
Bachelor Project

Proximity Alert
An Eclipse Plug-in for Software Analysis

Andrea Casarella

supervised by
Prof. Dr. Michele Lanza

Abstract

Software systems are composed of huge amounts of entities linked with each other by
having different kinds of dependencies and relations between them. In this context,
program comprehension plays an important role, to guide and control the development
of complex software applications. We built Proximity Alert, a recommender system that
assigns to every part of a software system a ”danger level” given by static analysis and
metrics extraction executed on the fly on given application.

Keywords: Object-Oriented Programming, System Analysis, Software Metrics

i

Acknowledgments

I would like to thank Professor Michele Lanza, my advisor and tutor who help me a lot
in many situations and gives me motivations to go into deep in the beautiful world of
the Computer Science. I will also thank all team supervised by the professor Lanza. In
particular Robbes Romain, Mircea Lungu, Richard Wettel and Marco D’Ambros which
are in my opinion the best assistants that a student could desire.

Thanks a lot to Jacopo Malnati. Class-mate, collaborator but first of all a friend that
rescue me and support me during this project and sharing some of his interesting
knowledges and also the framework on top of which Proximity Alert is created.

Thanks a lot to Alessandro Tettamanti, Matteo Dupraz and Cristian Caggiano, mates
and friends that support me during these years and became the best adventure com-
panions that I could find. Finally but not for last I would like also to thank my girlfriend
Barbara for being so kind and patient during these years of the Bachelor degree.

Andrea Casarella

June 16, 2008

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction and Motivation 1
1.1 Project Overview . 1
1.2 Goal of the work . 2
1.3 Structure of the Document . 2

2 Software Analysis 3
2.1 Software Complexity Analysis . 3

2.1.1 Static and Dynamic Analysis . 3
2.1.2 Utilization of metrics . 4

2.2 Related Works & Tools . 4
2.2.1 Law of Demeter . 4
2.2.2 JHawk . 6

3 Eclipse 9
3.1 Foundation and Community . 9
3.2 Platform Overview . 10

3.2.1 Platform Architecture . 11
3.2.2 Plug-in structure . 12

4 Proximity Alert 13
4.1 The Idea . 13
4.2 Meta-Models . 14

4.2.1 X-Ray Internal Code Representation 14
4.2.2 Proximity Alert Model . 16

4.3 Software Metrics . 17
4.3.1 Proximity Alert plug-in metrics . 17
4.3.2 Proximity Alert Metric . 20
4.3.3 Box-Plot . 20
4.3.4 Proximity Alert Metric and Box-Plot 21

4.4 Views . 23
4.4.1 Views Initialization . 23
4.4.2 Proximity Alert View . 24
4.4.3 Configuration View . 26

4.5 The Plug-in . 31

iii

Andrea Casarella Proximity Alert

5 Validation 32
5.1 Introduction . 32
5.2 From Source Code to Proximity Alert . 32

5.2.1 X-Ray integration and extension . 32
5.2.2 Metrics Definition . 33
5.2.3 Proximity Alert Views . 33

5.3 Case Study : Proximity Alert . 34
5.3.1 Packages Analysis . 36
5.3.2 Package Analysis Customization & Filtering 38
5.3.3 Classes Analysis . 40
5.3.4 Classes Analysis Customization & Filtering 42
5.3.5 BoxPlot Settings . 44

6 Conclusions 45
6.1 Achieved Goals . 45
6.2 Future Work . 45

6.2.1 Model Analysis . 45
6.2.2 Metrics . 46
6.2.3 View Functionalities . 46
6.2.4 Analysis Customization . 46

6.3 Bugs & Limitation . 46

A Implementation 47
A.1 Proximity Alert core . 47

A.1.1 Class description . 47
A.1.2 UML . 48

iv

Chapter 1

Introduction and Motivation

1.1 Project Overview

In object oriented software development, a system can be considered as a collection of
objects. Functionalities of the system are achieved by interactions among these objects
through messages sending and receiving. Whenever, one object depends on another ob-
ject to execute certain functionality, there exists a relation between those two classes.
In modern object oriented system development it is recommended to build a system
such that is divided in multiple layers. With this, we have objects from one layer talk-
ing to the objects of another layer.

Given an optimal abstraction of layers and appropriate relation between the entities,
there are still chances that the coding process might introduce a few more vulnerabil-
ity. This vulnerability is not of defective coding as such but more to do with the internal
structure of the code. At this stage also object oriented metrics can be of help to iden-
tify, if we need to pay further attention to any of the code to make it more maintainable.

This is why software design and development metrics are so useful and important.
They are used to ensure a better quality, maintainability and preserve from vulnerabil-
ity. It is also observed that following these metrics make writing test cases easier.

Our goal is to create a recommender system as an open-source plug-in for Eclipse that
assigns to every part of a software system a ”danger level” based on a static analysis of
a system. The danger level is basically represented by the Proximity Alert metric which
gives also the name to our software analysis plug-in. Eclipse is an open source commu-
nity whose projects are focused on building an open development platform comprised of
extensible frameworks, tools and runtimes for building, deploying and managing soft-
ware systems. A large community of universities, researchers and individuals are using
and supporting the Eclipse framework that, therefore, has a huge audience.

We create different views based on a given project that describe and assign a Prox-
imity Alert Metric value based on a set of metrics computed by X-Ray [Mal07] software
visualization and extended by the Proximity Alert model. Proximity Alert plug-in can
already be used to analyze various sized projects, offering to the user the possibility
to understand, browse and evaluate any system without being forced to go trough the

1

Andrea Casarella Proximity Alert

source code.

In this document we present and discuss our current state of research and a first
implementation of the system by giving an outlook on our future work on metrics and
on the Proximity Alert system.

1.2 Goal of the work

The goal of the project are in our opinion double:

• Contributing to the Eclipse plug-in development. Eclipse is made up by thousands
of plug-ins that, together, build its development environment. Contributing to
Eclipse with a plug-in is an interesting challenge, given the audience that the
plug-in will have and the pleasure of providing new functionalities to such an
important and very well known framework.

• Developing an Eclipse plug-in for system analysis.
After understanding the Eclipse plug-in development and software metrics we
build on top of our Proximity Alert plug-in. Which provide a deep analysis of
the system represented by metrics and assign to each analyzed entity a Proximity
Alert Metric value which can be customized as preferred directly from the user.

1.3 Structure of the Document

In the next chapters we go through software analysis concepts and techniques with
theoretical and visual approaches. Moreover we focus to our case study of the software
analysis and describe some related works.

We give then a description of the Eclipse Platform and its architecture, by focus then
on the Proximity Alert plug-in creation and how it can provide functionalities.

After this we discuss much deeper about the Proximity Alert plug-in. There’s a de-
scription of the X-Ray [Mal07] meta-model and how it is integrated in the Proximity
Alert model analysis. We focus then on the software metrics and their applicability,
followed by the description of the metrics defined by the Proximity Alert system and a
brief description on the views provided by the system.

To better understand the Proximity Alert functioning and usage we validate it on it-
self and, then, draw some conclusion about the reached goals and the future work.

2

Chapter 2

Software Analysis

2.1 Software Complexity Analysis

Object oriented construction and design are deceptive words, because they make peo-
ple think that software can be constructed as buildings or designed as cars. The fact is
that a software system is complex as any other engineering artifact, think for example
of what there is behind the construction of a building. Moreover, a modern software
system is written by many people concurrently, leading to communication issues, com-
patibility issues and above all complexity issues. In addition systems are mutable and
grows as plants with many interrelated parts that depend on each other, that die, that
change, that are bugged and must be fixed (introducing new bugs), etc.

Software analysis can make a proactive contribution to improve the quality and reli-
ability of a software system during all phases of the software life cycle, including the
preliminary design, detailed design, implementation, test, and maintenance phases. Al-
though the impact of an analysis is greater during the latter stages of the software life
cycle, its contribution potential is maximized if it is begun early in the life cycle devel-
opment of a system.

Finding an appropriate design of the system is important. Indeed it may help people
understand the system and ease future changes. [LM06]

2.1.1 Static and Dynamic Analysis

The analysis of a system cab be done by using two main techniques:

• Static analysis: dealing only with the structure of the system, and does not require
running a piece of software to begin to implement a metrics program.

