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Abstract

Bézier curves are an essential tool for curve design. Due to their properties, common
operations such as translation, rotation, or scaling can be applied to the curve by simply
modifying the control polygon of the curve. More flexibility, and thus more diverse types
of curves, can be achieved by associating a weight with each control point, that is, by
considering rational Bézier curves. As shown by Ramanantoanina and Hormann [7], ad-
ditional and more direct control over the curve shape can be achieved by exploiting the
correspondence between the rational Bézier and the interpolating barycentric form and by
exploring the effect of changing the degrees of freedom of the latter (interpolation points,
weights, and nodes). In this paper, we explore similar editing possibilities for closed curves,
in particular for the rational extension of the periodic Bézier curves that were introduced by
Sánchez-Reyes [9]. We show how to convert back and forth between the periodic rational
Bézier and the interpolating trigonometric barycentric form, derive a necessary condition
to avoid poles of a trigonometric rational interpolant, and devise a general framework to
perform degree elevation of periodic rational Bézier curves. We further discuss the editing
possibilities given by the trigonometric barycentric form.
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1 Introduction

We recall that a Bézier curve P : [0, 1]→R2, defined by the control points P0, . . . , Pn ∈R2, is given by

P (t ) =
n
∑

i=0

B n
i (t )Pi ,

where B n
i (t ) =
�n

i

�

(1− t )n−i t i denotes the i -th Bernstein polynomial of degree n . The only shape controls
induced by this formula are the control points Pi , which can be used to intuitively modify the shape of the
curve P . By associating a scalar αi ∈Rwith each Pi , we obtain a rational Bézier curve

P (t ) =

∑n
i=0 B n

i (t )αi Pi
∑n

i=0 B n
i (t )αi

. (1)

The additional degrees of freedom α0, . . . ,αn can be used to induce a push or pull effect towards the control
polygon. New shape controls for rational Bézier curves can be achieved by expressing the curve in barycentric
form. We recall that a barycentric rational curve Q : [0, 1]→R2, defined by the distinct nodes t0, . . . , tn ∈ [0, 1],
the interpolation points Q0, . . . ,Qn ∈R2, and the non-zero weights β0, . . . ,βn ∈R, is given by

Q (t ) =

∑n
i=0

(−1)i
t−ti
βi Qi

∑n
i=0

(−1)i
t−ti
βi

. (2)

The possibility of converting back and forth between the rational Bézier form (1) and the barycentric
form (2) is described by Ramanantoanina and Hormann [7]. Due to the interpolation property Q (ti ) =Qi for
any i = 0, . . . , n , the barycentric form offers a more direct control over the curve and can be used to force the
curve to pass through specific points, which is much harder to achieve using the rational Bézier form.

Ramanantoanina and Hormann [7] also analyse the effect of changing the other parameters of the
barycentric form, namely the nodes ti and the weights βi . In particular, they describe how to slide a point Qk

along the curve by modifying the corresponding node tk and suitably adjusting the weights without changing
the shape of the curve, and how to control the flatness of the curve at Qk by modifying βk . To this end,
they derive the formula for the tangent vector Q ′(tk ) from the formula of the derivatives of a barycentric
rational interpolant [10] and show that only the length of this vector depends on βk , but not its direction.
Geometrically, this means that decreasing βk flattens a curve locally around Qk , while increasing βk forces
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(a) (b) (c) (d) (e) (f)

Figure 1: In order to create the curve in (a), a designer would normally use the control points and weights of a rational
Bézier curve to control the shape (b,c), which is intuitive, but requires skill and experience to exactly reproduce the
shape in (a). Instead, after converting the Bézier curve in (c) to the interpolating barycentric form (d), it is possible to
edit the curve by dragging the interpolation points and forcing the curve to pass through a certain set of key points on
the desired shape (e) and then adjusting the shape by modifying the flatness at these points (f).
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Figure 2: The shape of the Bernstein (left) and the periodic basis functions (right) for n = 4.

the curve to bend more tightly at Qk . They further describe how to insert a new interpolation point without
changing the shape of the curve, which effectively raises the degree of the curve from n to n +1. Figure 1
showcases the advantages of editing a curve using the barycentric form.

While the aforementioned constructions are only for open curves, the goal of this paper is to derive
similar shape control tools for closed curves. One option would be to close the rational Bézier curve in (1) by
aligning the end points, that is, by letting P0 = Pn , resulting in C 0-continuity, and higher orders of continuity
can be achieved by further constraining control points and weights. For example, C 1-continuity is ensured
if α1αn (P1−P0) =α0αn−1(Pn −Pn−1). Another option would be to consider Bézier splines or B-splines, but all
these approaches result in curves with a finite order of differentiability.

A third option is to consider periodic Bézier curves [9]. These curves are closed and smooth (that is, C∞)
everywhere and inherit many important properties from classical Bézier curves. The main idea behind
their construction is to replace the Bernstein polynomials by shifted versions of a periodic function that
imitates the shape of a central Bernstein polynomial (see Figure 2). A periodic Bézier curve P : [0, 2π]→R2

of degree N ∈Nwith control points P0, . . . , Pn ∈R2, where n = 2N , is defined as

P (t ) =
n
∑

i=0

Bn (t −φi )Pi ,

where Bn (t ) = Kn cosn t
2 , Kn =

2n

n+1

�n
N

�−1
, andφi =

2iπ
n+1 for i = 0, . . . , n . Since cosn t

2 = (1+cos t )N /2N , it is clear
that this is a trigonometric polynomial curve of degree N .

