
Lateralus
Visual analysis of SVN commit history

Christian Caggiano

Supervised in 2009 by
Prof. Michele Lanza

Abstract

The purpose of this project is to implement an appealing and information bearing visu-
alization feedback of the lifetime of a software system, based on addition, deletion and
modication of the les composing the mentioned system. In particular to visualize the
relevant modication of a software project, and changes that occur during collaborative
development.
This tool is intended to give a visual interpretation to modifications, related to the de-
velopment of a project, and monitor the evolution of a software system through time,
based on the log les of the SVN versioning system.
Given the denition of software visualization: Software Visualization is con- cerned with
the static or animated 2-D or 3-D visual representation of information about software
systems based on their structure, history , or behavior. Software Visualization sup-
ports the understanding of software systems and algorithms and helps identifying their
anomalies.
The proposed solution is a visual software evolution analysis tool, developed with Pro-
cessing 1.0+ programming language, that allows to visualize relevant information and
characteristics about the lifetime of a system, in particular:
Support the understanding of the software system Analyze the system development to
track anomalies Maximize the amount of relevant information about the system

i

Acknowledgments

I want to thank professor Lanza for his patience, support and for the precious ad-
vise and my family for their unconditional support, love and patience. Also I’d like
to thank all my friends and peers at the faculty, Jacopo, Marco, Daniele, Alessandro,
Andi, Alessio, Gilli and Paolo, and part of the academic staff of the faculty, in particular
Marco D’Ambros and Richard Wettel.

ii

Contents

Acknowledgments ii

1 Introduction 1
1.1 Perception and Cognition . 1
1.2 Analytical Reasoning . 2
1.3 Three levels of Brain Vision . 2
1.4 Preattentive Processing . 3

1.4.1 Preattentive Attributes . 3

2 Software Visualization 5
2.1 Historical overview . 5

2.1.1 Petroglyphs . 5
2.1.2 Maps and Historical Imagery . 6
2.1.3 Modern Scientific Visualization . 6

2.2 Applied Software Visualization . 7
2.3 Software Evolution Visualization . 9

3 Related Work 11
3.1 Software Visualization Tools . 11

3.1.1 CodeCrawler . 11
3.1.2 X-Ray . 12

3.2 Software Evolution Visualization Tools . 13
3.2.1 CodeCity . 13
3.2.2 Chronia . 13
3.2.3 BugCrawler . 14
3.2.4 Code Swarm . 15

4 Lateralus 16
4.1 Idea . 16
4.2 Overview . 16
4.3 Features . 17
4.4 Visual Metaphors . 17

4.4.1 Abstraction and Rendering . 17
4.4.2 Visualizing Files: Squares and Cubes 18
4.4.3 Visualizing Age: Layout and Position 18
4.4.4 Visualizing Changes: Heat map . 19

4.5 Views . 21
4.5.1 2D View . 21
4.5.2 3D View . 21
4.5.3 Experimental 3D View . 21

4.6 Implementation . 23
4.6.1 Behavioral View . 23

iii

Christian Caggiano Lateralus

4.6.2 Structural View . 24
4.7 Components . 24

4.7.1 Subversion SVN . 24
4.7.2 Processing . 24
4.7.3 External libraries . 25

5 Lateralus Validation 26
5.1 GNOME Applications . 26

5.1.1 Test Case 1: Nautilus . 26
5.1.2 Test Case 2: Epiphany . 30
5.1.3 Test Case 3: Totem . 36

6 Conclusion 41
6.1 Future Work . 41

iv

List of Figures

1.1 Attentive Processing An example of attentive processing 3
1.2 Preattentive Processing An example of preattentive processing 3
1.3 Graphical primitives Example of preattentive attributes. 4

2.1 Petroglyphs Rock paintings from 30’000 years ago. 6
2.2 Historical Atlas of Europe Historical map from the 16th century 7
2.3 Example of Scientific Visualization 3D Scatterplot with heat map 8
2.4 Evolution Radar An example of a software evolution visualization tool. . . 9

3.1 CodeCrawler Package dependecy view. 11
3.2 XRay A screenshot of XRay System complexity view 12
3.3 XRay class dependency view . 12
3.4 CodeCity A visualization of CodeCity made with CodeCity. 13
3.5 A screenshot of Chronia with a view of the ownershipmap. 14
3.6 BugCrawler A screenshot of BugCrawler. 14
3.7 Code Swarm A screenshot of code swarm’s organic information visualiza-

tion. 15

4.1 General View A general overview of Lateralus 17
4.2 Visual Metaphor System view containing a list of the packages analyzed. 18
4.3 Added Files metaphor Visual metaphor of added files. 18
4.4 Lateralus 2D layout steps of the layout procedure of added files 19
4.5 Heatmap Example An USGS earthquake distribution on the U.S. 19
4.6 Lateralus 2D 2 dimensional gray-scale Heat map 20
4.7 Lateralus 3D Color scheme of the 3d Heat map. 20
4.8 2D View 2Dimensional view of a commit history in gray-scale mode. . . . 21
4.9 3D View View of a commit history in color mode. 22
4.103D experimental view 3 Dimensional experimental view of a commit his-

tory in colors. 22
4.11Lateralus behavioral process flow of Lateralus 23
4.12Lateralus System view Class diagram of Lateralus. 24

5.1 Nautilus The first 5000 frames of the nautilus commit history 27
5.2 Nautilus Animation frames from 5000 to 12’500 of the nautilus commit

history . 28
5.3 Nautilus Animation frames from 15’000 to 35’000 of the nautilus commit

history . 29
5.4 Nautilus Animation frames from 45’000 to 55’000 of the nautilus commit

history . 31
5.5 Nautilus Animation frames from 65’000 to 88’100 (final state) of the nau-

tilus commit history . 32
5.6 Epiphany The first 500 frames of the epiphany commit history 33

v

5.7 The first 5000 frames of the epiphany commit history 34
5.8 The frames from 7’500 to 23’500 of the epiphany commit history 35
5.9 Animation frames at 30’100 of epiphany commit history 36
5.10 The first 500 frames of the totem commit history 37
5.11 Totem commit history frames 1000-6000 38
5.12 Totem commit history frames 8000-16500 39
5.13 Totem commit history frames 17100 . 40

Chapter 1

Introduction

Information is an elaborate process that attributes meaning to data sets, because of the
complexity of the data and the attached semantics it is usually not easy to present in
an effective way. Software systems can be regarded also as collections of large pieces
of information. The development process of a software system creates a large number
of data (the classes composing the system), thanks to visualization techniques there
exists the possibility to explore this development process as an evolution of the system.

