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Abstract

The aim of this work is to provide new characterizations of planar quintic Pythagorean-
hodograph curves. The first two are algebraic and consist of two and three equations,
respectively, in terms of the edges of the Bézier control polygon as complex numbers.
These equations are symmetric with respect to the edge indices and cover curves with
generic as well as degenerate control polygons. The last two characterizations are geometric
and rely both on just two auxiliary points outside the control polygon. One requires two
(possibly degenerate) quadrilaterals to be similar, and the other highlights two families of
three similar triangles. All characterizations are a step forward with respect to the state
of the art, and they can be linked to the well-established counterparts for planar cubic
Pythagorean-hodograph curves. The key ingredient for proving the aforementioned results
is a novel general expression for the hodograph of the curve.
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1 Introduction

A Pythagorean-hodograph (PH) curve is a parametric polynomial curve for which the norm of the hodograph,
that is, its first derivative with respect to the parameter, is also a polynomial [10]. For a planar polynomial
curve this means that the two derivative components and the parametric speed form a Pythagorean triple [12].
As a consequence, the arc length of a PH curve can be computed by simply evaluating a polynomial and fixed-
distance offset curves are rational, so that they can be represented exactly in common CAD systems. Another
class of planar polynomial curves with rational offsets are indirect Pythagorean-hodograph (iPH) curves. The
two derivative components and the parametric speed of an iPH curve form a rational Pythagorean triple
after applying a suitable rational quadratic reparameterization to the curve [13, 14].

Due to their established practical value in a variety of applications ranging from CNC machining to motion
control and railway design, low degree PH and iPH curves have been the subject of investigation of several
works over the last decades [5]. In particular, the derivation of algebraic and geometric characterizations
related to their Bézier control polygons [3, 4, 9, 11, 16, 17] as well as the interpolation of first-order Hermite
data (end points and derivatives) have been of primary interest [1, 7, 8, 15].

Our work focusses on quintic PH curves since they are considered the lowest-degree PH curves suitable
for free-form design. More precisely, after setting the notation and recalling some preliminaries about planar
PH curves (Section 2), we introduce two new algebraic characterizations (Section 3) and two new geometric
characterizations (Section 4) of planar quintic PH curves. The proposed algebraic characterizations are more
compact than the one established by Farouki [4] since they cover the generic as well as the degenerate case
with one common system of symmetric equations. Compared to the geometric characterization by Fang and
Wang [3], ours are entirely geometric and simpler since both involve only two instead of four auxiliary points.
Moreover, one of the geometric characterizations leads to a simple construction of a quintic PH curve from
two cubic PH companion curves.

2 Preliminaries and notation

In the plane, a generic polynomial curve r of degree n ∈N can be expressed in complex Bézier form as

r : R→C, t 7→
n
∑

k=0

pk B n
k (t ), (1)

for some control points p0, . . . , pn ∈C, where

B n
k (t ) =

�

n

k

�

(1− t )n−k t k
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denotes the k -th Bernstein polynomial of degree n . The PH property is then equivalent to the requirement
that |r ′| is a real polynomial. As pointed out by Wang and Fang [17], a very general description of the
hodograph of such curves follows from [4, 10, 12].

Theorem 1 [17, Theorem 3]. A regular polynomial curve r is a PH curve if and only if

r ′(t ) = p (t )w (t )2, (2)

for some real polynomial p and some complex polynomial w with p (t ), w (t ) ̸= 0 for t ∈R.

Note that this result can also be seen as a special case of a more general characterization of polynomial curves
with rational offsets [13, Theorem 1]. Since we are interested in quintic PH curves, we consider deg(r ′) = 4.
Following Theorem 1, there are three cases to distinguish:

• deg(p ) = 4 and deg(w ) = 0

In this case, r (t ) is just a line, parameterized by a strictly monotonic quintic polynomial.

• deg(p ) = 2 and deg(w ) = 1

Fang and Wang [3]were the first to analyse this case in depth, and they derive a geometric characteriza-
tion in terms of the Bézier control edges of such a so-called class II quintic PH curve. They further show
that there are usually four curves of this type that solve a given set of Hermite interpolation conditions.

• deg(p ) = 0 and deg(w ) = 2

In this case, r ′ is called a primitive Pythagorean hodograph [5], and the curve r may be referred to as a
class I quintic PH curve [3]. This is by far the best-studied case in the literature and the most relevant
for applications, and we discuss only curves of this type in the following.

If r is a regular class I quintic PH curve, then there exist w0, w1, w2 ∈Cwith w0, w2 ̸= 0, such that

r ′(t ) =
�

w0(1− t )2+2w1(1− t )t +w2t 2
�2

=w 2
0 B 4

0 (t ) +w0w1B 4
1 (t ) +

2w 2
1 +w0w2

3
B 4

2 (t ) +w1w2B 4
3 (t ) +w 2

2 B 4
4 (t ).

(3)

Denoting the k -th edge of the Bézier control polygon of r by ek = pk+1−pk , differentiating (1) for n = 5, and
using the properties of Bernstein polynomials, the hodograph r ′ can also be expressed as

r ′(t ) = 5e0B 4
0 (t ) +5e1B 4

1 (t ) +5e2B 4
2 (t ) +5e3B 4

3 (t ) +5e4B 4
4 (t ). (4)

