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Abstract

Geodesic distances between pairs of points on a 3D mesh surface are a crucial ingredient
of many geometry processing tasks, but are notoriously difficult to compute efficiently on
demand. We propose a novel method for the compact storage of geodesic distance inform-
ation, which enables answering point-to-point geodesic distance queries very efficiently.
For a triangle mesh with n vertices, if computing the geodesic distance to all vertices from a
single source vertex costs O ( f (n )) time, then we generate a database of size O (mn log n ) in
O
�

( f (n )+m 3n )
p

n
�

time in a preprocessing stage, where m is a constant that depends on
the geometric complexity of the surface. We achieve this by computing a nested bisection
of the mesh surface using separator curves and storing compactly-described functions ap-
proximating the distances between each mesh vertex and a small relevant subset of these
curves. Using this database, the geodesic distance between two mesh vertices can then be
approximated well by solving a small number of simple univariate minimization problems in
O (m log n )worst case time and O (m ) average case time. Our method provides an excellent
tradeoff between the size of the database, query runtime, and accuracy of the result. It can be
used to compress exact or approximate geodesic distances, for example, those obtained by
VTP (exact), fast DGG, fast marching, or the heat method (approximate) and is very efficient
if f (n ) = n , as for the fast DGG method.
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1 Introduction

Computing geodesic paths and geodesic distances on 3D surfaces approximated as triangle meshes has been
the subject of intense study over the past few decades. Since computing the exact (piecewise-linear) geodesic
paths on the polyhedral surface is quite complicated [15, 18, 22], a variety of methods that approximate
the geodesic paths and distances have been developed [13, 20, 24, 26], the most well-known being the
fast-marching [11] and the heat method [6, 23]. While these methods are based on discretizing and solving a
partial differential equation, the idea of graph-based methods [14, 16, 25, 28] is to augment the mesh graph
with additional edges such that it is still sparse. This new graph is computed and stored in a preprocessing
step, and geodesic distance queries can then be handled by finding shortest paths in this graph.

The main objective of all these methods is to compute the so-called distance field of a given source vertex,
that is, the geodesic distance from the source to all other mesh vertices. For example, the graph-based, fast

Figure 1: Our algorithm quickly computes the geodesic distance between arbitrary pairs of points on a 3D mesh. After
recursively bisecting the mesh surface using separator curves, we precompute for each vertex (white) a distance field
(using any state-of-the-art method) for all the sub-patches that contain the vertex, use them to determine the distance
functions to a small subset (green) of these curves (left, for each of the four examples), and store their descriptions in a
database. At query time (right, for each example), we efficiently compute the geodesic distance to any other vertex (red) by
exploiting the fact that the geodesic path (black) between the vertices crosses at least one (red) of all the separator curves
that the two vertices have in common (magenta). The high accuracy of our method can be observed by comparing the
resulting distance field (right) with the distance field given by the method (here, VTP) used in the preprocessing step (left).
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DGG algorithm [1] computes an approximate geodesic distance field for a triangle mesh with n vertices in
O (n ) time, by employing a tailored version of Dijkstra’s algorithm [7]. Given this field, it is then possible to
generate geodesic paths from any vertex to the source by applying a gradient-descent-type tracing method
to this distance field. For a comprehensive overview of geodesic path and distance algorithms, the interested
reader is referred to the survey by Crane et al. [5].

The main problem with the geodesic field methods is that they are too slow to use in interactive ap-
plications where rapid computation of arbitrary point-to-point geodesic distances on very large meshes is
required, since generating the entire distance field on these meshes could take seconds on state-of-the-art
machines. To combat this, a number of methods have been developed that compress and store the geodesic
distance information in a preprocessing step and then use this data to rapidly compute the approximate
geodesic distance between any pair of vertices on demand. For these methods, there is typically a tradeoff
between four performance measures: 1) preprocessing time, 2) storage size, 3) online query time, 4) result
accuracy. Preprocessing time is usually of minor concern, since this is done only once when the data set is pre-
pared. Storage size is of major concern, as it is undesirable to amplify the size of the original mesh dataset to
the extent that it becomes unmanageable. However, larger storage sizes will usually result in faster and more
accurate queries. As an extreme example, computing and storing the values of all O (n 2) geodesic distances
between all possible pairs of vertices in an n-vertex triangle mesh will result in prohibitive O (n 2) storage, but
perfectly accurate geodesic queries in O (1) time (by simple lookup). Xin et al. [27] describe a sample-based
method requiring O (m 2+n ) storage, with O (1) time queries and O (1/

p
m ) absolute accuracy, where m is the

user-controlled number of samples. Burghard and Klein [3] describe a landmark-based method requiring
O (mn ) storage with O (m ) time queries and O (1/m ) relative accuracy, where m is the number of landmarks.

1.1 Contribution

Our method falls in the category of compression methods. It can compress the geodesic distance information
(exact or approximate) determined by any geodesic field method into a compact database and answer
geodesic distance queries between any two mesh points in real-time. Our method has a user-controllable
parameter m , requires O (mn log n ) storage and results in O (m log n ) time queries, with relative accuracy
that seems, based on our experiments, to scale like O (1/m p ), for some integer p > 1. Our results show that an
average relative error of less than 0.5%, with respect to the (exact or approximate) geodesic distances that our
method compresses, can typically be achieved for m = 12 and that the choice of m and the resulting accuracy
do not depend on n , but rather on the geometric complexity of the surface that is approximated by the mesh.