The challenge of making information easily available and understandable and to
communicate to people the salient concepts, cannot avoid looking into the field of per-
ception and cognition.

Therefore the main motivation behind this project is to understand how software
systems evolve. As shortly discussed in the previously software systems have become
complex artifacts that sometimes not even the creators are capable of understanding
completely, thus to comprehend such a complex artifact it is necessary to reason in
depth about the system. To think is the operation skill with which our intelligence acts
(together with experience) for the purpose of understanding something.

A large number of articles have been published on the visual perception process,
some of them concentrate the attention on the physiological foundations of our vision
to try to infer more knowledge about the process of awareness and understanding in
the context of visualization . The basis for the efficiency of information transmission as-
sociated with images, resides in the perceptive and cognitive processes of our brain[?].

1.1 Perception and Cognition

”Visual organization is the deliberate prioritization of meaning within a visual
design. Its the process of applying the principles behind perception - how we
make sense of what we see - to illuminate relationships between content and
actions.” - Luke Wrobleski

According to research evidence, visual senses have the predominant role in our ca-
pacity of sensing the world around us, what and how we see largely depends on how
our brain acquires and processes the information gained through vision. Depictions
of abstract concepts allow a visual sensorial experience, that assists the sense making
process in complex situations.

The term perception is defined as the process in which a subject becomes aware
of something through senses. Cognition on the other hand, is defined as the mental
process of acquiring knowledge and understanding through senses.

1

Christian Caggiano Lateralus

In this work the idea is to apply principles of perception and cognition to a visual
software analysis tool to gather an intuitive understanding of the development process
of software systems.

1.2 Analytical Reasoning

When we try to understand something that we don’t have knowledge about, a common
mode of operation is to induce the sense making process by applying analytical rea-
soning techniques, these techniques help to structure information into understandable
pieces that can be further processed and understood. Analytical reasoning techniques
deal with an arbitrary set of conditions, such as the number of files in a system or the
number of modifications and on the basis of the information presented, we try to make
deductions about the relationships present in the system.

In this context visualization tools and techniques perform great as support analytical
reasoning and are therefore very useful for gaining deeper understanding. Let’s see how
an image is useful to improve the understanding process. When we look at a depiction
of something we get a first impression, when this happens our brain deals with this new
information input keeping it in a buffer-like memory storage that is commonly called
short term memory.

After an image has been processed by our short term memory, the brain can start
working with new meaningful concepts that have been ordered and stored in our mem-
ory. Analytical reasoning techniques simplfy ad accelerate the understanding process
of a complex subject giving intuitive knowledge of abstract concepts

The intention of visualization in this context is to improve the process of data pre-
sentation to support a deeper analytical reasoning about the subject being studied.

1.3 Three levels of Brain Vision

In the next section will present briefly, the way our brain deals with visual information
inputs and how this information is processed. Researchers in the field of perception and
cognition, like Colin Ware and Stephen Few, showed how our brain sees and processes
the information around us. Common accepted theories in these fields state that we see
with our brain at three different levels:

• Iconic memory: a specialized type of short term memory, it has a buffer-like
recording capability that stores the images seen for less than a second before
passing it to the short term memory. This kind of memory is able to store 3 to 7
elements for a very short time.

• Short Term Memory: also called primary memory, it allows to store small amount
of information in mind for immediate availability of information for a short period
of time (usually a couple of seconds). This memory is able to store from 5 to 9
elements

• Long Term Memory this is what we usually define as memory, namely the collec-
tion of our memories. This memory has unlimited capacity in terms of space and
persistance.

2

Christian Caggiano Lateralus

1.4 Preattentive Processing

[?]Given our extraordinary cognitive abilities, it’s incredible that all of this is achieved
using short-term memory that can only hold from three to seven chunks of data at a
time. This limitation must be considered when designing data presentations.

In this section I will present the basic concepts on which Lateralus is based, the
idea behind the visualizations produced by the tool is to make leverage on the Iconic
Memory and exploit the way it operates.

Preattentive processing is the operating skill which Iconic Memory uses, it is consid-
ered to be an iconic buffer in our brain, that keeps the images we see for approximately
250 millisecond before transmitting it to the short term memory, for further processing
and sense making, this feature of our visual apparatus allows an instantaneous cate-
gorization of objects without conscious thought.[?][?]

The motivation behind Lateralus is that in order to improve the process of perception
and cognition of the data being presented, a particular procedure taking preattentive
processing techniques into account, needs to be used in order to present data to the
user, in the most efficient way possible.

Figure 1.1: Attentive Processing An example of attentive processing

[?]Preattentive processing is an early stage of visual perception that occurs in iconic
memory without conscious thought. It lets us rapidly recognize particular visual at-
tributes that make certain things stand out or cause us to perceive visual groupings.

Figure 1.2: Preattentive Processing An example of preattentive processing

Preattentive processing refers to an organization of the depicted information based
on cognitive procedures believed to be fast and performed at unconscious level, in
other words these features allow certain symbols and shapes to be distinguished clearly
among others due to their special attributes (called preattentive attributes) which will
be discussed more in detail in the next section.

1.4.1 Preattentive Attributes

A researcher named Stephen Few, identified a list of primitive graphical elements that
are perceived by our brain without conscious processing. Preattentive attributes are

3

Christian Caggiano Lateralus

primitive graphical elements and their relationships among each other that allow infor-
mation to stand out without an intentional processing of these elements.The character-
istic graphical features are listed below, they encompass the basic properties of every
graphical depiction, namely hue and intensity.

[?]A preattentive attribute is a feature of complex information graphics that uses the
cognitive feature of preattention to highlight the graphic’s salient points in a manner
that is most readily perceived by humans.

Figure 1.3: Graphical primitives Example of preattentive attributes.

The preattentive attributes are features that are particularly useful to categorize and
discriminate shapes among a larger collection of objects that are similar to each other.
These visual features of our optical system can be exploited to improve the process of
data representation and improving the effectiveness of information visualization.

