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Abstract

ScheMoose extracts structural and semantic information from Scheme programs, using
a variety of heuristics. We use ScheMoose to analyze and visually reverse engineer 4
Scheme programs, resulting in 4 case studies.
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Chapter 1

Introduction

A substantial amount of resources are devoted to the analysis of code. According to
[Som00], 50-75% of costs in software projects are spent in the maintenance phase. Half
of these costs are related to understanding the existing code, aka reverse engineering it.
To extract information automatically from programs in the functional language Scheme,
we developed a new tool, called ScheMoose .

The reverse engineering of functional programs is a subset of the field of reverse
engineering programs; this subset has not been explored to the same degree as other
subsets, such as that of the reverse engineering of object oriented and procedural lan-
guages. Nevertheless, functional programs are a significant minority of programs. While
there are quite a few tools for analyzing functional programs, there don’t appear to be
any widely used tools at present for reverse engineering them.

Once the decision had been made to analyze functional programs, the first question
was which functional programming language to analyze. Some of the more common
ones include OCAML1, Haskell2, SML3, various lisp dialects (such as Common Lisp4,
Scheme5, and Dylan6). More unusual contenders include languages like Miranda7, and
various minimalistic languages based on pure lambda calculus.

At Università della Svizzera Italiana, there was already an existing body of code in
Scheme, largely due to its use in the first semester “Programming Fundamentals” class.
Scheme is fairly widely used, by the standards of functional programming languages,
is well-defined, and does not have a baroque syntax. Every other language consid-
ered lacks at least one of these criteria; these were the factors which decided which
functional programming language to analyze.

1.1 Structure of the Document

Chapter 2 discusses the problem which ScheMoose is designed to address, namely, the
analysis of programs written in Scheme.

Chapter 3 describes the solution in detail.

1 http://caml.inria.fr/
2http://www.haskell.org/
3http://www.smlnj.org/
4http://www.lisp.org/HyperSpec/FrontMatter/index.html
5http://www.schemers.org/Documents/Standards/R5RS/
6http://www.opendylan.org/
7http://miranda.org.uk/
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Chapter 4 shows the validation, which is in the form of 4 case studies.
Chapter 5 draws conclusions and proposes a number of areas which are open for

future work.

2



Chapter 2

Reverse Engineering Scheme
Programs & Related Work

To reverse engineer a Scheme program, there are several steps. Scheme source needs
to be read in, parsed, and analyzed. There also needs to be at least one way to exporting
this analysis, whether directly for human use, or into a format for use by other tools.

Reading, parsing, and exporting are fairly straightforward. The interesting part is the
heuristics to extract information from Scheme source. There are two problems: what
information to gather, and how. We decided to focus on the most important information
first, such as function definitions, and call graphs, and to gather this information using
heuristics. This is described in more detail in Chapter 3.

Another problem is what to do with the gathered information. A raw analysis is of
little help; it is harder to read than source code, and contains less information, as it
is derived from it. ScheMoose exports the analyzed information into two formats, for
analysis by external tools, namely Moose and dot. To dot, ScheMoose only exports
callgraphs. The information exported for analysis with Moose is richer. This is due to
the fact that Moose is a reverse engineering environment, and supports formats, such
as MSE, which are designed to contain mined informations about programs. The design
has a clear separation of concerns, and no formatting information is present in MSE
files. Visualizations are created (using Mondrian) from the model Moose creates.

2.0.1 Related work

There is a large body of work on functional programming, and another on software visu-
alization. The most relevant work for ScheMoose is the existing work on Moose, FAMIX,
MSE, and Mondrian, as these define the formats and provide the tools to effectively
work with the information which ScheMoose mines from Scheme source code.

Moose1 is a language-independent platform for the analysis of programs. The role
of ScheMoose is to export information in the MSE format, so that Moose can leverage
Scheme - or, conversely, so that ScheMoose can take advantage of Moose to actually
use the information retrieved from Scheme source.

FAMIX is a meta-model. The Software Composition Group 2 wiki entry on FAMIX 3

describes it as “the central meta-model of Moose”.
1http://smallwiki.unibe.ch/moose/
2http://www.iam.unibe.ch/ scg/
3http://smallwiki.unibe.ch/moose/famixmetamodel/
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MSE 4 is a concrete format, which is used by Moose to import and export data. By
default, it uses the FAMIX meta-model. This is the format that ScheMoose exports for
analysis by Moose.

Mondrian 5 is a visualization engine. It provides a number of graphical primitives
and layouts, and a way to easily script them together to create visualizations of informa-
tion collected from software, based on a model within Moose. The visualizations which
ScheMoose serves as a Scheme backend for are realized using Mondrian scripts.

4http://smallwiki.unibe.ch/moose/mseformat/
5http://smallwiki.unibe.ch/moose/tools/mondrian/
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Chapter 3

ScheMoose

To address the lack of reverse engineering tools for functional programming languages,
a first attempt has been made to create one for Scheme, called ScheMoose .

ScheMoose mines information from Scheme source code. This information is both
structural and semantic. An example of structural information is the number of global
variable definitions, which can be inferred by counting the number of global variables
from which information is mined. An example of semantic information is the (heuristi-
cally determined) predicate about whether or not a specific Scheme function is a predi-
cate function.

3.1 Architectural Sketch

This section provides a high-level overview of ScheMoose’s approach, and the role it
plays in the process of converting Scheme source code into a visualization. More details
are available in the ’Implementation’ section, which provides a file-by-file analysis of
ScheMoose ’s source.

