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Abstract

We present a new perspective on the Floater–Hormann interpolant. This interpolant
is rational of degree (n , d ), reproduces polynomials of degree d , and has no real
poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first
demonstrate a close relation to Neville’s algorithm. We then derive an O (nd ) al-
gorithm for computing the barycentric weights of the Floater–Hormann interpolant,
which improves upon the original O (nd 2) construction.
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1 Introduction

Given the n +1 interpolation nodes x0 < x1 < · · ·< xn and the associated data f0, f1, . . . , fn , there are two ways
to write the rational Floater–Hormann interpolant [3] of degree d ≤ n . On the one hand, it can be expressed
as the blend

r (x ) =

∑n−d
i=0 λi (x )pi (x )
∑n−d

i=0 λi (x )
(1)

of the polynomials pi of degree d , which locally interpolate the data fi , . . . , fi+d , with weighting functions

λi (x ) =
(−1)i

(x − xi ) · · · (x − xi+d )
.

On the other hand, it can be written in the barycentric form

r (x ) =
n
∑

i=0

(−1)i

x − xi
wi fi

� n
∑

i=0

(−1)i

x − xi
wi (2)

with positive weights

wi =
min(i ,n−d )
∑

j=max(0,i−d )

j+d
∏

k= j ,k 6=i

1

|xi − xk |
. (3)

The barycentric form is particularly suited for evaluating the interpolant r in O (n ) time, once the weights wi ,
which depend only on the nodes xi and not on the data fi , have been precomputed. Using (3), these weights
can be determined in O (nd 2) steps, which is exactly how common libraries like Numerical Recipes1 [5] and
ALGLIB [2] perform the computation.

We present two novel procedures for evaluating r (x ), which are inspired by Ron Goldman’s pyramid
algorithms [4] for the evaluation of polynomial and spline curves. While the first is tailored for Floater–
Hormann interpolants and exploits the representation of r in (1), the second is based on (2) and works for
general barycentric rational interpolants of degree (n , n )with arbitrary weights wi . Both algorithms require
O (n 2) operations and are closely related to Neville’s algorithm for constructing interpolating polynomials of
degree n . They further lead to a novel O (nd ) algorithm for computing the weights in (3).

1The claim in [5, page 128] that “the workload to construct the weights is of order O (nd ) operations” is wrong, because the given
code just implements the formula in (3) in a straightforward way and is clearly of order O (nd 2).
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Figure 1: Pyramid notation for linear combinations. Thick arrows indicate affine combinations, where we omit the
normalization factors of the weights to keep the diagram less cluttered. Dashed arrows indicate that the weights need to
be multiplied with 1/2.
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Figure 2: Example of the pyramid algorithm for Floater–Hormann interpolation with n = 5 and d = 2.

2 Evaluating the rational interpolant

Using the notation in Figure 1, the Floater–Hormann interpolant in (1) can be evaluated by the pyramid
algorithm in Figure 2, which is a slight variation of Neville’s algorithm [4, Chapter 2.2], where the weights in
the top n −d rows of the pyramid are not normalized and the weights at the interior edges in these rows are
multiplied with an additional factor of 1/2. That is, for some given evaluation parameter x , we start with the
initial data

Q 0
i (x ) = ( fi , 1), i = 0, . . . , n

and compute the bottom d rows of the pyramid with Neville’s algorithm as

Q `
i (x ) =

xi+`− x

xi+`− xi
Q `−1

i (x ) +
x − xi

xi+`− xi
Q `−1

i+1 (x ), i = 0, . . . , n − `,

for `= 1, . . . , d , resulting in the values

Q d
i (x ) = (pi (x ), 1), i = 0, . . . , n −d .