4

Chapter 2

Software Visualization

Information visualization is concerned with the study of the visual depiction of large
sets of abstract information.
Complex software systems can be also considered as large sets of abstract data not eas-
ily understandable, the idea is to make use of graphical techniques to help the process
of awareness about a complex construct such as computer programs can be.
Stephen Few makes clear why and how visualization can be helpful in the understand-
ing process.

”Why should we be interested in visualization? Because the human visual
system is a pattern seeker of enormous power and subtlety. The eye and the
visual cortex of the brain form a massively parallel processor that provides the
highest-bandwidth channel into human cognitive centers. At higher levels of
processing, perception and cognition are closely interrelated, which is the rea-
son why the words ”understanding” and ”seeing” are synonymous. However,
the visual system has its own rules. We can easily see patterns presented in
certain ways, but if they are presented in other ways, they become invisible....
If we can understand how perception works, our knowledge can be translated
into rules for displaying information. Following perception-based rules, we can
present our data in such a way that the important and informative patterns
stand out. If we disobey the rules, our data will be incomprehensible or mis-
leading.” - Stephen Few

2.1 Historical overview

The idea of using images to depict concepts difficult to describe reaches far back into
time, I will present some examples of how visualizing abstract concepts brought deeper
understandings and provided an effective information vehicle.

2.1.1 Petroglyphs

The first examples of depiction of complex actions can be considered the prehistorical
cave drawings. Although the purpose of the paleolithic cave paintings is not known,
some theories suggest that their was to transmit information, another theory instead
suggests that these drawings might have a religious or ceremonial purpose, in both
cases a picture could be much faster in transmitting information and be more descrip-
tive than an oral explanation, even more so if the language is not evolved enough to
vehiculate the information properly. Thus petroglyphs became the primary information

5

Christian Caggiano Lateralus

Figure 2.1: Petroglyphs Rock paintings from 30’000 years ago.

transmission vehicle.
35000 years ago when our ancestors wanted to communicate complex information
about an elaborate action, like a hunt or tribal warfare, to the rest of his clan, he
surely could have tried to describe it in words, but the prehistorical language almost
certainly wouldn’t have been evolved enough to communicate effectively every impor-
tant aspect.

2.1.2 Maps and Historical Imagery

As mentioned before, the strength of information visualization resides in its fast trans-
mission of complex information constructs, for example the depiction of an area of land
or sea allows spatial understanding of a given area and helps orientation. Information
of this kind are vital particularly in military, geographic and political contexts.

In military situations a map is a fundamental tool to allow strategists to get the big
picture of the battlefield and position the troops and to take into account strengths
and weaknesses of the terrain. Maps were and still are of extreme importance for
navigation purposes, geographical representations are the origin and starting point of
any geographical exploration

There exists a large number of different cartographic representations, road maps are
the most widely diffuse maps nowadays, navigational maps with aeronautical and nau-
tical charts, railroad network maps (see Figure 2.2). In addition to information about
localization, maps can be used to depict additional information like elevation, tempera-
ture, rainfall, human density and so on.

2.1.3 Modern Scientific Visualization

Scientific visualization focuses on the use of computer graphics to create visual im-
ages which aid in understanding of complex, often massive numerical representation of
scientific concepts or results.[3]

Scientific visualization applications are found in numerous fields from natural sci-
ence, geography, ecology, formal sciences and applied sciences. The large diffusion that
these techniques have in the scientific community, demonstrates the practical utility of
visualization tools and techniques in conveying information rapidly.In figure2.3 an ex-
ample of scientific visualization.

6

Christian Caggiano Lateralus

Figure 2.2: Historical Atlas of Europe Historical map from the 16th century

In the early 90’s visualization helped to achieve great breakthroughs and new under-
standings in scientific areas such as chemistry, biology and physics through molecule
modeling, simulations of physical forces, DNA sequencing and weather phenomena to
cite a few.

2.2 Applied Software Visualization

The purpose of visualization techniques, is to depict complex system with simple visual
metaphors in order to facilitate the cognition of the data being presented.
The most important feature of a visualization system should be to break down the com-
plexity into an easier to understand system with an instantaneous information feed-
back. This tasks of visualization was clearly identified and described in a report for the
U.S National Science Foundation, written in 1987 by B. McCormick.

Research evidence in the field of visual perception lead to the conclusion that con-
firms the hypothesis of the power of images as a medium to divulge information.

Information visualization is concerned with representing data with a visually speak-
ing metaphor in order to obtain deeper understanding about symptoms that can help
to spot and identify anomalies.

Due to technological development, visualization techniques can be applied to diverse
fields ranging from aeronautical engineering through scientific and medical research up
to applied science. Software engineering also benefits from visualization techniques, a
branch of software engineering explicitly deals with the depiction of complex software
constructs and analyzes their key features and their evolution though time.

In software systems, entities that can be analyzed to understand are files, on top
of that other secondary entities can be used to gather information about the system
being analyzed. Visualization techniques can give information about complex systems
without a conscious thought about the system itself, it is therefore applied when an
abstract or concrete concept that have to be described and understood are too difficult

7

Christian Caggiano Lateralus

Figure 2.3: Example of Scientific Visualization 3D Scatterplot with heat map

or too expensive to convey in terms of time or words.
The results of applying visualization techniques to software showed to be a useful

approach to comprehend the relationships and interactions of large software systems.
To understand better we can make an example, if we reason about the way we per-

ceive the world, namely through the interaction of our vision and our brain, and we
then consider how images speak to us more than complex textual or spoken descrip-
tions we finally understand the real effectiveness of visualization tools especially when
applied to software sysems.

Software visualization deals with the visual representation of large non-numerical
data sets, taking into account entities like files and lines of code in software systems.
It is intended to give information about the system being depicted through visual feed-
back without having the developer look at the source code.

The goal of applying research evidence from the fields of perception and cognition is
to improve the analytical reasoning process and as consequence a gain deeper under-
standing of the system in its completeness.

As mentioned before, there is a scientific motivated inspiration for the choice of
analyzing a system through the visual senses, since software visualization amplifies
the cognitive potential through the increase of the cognitive resources at disposal for
analysis.