To turn Scheme source code into a visualization, there are 3 steps. The first is to
analyze Scheme source code, and export it; this is the main task of ScheMoose . When
this exportation is to the MSE format, the next step is to load the MSE file in Moose.
This creates a model of it which Mondrian, the visualization engine, can use. This is
depicted graphically in Figure 3.1.

Schemoose is a two-pass analyzer, which takes Scheme source code and internally
models it information, statement by statement. The first pass builds up the general
structure, as well as specific information local to statements, some of which is derived,
such as whether a function is a predicate. The second pass tries to resolve calls to their
occurances within the model.

Scheme code is read in, and parsed, using the read function of DrScheme. This
function reads one s-expression at a time from a given file handle, and returns it fully
parsed.

Information, in both passes, is gathered by a variety of heuristics. These vary in
their reliability, and in how much information they miss. At the low end, information
on whether a function is a predicate is based on a common Scheme coding convention
(having a name that ends with ’?’); this is still sufficient for the majority of programs
analyzed. This particular heuristic, for determining predicates, sufficed for 3 of the 4
case studies.

5
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Figure 3.1: Architectural Sketch, from Scheme to Visualization
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Figure 3.2: The ScheMoose metamodel

Scheme has several subtleties. ’Special forms’/macros allow for the introduction
of new syntax. Functions and variables can be defined conditionally and on the fly.
Higher-order functions are fairly commonplace. Additionally, Scheme has first-class
support for continuations. None of the analyzed projects use them, and ScheMoose has
not yet been adapted to model them in any way, but we expect that this would be an
intriguing area to investigate.

ScheMoose can export the gathered information in one of two formats. The pre-
ferred format is MSE, to allow use of the information with Moose and Mondrian. The
secondary format, which currently only exports the callgraph, creates graph descrip-
tions for the program “dot”1.

Minor changes to Moose were required for this project. These extensions allow it
to model the number of parentheses, whether or not functions are directly recursive
(that is, a function which calls itself, by name - contrast with mutual recursion, where
multiple functions call each other in a circle, or no recursion, where no function is a
child of itself in a callgraph), and whether or not functions are predicate functions. The
subset of the meta-model used is shown in Figure 3.2.

1A component of Graphwiz. http://www.graphviz.org/
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Figure 3.3: An excerpt of the source of a Scheme program

3.2 Collected Information: Overview

Reverse engineering a system from source code, especially a small system, is possible.
However, it is not always an efficient use of time. Compare Figure 3.3 and Figure 3.4.
The former displays detailed information, and needs to be pieced together and made
sense of; it does not fit on a screen, as shown by the scrollbar. The latter immediately
makes the call graph, overall system structure apparent, and suggests functions to look
at.

For Figure 3.4 to be useful, it needs to be based on information found in Figure 3.3.
This section provides an overview of which data is collected from Scheme projects, and
hence can be used in the analysis of the system.

8
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Figure 3.4: Graphical visualization of a Scheme project

For ScheMoose , two categories of mined information were defined: structural in-
formation, and semantic information. Structural information is information about the
concrete structure of the program. Semantic information is information about the se-
mantics, and is inferred. At present, the information mined includes the following:

Structural:

1. Global function definitions, including the name of the function

2. Global variable definitions, including the name of the variable

3. (Simple) calls between functions, both within the project and to functions defined
within the environment.

4. The number of parentheses in definitions.

5. Whether or not a given s-expression is a special form (this is not exported, but it
changes how the expression is treated; otherwise, function call information would
be wrong).

6. Whether or not a given function is directly recursive.

7. Which file a given definition is in.

Semantic:

1. Whether or not a function is a predicate.

9
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3.3 Collected Information: Detail

This section steps over exactly what information is collected from a Scheme file by
ScheMoose . It introduces a small Scheme program, which consists of one global vari-
able and two functions, one of which is a predicate, and another of which is recursive.
The predicate indicates if a given number is evenly divisible by the value in the global
variable; the recursive function counts how many numbers in a list of numbers fulfill
the predicate.

The following subsections explain the information collected in more detail. They
describe what is collected, and why, and give an indication of how. Each type of infor-
mation collected is dealt with individually. The information collected consists of global
function definitions, global variable definitions, simple function calls, number of paren-
theses, special forms, directly recursive functions, files, and predicate functions.

3.3.1 Prerequisite understanding: S-expressions

Scheme syntax is often considered minimal. A Scheme program consists of a number
of expressions, each enclosed within parentheses; these are called S-expressions.

S-expressions are essentially a nested list, which corresponds to a parse tree. Scheme
code is generally written directly in S-expressions, which makes the mapping simple, as
well as rather straightforward to use within Scheme. The Scheme code (define a 3)

can be treated in Scheme as a list of 3 elements, the first of which is the symbol define,
the second of which is the symbol a, and the last of which is the number 3.

In a more complex expression, such as (define b (+ 3 a), the same idea applies,
but the third element is now the list (+ 4 a), which can recursively be broken into the
symbol +, the number 4, and the symbol a, in that order. Arbitrary levels of nesting are
possible.

3.3.2 Global Function Definitions

Functions are the heart of a Scheme program. They define its structure, both individu-
ally (ie, how large a given function is, and other metrics that apply to specific functions),
and in the aggregate (ie, the calling relations between them).