We then continue to compute the top n −d rows of the pyramid as

Q `
i (x ) =η

n−`+1
i (xi+`− x )Q `−1

i (x ) +ηn−`+1
i+1 (x − xi )Q

`−1
i+1 (x ), i = 0, . . . , n − `,

for `= d +1, . . . , n , where

η`i =

¨

1, if i = 0 or i = `,
1/2, otherwise,

resulting in the value
Q n

0 (x ) =
�

f (x ), g (x )
�

.

We now observe that the diagram in Figure 2 satisfies the parallel property, that is, parallel arrows all have
the same labels. Hence the product of labels along any path from Q d

i (x ) to the apex of the pyramid is always

µi (x ) =
i−1
∏

j=0

(x − x j )
n
∏

k=i+d+1

(xk − x ) = (−1)n−dπ(x )λi (x ),

where

π(x ) =
n
∏

j=0

(x − x j ).
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Figure 3: Recurrence of the values P `
i (left), which are all equal to 1 (right).

Due to the additional factors η`i , each of these paths is further multiplied by some power of 1/2. Denoting
the sum of these powers by P n−d

i , we have

Q n
0 (x ) =

n−d
∑

i=0

P n−d
i µi (x )Q

d
i (x ).

As any path from the node Q `
i (x ) to the apex must traverse either of the nodes Q `−1

i−1 (x ) or Q `−1
i (x ), it is clear

that the values P `i satisfy the recurrence2

P 0
0 = 1,

P `i =η
`
i P `−1

i−1 +η
`
i P `−1

i , i = 0, . . . ,`, `= 1, . . . , n −d ,

as shown in Figure 3, and it follows by induction that P n−d
i = 1 for i = 0, . . . , n . Therefore,

f (x ) = (−1)n−dπ(x )
n−d
∑

i=0

λi (x )pi (x ), g (x ) = (−1)n−dπ(x )
n−d
∑

i=0

λi (x ),

and a final division of these two components of Q n
0 (x ) gives

r (x ) =
f (x )
g (x )

.

Another option is to evaluate the interpolant r by modifying all the rows of Neville’s algorithm, as shown
in Figure 4, and to use the initial data

R 0
i (x ) =wi ( fi , 1) = (wi fi , wi ), i = 0, . . . , n .

We then compute the rows of the pyramid from bottom to top as

R `i (x ) =η
n−`+1
i (xi+`− x )R `−1

i (x ) +ηn−`+1
i+1 (x − xi )R

`−1
i+1 (x ), i = 0, . . . , n − `,

for `= 1, . . . , n with η`i defined as above, resulting in the value

R n
0 (x ) =

�

f̃ (x ), g̃ (x )
�

.

With arguments similar to the ones above, it can be shown that

f̃ (x ) = (−1)nπ(x )
n
∑

i=0

(−1)i

x − xi
wi fi , g̃ (x ) = (−1)nπ(x )

n
∑

i=0

(−1)i

x − xi
wi ,

and a final division gives

r (x ) =
f̃ (x )
g̃ (x )

.

2For the sake of simplicity, we tacitly follow the convention that P `i = 0 for i < 0 and i > `.
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Figure 4: Example of the pyramid algorithm for general barycentric rational interpolation with n = 5.

Note that this second algorithm works for any set of weights wi , hence for any rational interpolant of degree
(n , n ).

Clearly, both algorithms require O (n 2) steps and are thus slower and possibly not as robust as the O (n )
evaluation of r (x )with the barycentric form (2), but we believe that this formulation sheds some interesting
new light on the idea of barycentric rational interpolation. We would further like to point out that the
algorithm in Figure 2 bears a strong resemblance to the algorithm of Barry and Goldman [1] for evaluating
Catmull–Rom splines. Both algorithms first carry out a few rounds of Neville’s algorithm to compute the local
polynomial interpolants pi (x ), but they differ in the way these values are combined while going through
the top rows of the pyramid: for Catmull–Rom splines we blend the local polynomials with B-spline basis
functions, and for Floater–Hormann interpolants we use λi /

∑n−d
j=0 λ j as blending functions.