Software visualization increases the cognitive resources, this is accomplished by re-
ducing search efforts, enhancing the recognition of patterns and sustain the monitoring
of large numbers of events to spot relationships otherwise difficult to grasp.

”Scientists need an alternative to numbers. The use of images is a technical reality
nowadays and tomorrow it will be an essential requisite for knowledge. The ability of
scientists to visualize calculations and complex simulations is absolutely essential to
ensure the integrity of analyses, to promote scrutiny in depth and to communicate the
result of such scrutiny to others... The purpose of scientific calculation is looking, not
enumerating. It is estimated that 50% of the brain’s neurons are associated with vision.
Visualization in a scientific calculation is aimed at putting this neurological machinery

8

Christian Caggiano Lateralus

to work”.[?]
It has been observed that making an optical depiction of a complex construct, im-

proves short term memory dramatically. Another positive feature that arises is the
ease in the recognition of patterns when information is organized in space, taking into
account its time relationships.

According to J.J Thomas and K.A. Cook, there are six basic ways in which we can
experience an increase in the cognitive resources at our disposal, in their book, they
are identified as follows:

by increasing cognitive resources, such as by using a visual resource to expand hu-
man working memory, by reducing search, such as by representing a large amount of
data in a small space,
by enhancing the recognition of patterns, such as when information is organized in
space by its time relationships,
by supporting the easy perceptual inference of relationships that are otherwise more
difficult to induce
by perceptual monitoring of a large number of potential events, and
by providing a manipulable medium that, unlike static diagrams, enables the explo-
ration of a space of parameter values.[?]

The positive features of visualizations lie in the power of representing a large amount
of data in a small space making information patterns and relationships pop out. Thus
through the depiction it is possible to modify the understanding of a complex and ab-
stract construct

2.3 Software Evolution Visualization

Visual software evolution analysis takes advantage of research evidence in the field of
perception, cognition and information processing in order to improve the insight and
sense making about the system being observed.

[?]The goal of software evolution research is to use the history of a software system
to analyse its present state and to predict its future development.

Figure 2.4: Evolution Radar An example of a software evolution visualization tool.

9

Christian Caggiano Lateralus

Many software systems are built by larger communities. Collected data shows that
during the development process, each developer may change substantially the system
with its modifications. Each of these changes define new revisions of the project, and if
considered useful they become part of the system. In this sense a software development
process has traits that resemble those in human evolution,In the theory of evolution
genetic alterations that result in better adaptation to the environment are preserved,
the same approach exists in software development and constructs are modified through
time keeping the modifications that suit at best. As we have seen the central aspect of
evolution of software systems is related to changes, in ?? a screenshot of Evolution
Radar 2.4 written by Marco D’Ambros, a tool that deals with the evolution of software
systems. With Lateralus the focus is on the analysis of these modifications and try
to produce a visual interpretation in order to infer additional information about the
subject at hand. In the next section I will present some examples of how visualization
tools can broaden the understanding of software systems.

10

Chapter 3

Related Work

3.1 Software Visualization Tools

In this section I presented some related research work that has been done in the area
of software visualization in general and the evolution of software in particular. There
are several tools that deal with code visualization, here are two examples.

3.1.1 CodeCrawler

CodeCrawler is a language independent reverse engineering tool which combines met-
rics and software visualization. CodeCrawler is based on Moose, a reengineering en-
vironment developed by members of the Software Composition Group. CodeCrawler is
written by Michele Lanza in VisualWorks Smalltalk and runs on every major platform.[?]
As you can see in 3.1 CodeCrawler uses a graph based view to depict entities and their
relationships.

Figure 3.1: CodeCrawler Package dependecy view.

11

Christian Caggiano Lateralus

3.1.2 X-Ray

X-Ray is an open-source software visualization plug-in for the Eclipse framework.This
tool was written by Jacopo Malnati as bachelor project . It provides System Complexity
View, Class and Package Dependency View for a given Java project. Moreover, its model
of the underlying Java project can be triggered and used by other plug-ins.[?] In 3.2
and fig-xray2 views of X-Ray

Figure 3.2: XRay A screenshot of XRay System complexity view

Figure 3.3: XRay class dependency view

12

Christian Caggiano Lateralus

3.2 Software Evolution Visualization Tools

The following examples refer to visualization tools which focus on the evolution of soft-
ware through time.

3.2.1 CodeCity

CodeCity was written in 2006 by Richard Wettel, a PhD student at the Informatics
Faculty of Lugano. CodeCity, is a language-independent interactive 3D visualization
tool for the analysis of large object-oriented software systems. Using a city metaphor, it
depicts classes as buildings and packages as districts of a software city. CodeCity was
programmed in VisualWorks Smalltalk on top of the Moose platform, uses OpenGL for
rendering, and runs on every major platform. [?]

Figure 3.4: CodeCity A visualization of CodeCity made with CodeCity.

3.2.2 Chronia

Chronia is a tool to explore the CVS history of a software system, featuring a visualiza-
tion that shows who owned which files at which time in a systems evolution. Chronia
has been written by Mauricio Seeberger in 2006.

To understand a certain issue of the system it is possible to ask knowledgeable de-
velopers but, in large systems, not every developer is knowledgeable in all the details of
the system. Thus, with this tool it is possible to know which developer is knowledgeable
in the issue at hand. The Chronia ownershipmap allows to connect developers to files
they own, making it easy to spot who owns which file[?], in 3.5 a screenshot of Chronia

On the visualization above, the X-axis is time and on the Y-axis are files. The circles
are commits and the colors show authors. When a line is colored, at that time, most of
the file was written by the according author (ie code ownership).

13

Christian Caggiano Lateralus

Figure 3.5: A screenshot of Chronia with a view of the ownershipmap.

3.2.3 BugCrawler

BugCrawler is a tool developed to track the lifetime and see the evolution of software
bugs, these experience usually a long existence, persisting through different stages of
the development process. [?][?] As explained above, this tool is meant for the analysis
of software bugs, it was written by Marco D’Ambros in 2006 and it is capable of track-
ing large software systems and analyze the evolution of bugs affecting the system as
you can see from the screenshot in 3.6. A short description of the tool given from the

Figure 3.6: BugCrawler A screenshot of BugCrawler.

author:
”BugCrawler is a tool written in Smalltalk for analyzing the evolution of large software
systems. The tool is based on interactive visualizations and software metrics. The infor-
mation used for rendering the views is based on the software system itself, CVS logfiles
and Bugzilla problem reports.”

