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Abstract

We address the fundamental problem of computing range functions f for a real func-
tion f : R→ R. In our previous work [9], we introduced recursive interpolation range
functions based on the Cornelius–Lohner (CL) framework of decomposing f as f = g +R ,
which requires to compute g (I ) “exactly” for an interval I . There are two problems: this
approach limits the order of convergence to 6 in practice, and exact computation is
impossible to achieve in standard implementation models. We generalize the CL frame-
work by allowing g (I ) to be approximated by strong range functions g (I ;ϵ), where ϵ > 0
is a user-specified bound on the error. This new framework allows, for the first time, the
design of interval forms for f with any desired order of convergence. To achieve our
strong range functions, we generalize Neumaier’s theory of constructing range functions
from expressions over a Lipschitz classΩ of primitive functions. We show that the classΩ
is very extensive and includes all common hypergeometric functions. Traditional com-
plexity analysis of range functions is based on individual evaluation on an interval. Such
analysis cannot differentiate between our novel recursive range functions and classical
Taylor-type range functions. Empirically, our recursive functions are superior in the
“holistic” context of the root isolation algorithm EVAL. We now formalize this holistic
approach by defining the amortized complexity of range functions over a subdivision
tree. Our theoretical model agrees remarkably well with the empirical results. Among
our previous novel range functions, we identified a Lagrange-type range function L ′

3 f as
the overall winner. In this paper, we introduce a Hermite-type range function H

4 f that
is even better. We further explore speeding up applications by choosing non-maximal
recursion levels.
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1 Introduction

Given a real function f : R → R, the problem of tightly enclosing its range f (I ) = { f (x ) : x ∈ I } on any
interval I is a central problem of interval and certified computations [11, 13]. The interval form of f may
be1 denoted f : R→ R, where R is the set of compact intervals and f (I ) contains the range f (I ).
Cornelius and Lohner [3] provided a general framework for constructing such f . First, choose a suitable
g : R→R, such that for any interval I ∈ R, we can compute g (I ) exactly. Then, f (I ) = g (I )+Rg (I ), where
Rg (x ) := f (x )− g (x ) is the remainder function. The standard measure for the accuracy of approximate
functions like f is their order of convergence n ≥ 1 on I0 ∈ R, that is, there exists a constant C0 > 0, such
that dH ( f (I ), f (I ))≤C0w (I )n for all I ⊆ I0, where dH is the Hausdorff distance on intervals and w (I ) := b−a
is the width of I = [a , b ]. Suppose Rg has an interval form Rg with convergence order n ≥ 1. Then,

g f (I ) := g (I ) + Rg (I ) (1)

is an interval form for f with order of convergence n . This is an immediate consequence of the following
theorem.

Proposition 1.Theorem A [3, Theorem 4]. The width of the remainder part satisfies

dH ( f (I ), g f (I ))≤w ( Rg (I )).

Prior to [3], interval forms with convergence order larger than 2 were unknown. Cornelius and Lohner
showed that there exists g such that Rg has convergence order up to 6 in practice and up to any n ≥ 1 in
theory.

1Definitions of our terminology are collected in Section 1.3.
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Example 1. Let g (x ) be the Taylor expansion of f (x ) at x =m up to order n ≥ 1 and Rg (x ) =
f (n+1)(ξx )
(n+1)! (x−m )n+1

for some ξx between x and m . Then,

Rg (I ) :=
| f (n+1)(I )|
(n +1)!

(I −m )n+1 (2)

is a range function for Rg (I ), where I = [a , b ] and m = (a + b )/2. Assuming that I ⊆ I0 for some bounded I0,

we have | f (n+1)(I )|
(n+1)! =O (1). Therefore, (2) implies that Rg (I ) has convergence order n + 1, and so does the

range function in (1).

1.1 Why we must extend the CL framework

Unfortunately, there is an issue with the CL framework. To get arbitrary convergence order n ≥ 1, we must
compute the exact range g (I ) for a polynomial g of degree n −1. But the endpoints of g (I )might be extrema
of g , which are generally irrational algebraic numbers when n ≥ 4. Hence, we cannot compute the “exact
range g (I )” in any standard implementation models. Standard implementation models include (i) the IEEE
arithmetic used in the majority of implementations, (ii) the Standard Model of Numerical Analysis [8, 17],
or (iii) bigNumber packages such as GMP [7], MPFR [6], and MPFI [14]. In practice, “real numbers” are
represented by dyadic numbers, that is, rational numbers of the form m2n where m , n ∈ Z. So, rational
numbers like 1/3 cannot be represented exactly. Even if we allow arbitrary rational numbers, irrational
numbers like

p
2 are not exact. See, for example, [20] for an extended discussion of exact computation. In

computer algebra systems, the largest set of real numbers which can be computed exactly are the algebraic
numbers, but we do not include them under “standard implementation models” because of inherent
performance issues.

In [9], we (consciously) used the term “exact computation of g (I )” in a sense which is commonly un-
derstood by interval and numerical analysts, including Cornelius and Lohner. But first let us address the
non-interval case: the “exact computation of g (x )”. The common understanding amounts to:

g (x ) can be computed exactly if g (x ) has a closed-form
expression E (x ) over a set Ω of primitive operations.

(3)

There is no universal consensus on the setΩ, but typically all real constants, four rational operations (±,×,÷),
and

p· are included. For example, Neumaier [11, p. 6] allows these additional operations in Ω:

|·|, sqr, exp, ln, sin, cos, arctan,

where2 sqr denotes squaring. Next, how does the understanding (3) extend to the exact computation of g (I )?
Cornelius and Lohner stated a sufficient condition that is well-known in interval analysis [3, Theorem 1]:

g (I ) can be computed exactly if there is an expression E (x )
for g (x ) in which the variable x occurs at most once.

(4)

It is implicitly assumed in (4) that, given an expression E (x ) for g (x ), we can compute g (I ) by evaluating the
interval expression E (I ), assuming all the primitive operators in E (x ) have exact interval forms. But this
theorem has very limited application, and cannot even compute the exact range of a quadratic polynomial
g (x ) = a x 2+ b x + c with a b ̸= 0.

Example 2. To overcome the limitations of (4) in the case of a quadratic polynomial g (x ) = a x 2+b x + c , we
can proceed as follows: first compute x ∗ =−b /2a , the root of g ′(x ) = 2a x + b . If I = [x , x ]), then

g (I ) = [min(S ), max(S )],

where

S :=

¨

{g (x ), g (x )}, if x ∗ ̸∈ I ,

{g (x ∗), g (x ), g (x )}, otherwise.

We call this the “endpoints algorithm”, since we directly compute the endpoints of g (I ). The details when g
is a cubic polynomial are derived and implemented in our previous paper [9, Appendix]. How far can we
extend this idea? Under the common understanding (3), we need two other ingredients:

2The appearance of sqr may be curious, but that is because he will later define interval forms of the operations in Ω.
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(E1) The function g (x )must be exactly computable.