• Dynamic analysis: measuring the efficiency and effectiveness of software testing by
monitoring the software system during its execution phase. All the data collected
during the execution is used in the evaluation of the thoroughness of the testing, to
determine if there is adequate utilization of the testing resources, and to prioritize
the test case distributions.

3

Andrea Casarella Proximity Alert

2.1.2 Utilization of metrics

Metrics are sets of various measures which reflect properties and aspects of a software
program, either at component or system level. Metrics can be used to make quality
evaluations of software, to monitor the development growth of software systems, and to
estimate and predict the reliability of software.

Complex software often leads to high development costs, high maintenance costs, and
decreased system reliability. By monitoring the complexity of a software program dur-
ing design and development, changes can be made to reduce complexity and ensure
system to remain modifiable and open to future extensions. [LD02]

2.2 Related Works & Tools

2.2.1 Law of Demeter

The Law of Demeter is a law developed during the design and implementation of the
Demeter system which provide a high-level interface to class-based, object-oriented
systems.

There are kinds of style rules for Object-Oriented design and programming: rules that
apply to the structure of classes and rules that apply to how methods are written. The
Law of Demeter focus on style rules that restrict how methods are written for a set of
class definition. It restricts the message-sending structure of methods, informally the
law says that each method can send messages to only a limited set of objects. [KJM89]

Goal

The goal of the Law of Demeter is to organize and reduce dependencies between classes
by promoting maintainability and comprehensibility. The purpose is to guide systems
to be well behaved or well formed in a sense that follows a certain style that lets them
modified easily, minimizing changes required elsewhere in the programs. Easy modi-
fication in system is one important criterion that characterize a good Object-Oriented
programming style.

By following the Law of Demeter programmers have also to consider other known style
rules such as avoid code duplication, minimizing the number of arguments, and min-
imizing number of methods. This law does not restrict what a programmer can solve
but restricts how he solves it.

Forms

The Law of Demeter has two main forms:

• Class form
Every class is a potential supplier of any methods. However it should be limit to a
set of preferred classes. In order to define such classes they introduce the concept
of the acquaintance class which is a method’s supplier class whose methods are
called in the method. Acquaintance classes are created in order to satisfy stability,
efficiency and object construction.

4

Andrea Casarella Proximity Alert

– Minimization version : allows additional dependencies between classes but
asks for minimization and acquaintance classes.

– Strict version: restricts dependencies between classes

• Object form
The Object form of the law says that all method may have preferred supplier ob-
jects, which are similar to preferred supplier classes. It helps to guide and serves
as an additional guide for the class form.

Principles

Some of the principle covered by the Law of Demeter are listed below:

• Coupling control

It is a well-known principle of software design to have minimal coupling between
abstractions. The Law of Demeter effectively reduces the methods you can call
inside a given method, therefore it limits the coupling of methods for the Uses
relation, which is a call or a return link. It facilitates reusability of methods and
raise the software’s abstraction level.

• Information hiding

The law enforces the structure hiding. Generally prevents a method directly re-
trieving a subpart of an object that lies deep in that object’s hierarchy. In some
Object-Oriented systems, the user can protect some of the instance variables or
methods by declaring them private. This complement the law by improving modu-
larity.

• Information restriction

The law restricts the use of messages sending and complement he Information
hiding. Instead of hiding certain methods you make them public but you restrict
their use.

The motivation behind the Law of Demeter is to ensure that the software is modular
as possible. The law reduces the occurrence of nested message sending and simplifies
the methods. It has many implication for widely known software engineering principles.

Applicability of Law of Demeter

The style of modular programming encouraged by the Law of Demeter leads naturally
to code that is easier to understand and maintain. The law let’s redesign classes while
leaving more of existing software intact. Actually by applying the law is reduced the
effects of local changes to a software system can reduce many further complication in
software maintenance.

The Law of Demeter leads to the development of good software when used with other
well-known style rules.

5

Andrea Casarella Proximity Alert

2.2.2 JHawk

”Virtual Machinery’s JHawk product generates a number of vital metrics relating to your
Java code. Using these metric is possible improve the performance, reusability, maintain-
ability and overall quality of Java code. Metrics are provided at overall system, package,
class and method levels and separate views are available for each. Output can be saved
to HTML, XML or CSV formats. A command line interface allows to integrate JHawk into
the build process. The standard and command line versions are compatible with any
Java environment based on JDK 1.4.2 and above. Source code up to JDK 1.5.0 can be
analysed. Applications are provided for both Eclipse and file based environments.”1

Package Level

The view at this level shows the numbers of Classes, Methods and Statements in the
package. It also shows the Total and Average (per method) Cyclomatic complexity, the
Total Halstead Effort and the two forms of the maintainability index. In addition there
are five other metrics:

• Instability: This is an estimate of how susceptible the package is to change. It’s
values will always lie in the range 0 (not susceptible to change) to 1 (very suscep-
tible to change). Values closer to zero are preferable. It is calculated by dividing
FanOut/(FanIn + FanOut) for the package.

• FanIn or Afferent Coupling (Ca): This is the number of packages that contain
references to this pacakge. Only packages within the System are included in the
calculation.

• FanOut or Efferent Coupling (Ce): This is the number of packages that this pack-
age refers to. Only packages within the System are included in the calculation.

• Abstractness: This indicates how abstract the package is. It is calculated as the
ratio of abstract and interface classes in the package to the total number of all
classes in the package.

• Distance: This measures the balance of a particular package between abstraction
and instability.

Class Level

The view at this level shows not only metrics which measures aspects of the class but
also at metrics which give information on the interaction between them in the whole
system.

The following list shows some of the metrics defined for the class by JHawk:

• LCOM: The Lack of cohesion of methods measures the correlation between the
methods and the local instance variables of a class. High cohesion indicates good
class subdivision. Lack of cohesion or low cohesion increases complexity.

• UWCS: The Unweighted Class Size is calculated from the number of methods plus
the number of attributes of a class. Smaller class sizes usually indicate a better
designed system reflecting better distributed responsibilities.

1http://www.virtualmachinery.com/jhawkprod.htm

6

Andrea Casarella Proximity Alert

• RFC: Response For Class measures the complexity of the class in terms of method
calls. It is calculated by adding the number of declared methods in the class plus
the number of distinct method calls made by the methods in the class.

• MPC: Message Passing Coupling measures the numbers of messages passing among
objects of the class. A larger number indicates increased coupling between this
class and other classes in the system.

• CBO: Coupling Between Objects is the total of the number of classes that a class
referenced plus the number of classes that referenced the class.

• FanIn or Afferent Coupling (Ca): Is the number of other classes that reference a
class.

• FanOut or Efferent Coupling (Ce): Is the number of other classes referenced by
a class.

• Reuse Ratio: Is number of superclasses above this class in the class hierarchy
divided by the total number of classes in the class hierarchy.

JHawk System View

Once a project, a package or a file is chosen for the analysis the System view appear
populated with all of the metrics calculated at a system level. Figure 2.1 shows the
JHawk System view containing a list of the packages analyzed.

Figure 2.1: JHawk System view containing a list of the packages analyzed.

7

Andrea Casarella Proximity Alert

JHawk Package View

When is selected a particular package on the System view then the Package view appear
populated with a list of all of the classes in that package and the metrics for each class.
Figure 2.2 shows the JHawk Package view containing a list of the classes analyzed of a
given project.

Figure 2.2: JHawk Package view containing a list of the classes analyzed of a particular
package.

JHawk Class View

The Class view shows a list of all of the classes that you have chosen to analyze. The
bottom panel shows all the metrics collected for the currently selected class. Figure 2.2
shows the JHawk Class view containing a list of the classes analyzed of a given project.

Figure 2.3: JHawk Class view a list of the classes analyzed of a given project.

8

Chapter 3

Eclipse

3.1 Foundation and Community

Eclipse began as an IBM Canada project and It was developed by OTI (Object Technol-
ogy International) as a replacement for VisualAge, which itself had been developed by
OTI. In November 2001, a consortium was formed to further the development of Eclipse
as open source. In 2003, the Eclipse Foundation was created. Eclipse 3.3 (released on
2007) selected the OSGi Service Platform specifications as the runtime architecture.

Eclipse is also an open source community whose projects are focused on building an
extensible development platform, runtimes and application frameworks for building,
deploying and managing software across the entire software lifecycle.