ScheMoose collects all top-level function definitions, along with specific information
about them (number of parentheses and directly called functions, both of which are de-
scribed in more detail below). For the purposes of ScheMoose , a top-level definition is
any definition of the form (define asymbol arbitrary-s-expression). These defi-
nitions are globally visible. Fortunately, in Scheme, it is easy to tell if a definition is a
function definition: the arbitrary s-expression has the form (lambda (list of vars)(function body)).

3.3.3 Global Variable Definitions

Analyzing the global variables of a program is useful, as it gives an immediate idea of
the coding style used. Knowing where global variables are declared is useful structural
information for figuring out the architecture of a program; this is demonstrated in the
lambdaTRON case study in Chapter 4.

ScheMoose collects all top-level variable definitions. These are defined as all top-
level definitions which are not function definitions. The information associated with

10
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these definitions within ScheMoose is the number of parentheses, and the name of the
variable.

3.3.4 Simple Function Calls

Studying functions in isolation provides some information, but a good deal more is
found by studying the relation between them. A visual representation of this infor-
mation can make entry functions, functions which are never called, functions which
are called by many other functions, and functions which call many other functions
instantly stand out.

ScheMoose collects simple function call information; that is, direct calls, by name, to
other functions. These calls are make up a large percentage of the calls in the functions
analyzed, and suffice to clearly indicate the general structure of each program. We
ignore higher order functions at present; they are significantly more difficult to analyze.

The only tricky part to collecting simple function call information is taking spe-
cial forms into account. An example of this is analyzing what happens within a cond

special form. cond clauses are in the form (cond ((predicate) result-if-true).
A full cond has arbitrarily many clauses, and an optional else clause at the end:
(cond clause1 clause2 ... clauseN (else default-result)). If interpreted by
the normal rules, the function call information would be broken: cond itself would be
considered a function, and ((predicate) result-if-true) would be interpreted as
a call to the function returned by predicate, with result-if-true as an argument. In con-
crete terms, a legitimate cond clause would be ((> 3 4) ’example), which returns
the symbol example if 3 is greater than 4. This should be considered to only have a call
to >.

Without handling of special forms, it would be considered a call to #f, the scheme
false value, which is the result of evaluating (> 3 4); it would have an argument of
’example. Incidentally, #f is not a function, so this would be an error. The correct way
to interpret this is to know that ((> 3 4) actually evaluates (> 3 4), and that the
other layer of parentheses are introduced because it is a special form, and delimit the
clause. The only way to know this is for ScheMoose to be aware of the syntax of special
forms, including cond; it is, to some degree, as discussed below and in an appendix.

3.3.5 Number of Parentheses

The Number of Parentheses metric comes from the same idea as the classical Lines of
Code metric (which ScheMoose does not implement). It provides a simple way to indicate
how ’large’ or ’long’ a function is. Number of Parentheses has several advantages,
especially in Scheme; the largest one is that it is formatting-independent. The number
of parentheses does not vary with the spacing used; and, significantly, in Scheme, each
parentheses carries semantic information.

In C-like languages, (an-expression) is the same as an-expression; at most, it
prevents an ambiguity in a larger context. In Scheme, these forms are distinct; the for-
mer is a function call, and will produce an error at run-time unless the expression is a
callable function. Likewise, ((an-expression)) is valid Scheme code, which executes
the function returned by executing an-expression; this concept does not have a simple
analog in C- or Java-like languages. This explanation intentionally glosses over what
happens if the context of the expression is a special form in Scheme; this is explained
in the next subsection, ’Special Forms’.

11
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The ’how’ of this metric is straightforward: given an s-expression, the number of
parentheses within it is found by counting the number of lists it contains, recursively,
and multiplying by two. The S-expression (define a (list 1 (list 2) (list 3))),
serves as an example. The expression itself is a list, which contains the list three-
element list (list 1 (list 2) (list 3)), which in turn contains two lists, (list 2)

and (list 3). This is a total of 4 lists. Accordingly, there are 8 parentheses.

3.3.6 Special Forms

Special forms are the Scheme way of defining custom syntax, and changing the eval-
uation rules. They are necessary, as Scheme is an applicative-order programming
language. This means that arguments to functions are evaluated before the func-
tion is called. Without special forms, (define a 3) would not work, as a would
need to be evaluated, but it is not defined. Likewise, if would be incorrect, because
(if (a-predicate) action-if-true action-if-false, as both action-if-true

and action-if-false would be evaluated; if either has side effects or does not ter-
minate, the results would be different from what one expects of an if.

All of the Scheme programs analyzed use special forms. All of the first-year programs
analyzed used ’local’ and ’cond’, as did ScheMoose until it was rewritten to use ’let’
(another special form) instead of ’local’. Custom special forms can also be defined, but
none of the analyzed programs took advantage of this.

ScheMoose has rudimentary support for special forms. The information about spe-
cial forms is never exported, but it is vital for correctly handling function call analysis
in Scheme. This is done by keeping a list of common special forms, which largely follow
a few syntactic patterns, organized by pattern. The code for finding function calls works
from the outside of an s-expr inwards, and hence knows when it is in one of the known
special forms, and handles it according to the syntactic pattern. This approach is lim-
ited, but has several advantages: it’s simple to implement, to update for new special
forms, and to check statically.