1.1 Contributions

We extend the construction of periodic Bézier curves in the same way that Bézier curves are extended to
rational Bézier curves. Namely, we introduce a weight αi for each control point Pi of a periodic Bézier curve
and then project the spatial periodic Bézier curve with control points (αi Pi ,αi ) ∈R3 centrally into the z = 1
plane. Hence, a periodic rational Bézier curve with control points P0, . . . , Pn ∈R2 and weights α0, . . . ,αn ∈R is
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given by

P (t ) =

∑n
i=0 Bn (t −φi )αi Pi
∑n

i=0 Bn (t −φi )αi

. (3)

Notice that P (t ) reduces to a trigonometric polynomial curve if all weights αi are equal.
Recall that our goal is to explore the possibility of converting the periodic rational Bézier form in (3) to

an interpolating barycentric form and to investigate the shape control possibilities that the latter offers. In
the periodic setting, the equivalent of the barycentric rational curve in (2) turns out to be the trigonometric
barycentric rational curve Q : [0, 2π]→R2, defined by the distinct nodes t0, . . . , tn ∈ [0, 2π), the interpolation
points Q0, . . . ,Qn , and the non-zero weights β0, . . . ,βn ∈R, and given by

Q (t ) =

∑n
i=0(−1)i csc t−ti

2 βi Qi
∑n

i=0(−1)i csc t−ti
2 βi

, (4)

where csc(t ) = 1/sin(t ).
We first show (Section 2) how to convert back and forth between the periodic rational Bézier form (3)

and the trigonometric barycentric form (4). In this context, we also develop a necessary condition on the
weights βi to assure that the curve Q (t ) has no poles. We then explore the shape control offered by the
trigonometric barycentric form, namely, by modifying the interpolation points, the nodes, or the weights
(Section 3). Finally, we present three algorithms for performing degree elevation of a periodic rational Bézier
curve (Section 4), using either the discrete Fourier transform as in [9] or a direct conversion of the old to the
new control points, or by inserting two new interpolation points into the trigonometric barycentric form
such that the shape of the curve remains the same.

2 Equivalence of periodic rational Bézier and trigonometric barycentric form

Let us first recall how to convert a trigonometric polynomial into barycentric form [8, 4, 1]. Consider the
trigonometric polynomial p (t ) = a0+

∑N
k=1(ak cos(k t )+bk sin(k t )) of degree N for certain 2N +1 coefficients

a0, a1 . . . , aN , b1, . . . , bN and 2N + 1 distinct nodes t0, . . . , tn ∈ [0,2π), where n = 2N . It is well known that p
can be expressed in terms of the values pi = p (ti ), i = 0, . . . , n as

p (t ) =
n
∑

i=0

n
∏

j=0, j ̸=i

sin
t−t j

2

sin
ti−t j

2

pi ,

which is commonly known as Gauss’s formula for trigonometric interpolation [8] and akin to the Lagrange
form for classical polynomials. Factoring out the product ℓ(t ) =

∏n
j=0 sin

t−t j

2 , we get the first trigonometric
barycentric form

p (t ) = ℓ(t )
n
∑

i=0

Wi csc
t − ti

2
pi (5)

of p , where

Wi =
n
∏

j=0, j ̸=i

csc
ti − t j

2
, i = 0, . . . , n . (6)

Note that in the special case of equidistant nodes ti =
2iπ
n+1 , i = 0, . . . , n , Berrut [1] shows that the weights are

simply Wi = (−1)i W0. We can further write p in second trigonometric barycentric form after dividing (5) by
the constant function 1, expressed in first trigonometric barycentric form as 1= ℓ(t )

∑n
i=0 Wi csc t−ti

2 , and
cancelling the factor ℓ(t ),

p (t ) =

∑n
i=0 Wi csc t−ti

2 pi
∑n

i=0 Wi csc t−ti
2

.

In particular, we can use the first trigonometric barycentric form to convert a periodic rational Bézier curve
into trigonometric barycentric form.

Proposition 1. For any sequence of nodes 0≤ t0 < · · ·< tn < 2π, we can express the periodic rational Bézier
curve P (t ) in (3) in trigonometric barycentric form (4) with Qi = P (ti ) and βi = (−1)i Wi z (ti ), where z (t ) =
∑n

i=0 Bn (t −φi )αi is the denominator of P (t ).
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Proof. We first express the denominator z (t ) and the numerator of P (t ) in first trigonometric barycentric
form (5) as

z (t ) =
n
∑

i=0

Bn (t −φi )αi = ℓ(t )
n
∑

i=0

Wi csc
t − ti

2
z (ti ), (7)

n
∑

i=0

Bn (t −φi )αi Pi = z (t )P (t ) = ℓ(t )
n
∑

i=0

Wi csc
t − ti

2
z (ti )P (ti ). (8)

We then divide (8) by (7), cancel the factor ℓ(t ), and substitute P (ti ) =Qi and Wi z (ti ) = (−1)iβi to arrive at
the trigonometric barycentric form (4).