(E2) The roots of g ′(x )must be exactly computable.

Note that (E1) is relatively easy to fulfill. For instance, g (x ) can be any polynomial. However, (E2) limits g
to polynomials of degree at most 5, since the roots of g ′ are guaranteed to have closed form expressions
when g ′ has degree at most 4. Cornelius and Lohner appear to have this endpoint algorithm in mind when
they stated in [3, p. 340, Remark 2] that their framework may reach up to order 6 convergence, namely one
more than the degree of g .

1.2 Overview

In Section 2, we present our generalized CL framework for achieving range functions with any order of
convergence. In Section 3, we provide details for a new family of recursive range operators3

�

H
4,ℓ : ℓ= 0, 1, . . .
	

with quartic convergence order and recursion level ℓ≥ 0, based on Hermite interpolation. In Section 4, we
present our “holistic” framework for evaluating the complexity of range functions. The idea is to amortize
the cost over an entire computation tree. Experimental results are in Section 5. They show that in the context
of the EVAL algorithm, H

4 is superior to our previous favourite L ′

3 . The theoretical model of Section 4 is also
confirmed by these experiments. Another set of experiments explore the possible speed improvements by
non-maximal convergence levels. We conclude in Section 6.

1.3 Terminology and notation

This section reviews and fixes some terminology. Let f : Rn →Rbe an n-variate real-valued function for some
n ≥ 0. The arity of f is n . We identify 0-arity functions with real constants. In this paper, we do not assume
that real functions are total functions. If f is undefined at x ∈Rn , we write f (x ) ↑; otherwise f (x ) ↓. If any com-
ponent of x is undefined, we also have f (x ) ↑. Define the proper domain of f as dom( f ) := {x ∈Rm : f (x ) ↓}.
If S ⊆Rm , then f (S ) ↑ if f is undefined at some x ∈ S ; otherwise f (S ) := { f (x ) : x ∈ S}. Define the magnitude
of S ⊆R as |S | :=max{|x | : x ∈ S}. Note that we use bold font like x to indicate vector variables.

The set of compact boxes in Rn is denoted Rn ; if n = 1, we simply write R. The Hausdorff distance on
boxes B , B ′ ∈ Rn is denoted dH (B , B ′). For n = 1, it is often denoted q (I , J ) in the interval literature. A box
form of f is any function F : Rn → R satisfying two properties: (1) conservative: f (B )⊆ F (B ) for all B ∈ Rn ;
(2) convergent: for any sequence (Bi )∞i=0 of boxes converging to a point, limi→∞ F (Bi ) = f (limi→∞ Bi ). In
general, we indicate box forms by a prefix meta-symbol “ ”. Thus, instead of F , we write “ f ” for any box
form of f . We annotate with subscripts and/or superscripts to indicate specific box forms. For example,

i f or L f or L
i f are all box forms of f . In this paper, we mostly focus on n = 1. A subdivision tree is a finite

tree T whose nodes are intervals satisfying this property: if interval [a , b ] is a non-leaf node of T , then it has
two children represented by the intervals [a , m ] and [m , b ]. If I0 is the root of T , we call the set D =D(T ) of
leaves of T a subdivision of I0.

Let u = (u0, . . . , um ) denote a sequence of m + 1 distinct points, where the ui ’s are called nodes. Let
µ= (µ0, . . . ,µm ), where eachµi ≥ 1 is called a multiplicity. The Hermite interpolant of f at u ,µ is a polynomial
h f (x ) = h f (x ; u ,µ) such that h f

( j )(ui ) = f ( j )(ui ) for all i = 0, . . . , m and j = 0, . . . ,µi −1. The interpolant h f (x )
is unique and has degree less than d =

∑m
i=0µi . If m = 0, then h f (x ) is the Taylor interpolant; if µi = 1 for

all i , then h f (x ) is the Lagrange interpolant.

2 Generalized CL framework

In this section, we develop an approach to computing range functions of arbitrary convergence order. To
avoid the exact range computation, we replace g (I ) in (1) by a range function g (I ) for g :

f (I ) := g (I ) + Rg (I ). (5)

We now generalize Theorem A as follows.

Proposition 2.Theorem B. With f (I ) defined as in (5), we have

dH ( f (I ), f (I ))≤ dH (g (I ), g (I ))+w ( Rg (I )).
3Each H

4,ℓ is an operator that transforms any sufficiently smooth function f : R→R into the range function H
4,ℓ f for f .
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Proof. Consider the endpoints of the intervals f (I ), g (I ), and Rg (I ) as given by

f (I ) = [ f (x ), f (x )], g (I ) = [g (y ), g (y )], Rg (I ) = [a , b ]

for some x , x , y , y ∈ I and a , b . We can also write

g (I ) = [g (y ), g (y )]+ [ϵ,ϵ]

for some ϵ ≤ 0≤ ϵ. Thus we have

dH (g (I ), g (I )) =max{−ϵ,ϵ}, (6)

f (I ) = [g (y ), g (y )]+ [ϵ,ϵ] + [a , b ].

We write the inclusion f (I )⊆ f (I ) in terms of endpoints:

[ f (x ), f (x )]⊆ [g (y ), g (y )]+ [ϵ,ϵ] + [a , b ].

Hence,
dH ( f (I ), f (I )) =max

�

f (x )−
�

g (y ) + ϵ+a
�

,
�

g (y ) + ϵ+ b
�

− f (x )
	

.

Since w ( Rg (I )) = b −a and in view of (6), our theorem follows from

f (x )−
�

g (y ) + ϵ+a
�

≤−ϵ+ (b −a ), (7)
�

g (y ) + ϵ+ b
�

− f (x )≤ ϵ+ (b −a ). (8)

To show (7), we have, since f (x )≤ f (y ),

f (x )−
�

g (y ) + ϵ+a
�

≤ f (y )−
�

g (y ) + ϵ+a
�

=
�

g (y ) +Rg (y )
�

−
�

g (y ) + ϵ+a
�

=Rg (y )− ϵ−a

≤−ϵ+ (b −a ).

The proof for (8) is similar.

2.1 Achieving any order of convergence

To apply Theorem B, we introduce precision-bounded range functions for g (x ), denoted g (I ;ϵ), where
ϵ > 0 is an extra “precision” parameter. The output interval is an outer ϵ-approximation in the sense that
g (I )⊆ g (I ;ϵ) and

dH (g (I ), g (I ;ϵ))≤ ϵ.

We also call g (I ;ϵ) a strong box function, since it implies box forms in the original sense: for example, a box
form of g may be constructed as

g (I ) := g (I , w (I )). (9)

The box form in (9) has the pleasing property that w (I ) is an implicit precision parameter.
Returning to the CL Framework, suppose that f = g +Rg , where g has a strong range function g (I ;ϵ).