The Eclipse open source community is composed of more than a thousand open source
projects. These projects can be conceptually organized into seven different types or
categories:

• 1. Enterprise Development

• 2. Embedded and Device Development

• 3. Rich Client Platform

• 4. Rich Internet Applications

• 5. Application Frameworks

• 6. Application Lifecycle Management (ALM)

• 7. Service Oriented Architecture (SOA)

The Eclipse community is also supported by a large and vibrant ecosystem of major
IT solution providers, innovative start-ups, universities and research institutions and
individuals that extend, support and complement the Eclipse Platform.

”The exciting thing about Eclipse is many people are using it in ways that we could never
imagine. The common thread is that they are building innovative, industrial strength soft-
ware and want to use great tools, frameworks and runtimes to make their job easier.”1

1http://www.eclipse.org/org/

9

Andrea Casarella Proximity Alert

3.2 Platform Overview

Eclipse is an integrated development environment (IDE) written primarily in Java. In its
default form it is meant for Java developers, consisting of the Java Development Tools
(JDT). Users can extend its capabilities by installing plug-ins written for the Eclipse
software framework, such as development toolkits for other programming languages,
and can write and contribute their own plug-in modules.

”Eclipse can be used to create many different kinds of content - Java files, Web content,
graphics, video. These objects are stored as regular files within the Eclipse workspace.
The workspace consists of one or more top level projects. Each project contains a collec-
tion of folders and files. These objects are known as resources.2

Figure 3.1 shows a screenshot of the main workbench user interface, with its vari-
ous component within it. The Eclipse Workbench UI is a collection of windows. Each
window contains a menu bar (layout OS dependent), a toolbar, a shortcut bar and one
or more perspectives.

Figure 3.1: Eclipse Workbench UI is a collection of windows. Each window contains a
menu bar (layout OS dependent), a toolbar, a shortcut bar and one or more perspectives.

2http://www.eclipse.org/org/

10

Andrea Casarella Proximity Alert

3.2.1 Platform Architecture

The basis for Eclipse is the Rich Client Platform (RCP). The following components con-
stitute the RCP:

• Equinox OSGi - a standard bundling framework

• Core platform - boot Eclipse, run plug-ins

• The Standard Widget Toolkit (SWT) - a portable widget toolkit

• JFace - viewer classes to bring model view controller programming to SWT, file
buffers, text handling, text editors

• The Eclipse Workbench - views, editors, perspectives, wizards

Eclipse’s widgets are implemented by a widget toolkit for Java called SWT, unlike most
Java applications, which use the Java standard Abstract Window Toolkit (AWT) or
Swing. Eclipse’s user interface also leverages an intermediate GUI layer called JFace,
which simplifies the construction of applications based on SWT.

The Eclipse Platform’s principal role is to provide tool providers with mechanisms to
use, and rules to follow, that lead to seamlessly-integrated tools. These mechanisms are
exposed via well-defined API interfaces, classes, and methods. The Platform also pro-
vides useful building blocks and frameworks that facilitate developing new tools. [CR06]

The Figure 3.2 shows the major components, and APIs of the Eclipse Platform.

Figure 3.2: Eclipse Platform architecture showing its major components.

11

Andrea Casarella Proximity Alert

3.2.2 Plug-in structure

The behavior of every plug-in is in code, yet the dependencies and services of a plug-in
are declared in the MANIFEST.MF and plugin.xml files. This structure facilitates lazy-
loading of plug-in code on an as-needed basis, thus reducing both the startup time and
the memory footprint of Eclipse.

On startup, the plug-in loader scans the MANIFEST.MF and plugin.xml files for each
plug-in and then builds a structure containing this information. This structure takes
up some memory, but it allows the loader to find a required plug-in much more quickly,
and it takes up a lot less space than loading all the code from all the plug-ins all the
time. [CR06]

Figure 3.3 shows the Proximity Alert plug-in declaration in the manifest with lines
highlighting how the plug-in manifest references various plug-in artifacts.

Figure 3.3: Proximity Alert plug-in declaration plug-in manifest with lines highlighting
how the plug-in manifest references various plug-in artifacts

12

Chapter 4

Proximity Alert

4.1 The Idea

The basic idea is to create a recommender system as an open-source plug-in for Eclipse
that assigns to every part of a software system a ”danger level” based on static analysis
that is executed on the fly. The plug-in constantly notifies the developer about the
danger level in a non-intrusive way. Using X-Ray [Mal07] plug-in meta-model it gets all
entity metrics and information provided by the core of the plug-in and extend them in
order to provide a larger set of metrics analysis. It allows also a fully customization by
the users on ”danger level” definition and colors depiction.

Figure 4.1 shows the Proximity Alert Workbench view on Eclipse running the anal-
ysis on itself. The view displayed is the Package Viewer table with the Configuration
View on the right.

Figure 4.1: Proximity Alert plug-in analyzing itself. The view displayed is the Package
Viewer table and the Configuration View.

13

Andrea Casarella Proximity Alert

4.2 Meta-Models

Meta-modeling is the analysis, construction and development of the frames, rules, con-
straints, models and theories applicable and useful for the modeling in a predefined
class of problems.

In computer science field meta-modeling is the construction of a collection of ”con-
cepts” inside a certain domain. A model is an abstraction of phenomena in the real
world, and a metamodel is yet another abstraction, highlighting properties of the model
itself. This model is said to conform to its meta-model similar to a program conforms to
the grammar of the programming language in which it is written.

We create a meta-model using and extending the X-Ray meta-model which maps java
source code to a internal code representation. Both meta-models are described in the
next sections.

4.2.1 X-Ray Internal Code Representation

Figure 4.2 shows the entities involved in the internal code representation provided by
the X-Ray [Mal07] plug-in. It shows how every Java entity is modeled by an Entity

Representation.
Moreover, packages and classes are contained within another entity (respectively,

a project and a package), therefore use the ContainedEntityRepresentation class.
The ModelExtractor class contains a ProjectRepresentation that is made up by
zero or more PackageRepresentations,which are composed by zero or more Class

Representations.

Figure 4.2: A simplified view of the X-Ray Internal Code Representation meta-model.

One of the most interesting part of this excellent tool is the model extractor which
is responsible for creating an internal code representation which reflect he underlying
source code. The model extractor is composed of two phases [Mal07]:

14

Andrea Casarella Proximity Alert

• Hierarchy builder: parses the project and collects information about the inheri-
tance hierarchy of every class in the system. Exploiting interfaces and functionali-
ties provided by the org.eclipse.core and org.eclipse.jdt.core plug-ins and libraries,
the Hierarchy Builder fills the internal code representation (ICR) of X-Ray by gath-
ering information from the one used by Eclipse itself. X-Rays internal code repre-
sentation is a set of data structures containing meaningful data about the project,
packages and classes; moreover it stores every metric and dependency.

• Dependency Builder: scans the source code of the system and collects informa-
tion about dependencies between classes. These dependencies will be used by the
Class and Package Dependency Views while creating dependency edges (arrows)
between entities.

Figure 4.3 shows how is possible to get and use the described model from the X-Ray
plug-in.

Figure 4.3: X-Ray plug-in allows to have access to the internal code representation of
a modeled project.

15

Andrea Casarella Proximity Alert

4.2.2 Proximity Alert Model

Given the support of the X-Ray model extractor we can use the internal code repre-
sentation and wrap it inside the Proximity Alert core model which provides metrics
extension for each entity, proximity alert value and danger area depiction.

Figure 4.4 shows how Proximity Alert model uses and extends the X-Ray meta-model.
Entities involved in the internal code representation provided by the X-Ray plug-in such
as the ClassRepresentation and PackageRepresention and are wrapped inside con-
crete wrappers that extends the abstract class EntityWrap. The ProjectWrap entity is
the core of the system which is composed of the model given by X-Ray merged with the
Proximity Alert model.

Figure 4.4: A simplified view of the Proximity Alert model using the ModelExtractor

given by the X-Ray plug-in.

16

Andrea Casarella Proximity Alert

4.3 Software Metrics

Sometimes it’s hard to tell how solid is a design really is, this because every design is
subjective. That’s where metrics takes role, in fact they can be helpful in pointing out
strengths,weakness and potential problems while they don’t provide a complete picture
of the entire system. Metrics are more than just numbers, actually they can measure
how well is used abstraction in the code. Good design will use abstract classes and
interfaces so that other classes can program to those interfaces rather than specific
implementations [BDW06].

