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Abstract. Birkhoff (or lacunary) interpolation is an extension of polynomial interpolation that appears when observation gives
irregular information about function and its derivatives. A Birkhoff interpolation problem is not always solvable even in the appro-
priate polynomial or rational space. In this talk we split up the initial problem in subproblems having a unique polynomial solution
and use multinode rational basis functions in order to obtain a global interpolant.

INTRODUCTION

Let X = {x1, x2, . . . , xn} be a set of pairwise distinct real numbers for which we assume that x1 < x2 < . . . < xn. In
the problem of interpolation of given data fi, j = f ( j) (xi) , i = 1, . . . , n, j ∈ Ji ⊂ N, by a polynomial p of appropriate
degree,

p( j)(xi) = fi, j
we mainly distinguish between Hermite interpolation and Birkhoff interpolation. We have an Hermite interpolation
problem if, for each i, the indices j in the set Ji form an unbroken sequence, i.e. Ji = {0, 1, . . . , ji}, Birkhoff in-
terpolation otherwise. It is, however, convenient to consider Hermite interpolation to be a special case of lacunary
interpolation and to deal with Hermite-Birkhoff interpolation. In contrast to Hermite interpolation, a Birkhoff inter-
polation problem does not always have a unique solution or, even worse, does not have a solution [1]. In this paper
we propose to split up the unsolvable problems in two or more uniquely solvable subproblems, whose solutions can
be blended together. Here we consider the case of multinode basis functions [2] as blending functions. An approach
to Birkhoff interpolation using Shepard basis functions can be found in [3, 4, 5, 6, 7, 8, 9]. To this goal we consider a
covering F = {F1, F2, . . . , Fm} of X by subsets Fk ⊂ X such that, for each k = 1, . . . ,m, the corresponding Hermite-
Birkhoff interpolation subproblems p( j)(xi) = fi, j, xi ∈ Fk, j ∈ Ji have a unique solution and we associate to each
Fk, k = 1, . . . ,m, a multinode basis function. The latter are then used in combination with the local Hermite-Birkhoff
polynomials that interpolate the data associated to Fk. Finally, we provide numerical experiments which show the
approximation order.

MULTINODE BASIS FUNCTIONS

Let us consider a covering F = {F1, F2, . . . , Fm} of X by its not empty subsets Fk ⊂ X, that is
m⋃
k=1
Fk = X, Fk � ∅, for each k = 1, . . . ,m. (1)

The multinode basis functions with respect to the covering F are defined by

Bμ,k(x) =
∏
xi∈Fk
|x−xi|−μ

m∑
l=1

∏
xi∈Fl
|x−xi|−μ

, k = 1, . . . ,m, (2)
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where μ > 0 is a parameter that determines the differentiability class of the basis and controls the range of influence
of the data values. The multinode basis functions (2) are non-negative and form a partition of unity, that is

m∑
k=1
Bμ,k (x) = 1; (3)

but instead of being cardinal they vanish at all nodes x j that are not in Fk, that is

Bμ,k
(
x j
)
= 0, μ > 0, (4)

for any k = 1, . . . ,m and j � Fk, and ∑
k∈Ki

Bμ,k (xi) = 1, μ > 0 (5)

where
Ki = {l ∈ {1, . . . ,m} : xi ∈ Fl} � ∅, (6)

is the set of indices of all subsets of F that contain xi. For μ > 0 even integer the multinode basis functions (2) are
rational and have no real poles, otherwise their class of differentiability is μ − 1 for μ odd integer and

[
μ
]
, the largest

integer not greater than μ, in all remaining cases. Moreover, all derivatives of order � > 0 vanish at all nodes x j that
are not in Fk,

B(�)μ,k
(
x j
)
= 0, (7)

for any k = 1, . . . ,m and j � Fk and ∑
k∈Ki

B(�)μ,k (xi) = 0, μ > 1. (8)

MULTINODE GLOBAL INTERPOLATION OPERATOR

Let us consider the Hermite-Birkhoff interpolation problem

p( j)
[
f
]
(xi) = f ( j) (xi) , i = 1, . . . , n, j ∈ Ji, (9)

and let us assume that, for each k = 1, . . . ,m, the Hermite-Birkhoff interpolation subproblems

P( j)k
[
f
]
(xi) = f ( j) (xi) , xi ∈ Fk, j ∈ Ji, (10)

have a unique solution Pk
[
f
]
in their appropriate polynomial spaces Pqkx , qk =

∑
xi∈Fk

# (Ji) − 1. As soon as we have

provided a solution for all local Hermite-Birkhoff interpolation problems, we define the multinode global interpolation
operator by

Mμ
[
f ,F
]
(x) =

m∑
k=1
Bμ,k(x)Pk[ f ](x) (11)

where Pk
[
f
]
(x) is the polynomial solution of the Hermite-Birkhoff interpolation problem on Fk. The operator

Mμ
[
f ,F
]
(x) has remarkable properties. Firstly, it reproduces polynomials up to the degree qmin = min

k
qk and by

setting F = {X}, Mμ
[
f ,F
]
(x) coincides with that polynomial solution if the global problem has a unique polynomial

solution. Secondly, the operator Mμ
[
f ,F
]
interpolates the functional data

Mμ
[
f ,F
]
(xi) = f (xi) , for each i : 0 ∈ Ji (12)

and, if F is a partition of X (i.e. Fα ∩ Fβ = ∅ for each α � β) the operator Mμ
[
f ,F
]
interpolates all data used in its

definition, i.e.
M( j)
μ

[
f ,F
]
(xi) = f ( j) (xi) , for each k = 1, . . . ,m, xi ∈ Fk, j ∈ Ji.