Since each of the (n +1)2 terms Bn (ti −φ j ) can be computed in O (log n ) and each weight Wi in O (n ) time, the
overall time complexity of this conversion is O (n 2 log n ). Letting zi = z (ti ), P̂i = (αi Pi ,αi ) and Q̂i = (zi Qi , zi )
for i = 0, . . . , n , the relations (7) and (8) can be written compactly as Q̂ = B P̂ , where

B =





Bn (t0−φ0) · · · Bn (t0−φn )
...

...
...

Bn (tn −φ0) · · · Bn (tn −φn )



 , P̂ =







P̂0
...

P̂n






, Q̂ =







Q̂0
...

Q̂n






.

This is useful for showing how to get back from the trigonometric barycentric form to the periodic rational
Bézier form.

Proposition 2. We can express the trigonometric barycentric rational curve Q (t ) in (4) as a periodic rational
Bézier curve (3) with control points Pi = (x̂i , ŷi )/ẑi and weights αi = ẑi , where (x̂i , ŷi , ẑi ) is the i -th row of
P̂ = B−1Q̂ , as long as all ẑi are non-zero.

Proof. Given Q (t ), we first use the nodes ti to compute the Wi as in (6), then use the weights βi to set
zi = (−1)iβi /Wi , and finally define the i -th row of Q̂ as (zi Qi , zi ). The statement then follows from the fact
that Q̂ = B P̂ , but it remains to show that B is invertible.

To this end, we first recall from [9] that the n + 1 functions Bn (t −φi ), i = 0, . . . , n span the (n + 1)-
dimensional space TN = span{cos(k t ), sin(k t ) : k = 0, . . . , N } and are thus linearly independent. Moreover,
any non-trivial linear combination of these functions is a trigonometric polynomial of order N and as such
has no more than 2N = n zeros [6]. Consequently, the functions Bn (t −φi ) form a Chebyshev system, which
implies that B is non-singular.

The time complexity of this conversion is O (n 3), since this is the time that it takes in general to solve the
dense linear system Q̂ = B P̂ . If one or more of the ẑi in Proposition 2 vanish, then this means that the curve
cannot be represented in periodic rational Bézier form, unless we extend the definition to allow for infinite
control points, like in the case of classical rational Bézier curves [5, 3, 7]. Alternatively, we can apply degree
elevation (see Section 4) to represent the curve as a periodic rational Bézier curve with higher degree.

Example 1. Let N = 1, so that n = 2, and consider the trigonometric barycentric rational curve Q (t )with
equidistant nodes t0 = 0, t1 = 2π/3, t2 = 4π/3, interpolation points Q0 = (2, 0), Q1 = (−1, 1), Q2 = (−1,−1), and
weights β0 = 2/5, β1 =β2 = 1, which turns out to be a non-uniformly parameterized circle with centre (1/3, 0)
and radius 5/3 (see Figure 3.a). Computing P̂ as in Proposition 2, we find that ẑ0 = 0 and that Q is a
periodic rational Bézier curve with normal control points P1 = (−4/3,5/3), P2 = (−4/3,−5/3) and weights
α1 =α2 = 9/10 and an infinite control point P0 in the direction (1, 0)with homogeneous coordinates (3/2, 0, 0)
(see Figure 3.b). After increasing the degree of Q from 1 to 2 by adding two points at t =π/3 and t = 5π/3
(see Section 4), resulting in the curve Q̃ with nodes t̃0 = t0, t̃1 =π/3, t̃2 = t1, t̃3 = t2, t̃4 = 5π/3, interpolation
points Q̃0 = Q0, Q̃1 = Q (t̃1) = (1/3,5/3), Q̃2 = Q1, Q̃3 = Q2, Q̃4 = Q (t̃4) = (1/3,−5/3), and weights β̃0 = 8/5,
β̃1 = β̃4 = 6

p
3/5, β̃2 = β̃3 = 2 (see Figure 3.c), we can apply Proposition 2 to convert the curve into periodic ra-

tional Bézier form with control points P̃0 = (7, 0), P̃1 ≈ (0.254, 2.680), P̃2 ≈ (−1.444, 0.792), P̃3 ≈ (−1.444,−0.792),
P̃4 ≈ (0.254,−2.680) and weights α̃0 = 3/20, α̃1 = α̃4 ≈ 0.461, α̃2 = α̃3 ≈ 0.964 (see Figure 3.d). Note that the
control polygon is not regular, because of the non-uniform parameterization of the curve.

Because of the equivalence of the periodic rational Bézier form (3) and the trigonometric barycentric
form (4), we will use P (t ) and Q (t ) interchangeably from now on to refer to the same periodic rational curve,
given in either of the two forms.
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(a) (b) (c) (d)

Figure 3: Converting a periodic rational curve from trigonometric barycentric form (a) to periodic rational Bézier form
may require infinite control points (b), but after inserting two interpolation points (c), which raises the degree of the
curve by one, the curve can be represented as a periodic rational Bézier curve with finite control points (d).