What is a metric ?
It is the mapping of a particular characteristic of a measured entity to a numerical
value. An entity and its characteristics can be anything.

Why is it useful to measure ?
In software engineering it is important and useful to measure systems, otherwise we
risk losing control because of their complexity. Losing control in such a case could
make us ignore the fact that certain parts of the system grow abnormally or have a bad
quality.

Software metrics can be divided into two major groups [LM06]:

• Project metrics: They deal with the dynamics of a project, with what it takes to get
to a certain point in the development life cycle and how to know you are there.
They can be used in a predictive man- ner, e.g., to estimate staffing requirements.
Being at a higher level of abstraction, they are less prescriptive, but are more
important from an overall project perspective.

• Design metrics: These metrics are used to assess the size and in some cases the
quality, size and complexity of software. They look at the quality of the projects
design at a particular point in the development cycle. Design metrics tend to be
more locally focused and more specific, thereby allowing them to be used effectively
to directly examine and improve the quality of the products components.

4.3.1 Proximity Alert plug-in metrics

Proximity Alert plug-in provide an extension of the metrics given by the internal code
representation of X-Ray and use them to perform additional features that are related to
those measures. First of all we decide to integrate all the already available metrics and
use them for doing additional analysis that can increase the description of the system
design, its components and the relation between them.

The extension is done dynamically by the entity wrapper, because the metrics could
be inherent to a single or to multiple entities we define three phases of metrics creation:

• Single entity analysis: this phase creates and extends all metrics that concern
only the analysis of a class (i.e the Constr. metric which represent the number of
constructors).

• Multiple entities analysis: this phase compute all metrics that somehow depend
on other entities (i.e I-Fields which represent the number of inherited fields), or

17

Andrea Casarella Proximity Alert

concern entity that are composition of other entities like for example packages.

• Proximity Alert Metric analysis: this phase compute for each entity in the anal-
ysis the Proximity Alert metric which involves all the products of the previous
phases.

Since metrics could describe an infinite number of things in different forms, we
decide to group our metrics by taking into account their description and affection type.

Package Metrics

At the Package level there are two main type of metrics that are the ones that describe
the entity from the size point of view and the ones that describe the entity in term of
complexity. An additional type of metrics is defined which consider not only the system
but also the interaction with Proximity Alert system.

Package Metrics

Type Name Description

Size Classes Number of classes declared in a package.

SubPkgs Number of sub-packages.

All Classes Number of classes in a package and its sub-packages.

Interfaces Number of interfaces declared in a package.

Fields Number of fields declared in all classes of a package.

LoC Number of lines of code implementation.

Complexity Uses Number of classes used by any class of a package.

MsgSent Number of messages sent to external classes.

Used Number of classes which uses any class of a package.

MsgRec Number of messages received by external classes.
Other PAvg Proximity Alert average of all entities of a package.

Table 4.1: Package Metrics provided by Proximity Alert analysis.

18

Andrea Casarella Proximity Alert

Class Metrics

At the class level we look not just at metrics which measure aspects of the class we also
look at metrics which give us information on the interaction between classes. Metrics
which measure these class interactions tell us far more about our design than about
our code. Some of the metrics tell us how good our design is between our methods
and inheritance dependencies while others tell us how much a change to a particular
class will affect code in other class. The ideal is that changes to one class should have
minimal effects on other classes, and that the number of other classes affected should
be minimal.

Class Metrics

Type Name Description

Size Fields Number of declared fields.

Methods Number of declared methods.

Constr. Number of declared constructors.

LoC Number of lines of code implementation.

Inheritance I-Fields Number of inherited fileds.

I-Methods Number of inherited methods.

I-Constr. Number of inherited constructors.

Complexity Uses Number of external class which are used by a class.

MsgSent Number of messages sent to external classes.

Used Number of external class which uses a class.

MsgRec Number of messages received by external classes.

Table 4.2: Class Metrics provided by Proximity Alert analysis.

19

Andrea Casarella Proximity Alert

4.3.2 Proximity Alert Metric

The main functionality of the system that gives also the name to our system is the Prox-
imity Alert Metric. Most particularly it is a metric that measure and describe how an
entity is involved in the system compared also with the other entities.

Proximity Alert Metric is a measure which correspond to the product of a formula-
tion on a set of given metrics, their relevance, and on a set of entities.

By taking into account that designs are subjective, we gives the possibility to the users
to customize the formulation of the Proximity Alert Metric by allowing entity metrics
selection/exclusion, relevance customization and entities filtering.

Proximity Alert Formula

The basic formula for the calculation of the Proximity Alert Metric could be summarized
in a sum of a set of given metrics multiplied by their respectively relevance and could
be represented as follows:

ProximityAlert(entity) =
n∑

i=0

(mi · rmi
)

where n is the size of a set of given metrics, mx represent a metric in the given set, and
rmx is the relevance index of a metric.

The scope of the Proximity Alert Metric is to represent the relation of an entity given
set of metrics by highlighting not only the importance of it but also the role that plays
in the whole system. The relevance index is a bounded number that could have a value
between 0 and 1, actually this index is a percentage of the value that has to be consid-
ered in the total sum for a given metric. This allows to customize the formula such that
the metrics could be weighted.

The problem was how to represent such an important metric as the Proximity Alert
of an entity, and we decide to adopt a depiction in group of similar entities by using the
box-plot technique.

4.3.3 Box-Plot

In descriptive statistics, a boxplot is a convenient way of graphically depicting groups
of numerical data through their five-number summaries which are the smallest obser-
vation, the first quartile, the median, the third quartile and the largest observation of a
set (as shown in Table 4.3).

Figure 4.5 shows a graphical representation of the Box-plot.
Box-Plots are useful to display differences between populations without making any

assumptions of the underlying statistical distribution. The spacings between the dif-
ferent parts of the box help indicate the degree of dispersion and skewness in the data,
and identify outliers1.

1http://en.wikipedia.org/wiki/Box plot

20

Andrea Casarella Proximity Alert

Figure 4.5: Box-Plot technique.

Box-Plot element Definition

median (m) middle-ranked item in the data set
first-quartile (q1) median of the values that are less than m

third-quartile (q2) median of the values that are more than m

inter-quartile (iq) iq = q2 − q1

max-value last item of the data set

Table 4.3: Box-Plot thresholds.

4.3.4 Proximity Alert Metric and Box-Plot

Using the Box-plot technique we are able to represent not only the Proximity Alert as
a numerical value but also in a graphical way which contribute on the visualization of
it. We decide to depict elements of a set, in our case the set of package and classes in
analysis, and we assign a color area which is represented by the interval of the box-plot
elements.

As shown in Figure 4.6 to each interval is equivalent a color area which represent
how the proximity alert of a entity is placed respect to the all set of entities.

Figure 4.6: BoxPlot depiction in area color of the Proximity Alert metric.

21

Andrea Casarella Proximity Alert

We define therefore five color groups which are represented as colors. These groups
collect subset of entities that, once the analysis is performed and the Proximity Alert
metrics has a value, are in the same area of danger. This level of danger or risk is
related to the color to which is assigned.

Most particularly area-groups are a scale of danger levels represented by colors:

• Green area - very low danger

• Yellow area - low danger

• Orange area - medium danger

• Red area - high danger

• Black area - very high danger

The danger level is intended to show for each entity the relation with entire set and
also how much is risky affect changes in it based on the performed analysis.

22

Andrea Casarella Proximity Alert

4.4 Views

The Proximity Alert plug-in provide complete overview of the system analyzed by con-
tributing to the Eclipse platform with its own views which allows the user to display,
browse, and customize them. The two views provided by the system are the Proximity
Alert View and the Configuration View.

Many plug-ins either add a new Eclipse view or enhance an existing one as a way to pro-
vide information to the user. Views must implement the org.eclipse.ui.IViewPart

interface. Typically, views are subclasses of org.eclipse.ui.part.ViewPart and
thus indirectly subclasses of org.eclipse.ui.part.WorkbenchPart, inheriting much
of the behavior needed to implement the IViewPart interface.

4.4.1 Views Initialization

The Proximity Alert views appear by clicking on the Window - Show View dialog,
Other..., then Proximity Alert plug-in and finally on the Proximity Alert icon or
the Configuration icon.