3.3.7 Directly Recursive Functions

Scheme discourages iteration in favor of recursion. Consequently, many Scheme pro-
grams define quite a few recursive functions. By modelling whether functions are re-
cursive, the style of the program can be better understood.

ScheMoose models direct recursion, which is the most common kind; it is when a
function calls itself, directly, by name, within its body. This can be contrasted with
mutual recursion (2 or more functions which call each other), and with recursion via
higher-order functions; neither of these are modelled.

Finding out whether a function is directly recursive is done by checking if its name
occurs in the list of functions it calls.

3.3.8 Files

Scheme programs largely reside in files. Consequently, being able to associate file
information with functions is fairly important. Being able to visualize a Scheme program
with respect to files gives an idea of the logical layout of the program; visualizing the
calls within and between files gives an instant view of the coupling.

12
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ScheMoose largely works in terms of files. The first pass is done on a file-by-file
basis, making it easy to associate functions with the files in which they are defined.

3.3.9 Predicate Functions

A predicate function is one which, when evaluated, gives a boolean answer. Predicate
functions are used extensively in Scheme; the first argument to the if special form,
and within each cond clause, are predicates. Many predicates, but not all, have names
which end with ?; this is a Scheme convention. ScheMoose considers every function
which has a name ending with ? to be a predicate, and every other function not to be.
This heuristic works for 3 of the 4 projects analyzed; the fourth does not follow this
convention. A significantly better analysis would require a type inferencing engine for
Scheme; the scope of ScheMoose definitely does not extend this far.

13



Chapter 4

Validation

ScheMoose has been validated by analyzing several programs. The most extensive case
study is that on a Connect-4 program written in the first semester by another student,
which appears in [BAL07]. Case studies have also been done on 3 other programs.
Two are projects from the first semester: “Extreme Ski” and “Lambdatron”. The last is
ScheMoose itself.

The case studies share a common thread. In each, a relatively small Scheme pro-
gram is analyzed, largely with respect to a particular syntactic or semantic factor. Such
factors include displaying the calling information of the program, both globally and by-
file, showing which files global variables are declared in, and showing which functions
are predicates and which are not.

Project name Source code lines Number of files Number of Functions
Connect-4 664 1 32
lambdaTRON 570 7 27
Extreme Ski 975 2 76
ScheMoose 988 15 77

Notes:
There are actually 2 source files in the Connect-4 project, but only one was analyzed,
as the second started as a copy of the first. The analyzed source file has 664 lines; the
other has 736.
The number of source code lines in ScheMoose has been subject to change during the
course of this document.

14
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4.1 Connect-4 Analysis

Figure 4.1 shows the call graph of this Connect-4 implementation. Leaf nodes are
functions which only call functions defined outside of the project (or which make no
calls, or which only call functions which are not globally visible). These functions are
defined by DrScheme, the programming environment which was used. The root node
is where the execution of the program begins. This type of visualization is especially
useful in languages which do not have a coding convention for the entry point that
corresponds to the concept of ’main’ in various C-like languages, as it provides instant
visual information on where to start tracing calls, and on the relations between func-
tions, which may be arbitrarily arranged in the source.

The callgraph makes a couple of this program evident. One is that the entry point
is begin-to-play. Another is that large functions are sprinkled throughout the tree.
These functions are worth further investigation; they may be evidence of poorly-written
code, and/or central to the game.

As Figure 4.2 shows, ScheMoose integrates cleanly with the existing Moose+Mondrian
platform. It is straightforward to change the size of the boxes representing functions
based on various parameters. Good options are various measures of the size and com-
plexity of the function, such as how many parentheses it contains, or how many other
functions it calls. The only change, relative to the previous figure, is in the Mondrian
script, and does not involve ScheMoose at all; the MSE file is exactly the same.

This clean integration is due to the modular nature of the platform: ScheMoose
is almost purely concerned with analyzing Scheme code and exporting it to the MSE
format. Moose then reads MSE files and builds a model. Tools on top of Moose, such
as Mondrian, then work with this model. Minimal changes were needed to let Moose
support custom metrics, such as the number of parentheses, which is a formatting-
insensitive analog to lines of code.

Showing the names of the functions makes the callgraph extremely wide at the bot-
tom. In Mondrian, this is only a small problem, as it is possible to scroll, although it’s
preferable to be able to see everything at once. In a static document, this is a larger
drawback. Consequently, the rest of the visualizations are shown without function
names.
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Figure 4.1: The calls of Connect-4
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Figure 4.2: The calls of Connect-4, revisited

4.2 Extreme Ski Analysis

As Figure 4.3 shows, it is possible to view projects on a file-by-file basis, and to examine
the call graphs within each one. This provides a quick clarification as to the relative
size, number of functions, size of individual functions, and structure of the call graph
of each file.

Figure 4.3 has several properties worth noting. One is the sizes of the squares. Each
square represents a function. The width and height are directly proportional to the
number of parentheses; this is a rough measure of function size, analagous to lines of
code. Larger functions are often worth further investigation, as they are more likely to
be complicated, poorly written, or play a crucial role in the program.

Another interesting property is that, in both files, the function calls form a tree. The
root of the tree is either the entry point to the program, or a good place to start looking
for it.