We now define the following box form of f :

pb f (I ) := g (I ;ϵ) + Rg (I ), (10)

where ϵ = | Rg (I )|. The subscript in pb refers to “precision-bound”. To compute pb f (I ), we first compute
JR ← Rg (I ), then compute Jg ← g (I , |JR |), and finally return Jg + JR .

Corollary 1. The box form pb f (I ) of (10) has the same convergence order as Rg (I ).

For any n ≥ 1, if g (x ) is a Hermite interpolant of f of degree n , then Rg (I ) has convergence order n + 1
(cf. Example 1). We have thus achieved arbitrary convergence order.

Remark 1. Theorem B is also needed to justify the usual implementations of “exact g (I )” under the hypo-
thesis (3) of the CL framework. Given an expression E (x ) for g (x ), it suffices to evaluate it with error at most
| Rg (I )|. This can be automatically accomplished in the Core Library using the technique of “precision-driven
evaluation” [21, §2].
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2.2 Strong box functions

Corollary 1 shows that the “exact computation of g (I )” hypothesis of the CL framework can be replaced by
strong box functions of g . We now address the construction of such functions. We proceed in three stages:

A. Lipschitz expressions. Our starting point is the theory of evaluations of expressions over a class Ω
of Lipschitz functions, following [11]. Let Ω denote a set of continuous real functions that includes R as
constant functions as well as the rational operations. Elements of Ω are called primitive functions. Let
Expr(Ω) denote the set of expressions over Ω∪X where X = {X1, X2, . . .} is a countable set of variables. An
expression E ∈ Expr(Ω) is an ordered DAG (directed acyclic graph) whose nodes with outdegree m ≥ 0 are
labelled by m-ary functions of Ω, with variables in X viewed as 0-ary. For simplicity, assume E has a unique
root (in-degree 0). Any node of E induces a subexpression. If E involves only the variables in X = (X1, . . . , Xn ),
we may write E (X ) for E . We can evaluate E at a ∈Rn by substituting X ← a and evaluating the functions
at each node in a bottom-up fashion. The value at the root is E (a ) and may be undefined. If f : Rn → R
is a function, we call E an expression for f if the symmetric difference dom(E )∆dom( f ) is a finite set. For

example, if f (x ) =
∑n−1

i=0 x i , then E (X1) =
X n

1 −1
X1−1 is an expression for f , since f (a ) = E (a ) for a ̸= 1, but f (1) = n

and E (1) ↑. Similarly, we can define the interval value E (B ) at the box B = (I1, . . . , In ) ∈ Rn . If each f in E is
replaced by a box form f , we obtain a box expression E (X ).

Following [11, pp. 33, 74], we say that E (X ) is Lipschitz at B ∈ Rn if the following inductive properties
hold:

• (Base case) The root of E is labelled by a variable X i or a constant function. This always holds.

• (Induction) Let E = f (E1, . . . , Em ), where each E j is a subexpression of E . Inductively, each Ei is
Lipschitz at B . Moreover, f (E1(B ), . . . , Em (B )) is defined and f is Lipschitz4 in a neighbourhood U of
(E1(B ), . . . , Em (B ))⊆ Rm .

Proposition 3.Theorem C [11, p. 34]. If E (x ) is a Lipschitz expression on B0 ∈ Rn , then there is a vector ℓ= (ℓ1, . . . ,ℓn ) of
positive constants such that for all B , B ′ ⊆ B0,

dH (E (B ), E (B ′))≤ ℓ ∗dH (B , B ′),

where dH (B , B ′) = (dH (I1, I ′1), . . . , dH (In , I ′n )) and ∗ is the dot product.

Theorem C can be extended to the box form E (X ), and thus E (B ) is an enclosure of E (B ). To achieve
strong box functions, we will next strengthen Theorem C to compute explicit Lipschitz constants.

B. Lipschitz+ expressions. For systematic development, it is best to begin with an abstract model of com-
putation that assumes f (B ) and ∂i f (B ) are computable. Eventually, we replace these by f (B ) and ∂i f (B ),
and finally we make them Turing computable by using dyadic approximations to reals. This follows the “AIE
methodology” of [19]. Because of our limited space and scope, we focus on the abstract model.

Call Ω a Lipschitz+ class if each f ∈Ω is a Lipschitz+ function in this sense that f has continuous partial
derivatives at its proper domain dom( f ) and both f and its gradient∇ f = (∂1 f , . . . ,∂m f ) are locally Lipschitz,
that is, for all a ∈ dom( f ), f is Lipschitz on some neighbourhood U of a . Given an expression E (X ) over Ω,
we can define∇E := (∂1E , . . . ,∂n E ), where each ∂i E (X ) is an expression, defined inductively as

∂i E (X ) =











0, if E = const,

δ(i = j ), if E = X j ,
∑m

j=1(∂ j f )(E1, . . . , Em ) · ∂i E j , if E = f (E1, . . . , Em ).
(11)

Here, δ(i = j ) ∈ {0, 1} is Kronecker’s delta function that is 1 if and only if i = j .
The above definition of E (X ) being “Lipschitz at B ∈ Rn ” can be naturally extended to “Lipschitz+ at B ”,

that is, the inductive properties must also hold for (∂ j f )(E1, . . . , Em ) as well as ∂i E j (cf. (11)).

4The concept of a function f (not expression) being Lipschitz on a set U is standard: it means that there exists a vector ℓ =
(ℓ1, . . . ,ℓm ) of positive constants, such that for all x , y ∈U ⊆ Rm , | f (x )− f (y )| ≤ ℓ ∗ |x − y | where ∗ is the dot product and |x − y | =
(|x1 − y1|, . . . , |xm − ym |). Call ℓ a Lipschitz constant vector for U .
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Algorithm 1 Fine Subdivision Algorithm
Input: ( f , B0,ϵ)
Output: An ϵ-fine subdivision D of B0.

1: Let D,Q be queues of boxes, initialized as D←∅ and Q ←{B0}.
2: while Q ̸=∅ do
3: B ←Q .pop()
4: (J1, . . . , Jn )←∇ f (B )
5: ∆( f , B )←

∑n
i=1 |Ji | ·wi (B )

6: if∆( f , B )≤ ϵ/4 then
7: D.push(B )
8: else
9: i ∗← argmaxi=1,...,n |Ji | ·wi (B )

10: Q .push(bisect(B , i ∗)) ▷ bisect dimension i ∗

11: Output D

C. Strong box evaluation. Let f : Rn →R be a Lipschitz+ function. Suppose it has a strong approximation
function f̃ , that is,

f̃ : Rn ×R>0→R, (12)

such that | f̃ (a ;ϵ)− f (a )| ≤ ϵ. We show that f has a strong box function. Define∆( f , B ) := 1
2

∑n
i=1 |∂i f (B )| ·

wi (B ). Then, for all a ∈ B , we have
| f (a )− f (m (B ))| ≤∆( f , B )

by the mean value theorem, where m (B ) is the midpoint of B .