Comparing the coefficients of the Bernstein polynomials in (3) and (4) yields the well-known relations [4]
between the control edges ek of a class I quintic PH curve in Bézier form and the parameters w0, w1, w2,

5e0 =w 2
0 , 5e1 =w0w1, 5e2 =

2w 2
1 +w0w2

3
, 5e3 =w1w2, 5e4 =w 2

2 . (5)

3 Algebraic Characterization

Based on the relations in (5), Farouki [4] shows that a regular quintic curve r is a PH curve if and only if its
control edges satisfy

e0e 2
3 = e 2

1 e4 (6a)

and are consistent with the six constraints

3e0e1e2− e 2
0 e3−2e 3

1 = 0,

3e4e3e2− e 2
4 e1−2e 3

3 = 0,

3e0e3e2− e4e0e1−2e 2
1 e3 = 0,

3e4e1e2− e0e4e3−2e 2
3 e1 = 0,

9e0e 2
2 −6e 2

1 e2−2e0e1e3− e 2
0 e4 = 0,

9e4e 2
2 −6e 2

3 e2−2e4e3e1− e 2
4 e0 = 0.

(6b)

In the generic case with e1, e3 both non-zero, the condition in (6a) and any one of the first four conditions
in (6b) suffice to characterize a PH quintic. In the degenerate case with e1, e3 both zero, the condition
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in (6a) and the first four conditions in (6b) are automatically satisfied, and either of the last two conditions
in (6b) suffices to characterize a PH quintic. Our aim is to unify these conditions by coming up with a set of
constraints that does not have to distinguish between the different cases. To this end, let us first express the
hodograph in (3) in an alternative way.

Corollary 1. A regular quintic curve r is a PH curve, if and only if there exist a , u , v ∈Cwith a , u ̸= 0, such
that

r ′(t ) = 5a
�

u (1− t )2+2v (1− t )t +
1

u
t 2
�2

. (7)

Proof. Expanding (7), we get

r ′(t ) = 5a u 2B 4
0 (t ) +5a u v B 4

1 (t ) +
5a (2v 2+1)

3
B 4

2 (t ) +
5a v

u
B 4

3 (t ) +
5a

u 2
B 4

4 (t ). (8)

To derive the coefficients in (8) from those in (3), we first fix g =pw0w2 (using any of the two possible square
roots), and then set a = g 2/5 = w0w2/5, u = w0/g = g /w2, and v = w1/g . Vice versa, starting with the
coefficients in (8), we get those in (3) by first fixing g =

p
5a (again, either of the two square roots can be

taken), and then setting w0 = g u , w1 = g v , and w2 = g /u .

Note that the representations in (3) and (8) are not unique: the triplet (−w0,−w1,−w2) leads to the same
hodograph as (w0, w1, w2) in (3), and the same holds for the triplets (a , u , v ) and (a ,−u ,−v ) in (8).

Comparing, as above, the coefficients in (8) and (4), we find the relations

e0 = a u 2, e1 = a u v , e2 = a
2v 2+1

3
, e3 = a

v

u
, e4 = a

1

u 2
(9)

between the control edges ek of r and the parameters a , u , v , which imply four ways to express a in terms
of the control edges,

a 2 = e0e4,
e0e3

e1
= a =

e1e4

e3
, a = 3e2−

� e 2
1

e0
+

e 2
3

e4

�

. (10)

While the first expression is ambiguous with respect to the sign of a and the next two are not well-defined
if e1 = 0 or e3 = 0, respectively, the last expression can always be used to derive the parameter a from the
control edges of a regular quintic PH curve.

Definition 1. For a regular quintic Bézier curve r with control edges e0, . . . , e4, where e0, e4 ̸= 0, we call

k = 3e2−
� e 2

1

e0
+

e 2
3

e4

�

(11)

the kern1 of r . If k = 1, then the curve is said to be in normal form.

By Definition 1, every quintic Bézier curve r with a non-vanishing kern and in particular, every regular
quintic PH curve, has an associated curve r̃ in normal form,

r̃ (t ) =
r (t )

k
, t ∈R

with control points and control edges given by

p̃k =
pk

k
, k = 0, . . . , 5 and ẽk =

ek

k
, k = 0, . . . , 4. (12)

We are now ready to establish our novel algebraic characterization of planar PH quintics. Since the
multiplication by a non-zero complex number c applies a rotation by arg(c ) and a uniform scaling by |c |,
transformations that preserve the Pythagorean-hodograph property, we start by considering curves in normal
form.

1The term kern is inspired by the German phrase “des Pudels Kern” (literally, “the poodle’s core”), referring to the crux or the heart
of the matter, because k will turn out to play an essential role in the subsequent analysis. This phrase was used by Goethe in “Faust”
when reflecting on the episode in which a black poodle transforms into Mephistopheles, an agent of the devil in disguise. This context
suggests to say that a curve with k = 0 is in divine form. However, we shall not pursue such curves any further, since (10) ensures
that k ̸= 0 for regular PH quintics.
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Theorem 2. A regular quintic Bézier curve r̃ in normal form is a PH curve, if and only if its control edges
satisfy the conditions

ẽ0 ẽ4 = 1, (13a)

ẽ0 ẽ4 = 3ẽ2−2ẽ1 ẽ3. (13b)

