheuristic algorithms
make few assumptions and have little information about the problem they
are trying to solve; because of this, they can be generalized for many different
problems. Some metaheuristic algorithms also use some form of stochastic
optimization. These algorithms do not guarantee that the optimal solution(s)
can be found, rather they usually find sufficiently good solutions.
Finding the best solution is usually not worth the computational effort needed,
and approximate solutions are used instead.

2.2 OptaPlanner
OptaPlanner is a constraint solver which can solve planning problems (such
as the ones described in Section 2.1) given a description of the solution of
the problem together with a mechanism to compute its score. The solution
contains a list of planning entities (in our case the lectures) with customizable
variables. The solver optimizes the score of the solution by modifying the
values of the variables. Finally, problem facts specify the constant aspects of
each problem instance (e.g., courses, rooms).
The library provides a detailed guide on how to implement a solver. The
solver can be configured to choose different construction heuristics (such as
First Fit, First Fit Decreasing, Cheapest Insertion, etc.4) in the first phase
of solving, which consists in creating an initial solution. This initial solution
does not have to be optimal, and not even feasible, but construction heuristics
try to get the best possible outcome in a very short time. These algorithms
are usually greedy and usually run in polynomial time.
Different algorithms can be configured for the local search phase, which starts
with an existing solution and tries to optimize it using local moves. Local
search algorithms include Simulated Annealing [2, p. 125], Tabu Search [2, p.
154], and can be combined for increased efficacy.
It is possible to add a filter class for the planning entities, which excludes
some of the entities from planning (from being modified); in our case, this is
perfect to exclude locked lectures during refinement.
Other mechanisms are available, such as classes to assign a difficulty value
to planning entities (so that harder entities can be initialized first during the
construction heuristic phase) or to sort planning variables by weight.

3https://en.wikipedia.org/wiki/Metaheuristic
4http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.

html#constructionHeuristics

7

https://en.wikipedia.org/wiki/Metaheuristic
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#constructionHeuristics
http://docs.optaplanner.org/latest/optaplanner-docs/html_single/index.html#constructionHeuristics

Chapter 3

Approach

This chapter illustrates the core of the approach. Section 3.1 defines the
course timetabling planning problem on a conceptual level. Section 3.2 gives
an overview of the chosen technologies, explaining the architecture and the
role of each part. Section 3.3 describes the modelling of the problem domain
to be used with the constraint solver, OptaPlanner. Section 3.4 examines
how the constraints have been included in the score calculation. Section 3.5
provides a brief description of the wrapper of the solver on the server side.
Section 3.6 depicts the server endpoint interface that allows the client side
to interact with the solver. Finally, section 3.7 describes the implementation
of the web application demo.

3.1 Problem definition
The timetable scheduling problem aims to arrange a set of lectures in a
weekly schedule with the goal of minimizing conflicts. The problem is de-
fined according to the existing definition by the International Timetabling
Competition1. Each problem instance consists of:

. a list of courses: Each course has a name, a list of instructors who teach
the course, a list of semesters the course is taught in, the number of
lectures the course entails, the minimum number of days these lectures
should be spread out on, and the number of students registered for the
course.

. a list of periods: Each period is defined by a day of the week (usually
between Monday and Friday) and a time slot during the day (e.g. in

1http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_
index.htm

8

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

the range 0-7, with four slots of one hour in the morning and four in
the afternoon).

. a list of unavailable periods: Each unavailable period points to a course
and to a period, indicating that the course cannot have any lecture in
that specific period.

. a list of rooms: Each room has a name and a capacity.

A solution consists of a list of lectures, each with an assigned room and a
period, representing a weekly occurrence of a course in the schedule.
The problem definition also includes a list of constraints that the solution
should satisfy. The constraints can be separated into two categories: hard
constraints, which need to be satisfied in order for the solution to be feasible,
and soft constraints, which do not necessarily need to be satisfied.
Hard constraints usually model physical limitations; soft constraints model
limitations which do not violate physical reality but which satisfy specific
preferences about how the solution should be.
In our case there are five hard constraints and four soft constraints, and we
list them in Table 3.1 and Table 3.2.

Instructor conflict An instructor must not have two lectures in the
same period.

Semester conflict A semester must not have two lectures in the same
period.

Course conflict A course cannot have two lectures in the same pe-
riod.

Room occupancy Two lectures must not be in the same room in the
same period.

Room capacity A room capacity should not be less than the num-
ber of students in the course.

Unavailable period A specific lecture must not be assigned to a specific
period.

Table 3.1: Hard constraints

Each constraint has an associated penalty value which is important to com-
pute the score of a solution, often also called fitness.
In our case, all penalty values are negative, so the highest possible score is
0hard/0soft (where the hard score relates to hard constraints and the soft
score relates to soft constraints).
The way that penalty values for each constraint are decided can vary. For
example, if the room capacity constraint is violated, each student above the

9

Minimum working
days

Lectures of the same course should be spread out
into a minimum number of days.