Lemma 1. Let
J = J (B ,ϵ) := [ f̃ (m (B );ϵ/4)± 1

2ϵ], (13)

where [m ± ϵ] denotes the interval [m − ϵ, m + ϵ]. If∆( f , B )≤ ϵ/4, then f (B )⊆ J and dH (J , f (B ))< ϵ.

Motivated by Lemma 1, we say that a subdivision D of B0 is ϵ-fine if∆( f , B )≤ ϵ/4 for each B ∈D. Given an
ϵ-fine subdivision D of B0, let J (D) :=

⋃

B∈D J (B ), where J (B ) is defined in (13).

Corollary 2. If D is an ϵ-fine subdivision of B0, then f (B0)⊆ J (D) and dH ( f (B0), J (D))< ϵ.

Algorithm 1 shows how to compute an ϵ-fine subdivision of any given B0. Note that the value of∆( f , B ) is
reduced by a factor less than or equal to (1− 1

2n )with each bisection, and therefore the subdivision depth is at
most ln(ϵ/∆( f , B0))/ ln(1− 1

2n ). This bound is probably overly pessimistic (e.g., |Ji |= |∂i f (B )| is also shrinking
with depth). We plan to do an amortized bound of this algorithm. In any case, we are now able to state the
key result.

Proposition 4.Theorem D. Let Ω be a Lipschitz+ class, where each f ∈Ω has a strong approximation function f̃ as in (12).
If E (X ) ∈ Expr(Ω) is Lipschitz+ at B ∈ Rn , then the strong box function E (B ;ϵ) is abstractly computable
from the f̃ ’s.

Proof (sketch). Use induction on the structure of E (X ). The base case is trivial. If E (X ) = f (E1, . . . , Em ), then,
by induction, Ĩi = Ei (B ;ϵi ) is abstractly computable (i = 1, . . . , m). Lemma 1 can be generalized to allow the
evaluation of f (B̃ ;ϵ), where B̃ = (Ĩ1, . . . , Ĩm ).

Which functions satisfy the requirements of Theorem D? The hypergeometric functions (with computable
parameters) is one of the most extensive class with Turing-computable strong approximation functions;
Johansson [10] describes a state-of-the-art library for such functions. In [4, 5], we focused on the real
hypergeometric functions and provided a uniform strong approximation algorithm, with complexity analysis
for rational input parameters. In this paper, we need strong box functions which were not treated in [5, 10];
such extensions could be achieved, because hypergeometric functions are closed under differentiation. Our
Theorem D shows how this is generally achieved under Lipschitz+ Expressions. A complete account of the
preceding theory must replace the abstract computational model by box functions f , finally giving dyadic
approximations ˜ f following the AIE methodology in [19]. An implementation of this approach remains
future work, and we used the standard model in our experimental results.
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3 A practical range function of order 4

In this section, we consider a new recursive range function based on Hermite interpolation, which will
surpass the performance of L ′

3 f [9, Sec. 3.1]. Let h0 be the Hermite interpolant of f based on the values and
first derivatives at the endpoints of the interval I = [a , b ], that is, h0 is the unique cubic polynomial with

h0(a ) = f (a ), h ′0(a ) = f ′(a ), h0(b ) = f (b ), h ′0(b ) = f ′(b ).

With m = (a + b )/2 denoting the midpoint of I , it is not hard to show that h0 can be expressed in centred
form as

h0(x ) = c0,0+ c0,1(x −m ) + c0,2(x −m )2+ c0,3(x −m )3

with coefficients

c0,0 =
f (a ) + f (b )

2
−

f ′(b )− f ′(a )
4

r, c0,1 = 3
f (b )− f (a )

4r
−

f ′(a ) + f ′(b )
4

,

c0,2 =
f ′(b )− f ′(a )

4r
, c0,3 =

f ′(a ) + f ′(b )
4r 2

−
f (b )− f (a )

4r 3
,

where r = (b −a )/2 is the radius of I . Since the remainder Rh0
= f −h0 can be written as

Rh0
(x ) =

ω(x )
4!

f (4)(ξx ), ω(x ) = (x −a )2(x − b )2,

for some ξx ∈ I , we can upper bound the magnitude of Rh0
(I ) as

|Rh0
(I )| ≤Ω| f (4)(I )|, Ω=

|ω(I )|
4!

=
r 4

24
.

To further upper bound | f (4)(I )|, following [9, Sec. 3], we consider the cubic Hermite interpolants h j

of f (4 j ) for j = 1, 2, . . . ,ℓ:

h j (x ) = c j ,0+ c j ,1(x −m ) + c j ,2(x −m )2+ c j ,3(x −m )3

with coefficients

c j ,0 =
f (4 j )(a ) + f (4 j )(b )

2
−

f (4 j+1)(b )− f (4 j+1)(a )
4

r, c j ,1 = 3
f (4 j )(b )− f (4 j )(a )

4r
−

f (4 j+1)(a ) + f (4 j+1)(b )
4

,

c j ,2 =
f (4 j+1)(b )− f (4 j+1)(a )

4r
, c j ,3 =

f (4 j+1)(a ) + f (4 j+1)(b )
4r 2

−
f (4 j )(b )− f (4 j )(a )

4r 3
.

Denoting the remainder by Rh j
= f (4 j )−h j and using the same arguments as above, we have

| f (4 j )(I )| ≤ |h j (I )|+ |Rh j
(I )| ≤ |h j (I )|+Ω| f (4 j+4)(I )|. (14)

By recursively applying (14), we get

| f (4)| ≤ |h1(I )|+Ω| f (8)(I )|

≤ |h1(I )|+Ω
�

|h2(I )|+Ω| f (12)(I )|
�

≤ · · ·

≤
ℓ
∑

j=1

|h j (I )|Ω j−1+Ωℓ| f (4ℓ+4)(I )|,
(15)

resulting in the remainder bound

|Rh0
(I )| ≤ Sℓ, Sℓ :=

ℓ
∑

j=1

|h j (I )|Ω j +Ωℓ+1| f (4ℓ+4)(I )|.

Overall, we get the recursive Hermite form of order 4 and recursion level ℓ≥ 0,

H
4,ℓ f (I ) = h0(I ) + [−1, 1]Sℓ,

7



which depends on the 4ℓ+4 values

f (4 j )(a ), f (4 j+1)(a ), f (4 j )(b ), f (4 j+1)(b ), j = 0, . . . ,ℓ. (16)

If f is analytic and r is sufficiently small, or if f is a polynomial, then S∞ is a convergent series, and we
define H

4 f (I ) := H
4,∞ f (I ) as the maximal recursive Hermite form. Clearly, if f is a polynomial of degree at

most d −1, then H
4 f = H

4,ℓ f for ℓ= ⌈d /4⌉ −1.
To avoid the rather expensive evaluation of the exact ranges h j (I ), j = 1, . . . ,ℓ, we can use the classical

Taylor form for approximating them, resulting in the cheaper but slightly less tight range function

H ′

4,ℓ f (I ) = h0(I ) + [−1, 1]S ′ℓ,

where

S ′ℓ =
ℓ
∑

j=1

�

|c j ,0|+ r |c j ,1|+ r 2|c j ,2|+ r 3|c j ,3|
�

Ω j +Ωℓ+1| f (4ℓ+4)(I )|.