One important aspect when modelling with periodic rational curves it to ensure that they are free of
poles. On the one hand, this is guaranteed for P (t ) if all weights αi are positive, since this implies that
the denominator z (t ) is positive, too, for all t ∈ [0,2π]. On the other hand, it is less clear which choice
of weights βi guarantees that the denominator of Q (t ) does not vanish for some t ∈ [0,2π], because the
functions (−1)i csc t−ti

2 are neither entirely positive nor entirely negative. However, Berrut [2] shows that Q (t )
has no poles if all βi are equal to some common non-zero value, and we also know that βi = (−1)i Wi

for i = 0, . . . , n with Wi defined as in (6) is a safe choice, because Q (t ) is a trigonometric polynomial curve
(in second trigonometric barycentric form) in that case. Since the factors of Wi in (6) are negative for i < j
and positive for i > j , if we assume the ti to be ordered and in [0,2π), and n = 2N is even, it is clear that
sign(Wi ) = (−1)i and that the βi are all positive in this case. This is actually not surprising, because it turns
out that a common sign of the βi is a necessary condition for the absence of poles, exactly as for classical
barycentric rational interpolants [10].

Proposition 3. IfQ (t ) is a trigonometric barycentric rational curve (4) without poles, then the weightsβ0, . . . ,βn

have the same sign.

Proof. If we follow Proposition 2 and convert Q (t ) into the spatial periodic Bézier curve P̂ (t )with control
points P̂i , without projecting P̂ (t ) centrally into the z = 1 plane to get P (t ), then it is clear that the z -
component of P̂ (t ), which is nothing but the denominator z (t ) of P (t ), does not vanish for any t ∈ [0,2π],
because Q (t ) is free of poles. It then follows from Proposition 1 that the βi = (−1)i Wi z (ti ) are all either
positive or negative, because sign(Wi ) = (−1)i , as pointed out above.

Since the weights αi and βi can always be scaled by a common non-zero factor without changing the curve,
we can summarize these considerations crisply as: positive αi are sufficient, but not necessary for the
absence of poles, and positive βi are necessary, but not sufficient.

3 Shape editing using the trigonometric barycentric form

The equivalence of the periodic rational Bézier and the trigonometric barycentric form enables new editing
possibilities for periodic rational Bézier curves, beyond changing the control points Pi and the associated
weights αi , by modifying the parameters of the trigonometric barycentric form, namely the interpolation
points Qi , the nodes ti , and the weightsβi , similar to how it can be done for classical rational Bézier curves [7].

3.1 Displacing an interpolation point

The interpolation property of the trigonometric barycentric form provides an intuitive means to modify
the curve by displacing an interpolation point Qk (see Figure 4.b). This is particularly useful for forcing the
curve to pass through a specific target point, which is much harder to achieve by changing the Bézier control
points Pi . However, in contrast to the basis functions αi Bn (t −φi )/

∑n
j=0α j Bn (t −φ j ) of the periodic rational

Bézier form, the basis functions (−1)i csc t−ti
2 βi /
∑n

j=0(−1) j csc
t−t j

2 β j of the trigonometric barycentric form
are neither non-negative nor as nicely bell-shaped and a large displacement of some Qk might therefore
induce a less intuitive global deformation of the curve’s shape. Hence, while displacing the interpolation
points is good for micro-editing the shape, the Bézier control points remain the better handles for global
shape design.
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(a) (b) (c) (d) (e)

Figure 4: The shape of a periodic rational curve in trigonometric barycentric form (a) can be modified intuitively by
displacing an interpolation point (b) or by changing the associated weight (c). The blue and the red curve are obtained
from the black curve by moving the indicated interpolation point (b) and by increasing or decreasing its weight, visualized
by proportionally sized disks (c), while leaving all other interpolation points and weights unchanged. Moreover, it is
possible to slide an interpolation point (d) and to insert new interpolation points (e) without changing the shape of the
curve.

3.2 Sliding an interpolation point

For the same reason as before, changing the value of a single node tk may deform the curve in a non-intuitive
way. However, it is possible to update simultaneously the interpolation point Qk and all the weights βi , such
that changing a node tk results in sliding Qk along a curve. This can be achieved in two ways. On the one
hand, we can use Proposition 2 to express Q (t ) in periodic rational Bézier form using the current sequence
of nodes and then convert P (t ) back into trigonometric barycentric form with Proposition 1, this time with
the new sequence of nodes, where tk is replaced by some new value t̃k :

Q (t )

convert to periodic rational Bézier form with respect to t0, . . . , tk , . . . , tn
��

P (t )

convert to trigonometric barycentric form with respect to t0, . . . , t̃k , . . . , tn
��

Q̃ (t )

(9)

On the other hand, we can also compute the parameters of the new curve Q̃ (t ) directly.