Our method takes advantage of the fact that manifold 3D meshes have an edge structure similar to that
of a planar graph, for which it is well known that compact separators exist, namely it is possible to partition
a connected mesh into two unconnected balanced components by removing a compact set of separating
vertices or cut edges [12]. By balanced we mean a ratio of no worse than 1 : 2 in size, and by compact we mean
that the number of separating vertices or cut edges is O (

p
n ) for an n-vertex mesh. The key importance of

such a separator in computing geodesic distances is the fact that the geodesic path between two vertices x
and y on either side of the separator must pass through the separator, thus the geodesic distance d (x , y ) is
the minimum of the distances d (x , z ) +d (z , y ) for all z associated with the separator (Section 2.1). So, if
we precompute d (x , z ) for all x and all z on the separator, it is relatively easy to compute d (x , y ) at query
time. This principle may be generalized by further partitioning each component of the mesh in a recursive
manner, constructing a so-called binary nested bisection tree [8]. Thus, geodesic distances between any pair
of vertices may be computed by applying the same logic while traversing a path of the tree and examining
all associated separators, whose number is O (log n ) (Section 2.2). Nested bisection trees are widely used
to implement recursive divide-and-conquer algorithmic strategies for graphs, for example, for efficiently
solving linear systems in geometry processing [9]. On a 3D mesh, which represents an underlying continuous
surface, the ideas are very similar, although care must be exercised to take into account that geodesic paths
may cut through the graph edges and faces.

1.2 Overview

After deriving the theoretical background in the case of general manifold surfaces (Section 2) and proving
the correctness of our method (Theorem 2.1), we discuss how this transfers to the case of discrete triangle
meshes (Section 3), provide an error bound on our approximation (Lemma A.3), and explain the details of our
implementation (Section 4). Finally, we present some experimental results for meshes with various geometric
complexities (Section 5), before concluding and discussing future extensions of our method (Section 6).
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2 Geodesic distances on surfaces

For any two points x and y on a manifold 3D surface M , the geodesic distance d (x , y ) is the length of a shortest
path between x and y in M , where the length is measured with respect to the Riemannian metric of M . It is
well known that the geodesic distance function satisfies the triangle inequality d (x , y )≤ d (x , z )+d (z , y ),
with equality if and only if z is a point on a shortest path between x and y .

2.1 Divide ...

M1

M2

c

x

y

z⋆

Suppose that M is topologically equivalent to the disk and that c is a simple
curve with endpoints on the boundary of M , such that c partitions M into two
surfaces M1 and M2, which are themselves topologically equivalent to the disk
(see inset). Given two points x ∈M1 and y ∈M2, clearly any path between x
and y crosses c at least once. In particular, this is true for any shortest path,
hence there exists a point z⋆ on c , such that d (x , y ) = d (x , z⋆) +d (z⋆, y ). It then
follows from the triangle inequality that the geodesic distance between x and y
satisfies

d (x , y ) =min
z∈c

�

d (x , z ) +d (z , y )
�

.

Consequently, the geodesic distance between any points x , y ∈M can be found by solving a simple minim-
ization problem, as long as

1. x and y are on different sides w.r.t. c , and

2. we know d (x , z ) for any x ∈M and any z ∈ c .

Note that this observation extends to the case where c is a loop (i.e., a closed curve), so that M1 and M2 are
topologically equivalent to the disk and the cylinder, and even to the case where c is a set of curves, resulting
in M1 or M2 consisting of more than one connected component. For example, if M is the surface of a human
body, partitioned by two loops around the legs into M1 consisting of the two (unconnected) legs, and M2

consisting of the rest of the body. Multiple separating curves will also arise with surfaces having arbitrary
topology, for example, partitioning the torus into two unconnected surfaces may require two separating
curves (see Figure 2).

To turn this insight into an efficient strategy for answering point-to-point geodesic distance queries, it
remains to deal with the two requirements mentioned above.

2.2 ... and conquer

The limitation that x and y must be on different sides of c , which covers at most 50% of the cases for
randomly chosen points, can be easily overcome by partitioning M recursively into smaller and smaller
surface patches using separators (see Figure 2).

A surface patch of M is a (set theoretically) closed subset P ⊆M , possibly with multiple components.
A separator S of a surface patch P is either a path (a simple curve connecting two boundary points of P ),
or a loop (a simple closed curve in P ), or a finite collection of such curves, so that P \ S consists of two
unconnected components Q1 and Q2. Denoting the closures of these components by P1 and P2, we say that S
partitions P into two disjoint (apart from common boundaries) sub-patches P1 and P2, such that P1 ∪P2 = P
and P1 ∩P2 = S . If P has multiple components, then it is possible to assign some components entirely to P1

and all other components to P2, so that S is empty.
A recursive partition or nested bisection of M can then be represented as a so-called binary bisection tree

T , where each node N of T represents both a surface patch P (N ) and a separator S (N ) that partitions P (N )
into two sub-patches, with the latter corresponding to the children of N in T (see Figure 2). The root of T
represents the entire surface M and an associated top-level separator. The recursive bisection terminates
whenever a patch is small enough in some meaningful sense, so that the leaf nodes of T represent only such
a small patch, but no separator. Clearly, for any surface point x ∈M there exists at least one corresponding
leaf node N of T , such that x ∈ P (N ), and unless x is a point on at least one of the separators, this leaf patch
P (N ) is unique.