In case we also have to estimate the range of f ′, we can compute the 2ℓ+2 additional values

f (4 j+2)(a ), f (4 j+2)(b ), j = 0, . . . ,ℓ (17)

and apply H
4,ℓ to f ′. But we prefer to avoid (17) by re-using the data used for computing H

4,ℓ f (I ) in the
following way. A result by Shadrin [15] asserts that the error between the first derivative of f and the first
derivative of the Lagrange polynomial L (x ) that interpolates f at the 4 nodes x0, . . . , x3 ∈ I satisfies

| f ′(x )− L ′(x )| ≤
|ω′L (I )|

4!
| f (4)(I )|, x ∈ I ,

forωL (x ) =
∏3

i=0(x − xi ). As noted by Waldron [18, Addendum], this bound is continuous in the xi , and so
we can consider the limit as x0 and x1 approach a and x2 and x3 approach b to get the corresponding bound
for the error between f ′ and the first derivative of the Hermite interpolant h0,

| f ′(x )−h ′0(x )| ≤
|ω′(I )|

4!
| f (4)(I )|, x ∈ I .

Since a straightforward calculation givesω′(I ) = 8
9

p
3r 3[−1, 1], we conclude by (15) that

|R ′h0
(I )| ≤

8
p

3

9

r 3

4!
| f (4)(I )| ≤

8
p

3

9

r 3

4!

Sℓ
Ω
=

8
p

3

9r
Sℓ,

resulting in the recursive Hermite forms

H
3,ℓ f ′(I ) = h ′0(I ) +

8
p

3

9r
[−1, 1]Sℓ and H ′

3,ℓ f ′(I ) = h ′0(I ) +
8
p

3

9r
[−1, 1]S ′ℓ,

which have only cubic convergence, but depend on the same data as H
4,ℓ f (I ) and H ′

4,ℓ f (I ).

4 Holistic complexity analysis of range functions

By the “holistic complexity analysis” of f (I ), we mean to analyse its cost over a subdivision tree, not just its
cost at a single isolated interval. The cost for a node of the subdivision tree might be shared with its ancestors,
descendants, or siblings, leading to cheaper cost per node. Although we have the EVAL algorithm [9, Sec. 1.2]
in mind, there are many applications where the algorithms produce similar subdivision trees, even in higher
dimensions.

4.1 Amortized complexity of L ′

3 f

We first focus on the range function denoted L ′

3 f in [9, Sec. 3.1]. This was our “function of choice” among the

8 range functions studied in [9, Table 1]. Empirically, we saw that L ′

3 has at least a factor of 3 speedup over T
2 .

Note that T
2 was the state-of-the-art range function before our recursive forms; see the last column of the

8



Tables 3 and 4 in [9]. We now show theoretically that the speedup is also 3 if we only consider evaluation
complexity. The data actually suggest an asymptotic speedup of at least 3.5—this may be explained by the
fact that L ′

3 has order 3 convergence compared to order 2 for T
2 . We now seek a theoretical account of the

observed speedup5.
In the following, let d ≥ 2. Given any f and interval [a , b ], our general goal is to construct a range function

f ([a , b ]) based on d derivatives of f at points in [a , b ]. In the case of L ′

3 f ([a , b ]), we need these evaluations
of f and its higher derivatives:

f (3 j )(a ), f (3 j )(m ), f (3 j )(b ), j = 0, . . . , ⌈d /3⌉ −1,

where m = (a + b )/2. That is a total of 3⌈d /3⌉ derivative values. For simplicity, assume d is divisible by 3.
Then the cost for computing L ′

3 f ([a , b ]) is 3⌈d /3⌉= d . Note that the cost to compute T
2 f (I ), the maximal

Taylor form of order 2, is also d . So there is no difference between these two costs over isolated intervals. But
in a “holistic context”, we see a distinct advantage of L ′

3 over T
2 : the evaluation of L ′

3 f (I ) can reuse the
derivative values already computed at the parent or sibling of I ; no similar reuse is available to T

2 .

Given a subdivision tree T , our goal is to bound the cost C L
3 (T ) of L ′

3 f on T , that is, the total number

of derivative values needed to compute L ′

3 f (I ) for all I ∈ T . We will write C L
3 (n ) instead of C L

3 (T )when T
has n leaves. This is because it is n rather than the actual6 shape of T that is determinative for the complexity.
We have the following recurrence

C L
3 (n ) =

¨

d , if n = 1,

C L
3 (nL ) +C L

3 (nR )− d
3 , if n ≥ 2,

(18)

where the left and right subtrees of the root have nL and nR leaves, respectively. Thus n = nL +nR . Let the
intervals I , IL , IR denote the root and its left and right children. The formula for n ≥ 2 in (18) comes from
summing three costs: (1) the cost d at the root I ; (2) the cost C L

3 (nL ) but subtracting 2d /3 for derivatives
shared with I ; (3) the cost C L

3 (nR )−2d /3 attributed to the right subtree.

Theorem 1. (Amortized complexity of L ′

3 ) The cost of computing L ′

3 f (I ) is

C L
3 (n ) = (2n +1) · d

3 . (19)

Thus, the cost per node is ∼ d /3 asymptotically.

Proof. The solution (19) is easily shown by induction using the recurrence (18). To obtain the cost per
node, we recall that a full binary tree with n leaves has 2n − 1 nodes. So the average cost per node is
2n+1
2n−1 ·

d
3 ∼ d /3.

This factor of 3 improvement over T
2 is close to our empirical data in [9, Sec. 5].

4.2 Amortized complexity of H
4 f

We do a similar holistic complexity analysis for the recursive range function H
4,ℓ f (I ) from Section 3 for any

given f and ℓ≥ 0. According to (16), our recursive scheme requires the evaluation of 4(ℓ+1) derivatives of f
at the two endpoints of I . Let d = 4(ℓ+ 1), so that computing H

4,ℓ f (I ) costs d derivative evaluations. For

holistic analysis, let C H
4 (n ) denote the cost of computing H

4,ℓ f (I ) on a subdivision tree with n leaves. We
then have the recurrence

C H
4 (n ) =

¨

d , if n = 1,

C H
4 (nL ) +C H

4 (nR )− d
2 , if n ≥ 2,

(20)

where nL +nR = n . The justification of (20) is similar to (18), with the slight difference that the midpoint of
an interval J is not evaluated and hence not shared with the children of J .

5Note that in our EVAL application, we must simultaneously evaluate L ′
3 f (I ) as well as its derivative L ′

2 f ′(I ). But it turns out that
we can bound the range of f ′ for no additional evaluation cost.