Semester compact-
ness

Lectures belonging to the same curriculum should
be adjacent to each other (so in consecutive peri-
ods if they are on the same day).

Room stability Lectures of the same course (and possibly even
those of the same semester) should be assigned to
the same room.

Lecture pairs Lectures of the same course should be scheduled
in blocks of two.

Table 3.2: Soft constraints

capacity could count as 1 point of penalty, or we could make each student
count 2, or use a standard value of 10 points of penalty, regardless of how
much the room is over capacity.
The score of two solutions is compared in order: If a solution A has a worse
hard score than another solution B, then A is worse than B, regardless of
what the soft scores are.

3.2 Technologies
The core solver implementation makes use of a state of the art library for
solving planning problems called OptaPlanner.
The server side of the web application is implemented in Scala, a relatively
young general-purpose programming language, using Akka HTTP2. It ex-
poses an interface to the data and to the solver using GraphQL, which is
a query language that allows the user to retrieve data with high specificity
using a single request. GraphQL is an alternative to REST that allows the
client to specify the structure of the requested data, avoiding the need for
further requests. The GraphQL endpoint is also implemented in Scala using
Sangria GraphQL3.
The client side is implemented as a Polymer 2.x application (with TypeScript
instead of JavaScript), where Polymer is a library to build Web Components4.

2https://doc.akka.io/docs/akka-http/current/
3http://sangria-graphql.org/
4https://www.webcomponents.org/

10

https://doc.akka.io/docs/akka-http/current/
http://sangria-graphql.org/
https://www.webcomponents.org/

3.3 Domain model for OptaPlanner
We modelled the problem domain according to what OptaPlanner expects.
The implementation is done in Scala, although for some features we had to
use Java syntax; it is similar to the existing Java implementation available
in the curriculumcourse folder available in the OptaPlanner examples5.
The main solution class, called Schedule, contains all the lists of all prob-
lem facts (Periods, Days, TimeSlots, Semesters, Instructors, Rooms, Courses,
UnavailablePeriods), the list of planning entities (Lectures) and the current
solution score (HardSoftScore).
The diagram (Figure 3.1) representing the problem shows the solution class
(Schedule) in green, the planning entity (Lecture) in red and the problem
facts in blue. As said, the Schedule class contains lists of all lectures and all
problem facts; this is not shown explicitly on the diagram. Only the relevant
fields are shown.

Schedule

score: HardSoftScore

Period

day: Day

timeSlot: TimeSlot

Room

name: String

Day

dayIndex: Int

TimeSlot

timeSlotIndex: Int

Instructor

name: String

Semester

name: String

Course

name: String

instructorList: List[Instructor]

semesterList: List[Semester]

Lecture

period: Period

room: Room

locked: Boolean

UnavailablePeriod

course: Course

period: Period

1

*

1

1 1

* *

* *

* *

1

**

11

* *

Figure 3.1: Class diagram of the domain model
5https://github.com/kiegroup/optaplanner/tree/master/

optaplanner-examples

11

https://github.com/kiegroup/optaplanner/tree/master/optaplanner-examples
https://github.com/kiegroup/optaplanner/tree/master/optaplanner-examples

The Lecture class implements a Planning Entity, which is what the solver
can mutate in order to improve solutions. The two fields that a Lecture can
mutate over are period and room (of type Period and Room, respectively).
However, if the locked field of the lecture is set to true, the solver ignores
that Lecture and only varies the unlocked ones. The score still takes into
account all lectures, regardless of their locked value. It is important to say
that a Lecture that is locked must have a non-null value for both its room and
period (i.e. it must be already initialized).

3.4 Constraints
The constraints are of two kinds, hard constraints and soft constraints, as
described in Section 3.1.
As a rule, any solution that violates any hard constraint is unfeasible, since
hard constraints model physical limitations (such as the impossibility for an
instructor to teach two lectures at the same time).
To compute the score we need to take into account all constraint violations,
so we need to iterate over all lectures and combine them with data from
courses, rooms and unavailable periods.
A simple way to do this would be to accumulate constraint violations while
iterating over all lectures combined with the other data. The problem with
this approach is that the score needs to be calculated every time a new
solution is created by the solver, i.e., many times per second, since the solver
can mutate the solution very fast by just swapping two lectures or moving
one single lecture.
From an efficiency point of view, it makes much more sense to remember
which constraint violations did not change, and to just recompute the score
with respect to the moved lecture (or swapped lectures).
To do this, we must heavily rely on maps, and the implementation can be-
come very difficult to understand and to maintain.
Fortunately, OptaPlanner supports Drools6, which is an engine that can au-
tomatically perform incremental score calculation given some rules. Each
constraint is described as one or more rules.
An example of a rule is available in Figure 3.2, which implements the room
capacity constraint (see Section 3.1. The when part describes the condition,
which is matched when the boolean statements are true (room == $room and
course.studentSize > $capacity); the condition is applied to all combinations
of rooms and lectures. The then part applies the penalty (which is computed