This is the default procedure to open a view part, but it is not really aimed for the
main functionality of our plug-in. Proximity Alert aim to visualize a specific project
selected by the user, therefore we contributed, as shown in Figure 4.7, to the projects
context menu an action (Compute Proximity Alert) that will activate the plug-in and
analyze the currently selected project.

Figure 4.7: Proximity Alert plug-in adds an action that will be visible after right-
clicking on a project in the Package Explorer (In this example, the Proximity Alert
project itself). Clicking on Compute Proximity Alert action, Proximity Alert views will
be activated and shown.

23

Andrea Casarella Proximity Alert

After this the two views provided by Proximity Alert are shown in the standard
Eclipse perspective. By adding this specific action we removed the difficulty of deciding
which project to analyze, given that the user might have multiple projects opened con-
currently as far as different files belonging to different projects in the workbench editor.
In this way we force to select which project the plug-in will visualize and analyze.

4.4.2 Proximity Alert View

The Proximity Alert View provides a tabbed panel which allows to switch between two
type of tables. The tables contained represent the list of the entities analyzed by giving
the value for each of the available metrics and shows the Proximity Alert Metric com-
puted.

The two tables are called respectively Package Viewer and the Class Viewer.

Package Viewer

The package viewer provides a deep view of entities analyzed and shows in the left
part the name of the packages, then the Proximity Alert Metric followed by all other
metrics provided by the analysis described in the Proximity Alert Metrics section.

The table provides all operation of selection and sort for each column in order to give
he users the possibility to browse more easily the content.

Figure 4.8 shows the Package Viewer on the Proximity Alert project and how its com-
posed.

Figure 4.8: Proximity Alert view showing the Package Viewer of itself.

24

Andrea Casarella Proximity Alert

Class Viewer

The class viewer provides a deep view of entities analyzed and shows in the left
part the name of the classes, then the Proximity Alert Metric followed by all the metrics
provided by the analysis described in the Proximity Alert Metrics section.

The table provides all operation of selection and sort for each column in order to give he
users the possibility to browse more easily the content. In this table is also possible to
select classes and by double-clicking on them its possible to open the respectively .java
file in the Editor View Part.

Figure 4.9 shows the Class Viewer on the Proximity Alert project and how its composed.

Figure 4.9: Proximity Alert view showing the Class Viewer of itself.

25

Andrea Casarella Proximity Alert

4.4.3 Configuration View

The Configuration View provides an expand bar which allows to show or hide different
items. The view provide five different expandable item which are titled: General Infor-
mation, Class Analysis Settings, Package Analysis Settings, BoxPlot Settings and Filters.

For each changes in these panels effects could be seen dynamically on the analysis
of the project.

General Information

Figure 4.10 shows general information about the project analyzed such as the name
and the number of packages, classes, interfaces, fields, methods, dependencies and
lines of code contained in it.

The value are represented as a ratio of the number of considered in the analysis on
the total available.

Therefore during filters configuration of the user it can has the possibility to see what
is the portion of the component considered in the analysis on the maximum available.

Figure 4.10: General Information item of the Configuration View shows general in-
formation about the project analyzed such as the name and the number of packages,
classes, interfaces, fields, methods, dependencies and lines of code contained in it. In
this case shows information about the Proximity Alert project itself.

26

Andrea Casarella Proximity Alert

Class Analysis Settings

Figure 4.11 shows all the available class metrics that could be taken into account for
the analysis of the project. The user has the possibility to check or uncheck metrics in
order to add or exclude from the analysis.

The metrics are divided into types such as size, inheritance and complexity, for each
of them is possible to change their relevance in the formula. The relevance is a number
bounded from 0 to 1.

Figure 4.11: Class Analysis Settings items shows all the available class metrics that
could be taken into account for the analysis of the project. The user has the possibility
to check or uncheck metrics in order to add or exclude from the analysis.

27

Andrea Casarella Proximity Alert

Package Analysis Settings

Figure 4.12 shows all the available package metrics that could be taken into account
for the analysis of the project. The user has the possibility to check or uncheck metrics
in order to add or exclude from the analysis.

The metrics are divided into types such as size, complexity and other, for each of them is
possible to change their relevance in the formula. The relevance is a number bounded
from 0 to 1.

Figure 4.12: Package Analysis Settings item shows all the available package metrics
that could be taken into account for the analysis of the project. The user has the
possibility to check or uncheck metrics in order to add or exclude from the analysis.

28

Andrea Casarella Proximity Alert

Box-Plot Settings

Figure 4.13 shows the settings of the box-plot. Most particularly shows the current
thresholds of the green, yellow, orange and red area and allows user to modify them
and recalculate them with the available button formula.

Figure 4.13: BoxPlot Setting item shows the current thresholds of the green, yellow,
orange and red area and allows user to modify them and recalculate them with the
available button formula

29

Andrea Casarella Proximity Alert

Filters

Figure 4.14 shows the FIlters item which is composed by a navigable tree that contains
all project packages and classes with the possibility to check or uncheck them such
that the only the selected entities are taken into account in the analysis. If a user check
or uncheck a package contained in the project automatically all the classes contained
reflect the container visibility. Consider that for any checked class is taken into account
also the package which contains them.

Figure 4.14: Filters item shows a navigable tree that contains all project packages and
classes with the possibility to check or uncheck them such that the only the selected
entities are taken into account in the analysis. The entity displayed are the one of the
Proximity Alert project.

30

Andrea Casarella Proximity Alert

4.5 The Plug-in

The plugin requires Java 1.5 and the Eclipse framework 3.*. It is written in Java, it’s
free and open-source.

The plug-in can be downloaded directly from the official website2 of the Proximity
Alert plug-in , and is also registered in the Eclipse Plug-In Center3.

This document can be found within the Proximity Alert documentation on the official
web-page. Source code and Javadocs can be found on the web site and also in the jar
file.

2http://atelier.inf.unisi.ch/∼casarela/ProximityAlert
3http://www.eclipseplugincentral.com/

31

Chapter 5

Validation

5.1 Introduction

During the creation of the Proximity Alert plug-in we initiated a collaboration with the
X-Ray plug-in’s creator that allowed us to validate and create our system. From this
exiting collaboration we have been able also to perform usage and extension of a pre-
existent system and model it as an extendible framework. Thanks also to this great
experience and partnership in the Eclipse platform contribution we’ve been able to
build our Proximity Alert analysis tool.

In this chapter we validate our work and its applicability in the system design develop-
ment. By using the Proximity Alert plug-in cooperating with X-Ray software visualiza-
tion, we guide users trough all the operations available and drawing some observation
about the current design and the potential changes that could be done of the Proximity
Alert project in order to validate also the usage and realibility of the system.

First we describe how we extracted the source code from the system and loaded the
data for an analysis in our tool. In the second part we present an informal overview
of the results we gathered while we analyzed the software itself using the plug-in. The
results should present useful informations which we are able to extract from the source
code and how the data can be interpreted. We talk then about user interactions and
analysis customization that our system provides.

5.2 From Source Code to Proximity Alert

5.2.1 X-Ray integration and extension

Once is given a project to analyze all the sources are scanned using the X-Ray meta-
model. Used as an external framework Proximity Alert extends the model given and
use it to recreate an extended internal code representation. The code is represented
as a collection of entities, which are concretely defined as project, package and class
representations. The wrap strategy allows the system to use the preexistent model and
extends each entities by performing additional analysis of their composition and their
role in the system.

32

Andrea Casarella Proximity Alert

Figure 5.1 shows how Proximity Alert is executed and how use the X-Ray model in
order to perform extension if it.

Figure 5.1: Proximity Alert system schema shows how Proximity Alert is executed and
how use the X-Ray model in order to perform extension if it.

5.2.2 Metrics Definition

Consider that since informations are extracted directly from the source code using the
Eclipse JDT there are a lot of details that X-Ray meta-model does not extract and once
the model is given they are not more accessible. For this reason we’ve decide for now
to define metrics that could be derived from the available informations given by X-Ray.
Actually we’ve already planned a review of the X-Ray meta-model and the amount of
information that would be useful to access.

Proximity Alert metrics are provided at overall system, package and class level. Metrics
defined by the plug-in are listed and described in the previous chapter in Table 4.1 for
the package level and in Table 4.2 for the class level.