14

Christian Caggiano Lateralus

3.2.4 Code Swarm

Code Swarm was developed by Michael Ogawa a Ph.D. student of the Computer Science
faculty at UC Davis, this tool has been written with the Processing language. It is an
example of organic information visualization, coined by Ben Fry, is a different approach
to information visualization. It eschews traditional data confinement in space and lets
the elements play together in freeform and unpredictable ways.[?]

Figure 3.7: Code Swarm A screenshot of code swarm’s organic information visualiza-
tion.

In 3.7 the visualization produced, shows the history of commits in a software project.
A commit happens when a developer makes changes to the code or documents and
transfers them into the central project repository. Both developers and files are rep-
resented as moving elements. When a developer commits a file, it lights up and flies
towards that developer. Files are colored according to their purpose, such as whether
they are source code or a document. If files or developers have not been active for a
while, they will fade away. A histogram at the bottom keeps a reminder of what has
come before.In

15

Chapter 4

Lateralus

4.1 Idea

Software visualization systems typically represent software metric data gained from
reverse engineering or measurements of the systems.

Lateralus goes under the category of software evolution visualization, it has been
written as a combination of Java and Processing, and allows to gather additional infor-
mation about the system through the analysis of its commit history.

The motivation behind this project is to understand better a software system during
its development, the goal to achieve this was to build a tool capable of analyzing the
growth of a software construct based on its Subversion commit history.

The Lateralus tool analyzes an SVN commit history and uses it to gather information
about a system and discover anomalies and patterns arising during the development of
a software across time. This tool is intended to give a visual interpretation to changes,
related to the development of a project, and monitor the evolution of a software system
through time, based on the log file of the SVN versioning system.

The idea behind this tool is to couple data and its representation with elements
that are easily identifiable without a conscious thought, by using theories developed in
the field of perception and cognition research. I’ll present some theories that are the
ground assumptions on which this tool has been built. By adopting principles of visual
perception and cognition coupled with the use of preattentive processing attributes
in visual software analysis, this tool produces visual feedback that allows to monitor
anomalies in intuitive way, through characteristics of the graphic elements such as
position and color.

The goal is to depict the evolution of the development stages of a project, by exploiting
analytic reasoning and principles of visual perception and cognition and through this
approach to produce a visual feedback that helps and supports information processing.

4.2 Overview

The use of software versioning system is a standard requirement in large or geographi-
cally scattered development communities in order to maintain a productive development
environment. In order to monitor the evolution of the system, its svn commit history is
analyzed and processed. This tool takes a distinctive feature of a file (like the number of
modifications), represents it and change its position or color attribute based on its age
and the degree of modifications, this allows to easily spot anomalies and outliers with-
out looking at the source code. Below in 4.1 a schematic view of the general structure

16

Christian Caggiano Lateralus

of Lateralus, as you notice, we gather an svn commit history from a repository, parses
and analyzes its trace, Lateralus then creates the object and renders the frames to the
screen.

SystemSVN
Repository

Screensvn history

parse & analyze

render

Figure 4.1: General View A general overview of Lateralus

4.3 Features

Lateralus is a tool that creates a visual animation of the commit history of an SVN
repository, moreover Lateralus allows to visualize the history of the system based o the
changes made to it. The goal of supporting the analytical reasoning process is met
with the production of images depicting the different stages of development, in addition
Lateralus is able to take snapshots with any sample period, Lateralus is also capable
of storing the images for further analysis. Other features include basic user interac-
tion with the animation to infer additional information about the system, and more
specifically about the files being changed (time stamp of changes, author of changes,
etc)

4.4 Visual Metaphors

As described in the previous section, the idea is to associate a visually speaking metaphor
to the entities being analyzed (in this case files and their modifications), taking into ac-
count principles of visual perception and theories of cognition.

The pieces of information that are available from an SVN repository are limited. The
basic entities are files being added to the project. These files can be modified and deleted
by different developers at different moments in time. The authors and time stamps of
the modifications of the system are stored as entries in the SVN trace, forming the
commit history of the project.

All this data does not bear additional information in its unstructured form, it needs
to be mapped into visually speaking metaphors in order to take advantage of the power
of images as a vehicle of information.

4.4.1 Abstraction and Rendering

The abstraction presented in Lateralus maps the files composing a software system
to a simple graphical element, that can be either a two dimensional square or a three
dimensional cube (as in 4.2), each of these shapes represents a file that has been added.

Moreover changes to the system have been represented with the metaphor of a heat

17

Christian Caggiano Lateralus

Figure 4.2: Visual Metaphor System view containing a list of the packages analyzed.

map, where the color hue increases its warm tones whenever the file is modifed, and
decreases its hue to colder tones when the file is left unaltered.

4.4.2 Visualizing Files: Squares and Cubes

The chosen metaphor to depict the files entities are simple graphical elements such as
squares for the 2Dimensional representation and cubes for the 3Dimensional represen-
tation, these shapes have been chosen due to their simple form, this simplicity should
suppress any distraction from the figure itself.

Figure 4.3: Added Files metaphor Visual metaphor of added files.

The depiction of the chosen abstraction presented above in 4.3, shows an added file
that has not yet been modified. The position and the color of these primitives shapes
give additional informations about the file subject, its position reveals the age while its
color tells the degree of modifications with respect to other files. Modifications of files
over time will also change the color of the square representing the file being changed,
in the initial state an added file will have a pale-blue color to symbolize that it is cold
(meaning that it hasn’t been modified yet)

4.4.3 Visualizing Age: Layout and Position

The metaphor chosen for the layout was inspired by a previous work of prof. Lanza
where the spiral positioning of shapes was used to make the age of the files easily iden-
tifiable through their spatial position. The placement of the shapes follows a spiral form,
with the oldest files at the center, and the more recently added files on the outside of

18

Christian Caggiano Lateralus

the spiral.Through the use of this metaphor, it is always clear which are the oldest core
components of the system (represented in the center of the spiral). With such a simple
metaphor it is easy to understand which are the recently added files and which are the
older components, moreover this layout choice maximizes the field of vision, leaving the
older files more centered than recent additions, but both in the field of vision without
excluding parts of the system. In 4.4 an example of how the layout function places the
shapes on the canvas.