6If d is not divisible by 3, we can ensure a total cost of d evaluations per interval of the tree but the tree shape will dictate how to
distribute these evaluations on the m +1 nodes.
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Theorem 2. (Amortized complexity of H
4 ) The cost of computing H

4,ℓ f (I ) is

C H
4 (n ) = (n +1) · d

2 . (21)

Thus, the cost per node is ∼ d /4 asymptotically.

Proof. The solution (21) follows from (20) by induction on n . Since a full binary tree with n leaves has 2n −1
nodes, the average cost per node is n+1

2n−1 ·
d
2 ∼ d /4.

Therefore, we expect a 4-fold speedup of H
4,ℓ when compared to the state-of-art T

2 , and a 4/3-fold or 33%

speedup when compared to L ′

3 . This agrees with our empirical data below.

4.3 Amortized complexity for Hermite schemes

We now generalize the analysis above. Recall from Section 1.3 that h f (x ) = h f (x ; u ,µ) is the Hermite in-
terpolant of f with node sequence u = (u0, . . . , um ) and multiplicity µ = (µ0, . . . ,µm ). We fix the function
f : R→R. Assume m ≥ 1 and the nodes are equally spaced over the interval I = [u0, um ], and all µi are equal
to h ≥ 1. Then we can simply write h (x ; I ) for the interpolant on interval I . Note that h (x ; I ) has degree less
than d := (m +1)h .

Our cost model for computing f (I ) is the number of evaluations of derivatives of f at the nodes of I .
Based on our recursive scheme, this cost is exactly d = (m+1)h since I has m+1 nodes. To amortize this cost
over the entire subdivision tree T , define Nm (T ) to be the number of distinct nodes among all the intervals
of T . In other words, if intervals I and J share a node u , then we do not double count u . This can happen
only if I and J have an ancestor-descendant relationship or are siblings. Let Tn denote a tree with n leaves.
It turns out that Nm (Tn ) is a function of n , independent of the shape of Tn . So we simply write Nm (n ) for
Nm (Tn ). Therefore7 the cost of evaluating the tree Tn is

C h
d (n ) := h ·Nm (n ), where d = (m +1)h .

Since Tn has 2n −1 intervals, we define the amortized cost of a recursive Hermite range function as

C
h

d = lim
n→∞

C h
d (n )

2n −1
.

Theorem 3. For a recursive Hermite range function, the number of distinct nodes, the evaluation cost of Tn ,
and the amortized cost satisfy

Nm (n ) =mn +1,

C h
d (n ) = h (mn +1),

C
h

d =
1
2 hm = 1

2 (d −h ).

Proof. We claim that Nm (n ) satisfies the recurrence

Nm (n ) =

¨

m +1, if n = 1,

Nm (nL ) +Nm (nR )−1, if 1< n = nL +nR .
(22)

The base case is clear, so consider the inductive case: the left and right subtrees of Tn are TnL
and TnR

, where
n = nL +nR . Then nodes at the root of Tn are already in the nodes at the roots of TnL

and TnR
. Moreover, the

roots of TnL
and TnR

share exactly one node. This justifies (22). The solution Nm (n ) =mn +1 is immediate.
The amortized cost is limn→∞C h

d (n )/(2n −1), since the tree Tn has 2n −1 intervals.

Remark 2. Observe that the amortized complexity C
h

d =
d−h

2 is strictly less than d , the non-amortized cost.
For any given d , we want h as large as possible, but h is constrained to divide d . Hence for d = 4, we choose
h = 2. We can also generalize to allow multiplicities µ to vary over nodes: e.g., for d = 5, µ= (2, 1, 2).

Remark 3. The analysis of C L
3 (n ) and C H

4 (n ) appears to depend on whether m is odd or even. Surprisingly,
we avoided such considerations in the above proof.

7The notation “C h
d (n )” does not fully reproduce the previous notations of C L

3 (n ) and C H
4 (n ) (which were chosen to be consistent

with L ′
3 and H

4 ). Also, d is implicit in the previous notations.
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Table 1: Size of the EVAL subdivision tree. Here, EVAL is searching for roots in I0 = [−r (I0), r (I0)].

f r (I0) ET
2 EL ′

3 EL ′

4 EL ′

3,10 EL ′

3,15 EL ′

3,20 EH
4 EH ′

4 EH ′

4,10 EH ′

4,15 EH ′

4,20

T20 319 243 231 243 243 243 239 239 239 239 239
T40 663 479 463 479 479 479 471 479 479 479 479
T80 10 1379 1007 955 1023 1007 1007 967 991 991 991 991
T160 2147 1427 1347 1543 1451 1427 1351 1359 1439 1363 1359
T320 - 2679 2575 3023 2699 2679 2591 2591 2803 2603 2591
H20 283 215 207 215 215 215 199 207 207 207 207
H40 539 423 415 423 423 423 415 419 419 419 419
H80 40 891 679 655 711 679 679 659 683 695 683 683
H160 1435 955 923 1083 959 955 923 927 1023 927 927
H320 - 2459 2415 45287 10423 4419 2455 2499 15967 5195 3119
M21 169 113 109 113 113 113 105 105 105 105 105
M41 339 215 213 215 215 215 219 223 223 223 223
M81

1
683 445 423 507 445 445 427 431 443 431 431

M161 - 905 857 7245 1755 1047 861 861 2663 1079 905
W20 485 353 331 353 353 353 331 335 335 335 335
W40 901 633 613 633 633 633 615 617 617 617 617
W80

1000
1583 1133 1083 2597 1133 1133 1097 1117 1485 1117 1117

W160 - 2005 1935 293509 5073 2005 1959 1993 42413 5289 2817
S100 973 633 609 611 621 625 613 613 595 609 613
S200 10 1941 1281 1221 1211 1227 1237 1231 1231 1165 1187 1201
S400 - 2555 2435 2379 2399 2413 2467 2467 2289 2319 2339

5 Experimental results

To provide a holistic application for evaluating range functions, we use EVAL, a simple root isolation algorithm.
Despite its simplicity, EVAL produces near-optimal subdivision trees [1, 16]when we use T

2 f for real functions
with simple roots; see [9, Secs. 1.2, 1.3] for its description and history. We now implemented a version of EVAL

in C++ for range functions that may use any recursion level (unlike [9], which focused on maximal levels). We
measured the size of the EVAL subdivision tree as well as the average running time of EVAL with floating point
and rational arithmetic on various classes of polynomials. These polynomials have varying root structures:
dense with all roots real (Chebyshev Tn , Hermite Hn , and Wilkinson’s Wn ), dense with only 2 real roots
(Mignotte cluster M2k+1), and sparse without real roots (Sn ). Depending on the family of polynomials, we
provide different centred intervals I0 = [−r (I0), r (I0)] for EVAL to search in, but always such that all real roots
are contained in I0. Our experimental platform is a Windows 10 laptop with a 1.8 GHz Intel Core i7-8550U
processor and 16 GB of RAM. We use two kinds of computer arithmetic in our testing: 1024-bit floating point
arithmetic and multi-precision rational arithmetic. In rational arithmetic,

p
3 is replaced by the slightly

larger 17320508075688773×10−16. Our implementation, including data and Makefile experiments, may be
downloaded from the Core Library webpage [2].