There are several orphaned functions, in both files. In the particular case of Extreme
Ski, this is because these functions are only called from within locally defined func-
tions, and calls from within locally defined functions are not modelled by ScheMoose
at present. In other cases, orphaned nodes may represent dead code, which has no
callers.
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Figure 4.3: A by-file visualization of the callgraphs of Extreme Ski
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4.3 lambdaTRON Analysis

It is widely known, and discussed in the literature [WS73], that global variables have
a number of negative effects on a codebase. To understand a codebase, it is useful to
know what global variables there are, how they are used, and how they are distributed
over the source code.

In this example, a project done by a first semester student, called “lambdaTron”, was
analyzed. One area of interest was the use of global variables. As Figure 4.4 shows,
they were distributed quite unevenly among the source files; of the 6 source files, 3 had
no global variable definitions, one had 1, and the other 2 had over a dozen each. This
strongly suggests that the latter two files should be examined.

The file with only one global variable, lambdatron.scm, should also be examined.
Immediate questions include “is this global variable necessary?” and “should this global
variable be defined in one of the other two files?”. Without the visualization, this outlier
would be camouflaged.

Examination of the 2 files which define many global variables shows that they con-
tain what is indicated by their filenames: one is ’defandvar.scm’ and contains definitions
and global variables, and the other one is lambdatrongui.scm, and contains the GUI.

One area open for future work in ScheMoose is analyzing the uses of global variables
within functions. As Figure 4.4 shows, modelling global variable definitions brings some
interesting properties to light, but the information would be greatly enriched by knowing
which global variables are actually in use, which files the global variables are used in,
what percentage of functions use global variables, etc. This would allow the detection
of global variables which are not used (at least directly), ones which are used heavily by
many functions, and ones which are only used lightly.
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Figure 4.4: The globals of lambdaTRON
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4.4 ScheMoose Analysis

Finally, no code analysis project written in the language it is analyzing would be com-
plete without being used on itself. Figure 4.5 clearly shows several elements of ScheMoose
, such as the maximum call depth within the project itself, and the relative sizes of dif-
ferent functions. The focus, however, is on whether or not particular functions are
predicates; the ones which are are shown in red, while the non-predicate functions are
shown in cyan.

Hovering the mouse over a function shows both its name and the file it is defined in.
In this example, the mouse was hovered over the larger red box on the bottom (leaf) row
of functions. Figure 4.5 can be contrasted with Figure 4.3: both projects have multiple
files, but one visualization shows the callgraphs on a per-file basis, while the other one
shows the callgraph of the project as an integrated whole.

Several things within Figure ?? are of note. One is that it appears to have no recur-
sive functions, which is unusual for a Scheme program. The reason for this is that it
uses existing (recursive) higher-order functions to perform operations, such as applying
a function to every element of a list.

There are several predicate functions within ScheMoose . Notably, they’re all either
leaf functions, or only call other predicate functions. They are all small functions.

There are several orphaned nodes. Unlike in a previous case study, where orphaned
nodes were due to the use of local functions, in ScheMoose , they are largely due to the
use of higher order functions. Given a scheme expression such as (map afunc alist),
which calls (afunc anelement) for each element of alist ScheMoose duly records a
call to map in the MSE file, but does not realize that afunc is called once per element
of alist, and so does not record any calls to afunc. This is an example of the use of a
higher order function: map takes a function as an argument.

The small cluster of nodes at the top is a set of convenience functions, which are
now depricated. They serve to re-create mse files for each of the four case studies.
Their only differences are the names of the source directories, and of the output files.
This symmetry is reflected in their identical sizes. Their caller is a convenience function
which regenerates all of them. This information is not immediately available from the
visualization, as source code is not presently exported to the MSE file. However, the
visualization does suggest these functions as a place to begin investigation. The actual
entry point is the slightly larger box to the right of the 4 small convenience functions.
This becomes clear when actually using Mondrian, as mousing over it brings up the
name of the function, invoke-main.
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Figure 4.5: ScheMoose callgraph with predicates
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4.5 Comparison of the 4 programs

In the previous four case studies, specific elements of the programs under examination
were discussed. This provided a glimpse of what the information ScheMoose exports
can be used for. It is also instructive to look at multiple programs with the same
visualization; this illustrates both commonalities and how the programs differ. This
comparison is centered on the callgraphs, and the definitions of predicate and recursive
functions. The absolute sizes of the functions should not be compared between projects,
as the screenshots are scaled to fit this document. Only half of Connect-4 is analyzed,
as the two source files it contains are nearly identical, which leads to a rather strange-
looking visualizations when they are examined together.

Recursive functions are indicated by yellow, predicate functions by red, and recur-
sive predicate functions by purple. All other functions are cyan.

Figure 4.6: Connect-4 (no AI)
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Figure 4.7: lambdaTRON
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Figure 4.8: ScheMoose
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Figure 4.9: Extreme Ski

The four programs have significantly different callgraphs. The Connect-4 program
is notable for having a few really large functions, and for having functions which call
the same second function multiple times (this is represented by multiple lines between
the two functions). Extreme Ski is notable for having an extremely shallow callgraph,
which has a structure which largely reflects the two files it was written in (compare it
to Figure 4.3).

Three of the four projects use direct recursion. The ration of recursive functions are
6/27 for lambdatron, 19/76 for Extreme Ski, and 17/32 Connect-4. This means they
make up from just under a quarter to just over a half of the globally defined functions
in these projects. The fourth project, ScheMoose , uses higher order functions rather
than direct recursion.

Three of the four projects use predicates, marked by the convention of using ’?’ as
the last character of a predicate function name. In all three projects, predicate functions
are individually small, and make up a small percentage.