Proposition 4. Suppose we change the node tk for some k ∈ {1, . . . , n −1} to a new value t̃k ∈ (tk−1, tk+1). The
trigonometric barycentric rational curve Q (t ) in (4) can then be expressed in terms of the nodes t0, . . . , t̃k , . . . , tn ,
the interpolation points Q0, . . . ,Q̃k , . . .Qn , and the weights β̃i , where Q̃k =Q (t̃k ) and

β̃k = sin
t̃k − tk

2

n
∑

j=0

(−1) j+k csc
t̃k − t j

2
β j , β̃i = csc

ti − t̃k

2
sin

ti − tk

2
βi , i ̸= k . (10)

Proof. We follow the diagram in (9) and first convertQ (t ) to periodic rational Bézier form (3). By Proposition 1,
we then know that the weights of the given curve Q can be written with respect to the given nodes t0, . . . , tn

as βi = (−1)i Wi z (ti ), where z (t ) is the denominator of P (t ) and Wi is defined as in (6). It further follows from
Proposition 1 that Q can be expressed with respect to the new nodes t̃0, . . . , t̃n , where t̃i = ti for i ̸= k , using

the new interpolation points Q̃i = P (t̃i ) and the new weights β̃i = (−1)i W̃i z (t̃i ), where W̃i =
∏n

j=0, j ̸=i csc
t̃i−t̃ j

2 .

Clearly, Q̃i = P (ti ) =Qi for i ̸= k and Q̃k = P (t̃k ) =Q (t̃k ). To prove the formulas in (10), we recall that z (t ) can
be expressed in first trigonometric barycentric form as

z (t ) = ℓ(t )
n
∑

j=0

Wj csc
t − t j

2
z (t j ) = ℓ(t )

n
∑

j=0

(−1) j csc
t − t j

2
β j ,
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where ℓ(t ) =
∏n

j=0 sin
t−t j

2 . Since ℓ(t̃k ) =
∏n

j=0 sin
t̃k−t j

2 = sin t̃k−tk
2 /W̃k , we conclude that

β̃k = (−1)k W̃k z (t̃k ) = (−1)k W̃kℓ(t̃k )
n
∑

j=0

(−1) j csc
t̃k − t j

2
β j = sin

t̃k − tk

2

n
∑

j=0

(−1) j+k csc
t̃k − t j

2
β j .

For i ̸= k , we note that

W̃i =
n
∏

j=0, j ̸=i

csc
t̃i − t̃ j

2
= csc

ti − t̃k

2

n
∏

j=0, j ̸=i ,k

csc
ti − t j

2
= csc

ti − t̃k

2
sin

ti − tk

2
Wi ,

hence

β̃i = (−1)i W̃i z (t̃i ) = csc
ti − t̃k

2
sin

ti − tk

2
(−1)i Wi z (ti ) = csc

ti − t̃k

2
sin

ti − tk

2
βi .

Figure 4.d shows that modifying a single node tk and updating the interpolation points and weights as
described in Proposition 4 does not change the shape of the curve, but only the position of Qk .

Remark 1. We restrict the new value t̃k to be in the interval (tk−1, tk+1) in Proposition 4 and exclude the
cases k = 0 and k = n , so as to keep the statement and the proof simple, but we can also deal with the case
t̃k ∈ (tl−1, tl ) if 0< l < k or k +1< l ≤ n . We just need to make sure that the indices are rearranged such that
the new nodes are ordered, and this rearrangement requires to change the signs of some weights, so that
they all end up having the same sign. For example, if 0< l < k , then we can compute the weights β̃i as in (10)
and then define the correctly ordered nodes t̂i , interpolation points Q̂i , and weights β̂i as

i 0 . . . l −1 l l +1 . . . k k +1 . . . n

t̂i t0 . . . tl−1 t̃k tl . . . tk−1 tk+1 . . . tn

Q̂i Q0 . . . Ql−1 Q̃k Ql . . . Qk−1 Qk+1 . . . Qn

β̂i β̃0 . . . β̃l−1 (−1)k+l β̃k −β̃l . . . −β̃k−1 β̃k+1 . . . β̃n

A similar rearrangement table can be derived if k +1< l ≤ n and also for the cases t̃k ∈ [0, t0) and t̃k ∈ (tn , 2π).

It is then natural to ask what happens when t̃k jumps from one interval to the neighbouring interval, for
example, as t̃k transitions from (tk−1, tk+1) to (tk+1, tk+2). This can be seen as an elastic collision where Qk

slides towards Qk+1, swaps the order in the moment of collision, and afterwards continues to slide as Qk+1. As
long as h = tk+1− t̃k > 0, Proposition 4 can be used to update all parameters, but it follows from (10) that β̃k

and β̃k+1 grow like O (1/h ) as h converges to zero. If h is very small, this may lead to numerical instabilities.
However, this can be avoided in an application by limiting the maximal zoom factor and not letting the user
move Qk closer than one pixel towards Qk+1. In the moment of collision, when t̃k = tk+1, the trigonometric
barycentric form breaks down as the weights β̃k and β̃k+1 in (10) diverge, but we can still derive a formula
for the curve Q in this state.