However, we notice that the operator Mμ
[
f ,F
]
could not interpolate all derivative data at some xκ if � (Kκ) > 1 and

the sequence of indices in Jκ is broken. For example, let us assume

� (Kκ) = 2, Fα ∩ Fβ = {xκ} , Jκ = {0, 2, . . . , � − 1, �} , � ≥ 2
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and
B(�−1)μ,α (xκ)P′α[ f ](xκ) + B

(�−1)
μ,β (xκ)P′α[ f ](xκ) � 0.

We notice that
P′α[ f ](xκ) � P′β[ f ](xκ)

since property (8). From
P(�)α [ f ](xκ) = P

(�)
β [ f ](xκ) = f

(�) (xκ)

by properties (4) and (5) easily follows

m∑
k=1
Bμ,k(xκ)P(�)k [ f ](xκ) = Bμ,α(xκ) f

(�) (xκ) + Bμ,β(xκ) f (�) (xκ) = f (�) (xκ) .

On the other hand

m∑
k=1

�−1∑
ι=0

(
�

ι

)
B(�−ι)μ,k (xκ)P(ι)k [ f ](xκ) =

�−1∑
ι=0

(
�

ι

) (
B(�−ι)μ,α (xκ)P(ι)α [ f ](xκ) + B

(�−ι)
μ,β (xκ)P(ι)α [ f ](xκ)

)

by property (7). Let us fix our attention to the right hand side of previous equality. For each ι ∈ Jκ we get

B(�−ι)μ,α (xκ)P(ι)α [ f ](xκ) + B
(�−ι)
μ,β (xκ)P(ι)α [ f ](xκ) =

(
B(�−ι)μ,α (xκ) + B(�−ι)μ,β (xκ)

)
f (ι) (xκ) = 0

by property (8), but
B(�−1)μ,α (xκ)P′α[ f ](xκ) + B

(�−1)
μ,β (xκ)P′α[ f ](xκ) � 0

and consequently
M(�)
μ

[
f ,F
]
(xκ) � f (�) (xκ) .

In order to avoid this trouble, we proceed as follows. For each κ = 1, . . . , n let be νκ = � (Kκ) and Fα1 , . . . , Fανκ
the subset of X which contain xκ. As above, let us denote by Pα1

[
f
]
, . . . , Pανκ

[
f
]
the polynomial solutions of the

Hermite-Birkhoff interpolation problems on Fα1 , . . . , Fανκ respectively. For all j = 0, 1, . . . ,max (Jκ) we set

f̃ ( j) (xκ) =
1
νκ

(
P( j)α1
[
f
]
(xκ) + . . . + P( j)ανκ

[
f
]
(xκ)
)

(13)

and we note that
f̃ ( j) (xκ) = f ( j) (xκ) (14)

as soon as j ∈ Jκ. For each k = 1, . . . ,m we call the Hermite interpolation problem

P̃( j)k
[
f
]
(xi) = f̃ ( j) (xi) , xi ∈ Fk, j = 0, 1, . . .max (Ji) , (15)

hermitian completion of the Hermite-Birkhoff interpolation problem (10). It is well known that each interpolation
problem (15) has a unique solution P̃k[ f ](x) in the polynomial space Pdkx , dk = � (Fk) +

∑
xi∈Fk

max (Ji) − 1, for which

there are explicit formulas in Lagrange or Newton form [10]. Nevertheless, if qk < dk and p ∈ Pqkx , P̃k[p] may be
different from p, since we have completed the lacunary data using solutions of several interpolation problems. We set

M̃μ
[
f ,F
]
(x) =

m∑
k=1
Bμ,k(x)P̃k[ f ](x). (16)

The operator M̃μ [·,F ] preserves the reproducing polynomial property of Mμ [·,F ], that is reproduces polynomials up
to the degree qmin = min

k
qk and interpolates all data used in its definition, that is

M̃( j)
μ

[
f ,F
]
(xi) = f ( j) (xi) , for each k = 1, . . . ,m, xi ∈ Fk, j ∈ Ji.
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FIGURE 1. Log-log-plot of the approximation error emax over the interval width for the 6 test functions. As reference, the dotted
line indicates a perfect quadratic trend.

NUMERICAL RESULTS

In the following we numerically test the approximation order of the multinode rational interpolation operator. We
carried out a series of experiments with different sets of equispaced nodes on [0, 1] and test functions fi, i = 1, . . . , 6
as in [11]. More precisely, we consider different coverings F of the nodeset X with increasing number of subsets Fk.
For each of the 6 test functions fi we constructed the multinode rational interpolant Mμ

[
fi,F
]
(x) and we determined

the maximum approximation error emax by evaluating
∣∣∣ fi (x) − M4

[
fi,F
]
(x)
∣∣∣ at 100, 000 random points x ∈ [0, 1] and

recording the maximum value. In the Figure 1 we display the log-log-plot of the approximation error emax over the
interval width for the 6 test functions. As reference, the dotted line indicates a perfect quadratic trend.
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