Proof. Since r̃ is in normal form, we have

3ẽ2−
� ẽ 2

1

ẽ0
+

ẽ 2
3

ẽ4

�

= 1, (14)

and it follows from Corollary 1 and Equations (9) and (12), that r̃ is a PH curve, if and only if there exist u , v ∈C
with u ̸= 0, such that

ẽ0 =u 2, ẽ1 =u v , ẽ2 =
2v 2+1

3
, ẽ3 =

v

u
, ẽ4 =

1

u 2
. (15)

To show the sufficiency of the conditions, assume that r̃ is a regular quintic PH curve. Then, by (15), we
have

ẽ0 ẽ4 = 1 and ẽ1 ẽ3 = v 2 =⇒ 3ẽ2 = 2v 2+1= 2ẽ1 ẽ3+ ẽ0 ẽ4,

confirming that both conditions in (13) are satisfied.
Now suppose that the conditions in (13) hold. Condition (13a) implies

ẽ4 =
1

ẽ0
(16)

and can be used to rewrite (13b) as
3ẽ2 = 2ẽ1 ẽ3+1. (17)

Plugging this into (14), we get
ẽ 2

1

ẽ0
+

ẽ 2
3

ẽ4
= 2ẽ1 ẽ3. (18)

Setting v =
p

ẽ1 ẽ3 (as above, it does not matter which square root is used), it follows from (17) that

ẽ2 =
2ẽ1 ẽ3+1

3
=

2v 2+1

3
.

To obtain the other identities in (15), we distinguish two cases. On the one hand, if ẽ1 = 0 or ẽ3 = 0, then (18)
implies that both edges must vanish, and since v = 0 in this case, we get the identities for ẽ1 and ẽ3 in (15).
By (16), the remaining identities for ẽ0 and ẽ4 are then satisfied for u =

p

ẽ0 (taking either of the two square
roots). On the other hand, if ẽ1, ẽ3 ̸= 0, then v ̸= 0 and setting u = ẽ1/v = v /ẽ3 gives

ẽ1 =u v and ẽ3 =
v

u
.

It then follows from (18) and (16) that

2v 2 = 2ẽ1 ẽ3 =
ẽ0v 2

u 2
+u 2v 2 ẽ4 =⇒ 2=

ẽ0

u 2
+

u 2

ẽ0
=⇒ ẽ0 =u 2 and ẽ4 =

1

u 2
,

which completes the proof.

The two conditions in Theorem 2 are symmetric and compact, but we still need to extend them to curves
that are not in normal form.

Corollary 2. A regular quintic Bézier curve r is a PH curve, if and only if its control edges satisfy the conditions

e0e4 = k 2, (19a)

e0e4 = 3k e2−2e1e3, (19b)

where k is the kern of r .

4



Proof. On the one hand, if r is a PH curve, then the control edges ẽk = ek/k of the associated curve r̃ satisfy
the conditions in (13) by Theorem 2, and the conditions in (19) follow by substituting ẽk with ek/k and
multiplying with k 2. On the other hand, if the control edges satisfy (19), then k ̸= 0, because r is regular
with e0e4 ̸= 0. Hence, the control edges ẽk = ek/k of the associated curve r̃ are well-defined and satisfy (13).
Therefore, r̃ is a PH quintic by Theorem 2, and so is r = k r̃ , because it is similar to r̃ . In fact, r is just r̃ ,
rotated and scaled by k .

Note that after using (11) and multiplying (19a) by e 2
0 e 2

4 and (19b) by e0e4, we can express the conditions
in (19) in terms of polynomials of the edges ek ,

e 3
0 e 3

4 = (e0e 2
3 −3e0e2e4+ e 2

1 e4)
2
, (20a)

e 2
0 e 2

4 =−3e2(e0e 2
3 −3e0e2e4+ e 2

1 e4)−2e0e1e3e4, (20b)

which reveals that they are of degrees 6 and 4, respectively, compared to the conditions of degree 3 in (6).
This increase in degree seems to be the price to pay for combining the conditions for the generic and the
degenerate case into one common system of symmetric equations.

We now provide an equivalent algebraic characterization with one more equation that presents more
structure, which makes it worthy in its own right.

Corollary 3. A regular quintic Bézier curve r is a PH curve, if and only if its control edges satisfy the conditions

4e0e 2
1 e 2

3 e4 = (e0e 2
3 + e 2

1 e4)
2
, (21a)

6e0e1e2e3e4 = (e0e4+2e1e3)(e0e 2
3 + e 2

1 e4), (21b)

9e0e 2
2 e4 = (e0e4+2e1e3)

2. (21c)

Proof. We start by observing that (19) is equivalent to

2e0e1e3e4 = k (e0e 2
3 + e 2

1 e4), (22a)

3k e2 = e0e4+2e1e3. (22b)

Indeed, (22b) is exactly (19b), while, using (19) and (11), we get

2e1e3 = 3k e2− e0e4 = k (3e2−k ) = k
� e 2

1

e0
+

e 2
3

e4

�

,

which leads to (22a). The conditions in (21) are then equivalent to those in (22). On the one hand, we get (21a)
and (21c) by squaring both sides of (22a) and (22b) and recalling that k 2 = e0e4. Moreover, condition (21b)
is obtained by multiplying the left-hand sides and the right-hand sides of (22a) and (22b). On the other
hand, (22a) and (22b) can be derived from (21a) and (21c) by taking the square roots on both sides and (21b)
guarantees the correct signs of the square roots.