5.2.3 Proximity Alert Views

The views provided by the plug-in allows to browse entities and perform sort actions di-
rectly from the table viewers which contain them. From the class viewer is also possible
to directly double-click on a class and open it in the editor part of Eclipse such that if
user want to look fast at the code of it is able do it in a simple and fast way.

Consider that most of the functionalities that could be done in the table viewers are

33

Andrea Casarella Proximity Alert

now under construction. Actually our decision was first to create a draft of the sys-
tem and collect feedback in order to gather all the impressions of the first users and
use them to perform additional features. The Configuration View allows to customize
completely the analysis, such as metrics inclusion/exclusion, entities filtering and edit
box-plot thresholds.

5.3 Case Study : Proximity Alert

Let us analyze using the Proximity alert plug-in the project itself, As shown in the Figure
4.7 we select the project and choose the action Compute Proximity Alert. Immediately
a bar inform the progress for each entity analyzed in the project so far. Once is finished
opens all the views provided by the plug-in and are shown in the Eclipse UI. For a
graphical convection we expose the ideal position of the views in order to have best
control and view of the plug-in.

As shown in Figure 5.2 the Proximity Alert project is analyzed and the plug-in is ready
for user customization and use. In the bottom of the Eclipse UI we have the Proximity
Alert View which allows to browse the entities analyzed contained as described in the
previous chapter, while in the right side we have the Configuration View which allows
to customize settings and to get general information about the current system analysis.

Figure 5.2: Proximity Alert plug-in in action on its source code immediately after
launched the analysis by selecting the project from the Eclipse workbench.

After this let us we are able to draw some general observation about the project we’ve
just analyzed. Using X-Ray plug-in we have also a graphical support which will allows
us to analyze the source not only based on numbers but also represented as shapes. In

34

Andrea Casarella Proximity Alert

order to analyze the project using he X-Ray plug-in just select the Analyze with X-Ray
action by selecting the same project as the one analyzed with Proximity Alert. Figure
5.3 shows the Complexity View of the Proximity Alert project.

Figure 5.3: X-Ray plug-in system. Figure shows the Complexity View of the Proximity
Alert project.

35

Andrea Casarella Proximity Alert

5.3.1 Packages Analysis

Let us analyze a bit the project given by having a look at the packages defined in it. In
order to do that we simply select the Packages Viewer table available in the Proximity
Alert View.

Figure 5.4 shows the packages contained in the Proximity Alert project.

Figure 5.4: Package Viewer of the Proximity Alert project. By simply clicking on the ta-
ble headers available the table dynamically sorts component allowing faster and simpler
view of the entities contained.

Thanks to the Package Viewer table we can make some observation about the pack-
ages that compose the project. We see that the project is composed by several packages
and sub-packages each of them represented in a row of the table and having a set of
metrics which describe much deeper their composition. As shown in the previous chap-
ter the most important metric defined in this table and in the one of the class entities
is the Proximity Alert Metric which is computed by the formula and depicted with the
Box-plot technique.

We see that the project is composed by three packages which have a very low dan-
ger level, three with a low level, two with a medium level, one with an high and finally
two with a very high danger level. If we look also at all the metrics we could also see
why those entities have those values and why are they under a certain level of danger.
In this case we consider all the available metrics defined for each entity, therefore the
Proximity Alert Metric as described in the previous chapter is computed taking into ac-
count all of them. Given the list of entities we assume which are the most involved and
which have a very high danger level, which means that affecting changes in those enti-
ties could affect behavior, relation with other entities directly dependent or just linked.
If we came back to the table we can interpret better this concept. We also use the X-Ray
plug-in to give a graphical support to the tables.

Consider the views.viewParts package which has a very high danger level. This very
high risk is given in fact because contains classes with an high number of lines of coded
and an high number of fields defined inside them.

36

Andrea Casarella Proximity Alert

Figure 5.5 shows the entity in the table and its representation in the Package Depen-
dency View of the X-Ray pug-in.

Figure 5.5: Package Viewer of the Proximity Alert project. Analysis and view of the
views.viewParts package.

By looking at the metrics values of the views.viewParts package we observe that
this entity is does not have too many relations, in fact it communicates only with two
other entities that are in the base and with the views.actions. Given these depen-
dencies and the names with the related ones it becomes clear that this entity contains
classes which are responsible for creating and maintaining the views provided by our
plug-in.

Given this first observation we also deduce why it contains lot of lines of codes, in
fact those are given because views in SWT require a lot of customization of the widgets
and layout configurations. For that reason we can also make other relevant observation
about the other metrics defined, for example why there’re so many fields defined inside
the package.

Consider now the base package which is the second entity with the higher danger level.
In this case while there are less lines of code and field declared it results havin a very
high risk because of other reason that we could notice from the package composition.

Figure 5.6 shows the entity in the table and its representation in the Package Depen-
dency View of the X-Ray plug-in.

By looking at the metrics values of the base package we can observe that this entity
has many relations, in fact it communicates with four other entities which are the core,
the views.models, the views.labelProviders and the views.viewParts packages.
Also in this case given those dependencies we can make some assumption about the
composition of the considered entity and why it results to have such an high danger
level.

Given the fact that this entity has many relations it’s clear that contains classes which
are in a sense the most involved in the system and the ones that form the intelligence
of whole system. In fact the package contains the model of the internal code represen-

37

Andrea Casarella Proximity Alert

Figure 5.6: Package Viewer of the Proximity Alert project. Analysis and view of the
base package.

tation builded by the Proximity Alert. Since the model is used in more than one part of
the system it’s clear why it has so many relation with the external entities. If we look
much deeper entity’s metrics we can see that it provides a large number of methods but
more over it has many incoming and outgoing calls. That’s could be the main cause of
why it results to have a very high risk. Consider that if we want to change something
in this entity we have to pay attention also to the related entities.

5.3.2 Package Analysis Customization & Filtering

Assume now we want to modify the analysis of the packages and recompute the Proxim-
ity Alert metric by changing the metrics considered in the computation and by modifying
their relevance in order to increase their impact in the results. The customization of
the analysis allows to completely edit the calculation, but in the next releases it will be
possible to edit the entire formula. This allows user to build their own Proximity Alert
formula and apply it to any future analysis.

Once we decide what kind of analysis to perform we switch to the Configuration View
and we select the Package Analysis Settings item which is described in the previous
chapter. We decide to do an analysis that exclude the lines of code and reduce the
relevance of the size metrics such as the number of classes, sub-packages, methods
and increase the relevance of the complexity metrics. In this way we want to see more
precisely which entity as the higher danger level considering the complexity of it, this
means how is involved in term of relations with other entities and vice-cersa. As we can
see in Figure 5.7 the things changes a bit from the previous analysis.

Actually we’ve performed a kind of analysis in order to focus on the complexity of an
entity for still confirm the general analysis that we’ve done before. In fact the base

package result to be the entity most complex of the system and our intuition that it
may contains classes which play central role on the system is now confirmed.

38

Andrea Casarella Proximity Alert

Figure 5.7: Package Viewer and Package Analysis Settings views.

We uncheck the LoC metric in the Package Analysis Settings panel and we decrease
the relevance for the size metrics equal to 0.1, so that the formula compute the new
Proximity Alert Metric value for each entity based on the new settings. Our intent is
to see the entity which has the higher alert value based on its complexity, therefore
we increase the relevance of the complexity metrics equal to 1. The table is refreshed
dynamically and show the new Proximity Alert Metric values.

Assume now we want to filter some entities so that we can see in the lower risk level
entities which one is the most complex, for example we want to consider all packages
excluding the proximityalert.base and the proximityalert.views.viewParts. If
we want to filter some entity so that is not included in the analysis we have to select the
Filters item contained in the Configuration View and uncheck the desired entities.Table
is rebuild with new alert value and risk area.

Total of entities considered in the analysis are visible in the General Information panel
of the same view. Figure 5.8 will show general settings provided in order to perform the
analysis described.

39

Andrea Casarella Proximity Alert

Figure 5.8: Package Viewer, General Information and Filters views.

5.3.3 Classes Analysis

Consider now we want to perform at class level our analysis. In order to do that we
simply select the Classes Viewer table available in the Proximity Alert View. Figure 5.9
shows the classes contained in the Proximity Alert project.

