
Bachelor Project Report

Research Data Visual Analytics

Lorenzo Ferri

Advisor:
Prof. Dr. Michele Lanza

Assistents:
Dr. Andrea Mocci, Dr. Luca Ponzanelli

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Goal . 3
1.3 Technologies . 4

2 Related Work 5
2.1 The Minard Map (1869) . 5
2.2 The Commercial and Political Atlas (1786) 6
2.3 Essai dune table poléométrique (1782) 7
2.4 Population pyramid (1878) . 7

3 Approach 8
3.1 Creating the charts . 8

3.1.1 Donut Chart . 8
3.1.2 Bar Chart . 9
3.1.3 Line Chart . 11
3.1.4 Legend . 11
3.1.5 Stacked Charts . 12

3.2 Data Manipulation . 14
3.3 Building the web app . 15

4 Use Case Scenario 16

5 Conclusion 18

References 18

1

Abstract

Data analytics is an important practice that allows to better understand data
and, in some cases, take strategic decisions accordingly. Many institutions,
including USI, store data in a raw format like Excel, and lack a platform
to perform data analytics. Data visualization is one of the preferred means
for analyzing data and it helps to communicate information clearly and effi-
ciently, making it easier to have a general overview and combine information
across data sets. The goal of this project is to produce a visual analytics
web-based platform for the interactive visualization of the research funding
obtained by the USI researchers.

2

Chapter 1

Introduction

1.1 Motivation

At USI the data about the research projects is managed in an Excel file.
Excel is a great tool for analyzing data but it can be hard for everyday users
to leverage it for interactive data visualization, since it would require them
to know its specific macro language. With a web application instead we can
offer a ready-made solution where users can freely navigate and interact with
real time updated data, without needing them to write any code or learn any
specific skill. Also users can access the web application from wherever they
want and from any type of device provided with a browser.

1.2 Goal

The goal of the project is to create a web-based application to visualize
the funding obtained by the USI researchers. Given the list of all research
projects, the application should display different charts in order to analyze
the distribution of the funding, and it should also offer a way to interact
with the displayed data and navigate between different views. Finally, the
application will be integrated with the platform MyUSI, a platform that aims
to offer some services to the university, including support for the research
projects.

3

1.3 Technologies

The application is developed as part of the frontend of MyUSI. The web
application is built on top of Polymer 2.41 and TypeScript2, and it uses
D3.js3 to create the different charts. It relys on a Scala4 backend that serve a
GraphQL5 endpoint in order to fetch the projects data. GraphQL is a query
language for the API.

1Polymer 2.4: https://www.polymer-project.org
2Typescript: http://www.typescriptlang.org
3D3.js: https://d3js.org
4Scala: https://www.scala-lang.org
5GraphQL: https://graphql.org

4

https://www.polymer-project.org
http://www.typescriptlang.org
https://d3js.org
https://www.scala-lang.org
https://graphql.org

Chapter 2

Related Work

Our project aims to create a tool for visual data analytics, using all the
principles of data visualization. In history there are a lot of key figures in
the field of data visualization. In this chapter we are going to see a few of
them.

2.1 The Minard Map (1869)

The Minard Map [1], drawn by Charles Joseph Minard, shows the depiction
of numerical data on a map of Napoleon’s disastrous losses suffered during
the Russian campaign of 1812. The map, shown in Figure 2.1, is known for
being one of the best charts ever created.

Figure 2.1: The Minard Map

5

2.2 The Commercial and Political Atlas (1786)

The Commercial and Political Atlas [2], written by William Playfair, fea-
tured a variety of graphs including the image shown below in Figure 2.2. In
this famous example, he compares exports from England with imports into
England from Denmark and Norway from 1700 to 1780. William Playfair is
considered the father of statistical graphics, having invented the line and bar
chart we use so often today. He is also credited with having created the area
chart and pie chart.

Figure 2.2: Exports and imports into England from Denmark and Norway
from 1700 to 1780.

6

2.3 Essai dune table poléométrique (1782)

Figure 2.3: The Poleometric Table

Essai d’une table poléométrique [3]
is a book written by Charles Louis
de Fourcroy that gives an analysis of
the urban growth of European cities,
which are graphically compared in a
diagram, called Table Poléomètrique
or Poleometric Table. Charles Louis
de Fourcroy use of geometric shapes
predates the modern treemap, which
is widely used nowadays to display hi-
erarchical data.

2.4 Population pyramid (1878)

The Population pyramid [4] is a dia-
gram drawn by Luigi Perozzo, and it
is one of the first 3D representations
of data, showing the age group of the
Swedish population between the 18th
and 19th centuries. Luigi Perozzo was
an Italian mathematician and statis-
tician who stood out for being the
first to introduce 3D graphical repre-
sentations, showing the relationships
between three variables on the same
graph.

Figure 2.4: The Population pyramid

7

Chapter 3

Approach

3.1 Creating the charts

To create the web application the first step is to create the charts that will
allow the users to visualize the data. We choose to build the charts by
ourselves since we wanted them to fit our needs. In particular we focused our
attention into interaction: we wanted the charts to interact with each other,
and update if the data change. For example if we click into a specific part
of a chart we want to change view and display some other data, this action
should update all charts and their data. To achieve all of those requirements
we decide to use D3.js as charting library, since is highly customizable.