3.1 Comparison to the state of the art

Comparing the conditions (19) in Corollary 2 and (21) in Corollary 3 with those in (6), it is clear that our
algebraic characterizations are symmetric and more compact, in the sense that they consist of only two
or three equations that cover all cases instead of different subsets of the seven equations in (6). So let us
inspect the conditions a bit closer to comprehend the underlying reason.

We first observe that condition (6a) is not part of the conditions in (19). Indeed, although this condition
is necessary, it is too “weak” to be sufficient. On the one hand, it is trivially satisfied in the case e1 = e3 = 0 and
on the other hand, it does not involve e2. Moreover, while (6a) is related to the second and third expression
for a in (10), which are not well-defined if e1 = e3 = 0, the key for deriving our set of conditions is the last
expression in (10), which identifies a as the kern of the curve and is valid for any regular quintic PH curve.

We further note that (6a) is equivalent to (21a), because a b =
�

a+b
2

�2
is equivalent to a = b , and that

Farouki [4, Eq. (51)] identifies (21c) as a necessary condition. But he also shows that it is not sufficient, even
in conjunction with (6a), and the missing piece turns out to be (21b). Indeed, expanding (21c), we have

9e0e 2
2 e4 = e 2

0 e 2
4 +4e0e1e3e4+4e 2

1 e 2
3 (23)
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and, after multiplying both sides by e 2
1 and using (6a),

(3e0e2e3)
2 = (e0e1e4+2e 2

1 e3)
2
. (24)

At this point, we would like to take square roots on both sides to get

3e0e2e3 = e0e1e4+2e 2
1 e3, (25)

that is, the third condition in (6b), but it is not clear why we can rule out

−3e0e2e3 = e0e1e4+2e 2
1 e3, (26)

which is also consistent with (24). This is where (21b) comes into play. In fact, we get (21b) after multiplying
both sides of (25) by e1e4 and using (6a), but (21b) is incompatible with (26). One could say that condi-
tion (21b) forces e2 to have the correct sign with respect to the signs of the other edges, while this sign
remains ambiguous if we consider only conditions (21a) and (21c). Once the sign is fixed correctly, we can
multiply both sides of (25) by e3 and use (6a) to get

4e 2
1 e 2

3 = 6e 2
1 e2e4−2e0e1e3e4, (27)

and the fifth condition in (6b) then follows from plugging (27) into (23) and dividing both sides by e4 ̸= 0.
Moreover, we get the first condition in (6b) from (25) if we multiply both sides by e1/e3 and use (6a). Note
that the latter works only if e3 ̸= 0, but if e3 = 0, then (6a) implies e1 = 0, because e0, e4 ̸= 0, and the first
condition in (6b) is then trivially satisfied. The second, fourth, and sixth condition in (6b) can be derived
from (21) with the same arguments after multiplying both sides of (23) by e 2

3 and using (6a) to get

(3e1e2e4)
2 = (e0e3e4+2e1e 2

3 )
2
.

3.2 Observations

Farouki [4] notes that (6a) stands out from the conditions in (6), because it is invariant under the substitution

(e0, e1, e2, e3, e4) 7→ (−e4,−e3,−e2,−e1,−e0),

which corresponds to a reparameterization t 7→ 1−t . The same is true for all conditions in (19), (20), and (21),
and they are also invariant under the substitutions

(e0, e1, e2, e3, e4) 7→ (e0,−e1, e2,−e3, e4),

and
(e0, e1, e2, e3, e4) 7→ (−e0, e1,−e2, e3,−e4),

and any composition of these three substitutions.
An interesting observation is that the conditions in (21) can be expressed compactly in matrix from as

E 0E T

2 = E 1E T

1 ,

where

E 0 =

�

2e0e1e3

3e0e2

�

, E 1 =

�

e0e 2
3 + e 2

1 e4

2e1e3+ e0e4

�

, E 2 =

�

2e1e3e4

3e2e4

�

,

which resembles the algebraic characterization of cubic PH curves with control edges d0, d1, d2 [4], namely
d0d2 = d 2

1 . Moreover, it is striking that the conditions in (19) and (20) both involve a power of the product
between the first and the last control edge, akin to the cubic case, but with more complex right-hand sides.

Note that the conditions in (21) are also satisfied by irregular PH quintics, that is, if the quadratic polyno-
mial w in (2) has one or two real roots. If w (t ) does not vanish for t = 0 and t = 1, so that w0w2 ̸= 0, then this
follows from the proof of Theorem 2, since it relies solely on the non-zero condition of w0 and w2. Otherwise,
if w0 = 0 or w2 = 0, then (5) implies e0 = e1 = 0 or e3 = e4 = 0, and in both cases all three conditions are
trivially satisfied. However, the opposite is not true. For example, the edges

e0 = 0, e1 = 0, e2 = 1, e3 = i, e4 = 1
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satisfy (21), but they do not describe a quintic PH curve.
By construction, the three conditions in (21) are in geometric progression, that is, the ratios between the

left-hand sides and the right-hand sides of (21a) and (21b) are the same as those of (21b) and (21c), namely

2e1e3

3e2
and

e0e 2
3 + e 2

1 e4

2e1e3+ e0e4
,

respectively. This shows the dependency among these conditions, at least if e1, e2, e3 ̸= 0. Indeed, in this
case (21c) follows from (21a) and (21b), and (21a) follows from (21b) and (21c). Nonetheless, (21b) is not
redundant, because it implies constraints on the signs of the square roots of (21a) and (21c). For example,
the choice e0 = e1 = e3 = e4 = 1 and e2 =−1 satisfies the first and the third condition, but not the second.