We tested eleven versions of EVAL that differ by the range functions used for approximating the ranges
of f and f ′; see Tables 1–3. Generally, EX

k ,ℓ (X = T , L ′, H , H ′ for Taylor, cheap Lagrange, Hermite, cheap
Hermite forms) refers to using EVAL with the corresponding forms of order k and level ℓ (ℓmay be omitted
when the level is maximal). The first three, ET

2 , EL ′
3 , EL ′

4 , are the state-of-the-art performers from [9], followed
by three non-maximal variants of EL ′

3 , namely EL ′
3,ℓ for ℓ ∈ {10, 15, 20}. The next two, EH

4 and EH ′

4 , are based on

the maximal recursive Hermite forms H
4 f and H

3 f ′ and their cheaper variants H ′

4 f and H ′

3 f ′, respectively,
and the last three derive from the non-maximal variants of the latter, again for recursion levels ℓ ∈ {10, 15, 20}.

Table 1 reports the sizes of the EVAL subdivision trees, which serve as a measure of the tightness of the
underlying range functions. In each row, the smallest tree size is underlined. As expected, the methods
based on range functions with quartic convergence order outperform the others, and in general the tree
size decreases as the recursion level increases, except for sparse polynomials. It requires future research to
investigate the latter. We further observe that the differences between the tree sizes for EL ′

4 and EH ′

4 are small,
indicating that the tightness of a range function is determined mainly by the convergence order, but much
less by the type of local interpolant (Lagrange or Hermite). However, as already pointed out in [9, Sec. 5], a
smaller tree size does not necessarily correspond to a faster running time. In fact, EL ′

3 was found to usually
be almost as fast as EL ′

4 , even though the subdivision trees of EL ′
3 are consistently bigger than those of EL ′

4 .
In Tables 2 and 3 we report the running times for our eleven EVAL versions and the different families of

polynomials. Times are given in seconds and averaged over at least four runs (and many more for small
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Table 2: Average running time of EVAL with 1024-bit floating point arithmetic in seconds.

f r (I0) ET
2 EL ′

3 EL ′

4 EL ′

3,10 EL ′

3,15 EL ′

3,20 EH
4 EH ′

4 EH ′

4,10 EH ′

4,15 EH ′

4,20 σ
�

EH ′

4

�

σ
�

EH ′

4,15

�

σ
�

EL ′

3,15

�

T20 0.0288 0.0152 0.0153 0.0179 0.0212 0.0243 0.0201 0.0157 0.023 0.0274 0.0316 0.97 0.57 0.72
T40 0.19 0.0669 0.0663 0.0723 0.068 0.0726 0.078 0.0637 0.0864 0.0944 0.102 1.05 0.71 0.98
T80 10 1.35 0.379 0.363 0.366 0.386 0.397 0.398 0.327 0.465 0.494 0.49 1.16 0.77 0.98
T160 8.23 1.82 1.71 1.23 1.35 1.45 1.61 1.38 1.56 1.78 2.04 1.31 1.02 1.35
T320 - 12.7 12.1 5.11 5.44 6.19 10.4 9.53 6.68 7.84 9.29 1.33 1.62 2.34
H20 0.0242 0.0127 0.013 0.0149 0.0177 0.0204 0.0159 0.0128 0.0191 0.0226 0.0256 0.99 0.56 0.72
H40 0.15 0.0575 0.058 0.0632 0.0601 0.0652 0.0709 0.0547 0.0862 0.092 0.0923 1.05 0.63 0.96
H80 40 0.881 0.259 0.255 0.26 0.263 0.266 0.273 0.225 0.324 0.349 0.346 1.15 0.74 0.98
H160 5.47 1.22 1.16 0.854 0.872 0.953 1.1 0.972 1.1 1.23 1.38 1.26 1.00 1.4
H320 - 11.6 11.4 77.4 21.2 10.3 9.88 9.21 38.4 15.7 11.3 1.26 0.74 0.55
M21 0.0223 0.00767 0.00726 0.00826 0.0101 0.0123 0.00881 0.0072 0.0104 0.0125 0.0143 1.07 0.61 0.76
M41 0.103 0.032 0.0319 0.0349 0.0325 0.035 0.0391 0.0309 0.0417 0.0444 0.0489 1.03 0.72 0.99
M81

1
0.707 0.169 0.159 0.179 0.168 0.173 0.174 0.14 0.203 0.217 0.214 1.21 0.78 1.01

M161 - 1.2 1.13 5.96 1.68 1.09 1.05 0.898 2.96 1.53 1.62 1.34 0.79 0.72
W20 0.0492 0.0222 0.0201 0.0212 0.0211 0.0211 0.0261 0.0205 0.0256 0.026 0.0256 1.08 0.85 1.05
W40 0.282 0.0873 0.0874 0.096 0.0918 0.0995 0.114 0.0858 0.111 0.112 0.111 1.02 0.78 0.95
W80

1000
1.82 0.426 0.416 0.936 0.449 0.439 0.467 0.38 0.706 0.576 0.562 1.12 0.74 0.95

W160 - 2.74 2.65 257 5.56 2.68 2.52 2.22 49.8 7.52 4.59 1.23 0.37 0.49
S100 1.33 0.351 0.337 0.293 0.331 0.351 0.35 0.286 0.378 0.436 0.461 1.23 0.81 1.06
S200 10 9.55 2.32 2.21 1.2 1.41 1.59 2.02 1.77 1.6 1.98 2.31 1.31 1.18 1.65
S400 - 16.6 15.9 4.89 5.84 6.66 13.4 12.5 6.46 8.28 9.98 1.34 2.01 2.85

Table 3: Average running time of EVAL with multi-precision rational arithmetic in seconds.