Figure 4.4: Lateralus 2D layout steps of the layout procedure of added files

4.4.4 Visualizing Changes: Heat map

A heat map is a graphical representation of data where the values taken by a variable
in a two-dimensional map are represented as colors.[?] In 4.5, an example of Heat map
visualization applied to the U.S earthquake distribution

Figure 4.5: Heatmap Example An USGS earthquake distribution on the U.S.

The idea of depicting file modifications with changes to the color of the shapes, is
inspired by the idea of a heat map, a visualization technique that puts a chromatic
different layer on top of an image, this top layer has different colored areas to visualize
the temperature differences, hot areas usually are associated with warm colors while

19

Christian Caggiano Lateralus

colder areas are associated to cool colors. This mapping can be used to connect differ-
ent data sets, in Lateralus it is particularly useful to map the distribution of changes
in files. The abstraction in this case was to map the number of changes to the temper-
ature of the shape, making often modified files warmer and less often modified colder.
Combining the heat map and spiral metaphors, offers therefore a solid visualization
model, because of the intuitiveness and clarity in which the refactorings are depicted.
For example deletion of files, an operation which usually is performed on relatively new
files with little dependencies, result in holes in the spiral layout, thus showing the level
of structure of the system and the dispersiveness of the files composing it.

Figure 4.6: Lateralus 2D 2 dimensional gray-scale Heat map

Figure 4.7: Lateralus 3D Color scheme of the 3d Heat map.

In 4.6 and 4.7 are presented the 2 dimensional and 3 dimensional views of the heat
map and their associated color schemes. In the 2 dimensional view the visualization
has 2 different variations of heat map, a grey-scale and a color heat map. Even though
the first one (gray scale) was subjectively more visually attractive from my point of view,
only the latter (color based) has been adopted in the validation process. This is due
to the limitation of the greyscale heat map where the codification of changes to color
cannot make use of the Hue property, it just modifies the intensity of the black color
tone to make the differences visible.

This visualization is a three dimensional based view with the a simple heat map color
scheme, where, the files being modified more often get a temperature increase of their
surface, which is mapped to a warmer tone in the color intensity, so a red cube has

20

Christian Caggiano Lateralus

been modified more often than a pale-blue cube, alike in the gray-scale color scheme,
darker tones correspond to ”heat” and therefore frequently modified files, while lighter
tones correspond to less modified entities.

4.5 Views

Lateralus has different visualization modes a two dimensional and a three dimensional
view. The two dimensional view allows to focus better on the changes in the system
and spot anomalies easier, on the other hand the three dimensional view allows to
differentiate the spatial understanding and the age of files within the system Below I
will present some screenshots of the different views available in Lateralus.

4.5.1 2D View

The two dimensional view below in 4.8 allows a rapid recognition of shapes and colors,
the loss of the 3rd dimension helps to focus on the color intensity changes rather than
on the positioning of the shapes. The shapes can be modified and manipulated by
two-dimensional geometric transformations such as translation, rotation and scaling.

Figure 4.8: 2D View 2Dimensional view of a commit history in gray-scale mode.

4.5.2 3D View

The 3D view (see 4.9) allows to to spot files being modified in a three dimensional
environment, this allows a better spatial understanding of the system being depicted.
3D models represent a 3D object using a collection of points in 3D space. Since these
models are a collection of data (position, age, number of changes and other information)
they need to be represented on the canvas through an OpenGL renderer.

4.5.3 Experimental 3D View

This is a view that unfortunately is not yet part of Lateralus, it is based on a library
that allows to produce CAD models in Processing, below you can see a screenshot of

21

Christian Caggiano Lateralus

Figure 4.9: 3D View View of a commit history in color mode.

this experimental view, it makes use of an external library called Anar+. This library is
extremely powerful,but due to the lack of time at disposal to work with it, I was unable
to fully integrate this view in the project. Although there are some problems to integrate
this library with the existing code , the visual feedback obtained from the use of this
library kit is the very appealing and would allow much better interaction with the 3D
space than the actual 3D view. Below in 4.10

Figure 4.10: 3D experimental view 3 Dimensional experimental view of a commit
history in colors.

As mentioned before, due to the late discovery of this collection of libraries, it was
impossible to make an extended use of it. The possibilities to produce a 3D visualization
with a better interaction with the environment would benefit a lot from the features
of this library kit. The large number of available features makes this library kit an

22

Christian Caggiano Lateralus

extremely powerful and promising extension that probably would have been the best
choice to start with.

4.6 Implementation

The following diagrams depict the sequence of operations that the system undergoes
during runtime. The figure additionally shows the setup preprocessing and realtime
processes performed.

4.6.1 Behavioral View

This is a general scheme of the behavior of Lateralus .

pre-processing

real-time processing

History Fetcher

Layout Manager

Processing runtime

Parser

SVN
Repository

screen

svn trace

Shape objects

render frame

File objects

trace file

Figure 4.11: Lateralus behavioral process flow of Lateralus

The tool connects locally or via the internet to an SVN repository through the Histo-
ryFetcher module and analyzes the repository content, it produces a trace of the commit
history. The Lateralus parser reads the trace file and generates the visual metaphors
of the files, the LayoutManager then takes care of the placement of the shapes on the
canvas, finally Lateralus renders the frames that depict the system and at runtime pro-
duces an animation of the development behavior from a file-change based perspective.

23

Christian Caggiano Lateralus

4.6.2 Structural View

The class diagram in 4.12 depicts the general structure of the system. To notice how
the system architecture follows the MVC pattern to maintain separation of concerns
and independent testability.

Cube Square

+ positionItem(int, ArrayList)
+ draw()

Layout

Controller ViewModel

+ parse()
+ handleLine(String)
+ getFiles()

Parser

+ draw()
+ drawDeleted()
+ drawAdded()
+ drawModified()

<<interface>>
Shape

+ setup()
+ draw()

Controller

+ getFigure()
+ setFigure(Shape)

File

+ analyzeCompleteCommitHistory()
History Fetcher

+ getType()
+ getFile()

Change

Figure 4.12: Lateralus System view Class diagram of Lateralus.