Assume that all separator curves are parameterized, for example by arc length over the interval Ic = [0, Lc ],
that is, c : Ic →M , where Lc is the length of c . For any x ∈M , let Nx be a corresponding leaf node in T , Γx
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Figure 2: Recursive bisection of a surface M = P1 into patches. The top-level separator consists of two loops, S1 = {c1,1, c1,2},
and partitions the surface into the two patches P2 and P3. The patch P2 is further partitioned into P4 and P5 by the single
loop separator S2 = {c2}, and P3 is partitioned into P6 and P7 by two paths S3 = {c3,1, c3,2}. The partitions can be represented
as a binary bisection tree T with nodes Ni (upper left), with each node representing a patch, Pi = P (Ni ), and, except in
the case of leaf nodes, a separator Si = S (Ni ). The leaf node associated with the indicated point x ∈M is Nx =N4 and the
path from Nx to the root of T is Γx = (N4, N2, N1).

be the path in T from Nx to the root of T , and Cx = {c ∈ S (N ) : N ∈ Γx } be the set of all curves belonging to
separators associated with the nodes in Γx . For any c ∈Cx , let

d c
x (t ) = dP (N )(x , c (t )), t ∈ Ic (1)

denote the geodesic distances from x to the points of c within the surface patch P (N ) associated with c ,
that is, where N is the node of T , such that c ∈ S (N ). We can then compute geodesic distances in M based
on the following theorem.

Theorem 2.1. Suppose that x , y ∈M are two surface points with Nx ̸=Ny . Let Γ = Γx ∩ Γy be the common
tail of the paths Γx and Γy and C =Cx ∩Cy be the set of all curves belonging to separators associated with the
nodes in Γ . Then the geodesic distance between x and y is

d (x , y ) =min
c∈C

d c (x , y ), (2)

where
d c (x , y ) =min

t ∈Ic

�

d c
x (t ) +d c

y (t )
�

(3)

is the length of the shortest path from x to y via c and within the surface patch P (N ) associated with c .

Proof. By the triangle inequality, d (x , y )≤ d c (x , y ) for all c ∈C , with equality if and only if c is crossed by a
shortest path between x and y and if this shortest path is contained in the surface patch P (N ) associated
with c . It remains to show that this is true for some c⋆ ∈C , which we call the determining separator curve.
To this end, let γ be a shortest path from x to y and consider the root node N of T , which is the last node
of the path Γ . Obviously, γ is contained in P (N ) =M . If γ intersects the top-level separator S (N ), then c⋆
belongs to S (N ), and we are done. Otherwise, γ is contained entirely in one of the sub-patches generated
by the separator S (N ). By construction, this sub-patch is represented by the node N ′ that precedes N in Γ .
We can now repeat the previous argument for P (N ′) and S (N ′), until we find c⋆. This happens at latest
when we arrive at the first node of Γ , because x and y are, by construction, in different sub-patches of the
corresponding surface patch.
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Figure 3: Two examples in the plane, where the determining separator curve (cyan) is not associated with a lowest-level
separator (magenta). In both examples, the bisection tree T is as in Figure 2 (upper left), x ∈ P4, y ∈ P5, Γ = (N2, N1), and
the shortest path (solid) between x and y within P2 = P4 ∪P5 crosses the lowest-level separator curve c2 at z2. This path
is longer than the globally shortest path γ (dashed), which is not contained in P2 and determined by a curve from the
top-level separator. In the left example, γ crosses c1 at z1 and at z ′1, indicating that the function d c1

x (t )+d c1
y (t ) has two

local minima, both with magnitude d (x , y ). In the right example, which contains a hole (gray), γ crosses the top-level
separator curves c1,1 and c1,2 at z1,1 and z1,2, respectively. Consequently, the geodesic distance d (x , y ) can be found by
minimizing either of the two functions d

c1,1
x (t )+d

c1,1
y (t ) and d

c1,2
x (t )+d

c1,2
y (t ). Note that c3 is not a determining curve,

even though γ crosses c3 at z3, because c3 /∈C , that is, neither of x or y are aware of c3.

Remark 2.1. In most cases, the determining curve c⋆ belongs to the lowest-level separator S (N⋆) associated
with the first node N⋆ of Γ , because this is the only separator with respect to which x and y belong to different
sub-patches, so that any path between x and y within P (N⋆)must cross S (N⋆). For any other node N ∈ Γ , the
separator S (N ) does not actually separate x and y , because both vertices belong to the same sub-patch with
respect to S (N ). Still, it may happen that the shortest path between x and y within P (N ) crosses S (N ), either
because some c ∈ S (N ) is not a shortest path itself (see Figure 3, left), or because S (N ) consists of more than
one curve, for example if P (N ) contains (geometric or topological) holes (see Figure 3, right). In this case,
the globally shortest path between x and y is not contained in P (N⋆) and c⋆ is associated with some other
node of Γ . For that reason, we need to consider all c ∈C in (2).