3.3 Special cases

Let us now take a look at some special cases of PH quintics and how they affect the algebraic conditions
in (19) and (21). We specify these cases in terms of the parameter v from Corollary 1:

(i) v = 0

By (9), this case is equivalent to e1 = e3 = 0, hence k = 3e2, and we conclude that both (19) and (21)
reduce to the single condition 9e 2

2 = e0e4, stemming from (19a), (19b), and (21c), while the other
conditions in (21) are trivially satisfied. By Corollary 1, this case corresponds to w1 = 0 in (3).

(ii) v =±i/
p

2

By (9), this happens if and only if e2 = 0. In this case, (19b) and (21c) reduce to 2e1e3+e0e4 = 0, implying
that (21b) is trivially satisfied, while condition (21a) becomes equivalent to (20a) and thus to (19a).
For example, if e0, e4 ̸= 0 are given, then the curve is a PH quintic, if and only if e1 = ik e0

p

g /2 and
e3 = (−1)k+1e1 g for any k = 0, 1, 2, 3 and g =

p

e4/e0. Similarly, if e1, e3 ̸= 0 are given, then the conditions
are satisfied if e0 = (−1)k e1

p

−2g and e4 = e0/g 2 for any k = 0,1 and g = e1/e3. By Corollary 1, this
case corresponds to w1 =±i

p

w0w2/2 in (3).

(iii) v =±1

By (9), this case corresponds to a sequence of control edges in geometric progression, that is, ek =
ek−1/u = e0/u k for k = 1, 2, 3, 4 for some u ∈C\{0}, and it is straightforward to verify that the conditions
in (19) and (21) are always satisfied in this case. Hence, while having control edges in geometric
progression is a defining property for cubic PH curves, it is only a sufficient condition for quintic PH
curves, characterizing a specific subfamily of PH quintics. By Corollary 1, this case corresponds to
w1 =±

p
w0w2 in (3).

(iv) v = (u +1/u )/2 for some u ∈C \ {0}
By (7), this captures the case in which the hodograph simplifies to the square of a linear polynomial,

namely r ′(t ) = a
�

u (1− t )+ t /u
�2

. In fact, the curve is a degree-raised cubic PH curve with control edges
d0 =

5
3 e0, d1 = d0/u 2, d2 = d1/u 2. By Corollary 1, this case corresponds to w1 = (w0+w2)/2 in (3).

Note that these special cases, apart from case (iii), have already been identified and described by Farouki [4].

4 Geometric Characterization

Farouki [4] notes that condition (6a) has a simple geometric interpretation in terms of the edge lengths
Ek = |ek |, k = 0, . . . ,4 and the interior signed angles θk =∠pk−1pk pk+1 =π−arg(ek−1/ek ), k = 1, . . . ,4 of the
control polygon, namely

E1

E3
=

√

√E0

E4
and θ1+θ4 = θ2+θ3, (28)

but the conditions in (6b) do not admit similarly intuitive geometric interpretations.
A more geometric characterization of planar quintic PH curves was later found by Fang and Wang [3,

Theorem 1]. Given the control points of a quintic Bézier curve, they first construct the auxiliary points q1

and q4 on the lines p0p1 and p4p5, respectively, such that the lines q1p2 and p3q4 are parallel and the angles
∠p0q1p2 and ∠p3q4p5 are equal, as well as the two auxiliary points q2 and q3 on the lines q1p2 and p3q4,
respectively, such that ∠p0p1p2 =∠p1p2q3 and ∠q2p3p4 =∠p3p4p5 (see Figure 2). Using these four auxiliary
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points, they then show that the curve is PH, if and only if the quadrilateral □(p2,q2, p3,q3) is a parallelogram,
the triangles△(p1,q1, p2) and△(p3,q4, p4) are similar, and the edge lengths satisfy

2E 2
1 = 3E0F, 2E 2

3 = 3E4F, E0E4 = 9G 2, (29)

where F = | f | and G = |g | are the lengths of the parallelogram’s edges f =q3−p2 = p3−q2 and g =q2−p2 =
p3−q3.

Our aim is to provide two simpler and entirely geometric characterizations. The first is optimal, in the
sense of involving just a single similarity condition for two quadrilaterals. The second is more in the spirit
of the well-known geometric characterization for PH cubics and the one proposed by Fang and Wang [3,
Theorem 1], in the sense that it is expressed in terms of similarities of triangles, and it leads to a simple way
to construct PH quintics starting from two PH cubics. However, this second characterization does not cover
the case e1 = e3 = 0.

The first characterization requires the two auxiliary points

t 2 = p3−k and t 3 = p2+k , (30)

where k is the kern of the given curve. They can be constructed geometrically in two steps (see Figure 1).