f r (I0) ET
2 EL ′

3 EL ′

4 EL ′

3,10 EL ′

3,15 EL ′

3,20 EH
4 EH ′

4 EH ′

4,10 EH ′

4,15 EH ′

4,20 σ
�

EH ′

4

�

σ
�

EH ′

4,15

�

σ
�

EL ′

3,15

�

T20 0.0411 0.0223 0.0245 0.0269 0.0325 0.0378 0.0417 0.0233 0.0347 0.0429 0.0505 0.96 0.52 0.69
T40 0.261 0.11 0.111 0.121 0.109 0.117 0.146 0.0959 0.126 0.141 0.156 1.15 0.78 1.01
T80 10 1.76 0.631 0.611 0.62 0.644 0.658 0.824 0.524 0.769 0.805 0.781 1.2 0.78 0.98
T160 11.3 3.14 2.87 2.23 2.36 2.62 3.82 2.41 2.7 2.96 3.36 1.3 1.06 1.33
T320 - 31.8 30.8 13.7 14.1 15.9 36.2 21.8 16.6 18.5 21.8 1.46 1.72 2.25
H20 0.03 0.0169 0.0182 0.0205 0.025 0.0296 0.0239 0.0176 0.0273 0.0338 0.0402 0.96 0.50 0.68
H40 0.185 0.0858 0.0885 0.0956 0.0927 0.106 0.131 0.0844 0.109 0.123 0.136 1.02 0.70 0.93
H80 40 1.1 0.399 0.391 0.41 0.412 0.423 0.541 0.329 0.495 0.523 0.504 1.21 0.76 0.97
H160 7.51 1.99 1.89 1.5 1.51 1.65 2.55 1.47 1.81 1.87 2.13 1.35 1.06 1.32
H320 - 29.5 28.9 303 67 27.7 39.1 20.9 123 40.8 26.2 1.41 0.72 0.44
M21 0.0238 0.0115 0.0119 0.013 0.0154 0.0179 0.015 0.0106 0.0162 0.0198 0.0233 1.09 0.58 0.75
M41 0.124 0.0466 0.0478 0.0529 0.0488 0.0537 0.07 0.0471 0.066 0.0746 0.0847 0.99 0.63 0.96
M81

10
0.947 0.298 0.278 0.321 0.288 0.293 0.381 0.236 0.346 0.359 0.344 1.27 0.83 1.04

M161 - 2.18 2.03 13.6 3.29 2.08 2.64 1.57 5.89 2.62 2.42 1.39 0.83 0.66
W20 0.0652 0.0332 0.0346 0.0344 0.0343 0.0346 0.0491 0.0352 0.0445 0.0442 0.0452 0.94 0.75 0.97
W40 0.431 0.18 0.176 0.182 0.163 0.161 0.225 0.143 0.191 0.195 0.191 1.26 0.92 1.1
W80

1000
2.75 0.846 0.826 1.96 0.877 0.847 1.15 0.708 1.41 1.1 1.09 1.2 0.77 0.97

W160 - 6.28 6.1 932 14.6 6.21 8.22 4.78 155 19 10.6 1.31 0.33 0.43
S100 1.35 0.474 0.457 0.451 0.483 0.477 0.663 0.419 0.603 0.591 0.57 1.13 0.80 0.98
S200 10 12 3.65 3.49 2.28 2.59 2.83 4.79 2.68 2.73 3.13 3.59 1.36 1.17 1.41
S400 - 44.8 42.7 16.4 18.9 21.5 51.8 30 19.6 24.2 28.3 1.50 1.85 2.37

degree polynomials). The last three columns in both tables report the speedup ratiosσ(·) of EH ′

4 , EH ′

4,15, and

EL ′
3,15 with respect to EL ′

3 , which was identified as the overall winner in [9].
In Figure 1, we provide a direct comparison of the EVAL version based on our new range function EH ′

4

with the previous leader EL ′
3 : for the test polynomials in our suite, the new function is faster for polynomials

of degree greater than 25, with the speedup approaching and even exceeding the theoretical value of 1.33 of
Section 4.2. In terms of tree size they are similar (differing by less than 5%, Table 1). Hence, EH ′

4 emerges as
the new winner among the practical range functions from our collection.

5.1 Non-maximal recursion levels

High order of convergence is important for applications such as numerical differential equations. But a sole
focus on convergence order may be misleading as noted in [9]: for any convergence order k ≥ 1, a subsidiary
measure may be critical in practice. For Taylor forms, this is the refinement level n ≥ k and for our recursive
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Figure 1: Speedupσ of EH ′

4 with respect to EL ′

3 for different families of polynomials and varying degree: raw (left) and
smoothed with moving average over five points (right).

Figure 2: Speedup σ(ℓ) of EL ′

3,ℓ (left) and EH ′

4,ℓ (right) against their maximal level counterparts with respect to ℓ for
polynomials of degree 125 (top) and 250 (bottom) from different families.

range functions, it is the recursion level ℓ≥ 0. Note that Ratschek [12] has a notion called “order n ≥ 1” for box
forms on rational functions that superficially resembles our level concept. When restricted to polynomials,
it diverges from our notion. In other words, we propose to use8 the pair (k ,ℓ) of convergence measures in
evaluating our range functions. In [9]we focused on maximal levels (for polynomials) after showing that

8This is a notational shift from our previous paper, where we indexed the recursion level by n ≥ 1. Thus, level ℓ in this paper
corresponds to n −1 in the old notation.
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the ˜ T
2 (the minimal level Taylor form of order 2) is practically worthless for the EVAL algorithm. We now

experimentally explore the use of non-maximal levels.
Figure 2 plots the (potential) level speedup factorσ(ℓ) against level ℓ≥ 0. More precisely, consider the time

for EVAL to isolate the roots of a polynomial f in some interval I0. Let k ,ℓ f be a family of range functions
of order k , but varying levels ℓ≥ 0. If Ek ,ℓ (resp., Ek ) is the running time of EVAL using k ,ℓ f (resp., k ,∞ f ),
thenσ(ℓ) := Ek/Ek ,ℓ. Of course, it is only a true speedup ifσ(ℓ)> 1. These plots support our intuition in [9]
that minimal levels are rarely useful (except at low degrees). Most strikingly, the graph of σ(ℓ) shows a
characteristic shape of rapidly increasing to a unique maxima and then slowly tapering to 1, especially for
polynomials f with high degrees. This suggests that for each polynomial, there is an optimal level to achieve
the greatest speedup. In our tests (see Figure 2), we saw that both the optimal level and the value of the
corresponding greatest speedup factor depend on f . Moreover, we observed that the achievable speedup
tends to be bigger for EH ′

4 than for EL ′
3 and that it increases with the degree of the polynomial f .

6 Conclusions and future work

We generalized the CL framework in order to achieve, for the first time, range functions of arbitrarily high
order of convergence. Our recursive scheme for such constructions is not only of theoretical interest, but are
practical as shown by our implementations. Devising specific “best of a given order” functions like H

4,ℓ f (I )
is also useful for applications.

The amortized complexity model of this paper can be used to analyse many subdivision algorithms in
higher dimensions. Moreover, new forms of range primitives may suggest themselves when viewed from the
amortization perspective.

We pose as a theoretical challenge to explain the observed phenomenon of the “unimodal” behaviour of
the σ(ℓ) plots of Figure 2 and to seek techniques for estimating the optimal recursion level that achieves
the minimum time. Moreover, we would like to better understand why the size of the EVAL subdivision tree
increases with ℓ in the case of sparse polynomials (see Table 1), while it decreases for all other polynomials
from our test suite.

Finally, we emphasize that strong box functions have many applications. Another future work therefore
is to develop the theory of strong box functions, turning the abstract model of Section 2.2 into an effective
(Turing) model in the sense of [19].
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