If T is a perfect binary tree with height h and all the 2h leaf patches are of equal size, then the probability
that Nx =Ny for two randomly chosen points x and y is 1/2h . Hence, the geodesic distance d (x , y ) can be
determined as in Theorem 2.1 in more than 99% of the cases, provided that h ≥ 7.

3 Geodesic distances on 3D meshes

Computing geodesic distances as proposed in Theorem 2.1 requires to know d c
x (t ) in (1) for all t ∈ Ic and

all x ∈M . Since both Ic and M are uncountable sets, it is in general impossible to compute and store this
data in a preprocessing step. However, if M is a (discrete) manifold 3D mesh and we are interested only in
approximate geodesic distances between the vertices of M , then we can turn the idea of Theorem 2.1 into an
efficient algorithm for point-to-point queries with excellent accuracy at moderate storage cost.

3.1 Preprocessing

Given an n-vertex mesh M , the first task is to build the binary bisection tree T , that is, to find separators
that recursively partition M into smaller and smaller patches until all patches have at most Vmax vertices.
These separators consist of (piecewise-linear) curves on the mesh surface, cutting through arbitrary mesh
faces and edges and preferably not through vertices. During this process we make sure that all separator
curves are assigned a unique index and likewise for all leaf patches. For each vertex x ∈M , we then store:

1. The index ℓx of the leaf patch that contains x .

2. The set Jx of indices of all separator curves in Cx . These are the curves associated with x .

3. For any curve c with index in Jx , the m parameters of a function d̂ c
x : Ic →R that approximates the

function d c
x : Ic →R.

Under the assumptions that T is balanced and that all separators consist of O (1) separator curves, we end
up with O (m log n ) data that needs to be stored for each vertex, that is, O (mn log n ) overall.

We may further store the exact geodesic distance d (x , y ) for every pair of vertices x , y with ℓx = ℓy in a
sparse symmetric matrix D ∈Rn×n . For each of the approximately n/Vmax leaves of T , the matrix D contains
at most Vmax

2 distances (for all vertex pairs within the leaf patch), so the total number of non-zero values
in D is about nVmax. Taking Vmax =O (m log n ), the complexity of storing D is O (mn log n ), hence does not
dominate the storage complexity of the separator distance data.
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Figure 4: For the recursive bisection of a given (planar) mesh, we find a set of cut edges (dashed) to partition a patch into
two sub-patches of roughly the same size (top). For the piecewise-linear separator curve c that connects the midpoints
of the cut edges (top left), the separator distance functions d c

x (red) are only piecewise smooth (bottom left). The best
fitting polynomial of degree 7 (green) has a relative error of up to 24%. After smoothing the separator curve (top right),
the distance function can be approximated by a degree 7 polynomial with a relative error of less than 1.5%, and even the
best-fitting quadratic polynomial (blue) has a relative error of at most 7% (bottom right).

3.2 Online point-to-point queries

Equipped with this data, the algorithm for computing the geodesic distance between arbitrary mesh vertices x
and y now becomes very simple. If ℓx = ℓy , then we either look up d (x , y ) in D or use the Euclidean distance
∥x − y ∥ between both vertices as an approximation of d (x , y ). Otherwise, we follow Theorem 2.1 and first
compute for every j ∈ J = Jx ∩ Jy the minimum of d̂ c

x (t ) + d̂ c
y (t ), where c is the curve with index j , that is,

d̂ j =min
t ∈Ic

�

d̂ c
x (t ) + d̂ c

y (t )
�

, (4)

and then find the minimum of these values to get the approximation

d̂ (x , y ) =min
j∈J

d̂ j (5)

of the geodesic distance d (x , y ). We can further improve this algorithm, if we store, in addition to the data
mentioned in Section 3.1, for every x ∈M and any c with index in Jx the minimum

m c
x =min

t ∈Ic

d̂ c
x (t )

of d̂ c
x . Then, while processing a curve c with index in J , we first check if m c

x +m c
y is greater than the

smallest d̂ j that we have found with other curves so far, and ignore the current curve in this case. This quick
reject strategy is most effective if we process the separator curves bottom-up, starting with the lowest-level
separator curves associated with the first node of Γ (see Remark 2.1).

If we assume that the minimum in (4) can be found in O (m ) time, then the time complexity for this query
is O (m log n ) in the worst case and O (m ) on average (see Lemma A.2). As for the accuracy of the query result,
we can prove that it is controlled entirely by the approximation error ϵ of the functions d̂ c

x (see Lemma A.3),
which in turn is inversely proportional to the parameter m . In practice, the user specifies the desired ϵ and
the algorithm determines m (ϵ).