1. Let r2, r3 be two points, such that△(p1, p2, r3) is similar to△(p0, p1, p2) and△(r2, p3, p4) is similar to
△(p3, p4, p5). If e1 = 0, so that△(p0, p1, p2) is degenerate, then let r3 = p2, and likewise r2 = p3 if e3 = 0.
In any case, the supporting points r2, r3 can be expressed algebraically as

r2 = p3−
e 2

3

e4
and r3 = p2+

e 2
1

e0
. (31)

2. Add the vector d from r2 to r3 and −e2 to p2 to get t 2. Likewise, add −d and e2 to p3 to get t 3, that is,

t 2 = p2+ (r3− r2)− (p3−p2) and t 3 = p3− (r3− r2) + (p3−p2).

This construction gives the correct points, because

t 2 = p3−3(p3−p2) + (r3−p2) + (p3− r2) = p3−3e2+
e 2

1

e0
+

e 2
3

e4
= p3−k

and similarly for t 3. Given t 2 and t 3, we can now state our first geometric characterization of planar quintic
PH curves.

Theorem 3. Let r be a regular quintic curve and let t 2, t 3 be defined as in (30). Then, r is a PH curve, if and
only if

□(p0, p1, p2, t 3) is similar to □(t 2, p3, p4, p5). (32)

Proof. Assume that r is a PH curve. Then, by (30), (9), and the fact that a = k ̸= 0, we have

a

e0
(p1−p0) = a

e0

e0
= a = p3− t 2,

a

e0
(p2−p1) = a

e1

e0
= a

v

u
= e3 = p4−p3,

a

e0
(t 3−p2) =

a 2

e0
= e4 = p5−p4,

which implies (32), with a/e0 representing the rotation and uniform scaling that maps □(p0, p1, p2, t 3) to
□(t 2, p3, p4, p5).

Conversely, suppose that (32) holds. Then there exists some z ̸= 0 which represents the similarity
transformation, so that

z e0 = z (p1−p0) = p3− t 2 = k , (33a)

z e1 = z (p2−p1) = p4−p3 = e3, (33b)

z k = z (t 3−p2) = p5−p4 = e4, (33c)
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p2

p0

p1

p3

p4

p5

r

t 2

t 3

p2

p0

p1

p3

p4

p5

r

r3

r2

d

e0

e1

e2

e3

e4

d

t 2

t 3

−e2

− d
e2

e0

p0

e4

p5

r

p1 =p2 = r3 r2 =p3 =p4

t 2 t 3
2 =−de2−e2 d − d e2

p0

p5

r
t 2 t 3

p3 p4=p1 p2=

Figure 1: Construction of the supporting points r2, r3 and the auxiliary points t 2, t 3 (left) and similar quadrilaterals
□(p0, p1, p2, t 3) and □(t 2, p3, p4, p5) used in Theorem 3 (right) for a general quintic PH curve r (top) and a quintic PH
curve with e1 = e3 = 0 (bottom). In the latter case, the quadrilaterals degenerate to similar triangles.

which implies k ̸= 0, because r is a regular curve with e0, e4 ̸= 0. From (33a) and (33c), we then have

z =
k

e0
=

e4

k
=⇒ e0e4 = k 2,

and using (33b), we get

k

e0
e1 = e3 and

e4

k
e1 = e3 =⇒ e0e3 = k e1 and e1e4 = k e3.

Therefore,
k (e0e 2

3 + e 2
1 e4) = 2k 2e1e3 = 2e0e1e3e4

and, by (11),

3e2k = k 2+k
� e 2

1

e0
+

e 2
3

e4

�

= k 2+
k (e0e 2

3 + e 2
1 e4)

e0e4
= e0e4+2e1e3,

which we recognize as the two conditions in (22). Following the proof of Corollary 2, we conclude that r is a
PH curve.

Figure 1 visualizes the result of Theorem 3. Note that the theorem holds even if the two involved quadrilaterals
self-intersect or degenerate to triangles.
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p2

p0

p1

p3

p4

p5

s2

s1

s4

s3

q1

q2

q3

q4

r

e0

e1

e2

e3

e4

f
f

g

g

r3

r2

t 2

t 3

Figure 2: Control points pk , control edges ek , supporting points r2, r3, auxiliary points qk , split points sk , parallelogram
(red) with edges f , g , and families of similar triangles (yellow, purple) used by Fang and Wang [3, Theorem 1] and in
Corollary 4, for the quintic PH curve r defined by (3) with w0 =

p
6e πi/12, w1 =πe −3πi/8, and w2 = 5e −πi/12/

p
6. The signed

interior angles θ1 and θ4 of the control polygon are marked in green and blue, respectively.

For the second characterization, let us split the edges e1 and e3 into three equal parts by introducing the
points

s1 =
2p1+p2

3
, s2 =

p1+2p2

3
, s3 =

2p3+p4

3
, s4 =

p3+2p4

3
. (34)

It then follows from (29) that, in case of the curve being PH, the two triangles△(s1, p2,q3) and△(q3, p3, s3)
are similar to△(p0, p1, p2), and the two triangles△(q2, p3, s4) and△(s2, p2,q2) are similar to△(p3, p4, p5),
where q2,q3 are the auxiliary points from Fang and Wang [3, Theorem 1]. Moreover, our construction of the
supporting points r2, r3 implies that

q2 =
2r2+p3

3
and q3 =

p2+2r3

3
, (35)

where r2 and r3 are defined as in (31). This observation gives rise to our second geometric characterization
of planar quintic PH curves (see Figure 2).