Proposition 5. If the node tk for some k ∈ {0, . . . , n −1} is set to the new value t̃k = tk+1, resulting in a double
node tk+1, then we can express the trigonometric barycentric rational curve in (4) as

Q (t ) =

n
∑

i=0,i ̸=k

(−1)i csc
t − ti

2
β̂i Qi + (−1)k+1 csc

t − tk+1

2
cot

t − tk+1

2
β̂ ′k+1

�

Qk+1+2 tan
t − tk+1

2
Q ′k+1

�

n
∑

i=0,i ̸=k

(−1)i csc
t − ti

2
β̂i + (−1)k+1 csc

t − tk+1

2
cot

t − tk+1

2
β̂ ′k+1

, (11)

where

β̂i = csc
ti − tk+1

2
sin

ti − tk

2
βi , i ̸= k , k +1, (12)

β̂k+1 = sin
tk+1− tk

2

n
∑

i=0,i ̸=k+1

(−1)k+1+i csc
tk+1− ti

2
βi + cos

tk+1− tk

2
βk+1, β̂ ′k+1 = sin

tk+1− tk

2
βk+1,

and Q ′k+1 =Q ′(tk+1).
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Proof. If t̃k ∈ (tk−1, tk+1), then we know from Proposition 4 that Q (t ) =N (t )/D (t ), where

N (t ) =
n
∑

i=0,i ̸=k ,k+1

(−1)i csc
t − ti

2
β̃i Qi + (−1)k csc

t − t̃k

2
β̃kQ̃k + (−1)k+1 csc

t − tk+1

2
β̃k+1Qk+1

and

D (t ) =
n
∑

i=0,i ̸=k ,k+1

(−1)i csc
t − ti

2
β̃i + (−1)k csc

t − t̃k

2
β̃k + (−1)k+1 csc

t − tk+1

2
β̃k+1,

with Q̃k =Q (t̃k ) and the β̃i as in (10). Our task now is to find the limit of N (t ) and D (t ) as t̃k converges to tk+1.
Let us first focus on the denominator D (t ). The sum poses no problem, because the β̃i for i ̸= k , k +1

simply converge to the β̂i in (12) as t̃k → tk+1, but the remaining two terms need to be analysed more carefully,
since β̃k and β̃k+1 diverge. Using their definition in (10), we have

csc
t − t̃k

2
β̃k − csc

t − tk+1

2
β̃k+1

= csc
t − t̃k

2
sin

t̃k − tk

2

n
∑

i=0

(−1)k+i csc
t̃k − ti

2
βi − csc

t − tk+1

2
csc

tk+1− t̃k

2
sin

tk+1− tk

2
βk+1

= csc
t − t̃k

2
sin

t̃k − tk

2

n
∑

i=0,i ̸=k+1

(−1)k+i csc
t̃k − ti

2
βi

+
�

csc
t − t̃k

2
sin

t̃k − tk

2
− csc

t − tk+1

2
sin

tk+1− tk

2

�

csc
tk+1− t̃k

2
βk+1.

As before, the terms in the sum are uncritical, and for the last term, we can use L’Hôpital’s rule to get

lim
t̃k→tk+1

��

csc
t − t̃k

2
sin

t̃k − tk

2
− csc

t − tk+1

2
sin

tk+1− tk

2

�

csc
tk+1− t̃k

2

�

=−csc
t − tk+1

2
cos

tk+1− tk

2
− csc

t − tk+1

2
cot

t − tk+1

2
sin

tk+1− tk

2
.

Overall, we conclude that D (t ) converges to the denominator in (11) as t̃k → tk+1.
Similar arguments can be used to show that N (t ) converges to the numerator in (11). We just need to

remember that also Q̃k depends on t̃k when applying L’Hôpital’s rule to

lim
t̃k→tk+1

��

csc
t − t̃k

2
sin

t̃k − tk

2
Q̃k − csc

t − tk+1

2
sin

tk+1− tk

2
Qk+1

�

csc
tk+1− t̃k

2

�

,

which eventually leads to the term involving Q ′k+1.

3.3 Changing a weight

We now investigate the effect of changing a weight βk . In the case of barycentric rational curves, Raman-
antoanina and Hormann [7] observed that only the length of the curve’s tangent vector at Qk depends on βk ,
but not its direction, and we observe the same behaviour in the trigonometric setting.

Proposition 6. For any k ∈ {0, . . . , n} the tangent vector of the trigonometric rational barycentric curve Q (t )
in (4) at Qk is given by

Q ′(tk ) =
1

2βk

n
∑

i=0, i ̸=k

(−1)k+i+1 csc
tk − ti

2
βi (Qk −Qi ). (13)

Proof. Multiplying the numerator and denominator in (4) by sin t−tk
2 , we have Q (t ) =N (t )/D (t ), where

N (t ) =
n
∑

i=0, i ̸=k

(−1)i sin
t − tk

2
csc

t − ti

2
βi Qi +βkQk

and

D (t ) =
n
∑

i=0, i ̸=k

(−1)i sin
t − tk

2
csc

t − ti

2
βi +βk .
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By the product rule,

N ′(t ) =
1

2

n
∑

i=0, i ̸=k

(−1)i
�

cos
t − tk

2
− sin

t − tk

2
cot

t − ti

2

�

csc
t − ti

2
βi Qi

and

D ′(t ) =
1

2

n
∑

i=0, i ̸=k

(−1)i
�

cos
t − tk

2
− sin

t − tk

2
cot

t − ti

2

�

csc
t − ti

2
βi .