4 Implementation details

We have implemented our method in MATLAB 2021b using standard routines and packages. For the com-
putation of geodesic distance fields during preprocessing, we used the available VTP [18] and fast DGG [1]
software in C++ for exact and approximate geodesic distances, respectively, as well as Gabriel Peyré’s MATLAB
code [17] for the fast-marching (FM) method [11] and the geodesics in heat (HEAT) method [6].
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Figure 5: Piecewise-geodesic separator curves consisting of two (for paths; left) or three geodesics (for loops; right)
before (blue) and after (red) refinement and smoothing.

4.1 Computing the binary bisection tree

Recursive bisection is performed by successive graph cut computations using a simple Fiedler-vector-based
method [21], although any other graph cut algorithm could be used (see the survey by Buluç et al. [2]), some
implemented quite efficiently in the METIS software package [10]. Given a triangle mesh patch P with n
vertices, this method finds a compact set of cut edges, such that removing these edges from P partitions P
into two (relatively balanced) sub-patches P1 and P2.

At this point, one could take the piecewise linear curves that connect the midpoints of the cut edges in the
correct order as separator curves, but the resulting separator distance functions d c

x will not be approximated
well by low-degree polynomials (see Figure 4, left). Much better approximations, both in terms of smaller
error and lower degree, can be achieved if the separator curves are smooth (see Figure 4, right). We therefore
select three evenly spaced points along the edge cut (including the endpoints in the case of open curves)
and connect them by geodesic paths, which are also piecewise linear curves, defined by a sequence of edge
intersection points. To smooth out the interior points where these geodesics meet, we simply sub-sample by
a factor of three and repeatedly filter and project the samples back to the mesh a few times (see Figure 5),
but other techniques, like tangential smoothing, could be used, too.

The result are ordered sets of regularly-spaced separator samples along smooth curves that partition P
into two sub-patches, which may be a little different than the two sub-patches defined by the original edge
cut, since the separator curves may have moved somewhat on the mesh surface as a result of the smoothing
process. Since partitioning P exactly along the separator curves would require splitting all triangles traversed
by the separator into an excessive amount of sub-triangles, we rather keep these triangles intact and add
them to both sub-patches for further processing, marking the vertices that do not belong to the patch as
“ghost” vertices.

Figure 6 shows some examples of the resulting bisections. In all our examples, we used a threshold of
Vmax = 30 vertices for terminating the recursive bisection. This consistently gave leaf patches that were
sufficiently close to planar, so that the Euclidean distance between vertex pairs from the same leaf patch was
within our accuracy tolerance, and we could thus avoid storing the matrix D .

4.2 Approximating the separator distance functions

While building the bisection tree, we determine for every patch P the set V (P ) of vertices of all triangles that
contain a separator sample, and we compute for every v ∈V (P ) the geodesic distances d (v, x ) to all vertices
x ∈ P , using either VTP to obtain exact distances or one of the geodesic field methods (DGG, FM, HEAT) to
get approximate distances. If the computation of a single geodesic distance field in a mesh with n vertices
costs O ( f (n )) time, then the overall time of this preprocessing stage is O ( f (n )

p
n ) for compact separators

(see Lemma A.1). With this data at hand, we then approximate the separator distance functions d c
x for every

mesh vertex x ∈M and all separator curves c with index in Jx as follows.
Following Rustamov et al. [19], we first approximate the geodesic distances d (x , s ) from x to all separator

samples s ∈ c as

d (x , s )2 ≈ d̂ (x , s )2 =
3
∑

i=1

λi d (x , vi )
2−

3
∑

i=1

3
∑

j=i+1

λiλ j ∥vi − v j ∥2,

where [v1, v2, v3] is the triangle containing s and λ1,λ2,λ3 are the barycentric coordinates of s , that is,
s =
∑3

i=1λi vi and
∑3

i=1λi = 1. This approximation is exact in the plane and very accurate in general.
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Figure 6: Visualization of the nodes along the leftmost branch of the binary bisection tree T for the Holes (top) and the
Eight (bottom) meshes (cf. Figure 7), from the root node (left) to the leaf node (right). Each node N represents a patch P
and (except for leaf nodes) a separator S consisting of one or more separator curves, represented by separator samples
(red), which partition P into a left (blue) and a right (green) sub-patch. The numbers below each image state the number
of samples per separator (red) and its type (path or loop), as well as the number of vertices in the sub-patches (blue,
green). During the construction of T , we compute the approximate separator distance functions d̂ c

x for all vertices x in
P (blue and green) and all separator curves c ∈ S (red). At the end of this process, we will have collected and will store
for all vertices x (yellow) in the leaf patch, the coefficients of the functions d̂ c

x for all c with index in Jx , that is, for the
curves belonging to all parent separators (magenta). These are the curves associated with x .