3.1.1 Donut Chart

The first chart that we build is the donut chart. This chart is able to display
a set of elements and compare their value.

Figure 3.1: An example of donut chart.

8

This chart expect as input an array of data with the shape shown in
Listing 3.1.

1 public label = ’’;

2 public value = 0;

3 public hidden = false;

4 public color?: string | number;

5 public callback ?: () => void;

Listing 3.1: Input structure for the donut chart

The rendering logic of our donut chart is divided in three parts:

Slices: Slices are the main components of the chart. Slices are defined by
the d3.arc function. This function describes the size of each slice in degrees,
and also allow to set additional options. In particular, it was important to
us to specify that if one element had the property hidden set to true, the
value of that element should be considered 0. The color of the element is
either given or randomly assigned from a predefined list.

Labels: The labels of the charts provide two main purposes: tell us the
name of each element and tell us the percentage of that element. The name
is simply passed to the chart, while the percentage is calculated based of how
many degrees that element takes in the donut chart. In order to correctly
place the labels we take the midpoint of the slice and place the label towards
the outside of the circle from that point, then we align the text to the left or
to the right based on which side the label is.

Lines: The lines tell us which label correspond to which slice. We draw a
line from the slice to the outside of the donut, and the we connect it to the
label.

In addition, it is important to notice that in the structure of the data we
can set a callback that will be called when we click on the slice of the respec-
tive element.

3.1.2 Bar Chart

Similarly to the donut chart, the goal of the bar chart is to visualize a set of
elements and compare their sizes. The main difference with the donut chart
is that the bar chart supports also negative values, but it will not show the
percentage of an element compared to the total.

9

Figure 3.2: An example of bar chart.

This chart expects a data structure similar to the donut chart as shown
in Listing 3.2.

1 public label = ’’;

2 public value = 0;

3 public hidden = false;

4 public callback ?: () => void;

Listing 3.2: Input structure for the bar chart

The rendering of the bar chart is divided in 3 parts:

Axes: We draw 2 axes. On the x axis we place one label for each element,
while the y axis represents the value of an element. D3 provides some ready
to use functions to draw axes with d3.axisLeft and d3.axisBottom which
just require a minimal configuration for the domain

Ticks: Along the y axis we display some ticks that identify the value at
that specific point. In order to make the chart more clear we added some line
that start from that ticks and go trough all the chart. Those line were drawn
using d3.axisLeft but with a different configuration compared to the axes.
Also, we make the 0 tick bigger, so that it is easier to notice it.

Bars: Finally, we draw the bars which are the main part of the chart. To
draw them we use some svg rect and we bind the height to the value of the
element that we want to display. d3.scaleLinear will help us with all the
transformation from the real value to the height in pixels. For the color we
look if the value is positive or negative and choose the color accordingly.

10

3.1.3 Line Chart

The goal of the line chart is to show the evolution of multiple values over
time.

Figure 3.3: An example of line chart.

Since this type of chart supports multiple lines the data structure that it
expect is an array structured as shown in Listing 3.3:

1 public label = ’’;

2 public data: { date: string , value = 0 }[];

3 public color?: string | number;

4 public hidden = false;

Listing 3.3: Input structure for the line chart

Drawing a line chart is similar to the bar chart, but instead of the bars, for
each element we draw a polyline. It is important to notice that along the x

axis we have time. In fact to render the x axis we to use use d3.scaleTime,
and we also parse the date attribute into a JS date format.

3.1.4 Legend

The legend component displays the a list of the elements that are shown in
the charts. In contrast to the other components it is also the only one that
actually modifies the data.

11

Figure 3.4: An example of legend.

Since this component is meant to show different type of data it does not
have a fixed data structure, but it expects to receive an array in which each
element contains the properties described in Listing 3.4.

1 public label = ’’;

2 public value = 0;

3 public hidden = false;

4 public color?: string | number;

Listing 3.4: Input for legend component

As we said before, the legend will also modify the data. If we click on an
element in the list, the legend component will toggle the hidden property.
This event will hide the respective element from all the charts.

3.1.5 Stacked Charts

There are two types of stacked charts: bar charts and area charts. They are
respectively an extension of the standard bar chart and line chart.

Figure 3.5: An example of stacked bar chart.

12

Figure 3.6: An example of stacked area chart.

In order to draw them the steps are the same as the bar chart and line
chart, but we are going to use d3.layout.stack to handle the position of
different stacked items. The expected data structure for those data is dif-
ferent from the previous ones as they expect an array of elements with the
structure shown in Listing 3.5 and Listing 3.6:

1 public label = ’’;

2 public [key: string]: {

3 value = 0,

4 hidden = false ,

5 color?: string | number

6 }

Listing 3.5: Input for stacked bar chart

1 public date: string;

2 public [key: string]: {

3 value = 0,

4 color?: string | number

5 }

Listing 3.6: Input for stacked area chart

The parameter [key: string] means it can receive any other property that
has as the structure specified above. Listing 3.7 shows a list of valid input
for the structure of the stacked bar chart.