For t = tk , these expressions simplify to

N (tk ) = (−1)kβkQk , N ′(tk ) =
1

2

n
∑

i=0, i ̸=k

(−1)i csc
tk − ti

2
βi Qi ,

D (tk ) = (−1)kβk , D ′(tk ) =
1

2

n
∑

i=0, i ̸=k

(−1)i csc
tk − ti

2
βi .

The statement then follows from the quotient rule, which asserts that Q ′(tk ) =
N ′(tk )D (tk )−N (tk )D ′(tk )

D (tk )2
.

Since βk does not appear in the sum in (13), which determines the direction of the tangent vector at Qk ,
but only in the denominator of the leading factor, which influences the length of this vector, it follows that
decreasing βk increases the flatness of the curve at Qk , while increasing βk lets the curve bend more tightly
(see Figure 4.c). However, setting βk to a very small or a very large value may create poles. Bounds on βk

that prevent this can be derived in the same way as for barycentric rational curves [7, Proposition 6].

4 Degree elevation

4.1 Degree elevation using the discrete Fourier transform

Sánchez-Reyes [9] describes a three-step procedure to increase the degree of a periodic Bézier curve P (t )
from N to N + 1. He first uses the discrete Fourier transform (DFT) to express P as a complex trigono-
metric polynomial curve with 2N + 1 Fourier coefficients c−N , . . . , cN ∈ C2. Degree elevation can then be
achieved by simply adding two higher order zero frequencies and converting the new set of 2N +3 Fourier
coefficients c̃i = ci , i =−N , . . . , N and c̃−N−1 = c̃N+1 = (0, 0) back to the spatial domain with the inverse DFT:

PN (t )

DFT

��

PN+1(t )

{c j }Nj=−N

degree

elevation
// {c̃ j }N+1

j=−N−1

DFT−1

OO

This approach can easily be adapted to a periodic rational Bézier curve P (t )with control points Pi and weights
αi , since the latter is just the image of the spatial periodic Bézier curve P̂ (t ) with control points (αi Pi ,αi )
under the central projection Π into the z = 1 plane. Hence, the degree of a periodic rational Bézier curve can
be raised from N to N +1 in five simple steps:

PN (t )

Π−1

��

PN+1(t )

P̂N (t )

DFT

��

P̂N+1(t )

Π

OO

{c j }Nj=−N

degree

elevation
// {c̃ j }N+1

j=−N−1

DFT−1

OO

9



N = 2 N = 3 N = 4 N = 5

Figure 5: Raising the degree (from left to right) of a periodic rational Bézier curve.

4.2 Degree elevation via the trigonometric barycentric form

The equivalence of the periodic rational Bézier and the trigonometric barycentric form offers an alternative
approach to degree elevation. Given a periodic rational Bézier curve P (t ) of degree N , we first convert P as
explained in Proposition 1, but using n +3 nodes 0≤ t0 < · · ·< tn+2 < 2π, thus resulting in a trigonometric
barycentric rational curve Q (t ) of degree N +1. We then follow Proposition 2 to convert Q back into periodic
rational Bézier form, but now with degree N +1:

PN (t )

convert to trigonometric barycentric form with respect to t0, . . . , tn+2
��

QN+1(t )

convert to periodic rational Bézier form with respect to t0, . . . , tn+2
��

PN+1(t )

This procedure can be further simplified by using uniformly distributed nodes ti and recalling the mat-
rix notation of the conversion process. It then follows that we can compute the control points of the
degree-raised spatial periodic Bézier curve from the control points of the given spatial periodic Bézier curve
as P̂N+1 =C −1D P̂N , where the entries of the matrices C ∈R(n+3)×(n+3) and D ∈R(n+3)×(n+1) are

C i , j = Bn+2(ψi −ψ j ), D j ,k = Bn (ψ j −φk ), i , j = 0, . . . , n +2, k = 0, . . . , n ,

withψi =
2iπ
n+3 , i = 0, . . . , n +2 andφi =

2iπ
n+1 , i = 0, . . . , n . Hence, the degree can be raised from N to N +1 (see

Figure 5) in three simple steps:

PN (t )

Π−1

��

PN+1(t )

P̂N (t )
multiply with

C −1D
// P̂N+1(t )

Π

OO

Instead of inverting C , it is advisable to solve instead the linear system C P̂N+1 =D P̂N , which can be done
efficiently in O (n log n ) time using the fast Fourier transform, because C is a symmetric circulant matrix.