An obvious option, to which we refer to as “SEPsam” below, is to now store all the values d̂ (x , s ) along
with the (parametric) distances of the samples along c and take the piecewise linear interpolant of these
values as d̂ c

x for answering the online queries. However, this leads to unnecessarily large databases.
A much better alternative (which we refer to as “SEPfun”) is to approximate d c

x by an analytic function
which can be described compactly with few parameters. Since the separator curves are regular and smooth,
the separator distance functions tend to be smooth and relatively well-behaved, thus not too difficult to
approximate. For example, it is well-known that a function that is p times continuously differentiable can be
approximated by a degree-m polynomial with O (1/m p ) error [4]. We choose the best between the polynomial
approximating the distances d̂ (x , s ), and the polynomial approximating the squared distances d̂ (x , s )2. The
reason for the latter is that this yields a better approximation when the vertex is very close to the separator.
The quality of the approximation is measured as the average relative error, thus the least-squares polynomial
fit is done using weighted least squares, where the weight of a sample point s is 1/d̂ (x , s ). Starting from a
quadratic fit, we increase the degree until either the approximation error falls below a threshold (we used
0.5%) or the maximum degree allowed (we used mmax = 12) is reached. For the resulting function d̂ c

x we then
store the vector of m+1 polynomial coefficients and one bit to distinguish between approximation of distance
vs. squared distance in the database. In the case of loop separators, since the polynomial fit is on an interval,
we found it is best to shift the samples (and distances), so that the maximal distance is at the boundary of the
interval, and to add the shift offset to the database entry. The overall time required for this preprocessing stage
is O (m 3n

p
n ), where m =mmax (see Lemma A.1). Clearly, since the complexity of the separator distance

functions d c
x (in terms of number of local extrema) tends to increase with the geometric complexity of

the shape that the mesh represents, larger values of mmax may be required to approximate them with the
desired accuracy in those cases, but the interplay between mmax and the accuracy is independent of n .

4.3 Computing approximate geodesic distances

At query time, we need to compute the minimum of d̂ c
x + d̂ c

y for all c associated with both x and y . For
SEPsam, this is done by finding the minimum of sums of sample distances. For SEPfun, our implementation
uses the “brute force” method of sampling the parameter interval at a regular spacing of 0.005 (after scaling
the 3D mesh to fit within the unit cube), and exhaustively searching for the minimum among evaluations
of the function at these parameter values, each costing O (m ) time. It would be straightforward, and more
efficient, to employ a more sophisticated gradient descent or Newton method, since the analytic description
of the functions and their derivatives are available, but this might require a few random starts to avoid getting
stuck in local minima.
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Square Holes Peaks Eight Female Bunny

Figure 7: Meshes used for the evaluation and comparison in Table 1.

samples: 207, degree:
7 (d ) & 12 (d )

samples: 115, degree:
5 (d 2) & 12 (d )

Figure 8: Exact geodesic distance field (left) for a vertex x (white) of the Peaks mesh and its associated separators (green),
compared to the approximate geodesic distance field computed with our SEP method, as well as two examples of the
approximate separator distance functions d̂ c

x (blue) and d̂ c
y (red) and their sum (green) for the separator curve c (red)

that determines the geodesic distance from x to y (red), with the number of samples used by SEPsam and the degrees
and types of polynomial fits (distance vs. squared distance) used by SEPfun. SEPsam finds the minimum at the black dot
and SEPfun the one at the black star.

5 Experimental results

In our first experiment, we used our separator-based method (SEP) on a number of 3D meshes (see Figure 7)
for compressing exact geodesic distances, computed with VTP. We used only modest-size meshes, because
our unoptimized preprocessing code requires many calls to the external VTP code, and is therefore relatively
slow on large 3D meshes. Although SEP is designed specifically for fast geodesic distance queries on vertex
pairs, we evaluated the performance by computing distance fields, simply by calling SEP n −1 times. Some
examples of the resulting distance fields are given in Figure 1 as well as in Figure 8, which also shows some
of the approximating separator distance functions that are stored in the database. To quantify the accuracy
of a distance field of a source vertex x we used the L1 norm (ME) and the L2 norm (RMSE) of the relative
error per vertex,

ME(x ) =
1

n −1

∑

y ∈M

e (x , y ), RMSE(x ) =

√

√

√

1

n −1

∑

y ∈M

e (x , y )2, e (x , y ) =
|d (x , y )− d̂ (x , y )|

d (x , y )
,

since both were used in previous works. The reported accuracy was computed as the average of these errors
over 100 randomly chosen source vertices x . We compare the accuracy of SEP to the one obtained by our
implementation of the simple landmark-based algorithm (LAND) of Burghard and Klein [3], which the
authors claim is superior to the previous method by Xin et al. [27], using a number of landmarks m equal to
the cost per vertex of SEPfun. As summarized in Table 1, the storage cost of our SEPfun method is more than
an order of magnitude smaller than with SEPsam, with almost the same accuracy, which in turn is more than
ten times better than the accuracy obtained by LAND. We further note that the binary bisection trees are
nicely balanced and that the error and storage cost for SEP tend to increase with the geometric complexity
of the shape, as expected.