Corollary 4. Let r be a regular quintic curve with e1, e3 ̸= 0, let s2, s3 be defined as in (34), and let q2,q3 be
defined as in (35). Then, r is a PH curve, if and only if

△(q3, p3, s3) is similar to △(p0, p1, p2), (36a)

△(s2, p2,q2) is similar to △(p3, p4, p5). (36b)

Proof. By construction, the auxiliary points q2,q3 can be expressed as

q2 = p3−
2e 2

3

3e4
and q3 = p2+

2e 2
1

3e0
. (37)

If r is a PH curve, then it follows from (6a) that e 2
1 /e0 = e 2

3 /e4, hence, by (11) and (37),

k = 3e2−2
e 2

1

e0
= 3
�

(p3−p2) + (p2−q3)
�

= 3(p3−q3)
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p2

p0

p1

p3
p4

p5

s2s1

s4s3

q2

q3

q4

r
e0

e1

e2

e3

e4

q1

f

g

Figure 3: Control points, control edges, auxiliary points, split points, degenerate parallelogram, and families of similar
triangles (cf. Figure 2) for the quintic PH curve r defined by (3) with w0 =w2 =

p
15(1+ i) and w1 =

p

105/2(1− i). The
construction by Fang and Wang [3, Theorem 1] fails for this example.

and, using (30),

q3 =
3p3−k

3
=

2p3+ t 2

3
.

Therefore,△(q3, p3, s3) is similar to△(t 2, p3, p4), which in turn is similar to△(p0, p1, p2) by Theorem 3. This
confirms (36a), and (36b) can be derived analogously.

Now suppose that the conditions in (36) hold. Then, since △(s1, p2,q3) is similar to △(p0, p1, p2) by
construction and therefore similar to△(q3, p3, s3) by (36a), and likewise△(q2, p3, s4) is similar to△(s2, p2,q2),
we have, since e1, e3 ̸= 0,

q3−p2

2e1/3
=

q3−p2

p2− s1
=

s3−p3

p3−q3
=

e3/3

p3−q3
and

2e3/3

p3−q2
=

s4−p3

p3−q2
=

q2−p2

p2− s2
=

q2−p2

e1/3
.

Consequently,

(q3−p2)(p3−q3) =
2e1e3

9
= (q2−p2)(p3−q2) =⇒

q3−p2

p2−q2
=

q2−p3

p3−q3
,

and so the triangles△(q2, p2,q3) and△(q3, p3,q2) are congruent, because they share the edge q2q3. Therefore,
q3 = p2+ (p3−q2), and, using (37), (11), and (30), we get

q3 =
1

2
q3+

1

2

�

p2+ (p3−q2)
�

=
1

2
p2+

e 2
1

3e0
+

1

2
p2+

e 2
3

3e4
= p3−

1

3

�

3e2−
e 2

1

e0
−

e 2
3

e4

�

=
3p3−k

3
=

2p3+ t 2

3
.

This implies that △(t 2, p3, p4) is similar to △(q3, p3, s3), which in turn is similar to △(p0, p1, p2) by (36a).
Analogously, we can show that△(p1, p2, t 3) is similar to△(p3, p4, p5). Therefore, □(p0, p1, p2, t 3) is similar to
□(t 2, p3, p4, p5) and r is a PH curve by Theorem 3.

4.1 Comparison to the state of the art

Comparing our conditions (32) in Theorem 3 and (36) in Corollary 4 with the ones by Fang and Wang [3,
Theorem 1], it is clear that ours are simpler and more compact. On the one hand, we need only two instead
of four auxiliary points for Theorem 3, and the construction of s2, s3,q2,q3 for Corollary 4 is simpler than the
construction of q1, . . . ,q4 described by Fang and Wang. On the other hand, our characterizations are entirely
geometric and do not involve conditions on edge lengths. Moreover, Theorem 3 works for all regular quintic
PH curves and Corollary 4 for curves with e1, e3 ̸= 0, while the construction by Fang and Wang can fail even
in the latter case.

For example, if we consider the quintic PH curve in Figure 3 with Bézier control points

p0 =−
p

126, p1 =−
p

126+6i, p2 = 6i, p3 =−6i, p4 =
p

126−6i, p5 =
p

126,
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p0

p1

s2

s1

q2q3

r

e0

e1

p4

p5

e4

s4

s3

e3

f

g

p2 p3=

Figure 4: Control points, control edges, auxiliary points, split points, degenerate parallelogram, and families of similar
triangles (cf. Figure 2) for the quintic PH curve r with e2 = 0 defined by (3) with w0 =

p
6e πi/12, w1 = −i

p

5/2, and
w2 = 5e −πi/12/

p
6.

then q1 = p0+λi and q4 = p5−λi satisfy their conditions for these two auxiliary points for any λ ∈R, and
their subsequent construction leads to q2 = p2 and q3 = p3, independently of λ. However, the edge length
conditions in (29) are not satisfied for this choice of q2 and q3. Instead, our construction delivers the correct
auxiliary points q2 = 8i and q3 =−8i.