4.7 Components

Listed below, I’ll present the necessary elements that have been used in the development
and validation process of the Lateralus tool.

4.7.1 Subversion SVN

Subversion is a free version control system which operates similarly to CVS but with an
extended feature set. Subversion is an industry standard in the software engineering
community for developing large systems with many developers working.

4.7.2 Processing

Processing is an open source project developed by Casey Reas and Benjamin Fry, both
formerly of the Aesthetics and Computation Group at the MIT Media Lab. It is a java

24

Christian Caggiano Lateralus

based programming language and integrated development environment , which focuses
on programming in a visual context. The language builds on the graphical capabilities
of the Java programming language, sby adding new graphical features to extend the
scope of Processing. Processing is free to download and available for GNU/Linux, Mac
OS X, and Windows.[?]

4.7.3 External libraries

In order to produce different visualizations it was required to introduce the following
libraries:

OpenGL

[?]OpenGL (Open Graphics Library) is a cross-platform graphics interface for 3D and
2D graphics. This library allows Processing programs to utilize the speed of an OpenGL
accelerated graphics card. This expands the potential for drawing more to the screen
and creating larger windows. Processing interfaces with OpenGL through JOGL, an
initiative from the Game Technology Group at Sun.

Anar+

Anar+ is a cadKIT for Processing (v1.0) for Object Oriented Geometry.[?] This collection
of libraries are based on (anar+) parametric modeling scheme. The features of this
library are listed below: Geometric Associativity (aka Parametric Modeling) Scenegraph
for processing Geometric datastructure (groups, objects, faces, lines, points) Extended
Geometric manipulations Objects based modular renders Export for various CAD
formats (though metaScripts) Camera, view and walkthrough ...

25

Chapter 5

Lateralus Validation

In order to validate Lateralus, some test cases have been defined and fed into Lateralus.
One of the necessary requirements to perform the validation process was to have several
Subversion repositories and a possibly large developer community, the GNOME project,
a Linux desktop environment that has a quite large developer community and an dis-
crete amount of applications, seemed to be an ideal source for collecting Subversion
repositories to be analyzed.

5.1 GNOME Applications

The GNOME applications taken into account were picked randomly in order to have a
broad sample that would show a difference in the results of the analysis. Some of the
chosen applications were picked in reason of their size or for their peculiarities in terms
of functionality, below a reduced list of some of the repositories observed closer.

• Alacarte (Menu editor)

• Epiphany (Web browser)

• Gedit (Text editor)

• Nautilus (File manager)

• Evolution (File server)

• Seahorse (Encryption Key manager)

• Tomboy (Note taking software)

• Totem (Media player)

• GNOME desktop (the desktop environment)

The complete list of repositories is in fact larger but the number of possible candi-
dates for validation had to be restricted to the most meaningful and interesting results.

5.1.1 Test Case 1: Nautilus

Nautilus is the official file manager for the GNOME desktop. Its repository had more
than 89’000 entries. Due to the static nature of this paper it is very difficult to convey
the animated visual feedback properly, below I show a the evolution of the nautilus
commit history, based on a set of screenshots taken with Lateralus, unfortunately due
to the large number of pictures taken, I’ll present the status of nautilus every 500

26

Christian Caggiano Lateralus

frames and enlarge the period of sampling as the number of files increases.

We can observe in the following screenshot in fig 5.1 of the Nautilus evolution, how
the developers of the system soon started to files and modified them to add functionali-
ties, in particular the developers work is visible at the center of the spiral (in particular
the shots at 200 frames and at 500 frames), in the next phase (from frame 1000 to
2000) the core functionalities start to be defined. The enclosed yellowish square at
frame 2500 already shows what part f the system is going to be the core functionality.
It has been observed that the development cycle undergoes a 6-month release period
for the developer community. This translates in explosion-like addition of many files in
short amount of time. It is easily observable that many added files, get then discarded
as the evolution of the system proceeds.

Figure 5.1: Nautilus The first 5000 frames of the nautilus commit history

27

Christian Caggiano Lateralus

Figure 5.2: Nautilus Animation frames from 5000 to 12’500 of the nautilus commit
history

28

Christian Caggiano Lateralus

Figure 5.3: Nautilus Animation frames from 15’000 to 35’000 of the nautilus commit
history

29

Christian Caggiano Lateralus

We can clearly see that there is an addition of files that are not being modified in the
future, these files might be created for the purpose of helping the core functionalities,
that works as a sort of infrastructure for the system itself. We also may observe that
the Pareto rule, that states that 80% of the functionality depends on only 20% of the
files in the system, is proven to be correct, as we can see after the deletion of many files
the amoun of files that get a red tone is limited when compared to the overall number
of files. In fig 5.5 we can see the final state of Nautilus. Many files have been deleted,
but the functionality identified previously is still present, these files have been modified
extensively, making them the core of the system.

5.1.2 Test Case 2: Epiphany

Epiphany is the official web browser for the GNOME environment. Its repository had
around than 30’000 entries. It is the official browser in the GNOME community and
acts as an excellent test case for this validation. This system differs from the previous
one, since it has a late start in introducing the core functionality. In fig 5.6 we can see
that many files have been added and left untouched, almost 300 files have been added
before starting to work on the core functionality of the system. Still in fig 5.6 at frame
500, it is possible to see the first changes to the system, many files change color to
yellow tones, signaling a discrete amount of modifications.

In fig5.7 at frame 1000 we can observe how some of the added files have been re-
moved.In the following frames it is visible how the core functionality is more spread
among the system with respect to the previous test case (nautilus). As we see in fig
5.8 the system has more modified Files, this is clearly made visible by the increasing
red tone of the image. In fig. 5.9 we can see the final state of the epiphany system, in
this stage it becomes more similar to the previous analyzed system. With a set of core
functionalities (in red), that happen to be the some of the oldest files of the system, and
a wider set of infrastructure files (yellow) that support the whole system.

Again we can identify the Pareto principle, if we estimate the amount of core func-
tionality we realize that it happens to be around the 20% of the total number of files
composing the system.