A unique feature of lambdaTRON is that it uses a recursive predicate function. These
appear to be rare; even lambdaTRON only contains one.
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| edges preds recs basics boths|

preds := mooseModel allFunctions select: [:f | f isPredicate and: f isDRecursive not].

recs := mooseModel allFunctions select: [:f | f isDRecursive and: f isPredicate not].

basics := mooseModel allFunctions select: [:f | f isPredicate not and: f isDRecursive not].

boths := mooseModel allFunctions select: [:f | f isDRecursive and: f isPredicate ].

view interaction popupText:

[:entity | ’Name: ’, entity name, (String with: Character cr),

’File: ’, entity sourceAnchor].

view nodes: preds using: ((RectangleShape fillColor: #red asColor)

width: [:entity | (entity propertyNamed: #NPAR)]

height: [:entity | (entity propertyNamed: #NPAR)]).

view interaction popupText:

[:entity | ’Name: ’, entity name, (String with: Character cr),

’File: ’, entity sourceAnchor].

view nodes: recs using: ((RectangleShape fillColor: #yellow asColor)

width: [:entity | (entity propertyNamed: #NPAR)]

height: [:entity | (entity propertyNamed: #NPAR)]).

view interaction popupText:

[:entity | ’Name: ’, entity name, (String with: Character cr),

’File: ’, entity sourceAnchor].

view nodes: basics using: ((RectangleShape fillColor: #cyan asColor)

width: [:entity | (entity propertyNamed: #NPAR)]

height: [:entity | (entity propertyNamed: #NPAR)]).

view interaction popupText:

[:entity | ’Name: ’, entity name, (String with: Character cr),

’File: ’, entity sourceAnchor].

view nodes: boths using: ((RectangleShape fillColor: #purple asColor)

width: [:entity | (entity propertyNamed: #NPAR)]

height: [:entity | (entity propertyNamed: #NPAR)]).

edges := Core.OrderedCollection new.

mooseModel allFunctions do: [:e | e incomingInvocations do:

[:eInv | edges add: e->(eInv invokedBy)]].

view edges: edges

from: #value

to: #key

using: ((LineShape color: Color blue) decoratedWith: ArrowShape new).

view layout: SugiyamaLayout new.

view open.

Figure 4.10: ScheMoose Mondrian code used to visualize all four case studies
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Chapter 5

Conclusions

ScheMoose models a significant amount of information about Scheme programs. This
information can and has been used to make statements about Scheme programs which
would have taken significantly longer to arrive at manually. The visual format used
to display the mined information allows for quick comprehension of the structure of a
program.

Implementing ScheMoose was largely straightforward, as the simplest design op-
tion was usually chosen. This simplicity came at a price: the information mined is not
always as complete as it could be, and with even a slightly more complicated implemen-
tation, significantly more information could be gathered. The major shortcomings are a
lack of modelling of top-level statements which are not definitions, the lack of modelling
the internal structure of expressions (especially functions defined within local and the
various forms of let), and the lack of at least simple support (analagous to that for
special forms) for higher order functions.

By modelling the top-level statements which aren’t definitions, it would be possible
to gather the following information, which is currently not gathered: the dependencies
between files, and calls to functions from the top level. The dependencies between
files can largely be discovered via load and require statements, which are roughly
analagous to include or import in C or Java. Calls to functions from the top-level are
fairly analagous to calls to functions from within other functions, with a few differences,
such as being run when the source file is processed by DrScheme, rather than waiting
until a specific function of the project is called.

By modelling the internal structure of expressions, it would be possible to have
more complete calling information. The first-semester projects, when analyzed, had a
few orphan function nodes; manual investigation showed that at least some of these
are due to the functions only being called by local functions (that is, functions defined
within other functions, which are not in the global namespace). The calls done by local
functions are not modelled. The calls to local functions are modelled, but as the local
functions themselves are not (only globally defined functions are), they are considered
stubs (this is also how calls to functions defined by DrScheme are treated; it means
that the function is not modelled by ScheMoose ).

Rudimentary support for some of the more common higher-order functions, such as
map, filter, and fold, which know that they take an argument which is a function, which
they call 0 or more times (once per element of a list which they are also passed), would
also allow better calling information. All calls within such structures are currently
modelled as calls to map/etc, which they are. However, the calls to the function passed
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to these higher-order constructs are treated as arguments, and not considered to be
called. The analysis of ScheMoose suffered slightly from the lack of this support, as it
uses some of these constructs; the first semester projects did not.

5.1 Future Work

ScheMoose only scratches the surface of the analysis of Scheme programs. There are
many directions in which it could evolve.

Sticking to Scheme, there is room for the following:

1. Continuations

2. Modelling use of OO extensions to Scheme

3. Modelling use of state

4. Use of I/O

5. Redundant calls

6. Modelling use of higher-order functions

7. Handling of user-defined special forms

8. Modelling mutual recursion

9. Namespace support

10. Modelling the internals of statements.

11. Modelling local variables.

12. Modelling local and global variable use.

13. Modelling top-level statements which are not definitions.

14. Conditional forms of all of the above

15. Better handling of existing special forms

16. Duplicate code analysis

17. Type inferencing (useful for a better predicate heuristic, etc)

18. Heavier analysis techniques, including exhaustive searches and predicate abstrac-
tion, to prove various properties hold or do not hold

19. Modelling relevant parts of DrScheme

20. Modelling the relations (load/require) between files

21. Trying ScheMoose with Scheme code designed for interpreters other than DrScheme

22. Examining Scheme code written in unusual styles, such as a continuation passing
style, and experimenting with how to best model this.
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A few of the above options involve the halting problem. This does not make them
useless; it merely means that there has to be a maximum amount to search, and the
possibility of an answer which signifies a lack of an answer.