For those cases that are covered by the approach of Fang and Wang, their conditions follow easily from
Corollary 4 (see Figure 2). We first obtain q2 and q3 as in (35) and then construct q1 by intersecting the lines
p0p1 and p2q2 and q4 by intersecting p4p5 and p3q3. The resulting triangles△(p1,q1, p2) and△(p3,q4, p4) are
similar, because they share the interior angle θ1 at p1 and p3 and the exterior angle θ4 at p2 and p4. Moreover,
as shown in the proof of Corollary 4, the similarity conditions (36a) and (36b) imply the congruence of the
triangles△(q2, p2,q3) and△(q3, p3,q2), which means that □(p2,q2, p3,q3) is a parallelogram, and it further
follows from these conditions that the lengths of the edges f =q3−p2 = p3−q2 and g =q2−p2 = p3−q3

of this parallelogram are F = | f |= 2
3 E 2

1 /E0 =
2
3 E 2

3 /E4 and G = |g |= 1
3 E1E4/E3 =

1
3 E3E0/E1, thus giving (29).

Note that our q2 and q3 in (37) can be different from the auxiliary points given by the geometric construction
in [3] for a generic, non-PH quintic Bézier curve.

Farouki’s geometric interpretation of the algebraic condition (6a) can be derived from (36), too. The
length condition in (28) follows directly from the previously mentioned identities for F , and the angle
condition holds, because θ2 = θ1+α and θ3 = θ4−α, where α=∠q3p2p3 =∠q2p3p2 (see Figure 2).

4.2 Observations

Corollary 4 also holds if e2 = 0, so that the parallelogram □(p2,q2, p3,q3) degenerates to a segment (see
Figure 4), but it cannot be applied if e1 = e3 = 0. In the latter case (see Figure 1, bottom), the similarity
condition (32) in Theorem 3 degenerates to the condition

△(p0, p1, t 3) is similar to △(t 2, p4, p5),

where
t 2 = p4−3e2 and t 3 = p1+3e2,

which is equivalent to the algebraic condition 9e 2
2 = e0e4 that we encountered in case (i) in Section 3.3.

This actually provides a recipe for generating a quintic PH curve from a cubic PH curve: all we need to
do is to stretch the first and the last control edge by a factor of three. Indeed, if a cubic PH curve with control
edges d0, d1, d2 is given, then it follows from the observations above that the quintic curve with control edges
e0 = 3d0, e1 = 0, e2 = d1, e3 = 0, e4 = 3d2 is PH (see Figure 5).
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d0

d1

d2

e0 =3d0

e4 =3d2

e2 =d1

Figure 5: A cubic PH curve (left) can be turned into a degenerate quintic PH curve (right) with e1 = e3 = 0 by stretching
the first and the last leg by a factor of three.

p2

p0

p1

p3

p4

p5

s2

q2

r

r3

r2

c1

c2

p0

p1

s2

q2

r

p4

p5

e4

p2 p3=

r2r3

c1

c2

Figure 6: Quintic PH curves r from Figure 2 (left) and Figure 4 (right), together with their cubic PH companion curves c1

and c2.

More interestingly, it follows from the construction of the supporting points r2, r3 in (31) that a regular
quintic PH curve with e1, e3 ̸= 0 is intimately related to two cubic PH curves. Indeed, it is clear that p0, p1, p2, r3

and r2, p3, p4, p5 are the control points of two cubic PH companion curves c1 and c2, where the last control
edge of c1 and the first control edge of c2 are translates of each other. Vice versa, given two cubic PH curves c1

and c2 with control points p0, p1, p2, r3 and r2, p3, p4, p5, we can generate a quintic PH curve by first rotating
and scaling c2 such that its first control edge is parallel to and has the same length as the last control edge
of c1, that is, r3−p2 = p3−r2, and then translating c2 such that the triangles△(s2, p2,q2) and△(p3, p4, p5) are
similar, where s2 = (p1+2p2)/3 and q2 = (2r2+p3)/3 (see Figure 6). Alternatively, the correct translation can
also be determined by forcing the triangles△(q3, p3, s3) and△(p0, p1, p2) to be similar, where s3 = (2p3+p4)/3
and q3 = (2r3+p2)/3.

5 Conclusions

One potential application of the algebraic characterization in Corollary 2 is for deciding whether a given
planar quintic curve, specified by its Bézier control points, is a PH curve or not. We first convert the control
edges of the curve into complex numbers. We then use complex arithmetic to compute the kern of the curve
as in (11) and to check if the two conditions (19) are satisfied up to some tolerance. It remains future work to
analyse this approach in detail and to compare it to the methods developed by Farouki et al. [6], which are
based on real arithmetic and can detect planar as well as spatial PH curves. It would further be interesting to
see if there is any numerical advantage in deriving the coefficients w0, w1, w2 of the pre-image polynomial w
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that generates the hodograph of the curve from the conditions in (9) and Corollary 1 instead of using the
conditions in (5), as suggested by Farouki et al. [6].

In addition to verifying (19) for a given curve, these constraints can also be used for constructing quintic
PH curves. For example, the first-order Hermite interpolation problem fixes the edges e0 and e4 and the
sum of all edges, and the conditions in (19) can be used to derive formulas for the remaining edges e1, e2, e3.
However, the resulting expressions are not simpler than those derived by Farouki and Neff [8] and Dong
and Farouki [2], and the same holds for the other variants of this problem, where different pairs of edges are
fixed [9].
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