In a second experiment, we used SEPfun with mmax = 12 and Vmax = 30 to compress approximate geodesic
distances obtained by fast DGG and FM for different resolutions of the Bunny mesh. In all cases, the mean
relative errors (with respect to the DGG or FM distances) were on the order of 0.5% (ME) and 1.1% (RMSE), and
our unoptimized MATLAB code was able to answer several thousand queries per second on a Windows 11
laptop with 3.0 GHz Intel Core i7-1185G7 processor and 32 GB RAM. The plots in Figure 9 confirm the
theoretical asymptotic time and space complexities. Building the binary bisection tree T , computing the
sample distances d̂ (x , s ), and fitting the polynomial distance functions d̂ c

x account for roughly 10%, 40%,
and 50% of the preprocessing time, respectively.
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mesh size SEP SEPsam SEPfun LAND
M n Vmax av/max h ME RMSE cost ME RMSE cost ME RMSE m

Square 900 30 5.5/6 0.0 0.2 289.8 0.1 0.2 16.8 14.3 40.8 17
Holes 1,408 30 6.2/8 0.1 0.5 254.7 0.1 0.6 26.0 8.5 34.2 26
Peaks 2,500 30 7.1/9 0.1 0.2 544.4 0.2 0.3 37.5 8.7 32.3 37
Eight 3,070 30 8.0/12 0.1 0.5 761.8 0.3 0.7 65.3 5.3 21.2 65

Female 4,040 30 9.3/13 0.2 0.9 789.9 0.4 0.9 86.1 3.7 19.5 86
Bunny 5,051 30 8.8/12 0.3 1.1 920.9 0.4 1.3 72.2 4.0 18.9 72

Table 1: Comparison of the accuracy of our separator-based method (SEP) using separator distance samples (SEPsam)
or polynomial separator distance functions with mmax = 12 (SEPfun) with the landmark-based (LAND) algorithm for
computing geodesic distance fields using a database of exact geodesic distances on several triangle meshes M (see
Figure 7). The mean L1 relative error (ME) and the mean L2 relative error (RMSE) are given in %. For SEP, we report
the average and maximum depth h of the binary bisection tree T (with up to Vmax vertices in each leaf patch) and the
number of (double) values stored per vertex (cost), implying that the size of the database is (8n · cost) bytes. For LAND,
we state the number m of landmarks used, chosen such that the SEPfun and LAND databases have similar size.

Figure 9: Preprocessing time in seconds (left) and cost per vertex (right) of our SEP method for compressing geodesic
distances on the Bunny mesh for different values of n , compared to O (n

p
n ) and O (log n), respectively (dashed).

Since our code uses file I/O to obtain geodesic distance field data from an external “black box”, the
preprocessing is quite slow and requires about 30 minutes for a mesh with n = 20, 000 vertices using DGG or
FM, even though both methods approximate a single distance field in O (n ) time. For VTP, we can handle
only n = 5,000 vertices in the same time, because it takes O (n 2) time to compute an exact distance field
with VTP. However, we expect an optimized and integrated implementation to be much faster, because all
unnecessary I/O would be eliminated, and some of the black box internal computations (e.g. as done by
DGG) can be parallelized. Furthermore, our preprocessing can also benefit from parallelization, since it may
perform its many calls to the distance field “black box” in parallel.

6 Conclusion and discussion

We have presented a novel method to rapidly answer pairwise geodesic distance queries on 3D mesh surfaces.
The most complex step of the preprocessing stage, where the database required to support the online queries
is constructed, is the computation of geodesic distances between mesh vertices and separator samples,
which can be done using any existing algorithm for computing exact or approximate geodesic distance fields.
The error introduced by our compression and query method is very small.

We use polynomials to approximate the distance functions. This was the simplest choice, but it is
certainly possible to use any other set of approximating functions, such as rational functions or trigonometric
polynomials, which may have better approximation power. We also tacitly ignored the fact that the distance
functions are not smooth at points where the separator curve intersects the cut locus. A better approach
would be to detect these points and to approximate the resulting pieces individually.

We have stated that for SEP the storage cost per vertex scales like O (m log n ). This is what happens when
the resolution n of a mesh representing a given shape increases. In practice, for a given target relative error,
the cost per vertex will probably be much less than that as n increases, since the nested bisection may be
terminated much earlier, resulting in leaf patches whose sizes are much larger than O (m log n ), as they will
still be quite planar (and easily approximated by flat patches).
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Our implementation may be made a little more robust by simplifying the graph cut bisection and
subsequent generation of smooth separator samples. For example, it is possible to partition the mesh
using axis-parallel planes to cut through the bounding box of the mesh (similar to a 3D-tree construction).
Although the resulting separators will not be as compact and balanced as those generated by the more
sophisticated method we use, they are much faster to generate and will be as smooth as the mesh surface, by
construction.
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A.1 Preprocessing time

Lemma A.1. Suppose that the binary bisection tree T is constructed using balanced and compact separators
and that we use a geodesic field method that determines a single geodesic distance field in an n-vertex mesh in
O ( f (n )) time. Then computing the relevant local geodesic distance fields within P (N ) for all nodes N ∈ T (see
first paragraph of Section 3.1) costs O ( f (n )

p
n ) time, and all best-fitting polynomials d̂ c

x of degree at most m
can be found in O (m 3n

p
n ) time.

Proof. We first recall that a balanced and compact separator splits an n-vertex patch into two sub-patches
with at least n/3 and at most 2n/3 vertices each and such that the number of separating vertices is O (

p
n ).