13

1 [

2 {

3 label: ’A’,

4 p1: { value: 10, hidden: false },

5 p2: { value: 35, hidden: false },

6 p3: { value: 24, hidden: false }

7 },

8 {

9 label: ’B’,

10 p1: { value: 63, hidden: false },

11 p2: { value: 36, hidden: false },

12 p3: { value: 25, hidden: false }

13 },

14]

Listing 3.7: Valid input for the stacked bar chart

3.2 Data Manipulation

Once we defined our charts, we need to feed them with the projects data.
This is not a trivial task since the structure of the projects does not match
the expected input from the charts. A research project is structured like in
Listing 3.8.

1 title: string;

2 acronym: string | null;

3 accountingIdentifier: string | null;

4 affiliation: IAffiliation;

5 principalInvestigators: IInvestigator [];

6 coInvestigators: IInvestigator [];

7 usiAmount: IMonetaryAmount | null;

8 funding: IFunding;

9 startDate: ILocalDate;

10 endDate: ILocalDate | null;

11 spendingReview: ISpendingReviewEntry [];

12 notes: string | null;

Listing 3.8: Structure of a research project

Given this structure we can take the principalInvestigators where we do
not only store the name of the investigator, but also his quota in the project
and his affilitation. With this, we can map that quota to the affiliaton, and
then with the charts compare all the different affiliations.

14

3.3 Building the web app

We now have all the tools we need to build the actual web app. We use a
donut chart to show the overall distribution of the funding, and a stacked
bar chart to show the same distribution but over the years. We also insert a
legend component to hide and show specific data. Figure 3.7 shows the final
result.

Figure 3.7: Screenshot of the final look of the web application

To place all the component in the page we take advantage of CSS Grid

with the specification shown in Listing 3.9:

1 display: grid;

2 margin: auto;

3 grid-template-areas:

4 "donut donut donut legend"

5 "stack stack stack stack";

6 grid-template-columns: repeat(4, 1fr);

7 grid-template-rows: 2fr 3fr;

8 background: transparent;

9 grid-gap: 15px;

Listing 3.9: The specification for the style of the grid

15

Chapter 4

Use Case Scenario

In this use case scenario, Alice wants to know which institute of the Faculty
of Informatics received more funding during the last year. First, she clicks
on the slice USI of the donut chart which brings her to the faculty view. Here
she can see a view that displays the funding received by each faculty.

Figure 4.1: View of all faculty

Since she is interested in the Faculty of Informatics, she clicks on the
respective slice. Now the web application will display all the institutes of
Informatics and their respective funding. Here she can see that the institute
A received more funding overall, but during the last year it was B which
received more funding.

16

Figure 4.2: View of all the institute of Informatics

Now she is wondering which professors are affiliated with the institute B,
so she clicks on the respective slice and she is presented with the division of
the funding inside the institute B.

Figure 4.3: View od the professors of the institute B

With just a few clicks Alice was able to understand how the funding were
split among the faculty of Informatics.

17

Chapter 5

Conclusion

We presented a visual analytics web-based platform for interactive visual-
ization of the research funding obtained by the USI researchers We started
by creating all the charts components that then we used in the visualize the
data. Then we had to manipulate the data to fit our charts specification,
and finally we could build the actual web application.

The part that took most of the time was building the charts, since we had
to use D3.js, a technology new to us with a very steep learning curve. Even
if building the charts took a lot of time, the most challenging part was ma-
nipulating the data, since we had to map the data back and forward between
one structure and the other.

We are satisfied with the outcome of this project. The results obtained
can be further extended in the future. For example, additional views and
charts can be implemented, and we could allow users to visualize additional
aspects of the research funding. We could also allow users to export some
views to other formats or access the web application offline.

18

Bibliography

[1] Charles Joseph Minard. The minard map, 1869.

[2] W. Playfair. The Commercial and Political Atlas: Which Represents at a
Single View, by Means of Copper Plate Charts, the Most Important Public
Accounts of Revenues, Expenditures, Debts, and Commerce of England.
By William Playfair. To which are Added, Charts of the Revenues and
Debts of Ireland, Done in the Same Manner, by James Corry, Esq. John
Stockdale, Piccadilly, 1787.

[3] Charles de Fourcroy. Essai d’une table poléométrique, ou amusement dun
amateur de plans sur la grandeur de quelques villes. 1782.

[4] Luigi Perozzo. Statistica Grafica - Della rappresentazione grafica di una
collettivit di individui nella successione del tempo, e in particolare dei
diagrammi a tre coordinate - Memoria di Luigi Perozzo. 1782.

19

	Introduction
	Motivation
	Goal
	Technologies

	Related Work
	The Minard Map (1869)
	The Commercial and Political Atlas (1786)
	Essai dâ•Žune table poléométrique (1782)
	Population pyramid (1878)

	Approach
	Creating the charts
	Donut Chart
	Bar Chart
	Line Chart
	Legend
	Stacked Charts

	Data Manipulation
	Building the web app

	Use Case Scenario
	Conclusion
	References