4.3 Degree elevation using point insertion

If we prefer to work with the trigonometric barycentric form, then a third variant of degree elevation is the
following. Given the trigonometric barycentric rational curve Q (t ), its degree can be raised from N to N +1 by
inserting two new interpolation points. Conceptually, this is achieved by first converting Q with Proposition 2
to periodic rational Bézier form, using the given nodes t0, . . . , tn , and then using Proposition 1, but with
respect to the new nodes t̃0, . . . , t̃n+2, which are obtained by adding the two parameter values corresponding
to the new interpolation points to the sequence of given nodes, to obtain Q as a trigonometric barycentric
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rational curve of degree N +1:

QN (t )

convert to periodic rational Bézier form with respect to t0, . . . , tn
��

PN (t )

convert to trigonometric barycentric form with respect to t̃0, . . . , t̃n+2
��

QN+1(t )

As in the previous subsection, the interpolation points and weights of the degree-raised curve can be
computed from the interpolation points and weights of the given curve as Q̂ N+1 = C D −1Q̂ N , where the
entries of the matrices C ∈R(n+3)×(n+1) and D ∈R(n+1)×(n+1) are

C i , j = Bn (t̃i −φ j ), D j ,k = Bn (t j −φk ), i = 0, . . . , n +2, j , k = 0, . . . , n ,

but we can actually avoid matrix multiplication and inversion and compute the parameters of the degree-
raised curve directly with simple formulas.

Since we can slide interpolation points to any position along the curve (see Proposition 4 and Remark 1),
we assume without loss of generality that the two new interpolation points are inserted at the two parameter
values t̃k , t̃k+1 ∈ (tk−1, tk ) for some k ∈ {1, . . . , n}, so that the new nodes t̃0, . . . , t̃n+2 are

i 0 . . . k −1 k k +1 k +2 . . . n +2

t̃i t0 . . . tk−1 t̃k t̃k+1 tk . . . tn

Proposition 7. The trigonometric barycentric rational curve Q of degree N in (4) can be expressed as a
trigonometric barycentric rational curve Q̃ of degree N +1 with parameters

t̃i =























ti ,

t̃k ,

t̃k+1,

ti−2,

Q̃i =























Qi ,

Q (t̃k ),

Q (t̃k+1),

Qi−2,

β̃i =























csc ti−t̃k
2 csc ti−t̃k+1

2 βi ,

csc t̃k−t̃k+1
2

∑n
j=0(−1) j+k csc

t̃k−t j

2 β j ,

csc t̃k+1−t̃k
2

∑n
j=0(−1) j+k+1 csc

t̃k+1−t j

2 β j ,

csc ti−2−t̃k
2 csc ti−2−t̃k+1

2 βi−2

if























i < k ,

i = k ,

i = k +1,

i > k +1.

Proof. As in the proof of Proposition 4, the statement is obvious for the nodes t̃i and the interpolation points
Q̃i , and we conclude from Proposition 1 that βi = (−1)i Wi z (ti ) and β̃i = (−1)i W̃i z (t̃i ). For i < k , we note that

W̃i =
n+2
∏

j=0, j ̸=i

csc
t̃i − t̃ j

2
= csc

ti − t̃k

2
csc

ti − t̃k+1

2
Wi ,

and therefore

β̃i = (−1)i W̃i z (t̃i ) = csc
ti − t̃k

2
csc

ti − t̃k+1

2
(−1)i Wi z (ti ) = csc

ti − t̃k

2
csc

ti − t̃k+1

2
βi .

For i > k +1, we can similarly show that

β̃i = csc
ti−2− t̃k

2
csc

ti−2− t̃k+1

2
βi−2.

For i = k , recall that z (t ) = ℓ(t )
∑n

j=0(−1) j csc
t−t j

2 β j and since ℓ(t̃k ) = csc t̃k−t̃k+1
2 /W̃k , we have

β̃k = (−1)k W̃k z (t̃k ) = (−1)k W̃kℓ(t̃k )
n
∑

j=0

(−1) j csc
t̃k − t j

2
β j = csc

t̃k − t̃k+1

2

n
∑

j=0

(−1) j+k csc
t̃k − t j

2
β j .

For i = k +1, a similar reasoning gives

β̃k+1 = csc
t̃k+1− t̃k

2

n
∑

j=0

(−1) j+k+1 csc
t̃k+1− t j

2
β j .
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Remark 2. In practice, a user would probably prefer to insert one interpolation point at a time. Assuming
that the current number of interpolation points is odd, this can be done by simply inserting two new points
Q̃k and Q̃k+1, following Proposition 7, but showing only Q̃k to the user. Once the user decides to insert
another interpolation point, Q̃k+1 is revealed and moved to the desired position using Proposition 4.

5 Conclusion

In this paper, we extended the idea of periodic Bézier curves by Sánchez-Reyes [9] to the rational setting and
explored the use of the trigonometric barycentric form in the context of curve design. We showed that it
offers more direct control over the curve’s shape and complements the usual shape control tools given by the
periodic rational Bézier form (control points and weights). While the periodic rational Bézier form is more
suitable for designing the general shape of a curve, the trigonometric barycentric form is recommended for
micro-editing. In particular, the interpolation property can be used to intuitively adjust the shape of a curve
by moving the interpolation points and to force a curve to pass through specific points in the plane. If the
user wishes to adjust the shape in a region without any interpolation points, there are two possible solutions.
One can either slide an existing interpolation point to the desired position or insert a new interpolation point,
both without changing the shape of the curve. Moreover, the user can control the curvature of a curve at an
interpolation point by adjusting the corresponding weight. Although we restricted our discussion to planar
curves, it is clear that the described framework is also valid for 3D curves and even higher dimensional curves,
because the construction is independent of the dimension of the control points Pi and the interpolation
points Qi .
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