Using the Classes Viewer table we can further investigate on the composition of the
project. It visible that the project is composed by a set of classes each of them repre-
sented in a row of the table, showing the set of metrics that describe much deeper their
composition. As before the most important metrics defined in the table is the Proximity
Alert Metric which is computed by the system based on the analysis settings.

By browsing the entities inside the table we’ve the possibility to have general impres-
sion about the composition of them. In this case all the metrics available are taken
into account in the analysis. Thanks to the Box-plot technique we have color depiction
which help us visualize better entities and their danger level. Given the list of entities
and the depiction we can assume which are the most involved in the system and which
have an high risk level, which means that affecting changes in those entities could af-
fect behaviors and relations with the other entities directly dependent or just linked. As
before we came back to the table to interpret better this concept. We also use the X-Ray
plug-in to give a graphical support to the tables.

Let us analyze a class which has a very high proximity alert value, for example the
ConfigurationViewer class. The very high danger level is given, in this case, because
of the values of the metrics considered in the analysis, more over by looking at the value
of them it visible that this class has a large number of lines of code and also a large
number of fields declared.

40

Andrea Casarella Proximity Alert

Figure 5.9: Classes Viewer of the Proximity Alert project. By simply clicking on the ta-
ble headers available the table dynamically sorts component allowing faster and simpler
view of the entities contained.

Figure 5.10 shows the entity in the table and its representation in the Complexity View
of the X-Ray plug-in.

Figure 5.10: Classes Viewer of the Proximity Alert project. Analysis and view of the
ConfigurationViewer class.

By looking at the metrics values of the ConfigurationViewer we can observe that
this entity is does not have too many relations, in fact it communicates only with one
other entity the ProjectWrap class. Given this dependency and the names it becomes
clear that this entity is responsible for creating and maintaining the Configuration View
of our plug-in. It is therefore legal a collaboration with the class mentioned and its
very high danger level is given because it means that changes inside this class could
be dangerous. Metrics in this case play a central role, in fact they can help us to un-
derstand the entity composition and by following design rules we can detect identity

41

Andrea Casarella Proximity Alert

disharmonies [LM06].

If we look also at the code, by just double-clicking on the class, it’s visible that the
code is not so permissive for changes and ease addition of new features. Our analysis
highlighted that this class can become potentially a God Class, which tends to cen-
tralize the intelligence of the system performing too much work on its own, delegating
only minor details to a set of trivial classes and using the data from other classes. This
has a negative impact on the reusability and the understandability of that part of the
system [LM06].

Therefore, to have a better design, we should consider to re-design this class and divide
it into multiple classes,each of them with its responsibility and behavior.

5.3.4 Classes Analysis Customization & Filtering

Assume now we want to modify the analysis of the classes and recompute the Proximity
Alert Metric by changing the metrics considered in the computation and by modifying
their relevance in order to increase their impact on the results.

Once we’ve decide what kind of analysis we want to perform we switch to the Con-
figuration View and we select the Classes Analysis Settings item which is described in
the previous chapter. We decide to do an analysis that exclude the lines of code and
reduce the relevance of the size metrics such as the number of fields, methods and
increase the relevance of the complexity metrics. In this way we want to see more pre-
cisely which entity as the higher danger level considering its complexity, meaning how
it is involved in term of relation white the other entities and vice-cersa. As we can see
in Figure 5.11 the things changes again from the previous analysis.

Actually we perform a kind of analysis focusing on the complexity of an entity in order
to confirm the general analysis that we’ve done in the package analysis. In fact the
ProjectWrap class is an entity of the base package which in the similar analysis done
previously results to be the entity most complex of the system, therefore our intuition
that the base package may contains classes which play central role on the system is
again confirmed.

We uncheck the LoC metric in the Classes Analysis Settings panel and we decrease
the relevance for the size metrics to 0.1, so that the formula will compute the new Prox-
imity Alert Metric value for each entity based on the new settings. Our intent is to see
the entity which has the higher danger level based on its complexity, therefore we in-
crease the relevance of the complexity metrics to 1. The table is refreshed dynamically
and shows the new Proximity Alert values.

Assume now we want to analyze only a certain set of classes, let say we want to analyze
only the entities contained in the base and core packages. If we want to filter some
entity so that is not included in the analysis we have to select the Filters item contained
in the Configuration View and uncheck the desired entities.Table is rebuild with new
alert value and risk area. Total of entities considered in the analysis are visible in the
General Information item on the same view. Figure 5.12 shows the Classes Viewer,
General Information and Filters with the performed settings involved in the analysis.

42

Andrea Casarella Proximity Alert

Figure 5.11: Classes Viewer of the Proximity Alert project. Analysis and view of the
ProjectWrap class.

Figure 5.12: Classes Viewer, General Information and Filters views.

43

Andrea Casarella Proximity Alert

5.3.5 BoxPlot Settings

Is possible that Proximity Alert Metric value differs a lot because of the computation
and the value of the metrics taken into account. This can cause big gap between val-
ues of classes and the box-plot technique could depict in high danger level also classes
which are indeed very easy and does not have a big involvement in the system, such
Data classes. We decide therefore to allowing modification on the box-plot’s thresholds
in order to group class also following customization of the user.

Figure 5.13 shows how the table changes when new values in the BoxPlot Settings
panel are inserted for each color area thresholds, in this case we consider the class
level.

Figure 5.13: Classes Viewer of the Proximity Alert project. On the left there’s the initial
table and on the right the new one. Settings of the Box-plot threshold are visible on top
of them.

44

Chapter 6

Conclusions

6.1 Achieved Goals

So far the plug-in provides the following features:

• System analysis and metrics extension

• Proximity Alert view

• Configuration view

At this time these functionalities result to be useful for analyzing small and medium
sized projects. Thanks to the integration and extension of the X-Ray meta-model our
system give a basic and relevant support of system analysis.

With the Proximity Alert View the user can access to the project content such as classes
and packages and perform set of action which could be useful to browse easier enti-
ties analyzed. By using the Configuration View the user can manually configure the
analysis such as check/uncheck metrics and modify their relevance index, customize
the box-plot thresholds and also filters the set of entities for the analysis. Products
of each action performed by the user are shown dynamically in order to improve user
responsiveness and interactions.

6.2 Future Work

For the future releases of the system, we will refactor the code, fix the known bugs and
manage visualization limitations, and obviously add more features. Our intent is to give
to the user the most detailed model of a given project, therefore we decide not only to
extend the Proximity Alert plug-in but also collaborate with the extension of the model
of X-Ray by performing an active cooperation between the two models.

6.2.1 Model Analysis

In the next releases the model will perform deeper analysis and more metrics definition
which could be useful for the scope of our system. The intention is also to extend the
model by not only giving an analysis of the package and class entities but also at the
method layer. By performing such a deep scan could be also possible to consider the
body implementation of the methods.

45

Andrea Casarella Proximity Alert

6.2.2 Metrics

By having a more deeper analysis we are able to define more metrics measures by also
integrating the most common software metrics. We want also integrate a full customiz-
able system of metrics creation in which user can define metrics store them and reuse
by applying them to any analyzed system. This new features will certainly increase the
analysis details.

6.2.3 View Functionalities

The views in the next releases the views will also have more functionalities which allows
users to perform any kind of operations from any point. All tables will perform more
selection actions in order to simplify plug-in usage. The Configuration View will give
more customization actions.

By collaborating with the creator of the X-Ray plug-in our intent is to reach a fully
contribution not only for the models but also by interacting with the views.

6.2.4 Analysis Customization

The most interesting feature that we want to add in the future releases is also the full
customization of the Proximity Alert formula which define the value of the Proximity
Alert Metric. The user will be unlimited to perform any kind of operation on the defined
metrics and also define new ones which can be integrated in the calculation.

6.3 Bugs & Limitation

So far we know just these bugs and limitation of our system and we can summarize
them in these categories:

• Scalability - Since this is a first implementation we need to work more on the
scalability by performing a deeper analysis and performing more test that can
increase reliability and can be helpful to analyze high-sized projects.

• Visualization - With very big project view often get stuck because of refreshing
problems which is managed by SWT in a non always comprehensive way. Also
scroll bars, for unknown reasons and under certain situations, doesn’t appear but
by refreshing the whole Eclipse UI all get its normal behavior.