6https://www.drools.org/

12

https://www.drools.org/

as the number of students that are above the capacity of the room), to the
Hard part of the global score.
For most constraints it was possible to use the existing rules implemented
in the OptaPlanner example, while for some others we had to apply some
changes (we transformed the room capacity constraint into a hard constraint)
or write the rule from the ground up (for the lecture pairs constraint; see
Section 3.1).

1 // Room capacity: A room ’s capacity should not be
2 // less than the number of students in the course.
3 // Each student above the capacity counts as 1 point
4 // of penalty.
5 rule "roomCapacity"
6 when
7 $room : Room($capacity : capacity)
8 Lecture(
9 room == $room,

10 course.studentSize > $capacity,
11 $studentSize : course.studentSize
12)
13 then
14 scoreHolder.addHardConstraintMatch(
15 kcontext,
16 ($capacity - $studentSize)
17);
18 end

Figure 3.2: Rule that models the room capacity constraint

3.5 Solver architecture
The solver (implemented in solver.SchedulerApp) exposes a method solve(
s: Schedule): Schedule which expects a schedule with uninitialized lectures
(no room or period assigned) or partially initialized lectures (if a lecture is
locked, it must have both a period and a room already assigned). Of course,
the input data needs to be consistent: for example, no initialized lecture
must be assigned to a room or a period that do not exist.
The solver is configured to run a construction heuristic phase which uses the
First Fit Decreasing heuristic. The following two phases, which are local

13

search phases, use Late Acceptance and Simulated Annealing. The output
is again a schedule, with all lectures assigned to a room and a period.
Both input and output objects of type Schedule refer to the domain implemen-
tation used by the solver, which uses simple syntax often similar to Java.

3.6 Server and GraphQL API
As said, the solver lives on the back end, and it is available via a GraphQL
endpoint. The server is implemented in Scala using Akka HTTP, and has
one single endpoint: both / and /graphql are ways to access it.
The server stores (during runtime, there is no persistence) all courses, build-
ings, rooms, as well as a map that stores created schedules by ID. The ID of a
Schedule is computed based on the courses and rooms chosen for scheduling.
All of this is stored as instances of Scala classes of the model implementation,
which are different from the classes used by the solver. The server in fact
contains a class SchedulerRepo which is responsible for the conversion between
the two models when dealing with the solver.
The GraphQL interface provides queries and mutations, and they are listed
in Table 3.3.

query
buildings: [Building!]!
rooms: [Room!]!
courses: [Course!]!
semesters: [Semester!]!
plannerCourses: [Course!]!
plannerRooms: [Room!]!
plannerScheduleById(id: Int!): Schedule
plannerScheduleByName(name: String!): Schedule
plannerSchedules: [Schedule!]!

mutation
createSchedule(name: String!): Schedule
refineSchedule(id: Int!): Schedule
editLecture(id: Int!lectureArg: LectureInput!): Lecture

Table 3.3: GraphQL Schema exposed by the endpoint

The table shows what is called a GraphQL Schema. Before the column we
have the field name, after the column we have the field Type. The exclamation
mark means that the field is not nullable, and the square brackets indicate
an array type.
We follow with an example of a GraphQL query to retrieve all buildings with
their name and all the rooms inside them, each with name and capacity. We

14

also show part of the result received from the server; note that the structure
of the response matches the one of the query.

1 query {
2 buildings {
3 name
4 rooms {
5 name
6 capacity
7 }
8 }
9 }

Figure 3.3: GraphQL query

1 {
2 "data": {
3 "buildings": [
4 {
5 "name": "Informatics Building",
6 "rooms": [
7 {
8 "name": "SI -003",
9 "capacity": 60

10 },
11 {
12 "name": "SI -004",
13 "capacity": 30
14 },
15 {
16 "name": "SI -006",
17 "capacity": 60
18 }, ...
19]
20 },
21 {
22 "name": "Main Building",
23 "rooms": [
24 {
25 "name": "CC -150",
26 "capacity": 30
27 },
28 {
29 "name": "CC -156",
30 "capacity": 30
31 }, ...
32]
33 }, ...
34]
35 }
36 }

Figure 3.4: Server response

15

3.7 Web application UI
We chose Polymer as a library to develop the front-end interface to use
the solver. The main page features two tabs: The first tab shows a list of
buildings, and the plan was to show calendars with real events for every room
once a building is opened. This idea is put aside to focus on implementing
the functionalities of the second tab, which is the schedule creator.
The schedule creator shows a list of created schedules, starting with none.
An add button on the bottom right can be used to open a page that shows
the list of courses and rooms selected (on the back end) for scheduling.
Creating a schedule is simple: it is sufficient to enter a name and click create.
The home of the schedule creator can be seen in Figure 3.5.