3 Computing the weights

Comparing the two algorithms in Figures 2 and 4, we notice that they are identical in the top n −d rows and
that the input data Q 0

i (x ) and R 0
i (x ) differ by the factors wi . This observation suggests that there might exist

an efficient pyramid algorithm for computing the Floater–Hormann weights. Indeed, we can determine the
weights wi if we start with the values

V d
i = 1, i = 0, . . . , n −d

and then work our way down the bottom d rows of the pyramid, using the normalization factors from
Neville’s algorithm, to compute3

V `
i =

V `+1
i−1

xi+`− xi−1
+

V `+1
i

xi+`+1− xi
, i = 0, . . . , n − `, (4)

for `= d −1, d −2, . . . , 0, as shown in Figure 5. To see that V 0
i =wi for i = 0, . . . , n , consider the values

U `
i =

min(i ,n−`)
∑

j=max(0,i−`)
V `

j

j+
∏̀

k= j ,k 6=i

1

|xi − xk |
, i = 0, . . . , n , `= 0, . . . , d . (5)

For these values we clearly have U 0
i =V 0

i and U d
i =wi for i = 0, . . . , n , and we further show that U `

i =U `+1
i

for any `= 0, . . . , d −1. The main idea is first to expand each addend A`j of U `
i using (4) and then to augment

3For the sake of simplicity, we tacitly follow the convention that V `
i = 0 for i < 0 and i > n − `.
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Figure 5: Example of the pyramid algorithm for computing the Floater–Hormann weights wi in (3) with n = 5 and d = 2.

the products by one factor,

A`j =V `
j

j+
∏̀

k= j ,k 6=i

1

|xi − xk |
=

�

V `+1
j−1

x j+`− x j−1
+

V `+1
j

x j+`+1− x j

� j+
∏̀

k= j ,k 6=i

1

|xi − xk |

=V `+1
j−1

xi − x j−1

x j+`− x j−1

j+
∏̀

k= j−1,k 6=i

1

|xi − xk |
︸ ︷︷ ︸

=B `j

+V `+1
j

x j+`+1− xi

x j+`+1− x j

j+`+1
∏

k= j ,k 6=i

1

|xi − xk |
︸ ︷︷ ︸

=C `
j

.

Next observe that the terms C `
j from A`j and B `j+1 from A`j+1 sum up to the addend A`+1

j of U `+1
i ,

C `
j +B `j+1 =V `+1

j

x j+`+1− xi

x j+`+1− x j

j+`+1
∏

k= j ,k 6=i

1

|xi − xk |
+V `+1

j

xi − x j

x j+`+1− x j

j+`+1
∏

k= j ,k 6=i

1

|xi − xk |

=V `+1
j

j+`+1
∏

k= j ,k 6=i

1

|xi − xk |
= A`+1

j .

Finally, notice that B `0 = 0, because V `+1
−1 = 0, and B `i−` = A`+1

i−`−1 for i > `, and similarly C `
n−` = 0, because

V `+1
n−` = 0, and C `

i = A`+1
i for i < n − `. If we now denote the lower and upper bounds of the summation index

j in (5) by
α`i =max(0, i − `), β `i =min(i , n − `)

and distinguish the different cases of the index i , where either α`i = 0 or α`i = i − ` and either β `i = i or
β `i = n − `, we find that in all cases

U `
i =

β `i
∑

j=α`i

A`j = B `
α`i
+

β `i
∑

j=α`i+1

B `j +
β `i −1
∑

j=α`i

C `
j +C `

β `i
= B `

α`i
+
β `i −1
∑

j=α`i

A`+1
j +C `

β `i
=

β `+1
i
∑

j=α`+1
i

A`+1
j =U `+1

i .

Therefore,
V 0

i =U 0
i =U 1

i = · · ·=U d
i =wi ,

which asserts that the Floater–Hormann weights are determined by the algorithm above in O (nd ) steps.
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