46

Appendix A

Implementation

A.1 Proximity Alert core

The core of the project is composed by the Proximity Alert model which is composed by
some classes which is composed by the internal code representation of X-Ray plug-in
extended by wrapper which perform deeper description of the entities.

A.1.1 Class description

• EntityWrap

Abstract class which represents an abstract entity. It contains all attributes which
can be abstract for any possible concrete entity. It use the Proximity Alert class
in order to compute the value of the metric.

• ClassWrap

Concrete class which extends EntityWrap class. In the internal code representa-
tion it has the role of the class entity which perform metric extensions.

• PackageWrap

Concrete class which extends EntityWrap class. In the internal code represen-
tation it has the role of the package entity which perform metric extensions. It
is responsible to perform analysis in the classes which compose it by considering
entity visibility.

• ProjectWrap

Concrete class which extends EntityWrap class. In the internal code representa-
tion it has the role of the project entity which perform metric extensions, handle
entities visibility and keep trace of the whole internal code representation. It col-
laborate with the BoxPlot class in oder to perform depiction in danger areas of
each entity considered in the analysis.

• BoxPlot

This class define the Box-plot techinique which performs operations in order to
depict entities in group areas based on the Proximity Alert Metrics of a given set of
entities considered for the analysis.

47

Andrea Casarella Proximity Alert

• ProximityAlert

This class takes an EntityWrap as input and perform calculation on all the set
of considered metrics and their relevances and the result will be set to the given
entity as proximity alert metric value.

A.1.2 UML

Class diagram

Figure A.1: Class Diagram of the Proximity Alert plug-in core model.

48

Andrea Casarella Proximity Alert

Sequence diagram

Figure A.2: Sequence Diagram of the Proximity Alert computation of the analysis.

49

List of Figures

2.1 JHawk System view containing a list of the packages analyzed. 7

2.2 JHawk Package view containing a list of the classes analyzed of a particu-
lar package. 8

2.3 JHawk Class view a list of the classes analyzed of a given project. 8

3.1 Eclipse Workbench UI is a collection of windows. Each window contains a
menu bar (layout OS dependent), a toolbar, a shortcut bar and one or more
perspectives. 10

3.2 Eclipse Platform architecture showing its major components. 11

3.3 Proximity Alert plug-in declaration plug-in manifest with lines highlight-
ing how the plug-in manifest references various plug-in artifacts 12

4.1 Proximity Alert plug-in analyzing itself. The view displayed is the Pack-
age Viewer table and the Configuration View. 13

4.2 A simplified view of the X-Ray Internal Code Representation meta-model. 14

4.3 X-Ray plug-in allows to have access to the internal code representation of
a modeled project. 15

4.4 A simplified view of the Proximity Alert model using the ModelExtractor
given by the X-Ray plug-in. 16

4.5 Box-Plot technique. 21

4.6 BoxPlot depiction in area color of the Proximity Alert metric. 21

4.7 Proximity Alert plug-in adds an action that will be visible after right-
clicking on a project in the Package Explorer (In this example, the Prox-
imity Alert project itself). Clicking on Compute Proximity Alert action,
Proximity Alert views will be activated and shown. 23

4.8 Proximity Alert view showing the Package Viewer of itself. 24

4.9 Proximity Alert view showing the Class Viewer of itself. 25

4.10General Information item of the Configuration View shows general infor-
mation about the project analyzed such as the name and the number of
packages, classes, interfaces, fields, methods, dependencies and lines of
code contained in it. In this case shows information about the Proximity
Alert project itself. 26

4.11Class Analysis Settings items shows all the available class metrics that
could be taken into account for the analysis of the project. The user has
the possibility to check or uncheck metrics in order to add or exclude from
the analysis. 27

50

Andrea Casarella Proximity Alert

4.12Package Analysis Settings item shows all the available package metrics
that could be taken into account for the analysis of the project. The user
has the possibility to check or uncheck metrics in order to add or exclude
from the analysis. 28

4.13BoxPlot Setting item shows the current thresholds of the green, yellow,
orange and red area and allows user to modify them and recalculate them
with the available button formula . 29

4.14Filters item shows a navigable tree that contains all project packages and
classes with the possibility to check or uncheck them such that the only
the selected entities are taken into account in the analysis. The entity
displayed are the one of the Proximity Alert project. 30

5.1 Proximity Alert system schema shows how Proximity Alert is executed and
how use the X-Ray model in order to perform extension if it. 33

5.2 Proximity Alert plug-in in action on its source code immediately after
launched the analysis by selecting the project from the Eclipse workbench. 34

5.3 X-Ray plug-in system. Figure shows the Complexity View of the Proximity
Alert project. 35

5.4 Package Viewer of the Proximity Alert project. By simply clicking on the
table headers available the table dynamically sorts component allowing
faster and simpler view of the entities contained. 36

5.5 Package Viewer of the Proximity Alert project. Analysis and view of the
views.viewParts package. 37

5.6 Package Viewer of the Proximity Alert project. Analysis and view of the
base package. 38

5.7 Package Viewer and Package Analysis Settings views. 39
5.8 Package Viewer, General Information and Filters views. 40
5.9 Classes Viewer of the Proximity Alert project. By simply clicking on the

table headers available the table dynamically sorts component allowing
faster and simpler view of the entities contained. 41

5.10Classes Viewer of the Proximity Alert project. Analysis and view of the
ConfigurationViewer class. 41

5.11Classes Viewer of the Proximity Alert project. Analysis and view of the
ProjectWrap class. 43

5.12Classes Viewer, General Information and Filters views. 43
5.13Classes Viewer of the Proximity Alert project. On the left there’s the initial

table and on the right the new one. Settings of the Box-plot threshold are
visible on top of them. 44

A.1 Class Diagram of the Proximity Alert plug-in core model. 48
A.2 Sequence Diagram of the Proximity Alert computation of the analysis. . . 49

51

List of Tables

4.1 Package Metrics provided by Proximity Alert analysis. 18
4.2 Class Metrics provided by Proximity Alert analysis. 19
4.3 Box-Plot thresholds. 21

52

Bibliography

[BDW06] Gary Pollice Brett D.McLaughilin and Dave West. Head First Object-Oriented
Analysis & Desing. O’Reilly Media, Inc., 1st edition, 2006.

[CR06] Eric Clayberg and Dan Rubel. Eclipse - Building Commercial-Quality Plug-ins.
Addison Wesley, 2nd edition, 2006.

[KJM89] Lieberherr Karl J and Ian M.Holland. Assuring good style for object-oriented
programs. IEEE Software, 1989.

[LD02] Michele Lanza and Stephane Ducasse. Beyond language independent object-
oriented metrics: Model independent metrics. QAOOSE, 2002.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice - Using
Softwaare Metrics to Characterize, Evaluate and Improve the Design of Object-
Oriented Systems. Springer, 2006.

[Mal07] Jacopo Malnati. X-ray, an eclipse plug-in for software visualization. Master’s
thesis, University of Lugano, 2007.

53

	Abstract
	Acknowledgments
	Introduction and Motivation
	Project Overview
	Goal of the work
	Structure of the Document

	Software Analysis
	Software Complexity Analysis
	Static and Dynamic Analysis
	Utilization of metrics

	Related Works & Tools
	Law of Demeter
	JHawk

	Eclipse
	Foundation and Community
	Platform Overview
	Platform Architecture
	Plug-in structure

	Proximity Alert
	The Idea
	Meta-Models
	X-Ray Internal Code Representation
	Proximity Alert Model

	Software Metrics
	Proximity Alert plug-in metrics
	Proximity Alert Metric
	Box-Plot
	Proximity Alert Metric and Box-Plot

	Views
	Views Initialization
	Proximity Alert View
	Configuration View

	The Plug-in

	Validation
	Introduction
	From Source Code to Proximity Alert
	X-Ray integration and extension
	Metrics Definition
	Proximity Alert Views

	Case Study : Proximity Alert
	Packages Analysis
	Package Analysis Customization & Filtering
	Classes Analysis
	Classes Analysis Customization & Filtering
	BoxPlot Settings

	Conclusions
	Achieved Goals
	Future Work
	Model Analysis
	Metrics
	View Functionalities
	Analysis Customization

	Bugs & Limitation

	Implementation
	Proximity Alert core
	Class description
	UML