Figure 3.5: Home of the planner

By clicking on a schedule, a new view opens; This view shows the schedule
as a weekly timetable, separated by semester. If the schedule is the direct
result of the solver, it is not possible to refine it, because the result would
just be the same (see Figure 3.6). We call such a schedule refined.
However, if it was modified, for example if some lectures were moved and
locked, it is possible to click the refine button (see Figure 3.7). This starts
the solver on the back end using the already existing schedule; only locked
lectures are preserved in place.

16

Figure 3.6: A refined schedule

Figure 3.7: A non refined schedule

17

Chapter 4

Case study

During development, we tested the solver using as problem instance the data
for the spring semester of the year 2018 of the Bachelor program of the
Faculty of Informatics at USI1. The problem instance features 3 semesters,
with a total of 14 courses. The number of lectures is 70, and they need to be
scheduled on a school week which counts 40 periods (8 time slots per day).
As available rooms we used all the rooms of the Informatics Building, so 8
rooms.
The resulting schedules are produced in about 7 seconds and are comparable
to the real timetables that are being used in the current semester. While the
found solution does not violate any hard constraint, some soft constraints
are violated, such as semester room stability and semester compactness (see
Section 3.1).
We also observe that the solver is biased towards scheduling lectures in the
first days of the week.
In Table 4.1 and Table 4.2 we show one semester of the results produced by
the solver and the respective real semester from the official timetable.
The main differences are in the rooms: The official timetable only uses one
room (SI-008) while the scheduler used two (SI-003 and SI-008). The bias of
the solver towards scheduling in the first days of the week is very visible in
the afternoons.
In the tables we omit the last two periods (15:30 and 16:30) because they
are empty in both tables.

1http://www.inf.usi.ch

18

http://www.inf.usi.ch

Time Mon Tue Wed Thu Fri
08:30 PF2 PF2 PF2 LA DS

SI-003 SI-003 SI-003 SI-003 SI-006
09:30 PF2 PF2 PF2 LA DS

SI-003 SI-003 SI-003 SI-003 SI-006
10:30 ADS ADS LA DS

SI-003 SI-003 SI-003 SI-006
11:30 ADS ADS LA DS

SI-003 SI-003 SI-003 SI-006

13:30 SA2 SA2
SI-006 SI-006

14:30 SA2 SA2
SI-006 SI-006

Table 4.1: Bachelor 2nd semester produced by the solver

Time Mon Tue Wed Thu Fri
08:30 LA ADS LA ADS

SI-008 SI-008 SI-008 SI-008
09:30 LA ADS LA ADS

SI-008 SI-008 SI-008 SI-008
10:30 PF2 DS PF2 DS PF2

SI-008 SI-008 SI-008 SI-008 SI-008
11:30 PF2 DS PF2 DS PF2

SI-008 SI-008 SI-008 SI-008 SI-008

13:30 SA2 SA2
SI-008 SI-008

14:30 SA2 SA2
SI-008 SI-008

Table 4.2: Real Bachelor 2nd semester

LA Linear Algebra
ADS Algorithms & Data Structures
PF2 Programming Fundamentals 2
DS Discrete Structures
SA2 Software Atelier 2: Human-Computer Interaction

19

Chapter 5

Conclusion

The implemented solver produces good results which are comparable to those
produced by the Dean’s office, but in a much shorter time.
The application allows the user to create a schedule for a previously deter-
mined set of courses and rooms. The user can then visualize the solution,
modify it and ask the solver to refine it.

5.1 Future work
The web application allows users to create a schedule for a given set of rooms
and courses, with predefined unavailable periods. As a future work, the UI
can be improved to enable the selection of specific courses, rooms, and other
constraints.
Other possible extensions include approving a suitable schedule and publish-
ing it to the official University calendar. This calendar may offer different
ways to aggregate the events such as by room, instructor, user, or by day.
The calendar could also be augmented with the possibility to add non-
recurring events such as seminars or conferences.

20

Bibliography

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[2] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009.

21

	Introduction
	Motivation
	Problem
	Goal
	Approach

	State of the art
	Planning problems
	OptaPlanner

	Approach
	Problem definition
	Technologies
	Domain model for OptaPlanner
	Constraints
	Solver architecture
	Server and GraphQL API
	Web application UI

	Case study
	Conclusion
	Future work