30

Christian Caggiano Lateralus

Figure 5.4: Nautilus Animation frames from 45’000 to 55’000 of the nautilus commit
history

31

Christian Caggiano Lateralus

Figure 5.5: Nautilus Animation frames from 65’000 to 88’100 (final state) of the nau-
tilus commit history

32

Christian Caggiano Lateralus

Figure 5.6: Epiphany The first 500 frames of the epiphany commit history

33

Christian Caggiano Lateralus

Figure 5.7: The first 5000 frames of the epiphany commit history

34

Christian Caggiano Lateralus

Figure 5.8: The frames from 7’500 to 23’500 of the epiphany commit history

35

Christian Caggiano Lateralus

Figure 5.9: Animation frames at 30’100 of epiphany commit history

5.1.3 Test Case 3: Totem

Totem is a media player for the GNOME environment which runs on GNU, Linux, So-
laris, BSD and other Unix and Unix-like systems. It already included in GNOME, its
repository had around than 30’000 entries.

As we observe in fig. 5.10 the development of totem differs from the previous test
cases, here we can see how there are significant changes to the system after few addi-
tions, we can see that at frame 100 the system already has been reshaped, files have
been deleted, through frames 200 up to 500 the core functionality start to appear, the
system has not grown very much yet, but significant changes have been made to certain
files (colored in red- orange).

As the system grows (see fig. 5.11) it starts to show the same pattern as the previous
test cases, large amounts of empty spaces that indicates that a pruning of files took
place, also the core (red colors scattered around the center) and infrastructure files(
orange-yellow colors enclosing the core files) are well identifiable. Moreover a lot of
almost untouched files has been added, these files might be a series of files referring to
additional plug-ins of the system.

We can notice how the Pareto principle applies as well in this case, the system
changed significantly, but the core functionalities that could be identified at early stages
of development are still present.

36

Christian Caggiano Lateralus

Figure 5.10: The first 500 frames of the totem commit history

37

Christian Caggiano Lateralus

Figure 5.11: Totem commit history frames 1000-6000

38

Christian Caggiano Lateralus

Figure 5.12: Totem commit history frames 8000-16500

39

Christian Caggiano Lateralus

Figure 5.13: Totem commit history frames 17100

40

Chapter 6

Conclusion

As shown in the previous chapter, Lateralus is able to produce a visualization feedback
of a system’s evolution, moreover it allows to perform a visual analysis of the system
at-hand and helps in further analytical reasoning. During the development of this tool
I had the chance to gain insight in the field of software visualization. With Lateralus
I think I met the goal of producing a tool that helps to understand the development
process of software systems in the context of the evolution of software.

Lateralus is able to produce meaningful visualization about a system focusing on
the files composing it, also in Lateralus the attention is to visualize the modifications
that these files undergo during the development process. Moreover with Lateralus it
is possible to track the evolution of a systems in terms of added and discarded files,
making visible how much a system gets changed from its original state to the final
release.

This experience was useful because it gave me the chance to understand the princi-
ples that are considered to be the theorical foundations that are required to produce a
meaningful visualization tool.

6.1 Future Work

In Lateralus there are basic functionalities that can be improved, the absence of a
proper user interface makes this tool not yet ready to be made available for download.
Moreover after some results I think that some old functionalities need to be reconsid-
ered, in particular the heat map needs to be reviewed to mimic better the heat differ-
ences. A big improvement would be to have a screenshot manager that would be able
to produce a stand-alone movie from the gathered screenshots. The main future goal
would be to produce an intuitive User Interface for this tool in order to make it more
usable. Also I’d like to fully integrate the Anar+ library kit, the experimental 3D view
showed very interesting results, and might be an excellent starting point for a review of
the tool. The intention is to complete Lateralus with a set of functionalities that would
help gather additional information about files and authors.

41

Bibliography

[1] http://vis.cs.ucdavis.edu/ ogawa/codeswarm/. website.

[2] http://www.processing.org. website.

[3] U. Bern. http://moose.unibe.ch/tools/chronia. website.

[4] K. S. B. Christopher G. Healey and J. T. Enns. Acm. High-Speed Visual Estimation
Using Preattentive Processing, 1996.

[5] M. D’Ambros. http://www.inf.unisi.ch/phd/dambros/. website.

[6] M. D’Ambros and M. Lanza. Journal of software maintenance and evolution: Re-
search and practice. Visual Software Evolution Reconstruction, 2007.

[7] S. Diehl. Visualizing the Structure, Behaviour and Evolution of Software, 2007.

[8] S. Few. Tapping the Power of Visual Perception, 2004.

[9] M. B. H., D. T. A., and M. D. Brown. Visualization in scientific computing. Com-
puter Graphics, 21, 6, 1987, 1987.

[10] LaBelle and Nembrini. http://anar.ch. website.

[11] P. M. Lanza. http://www.inf.unisi.ch/faculty/lanza/. website.

[12] J. Malnati. X-Ray, An Eclipse Plugin for Software Visualization, 2007.

[13] R. Robbes and M. Lanza. Sciencedirect. A Change-based Approach to Software
Evolution, 2007.

[14] R. Wettel. http://www.inf.unisi.ch/phd/wettel/. website.

42

	Acknowledgments
	Introduction
	Perception and Cognition
	Analytical Reasoning
	Three levels of Brain Vision
	Preattentive Processing
	Preattentive Attributes

	Software Visualization
	Historical overview
	Petroglyphs
	Maps and Historical Imagery
	Modern Scientific Visualization

	Applied Software Visualization
	Software Evolution Visualization

	Related Work
	Software Visualization Tools
	CodeCrawler
	X-Ray

	Software Evolution Visualization Tools
	CodeCity
	Chronia
	BugCrawler
	Code Swarm

	Lateralus
	Idea
	Overview
	Features
	Visual Metaphors
	Abstraction and Rendering
	Visualizing Files: Squares and Cubes
	Visualizing Age: Layout and Position
	Visualizing Changes: Heat map

	Views
	2D View
	3D View
	Experimental 3D View

	Implementation
	Behavioral View
	Structural View

	Components
	Subversion SVN
	Processing
	External libraries

	Lateralus Validation
	GNOME Applications
	Test Case 1: Nautilus
	Test Case 2: Epiphany
	Test Case 3: Totem

	Conclusion
	Future Work