Hence, a node N ∈ T at level k ≥ 0 represents a patch P = P (N ) with at most nk = (2/3)k n vertices and a
separator S (N )with at most O (pnk ) separator samples, and the number of vertices in V (P ) is also O (pnk ).
As the number of vertices in all patches at level k adds to n and f (n ) is at least O (n ), computing one local
distance field in each patch at level k costs at most O ( f (n )) time in total. Since we have to compute at most
O (pnk ) local distance fields in each patch, the overall runtime is O ( f (n )

p
n ), because

∞
∑

k=0

p

nk =
∞
∑

k=0

p

(2/3)k n =
�

3+
p

6
�p

n . (6)

For each mesh vertex x ∈M , we then approximate the distances to the separator samples s ∈ c for all
separator curves c with index in Jx . Since there are O (1) such curves at every level k with O (pnk ) samples,
this amounts, by (6), to approximating O (

p
n ) distances, each in O (1) time. For each c at level k , constructing

and solving the normal equations for finding the least-squares polynomial fit of degree m to the O (pnk )
distance values d̂ (x , s ) takes O (m 2pnk ) time, and we do this for all degrees from m = 2 up to m =mmax.
By (6), and since

mmax
∑

m=2

m 2 =O (m 3
max),

the overall time for computing all polynomials is O (m 3
max

p
n ).

A.2 Query time

Lemma A.2. Suppose that the binary bisection tree T is constructed using balanced separators and that the
minimum of the sum of two approximate separator distance functions d̂ c

x and d̂ c
y in (4) can be found in

O (g (n )) time. Then the overall time complexity for querying the distance between x and y (see Section 3.2) is
O (g (n ) log n ) in the worst case and O (g (n )) on average.

Proof. Without loss of generality, we assume that ℓx ̸= ℓy . Answering the distance query then requires to
compute the minimum in (4) for all separator curves with index j ∈ J = Jx ∩ Jy . Since there are O (1) separator
curves for every node in T , the size of J is O (η), where η is the length of Γ = Γx ∩ Γy . The worst case occurs
if x and y are separated by a lowest-level separator, so that η equals the height of T , that is, η=O (log n ).
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On average, however, since all separators are balanced, the probability that x and y are separated by the

top-level separator, so that η = 1, is at least m0 = 1−
�

1
3

�2 −
�

2
3

�2
= 4

9 . More generally, the probability for x

and y to be separated by a separator at level k , so that η= k +1, is at least mk =
�

5
9

�k 4
9 . Since

∞
∑

k=0

mk (k +1) =
4

9

∞
∑

k=0

�

5

9

�k

(k +1) =
9

4
.

the average value of η is O (1).

A.3 Relative approximation error

Lemma A.3. Suppose that the relative approximation error of d̂ c
x is bounded by ϵ < 1, that is,

�

�d̂ c
x (t )−d c

x (t )
�

�

d c
x (t )

≤ ϵ, t ∈ Ic , (7)

for all vertices x ∈M and any c ∈Cx . Then the same error bound holds for the relative approximation error of
the geodesic distance,

�

�d̂ (x , y )−d (x , y )
�

�

d (x , y )
≤ ϵ (8)

for all vertices x , y ∈M .

Proof. Since d c
x (t )> 0, it follows from (7) that

−ϵd c
x (t )≤ d̂ c

x (t )−d c
x (t )≤ ϵd c

x (t ),

hence
(1− ϵ)d c

x (t )≤ d̂ c
x (t )≤ (1+ ϵ)d

c
x (t ), (9)

which implies

d c
x (t )≤

1

1− ϵ
d̂ c

x (t ). (10)

To prove the bound in (8), let c⋆ be the determining curve and t⋆ ∈ Ic⋆ be the determining parameter of
d (x , y ), in the sense that

d (x , y ) = d c⋆ (x , y ) = d c⋆
x (t⋆) +d c⋆

y (t⋆),

and ĉ⋆ and t̂⋆ ∈ Iĉ⋆ be the determining curve and parameter for d̂ ,

d̂ (x , y ) = d̂ ĉ⋆
x (t̂⋆) + d̂ ĉ⋆

y (t̂⋆).

On the one hand, it then follows from (2), (3), and (10) that

d (x , y )≤ d c
x (t ) +d c

y (t )≤
1

1− ϵ
d̂ c

x (t ) +
1

1− ϵ
d̂ c

y (t )

for any c ∈C and any t ∈ Ic , including ĉ⋆ and t̂⋆, so that

d (x , y )≤
1

1− ϵ
d̂ (x , y )

and thus
−ϵd (x , y )≤ d̂ (x , y )−d (x , y ). (11)

On the other hand, we conclude from (4), (5), and (9) that

d̂ (x , y )≤ d̂ c
x (t ) + d̂ c

x (t )≤ (1+ ϵ)d
c
x (t ) + (1+ ϵ)d

c
y (t )

for any c ∈C and any t ∈ Ic , including c⋆ and t⋆. Hence,

d̂ (x , y )≤ (1+ ϵ)d (x , y )

and
d̂ (x , y )−d (x , y )≤ ϵd (x , y ),

which, together with (11), implies (8).
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