Outside of Scheme, there are quite a lot of functional programming concepts which
are not addressed. These include Haskell’s concept of monads. While monads can be
implemented concisely in Scheme, they are not widely used in Scheme code.
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Appendix A

Scheme Source to MSE

This chapter describes how everything modelled by ScheMoose is expressed in the MSE
format. This is done via concrete examples, from the case studies. This is done by
showing a snippet of Scheme code, followed by the corresponding snippet from an MSE
file.

A.1 Context

The MSE format has a simple form. It starts with (Moose.Model, followed by (entity,
and then contains a list of entries for namespaces, files, functions, variables, invo-
cations, etc. Figure A.1 shows a truncated portion of the MSE file generated when
analyzing ScheMoose with itself. DIF can be ignored; it’s for internal use, to allow an
ordering to be seen from within the Moose model. NPAR is the number of parentheses,
an approximate measure of size.

A.2 Global Function Definitions

As Figure A.3 shows, the MSE representation of Figure A.2 is initiated with FAMIX.Function.
Properties are then given, such as an id, a name, the source file it was found in, the
namespace it belongs to (as Figure A.1 shows, this is the global namespace) and custom
properties, such as NPAR, isPredicate, and isDRecursive.

A.3 Global Variable Definitions

The relation of Figure A.4 to Figure A.5 is much like that of globally defined functions to
MSE files. The only real difference is that custom properties that would not make sense
(ie, whether or not a function is recursive or a predicate function) are not present.

A.4 Simple Function Calls

A function invocation requires three FAMIX entities in the MSE file - one for each func-
tion, and one for the invocation itself. The invocation has an ID, knows what the
invoking function is, the name of the function being invoked, and it has at least one

31



Katerina Barone-Adesi ScheMoose

(Moose.Model

(entity

(FAMIX.Namespace (id: 2)

(name ’Global’)

)

(FAMIX.File (id: 3)

(name ’/home/me/school/schemoose/src/s-expr-preds.scm’)

)

(FAMIX.Function (id: 4)

(name ’definition?’)

(belongsTo (idref: 2))

(sourceAnchor

’FILE:/home/me/school/schemoose/src/s-expr-preds.scm’)

(NPAR 18)

(DIF 4)

(isPredicate true)

(isDRecursive false)

)

))

Figure A.1: MSE in context

(define definition?

(lambda (s-expr)

(and (equal? (length s-expr) 3)

(equal? (car s-expr) ’define))))

Figure A.2: A Scheme function definition

(FAMIX.Function (id: 4)

(name ’definition?’)

(belongsTo (idref: 2))

(sourceAnchor ’FILE:/home/me/school/schemoose/src/s-expr-preds.scm’)

(NPAR 18)

(DIF 4)

(isPredicate true)

(isDRecursive false)

)

Figure A.3: The MSE representation of a Scheme function

(define sample-invocation (make-famix-invocation 5 ’invoker UNKNOWN ’invokee))

Figure A.4: A Scheme variable definition
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(FAMIX.GlobalVariable (id: 277)

(name ’sample-invocation’)

(belongsTo (idref: 2))

(sourceAnchor ’FILE:/home/me/school/schemoose/src/famix-test.scm’)

(NPAR 8)

(DIF 277)

)

Figure A.5: The MSE representation of a Scheme global variable

(define definition?

(lambda (s-expr)

(and (equal? (length s-expr) 3)

(equal? (car s-expr) ’define))))

(define definition-name

(lambda (s-expr)

(if (definition? s-expr)

(second s-expr)

’NOT-a-define)))

Figure A.6: A Scheme function call

(FAMIX.Function (id: 4)

(name ’definition?’)

(belongsTo (idref: 2))

(sourceAnchor ’FILE:/home/me/school/schemoose/src/s-expr-preds.scm’)

(NPAR 18)

(DIF 4)

(isPredicate true)

(isDRecursive false)

)

(FAMIX.Function (id: 27)

(name ’definition-name’)

(belongsTo (idref: 2))

(sourceAnchor ’FILE:/home/me/school/schemoose/src/s-expr-preds.scm’)

(NPAR 14)

(DIF 27)

(isPredicate false)

(isDRecursive false)

)

(FAMIX.Invocation (id: 28)

(invokedBy (idref: 27))

(candidate (idref: 4))

(invokes ’definition?’)

)

Figure A.7: MSE of Scheme function call
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candidate for which function is being actually invoked (as there can be multiple func-
tions defined with one name, though at most one of these would actually be associated
with the name at any point during the run-time).

A.5 Number of Parentheses

Number of Parentheses information is collected for global variables and global func-
tions. It is a property of these entities. See Figure A.2 and Figure ?? for an example
with a global function.

A.5.1 Special Forms

Special form information is not exported from ScheMoose . It is only used to make sure
that function call information is correct, as many special forms introduce syntax. It
would be possible to model it in a way similar to the way directly recursive functions
are currently modelled, by adding information to the MSE file, and an entry to it to the
metamodeland telling it what to look for within the MSE file.

A.5.2 Directly Recursive Functions

Whether or not a function is directly recursive is information collected for globally de-
fined functions. It is a property of the function entity. See Figure A.2 and Figure ??.

A.5.3 Files

File information is collected for global variables and global functions. It is a property of
these entities. See Figure A.2 and Figure ?? for an example with a global function.

A.5.4 Predicate Functions

Whether or not a function is a predicate function is information collected for globally
defined functions. It is a property of the function entity. See Figure A.2 and Figure ??.
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Implementation

This chapter discusses some salient features of the implementation.

B.1 Source layout

The source of ScheMoose is divided into several files. These divisions are on conceptual
boundaries: for example, one file defines types, another defines a (minimalistic) test
framework, and another exports gathered data from the internal format to MSE.

This section presents an alphabetical list of the files, along with their purpose.

B.1.1 all-tests.scm

This is a wrapper, which allows all of the tests of the system to be run at once, by
running “mzscheme -i all-tests.scm”.

B.1.2 cmd.scm

This is the command-line interface to ScheMoose . It is defined in more detail in “Invo-
cation: Command Line” in the “How to use ScheMoose ” chapter.

B.1.3 dot.scm

This is the dot exporter for ScheMoose . Given the internal model of Scheme programs
of ScheMoose , it calculates the call graph, and exports it as a directed graph.

B.1.4 famix.scm

The core of ScheMoose is famix.scm. Given raw s-expressions (similar to a parse tree)
of scheme source, it is what gathers all of the information, storing it in the internal
ScheMoose format. It runs both passes of the analysis. A typical action of the first
pass is to figure out (with the help of s-expr-preds.scm) what kind of statement a given
s-expression is (only definitions are modelled). The second pass is concerned with re-
solving function calls, so that calls to other functions within the project being modelled
are modelled internally and can be exported to the MSE file (the conversion is done by
format-famix.scm, and the actual exportation via ui.scm).
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B.1.5 famix-test.scm

This defines some basic sanity tests for famix.scm. It can be run standalone, or via the
all-tests.scm wrapper.

B.1.6 format-famix.scm

This file is responsible for taking a complete internal description of a modelled project,
and converting it into a valid MSE description.

B.1.7 initial-read.scm

This file has two responsibilities. The more minor one is, given a list of files and direc-
tories, to figure out (recursively) which of the files and directory contents are Scheme
files. The major one is done on a per-Scheme-file basis; it converts the raw file contents
into a list of s-expressions, using the ’read’ function built into DrScheme.

B.1.8 initial-read-test.scm

Basic sanity tests for initial-read.

B.1.9 mzscheme-compat.scm

The full DrScheme environment is richer than that of mzscheme. This file tries to bridge
some of the differences, so that ScheMoose can be used from either. In practice, it’s a
list of statements importing various libraries.

B.1.10 s-expr-preds.scm

This file is full of utility functions (many, but not all, of which are predicates) for dealing
with s-expressions. It is how ScheMoose decides if a given statement is a global variable
or a predicate, for instance. It also handles metrics, such as figuring out how many
parentheses are in any given s-expr.

B.1.11 s-expr-preds-test.scm

Basic sanity tests for some of the s-expression operations of s-expr-preds.scm.

B.1.12 test-framework.scm

A minimalistic test framework. It provides only two functions, run-test and run-tests.
The former takes a function (which should be a test function which returns true or
false, although this is not enforced), and if the test fails, indicates the failure. run-tests
merely runs all of a list of tests. The major shortcoming of this framework is that it has
no way to recover from test errors (ie, use of an undefined variable, unexpected error
exceptions, etc). Despite this, it has been very helpful.
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B.1.13 types.scm

This file defines the core structures for the internal representation of the gathered in-
formation, as well as internal ’undefined’ value and a predicate to check if a value in
the internal model matches the undefined value.

B.1.14 ui.scm

This provides a variety of convenience functions. The most important is dump-famix-
from-to, which, given a list of files and directories, models all Scheme files found, and
exports the resulting MSE description to a given output file.
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Appendix C

How to use ScheMoose

The following two sections are currently accurate, but subject to change. More detailed
and up to date information on the prerequisites and use of ScheMoose may be found
on the ScheMoose web page1.

C.1 Prerequisites

To run ScheMoose, several pieces of software are necessary. These include DrScheme,
Visualworks, and Moose. The version of DrScheme is not known to be particularly
important, but most of the development was done under version 360. Visualworks
needs to be 7.4.x; 7.3 is known to not work.

The trickiest part is the Moose requirement, as an old version from the Bern store,
rather than the Cincom store, is the baseline, and there are also several minor custom
patches which have not been packaged yet. Until this is done, the author needs to be
contacted by anyone who would like to try working with ScheMoose’s output.

C.2 Invocation: Command line

Assuming that DrScheme is installed correctly and mzscheme (part of DrScheme) is in
your path, all that is needed to run ScheMoose over the files and directories of your
choice is the following command: mzscheme -i cmd.scm mse inputs out.mse where
inputs stand for one or more files or directories, in any order. Directories are searched
recursively for .scm files, case-insensitively. The invocation to export the callgraph as a
dot file is identical, except for the format specifier; instead of ’mse’ following cmd.scm,
’dot’ must be specified.

1http://atelier.inf.unisi.ch/ baroneak/schemoose/
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