Multinode Rational Operators for Univariate Interpolation

Francesco Dell'Accio^{1,b)}, Filomena Di Tommaso^{1,a)} and Kai Hormann^{2,c)}

¹Dipartimento di Matematica e Informatica, Università della Calabria, Italy ²Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

a)Corresponding author: ditommaso@mat.unical.it
b)fdellacc@unical.it
c)kai.hormann@usi.ch

Abstract. Birkhoff (or lacunary) interpolation is an extension of polynomial interpolation that appears when observation gives irregular information about function and its derivatives. A Birkhoff interpolation problem is not always solvable even in the appropriate polynomial or rational space. In this talk we split up the initial problem in subproblems having a unique polynomial solution and use multinode rational basis functions in order to obtain a global interpolant.

INTRODUCTION

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of pairwise distinct real numbers for which we assume that $x_1 < x_2 < ... < x_n$. In the problem of interpolation of given data $f_{i,j} = f^{(j)}(x_i)$, i = 1, ..., n, $j \in \mathcal{J}_i \subset \mathbb{N}$, by a polynomial p of appropriate degree,

$$p^{(j)}(x_i) = f_{i,j}$$

we mainly distinguish between *Hermite interpolation* and *Birkhoff interpolation*. We have an Hermite interpolation problem if, for each i, the indices j in the set \mathcal{J}_i form an unbroken sequence, i.e. $\mathcal{J}_i = \{0, 1, \ldots, j_i\}$, Birkhoff interpolation otherwise. It is, however, convenient to consider Hermite interpolation to be a special case of lacunary interpolation and to deal with Hermite-Birkhoff interpolation. In contrast to Hermite interpolation, a Birkhoff interpolation problem does not always have a unique solution or, even worse, does not have a solution [1]. In this paper we propose to split up the unsolvable problems in two or more uniquely solvable subproblems, whose solutions can be blended together. Here we consider the case of *multinode basis functions* [2] as blending functions. An approach to Birkhoff interpolation using Shepard basis functions can be found in [3, 4, 5, 6, 7, 8, 9]. To this goal we consider a covering $\mathcal{F} = \{F_1, F_2, \ldots, F_m\}$ of X by subsets $F_k \subset X$ such that, for each $k = 1, \ldots, m$, the corresponding Hermite-Birkhoff interpolation subproblems $p^{(j)}(x_i) = f_{i,j}, x_i \in F_k, j \in \mathcal{J}_i$ have a unique solution and we associate to each F_k , $k = 1, \ldots, m$, a multinode basis function. The latter are then used in combination with the local Hermite-Birkhoff polynomials that interpolate the data associated to F_k . Finally, we provide numerical experiments which show the approximation order.

MULTINODE BASIS FUNCTIONS

Let us consider a covering $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$ of X by its not empty subsets $F_k \subset X$, that is

$$\bigcup_{k=1}^{m} F_k = X, \quad F_k \neq \emptyset, \quad \text{for each } k = 1, \dots, m.$$
 (1)

The multinode basis functions with respect to the covering \mathcal{F} are defined by

$$B_{\mu,k}(x) = \frac{\prod\limits_{\substack{x_i \in F_k \\ \frac{m}{k}}} |x - x_i|^{-\mu}}{\sum\limits_{l=1}^{k} |x_l - x_l|^{-\mu}}, \quad k = 1, \dots, m,$$
(2)

where $\mu > 0$ is a parameter that determines the differentiability class of the basis and controls the range of influence of the data values. The multinode basis functions (2) are non-negative and form a partition of unity, that is

$$\sum_{k=1}^{m} B_{\mu,k}(x) = 1; (3)$$

but instead of being cardinal they vanish at all nodes x_i that are not in F_k , that is

$$B_{\mu,k}\left(x_{j}\right) = 0, \quad \mu > 0,\tag{4}$$

for any k = 1, ..., m and $j \notin F_k$, and

$$\sum_{k \in K_i} B_{\mu,k}(x_i) = 1, \quad \mu > 0 \tag{5}$$

where

$$K_i = \{l \in \{1, \dots, m\} : x_i \in F_l\} \neq \emptyset,$$
 (6)

is the set of indices of all subsets of \mathcal{F} that contain x_i . For $\mu > 0$ even integer the multinode basis functions (2) are rational and have no real poles, otherwise their class of differentiability is $\mu - 1$ for μ odd integer and $[\mu]$, the largest integer not greater than μ , in all remaining cases. Moreover, all derivatives of order $\ell > 0$ vanish at all nodes x_j that are not in F_k ,

$$B_{ijk}^{(\ell)}(x_j) = 0, \tag{7}$$

for any k = 1, ..., m and $j \notin F_k$ and

$$\sum_{k \in K_i} B_{\mu,k}^{(\ell)}(x_i) = 0, \quad \mu > 1.$$
 (8)

MULTINODE GLOBAL INTERPOLATION OPERATOR

Let us consider the Hermite-Birkhoff interpolation problem

$$p^{(j)}[f](x_i) = f^{(j)}(x_i), \quad i = 1, \dots, n, \ j \in \mathcal{J}_i,$$
(9)

and let us assume that, for each k = 1, ..., m, the Hermite-Birkhoff interpolation subproblems

$$P_k^{(j)}[f](x_i) = f^{(j)}(x_i), \quad x_i \in F_k, \ j \in \mathcal{J}_i,$$
(10)

have a unique solution $P_k[f]$ in their appropriate polynomial spaces $\mathcal{P}_x^{q_k}$, $q_k = \sum_{x_i \in F_k} \#(\mathcal{J}_i) - 1$. As soon as we have provided a solution for all local Hermite-Birkhoff interpolation problems, we define the multinode global interpolation operator by

$$M_{\mu}[f,\mathcal{F}](x) = \sum_{k=1}^{m} B_{\mu,k}(x) P_{k}[f](x)$$
(11)

where $P_k[f](x)$ is the polynomial solution of the Hermite-Birkhoff interpolation problem on F_k . The operator $M_{\mu}[f,\mathcal{F}](x)$ has remarkable properties. Firstly, it reproduces polynomials up to the degree $q_{\min} = \min_k q_k$ and by setting $\mathcal{F} = \{X\}$, $M_{\mu}[f,\mathcal{F}](x)$ coincides with that polynomial solution if the global problem has a unique polynomial solution. Secondly, the operator $M_{\mu}[f,\mathcal{F}]$ interpolates the functional data

$$M_{\mu}[f,\mathcal{F}](x_i) = f(x_i), \quad \text{for each } i:0 \in \mathcal{J}_i$$
 (12)

and, if \mathcal{F} is a partition of X (i.e. $F_{\alpha} \cap F_{\beta} = \emptyset$ for each $\alpha \neq \beta$) the operator $M_{\mu}[f,\mathcal{F}]$ interpolates all data used in its definition, i.e.

$$M_{\mu}^{(j)}[f,\mathcal{F}](x_i) = f^{(j)}(x_i), \text{ for each } k = 1, ..., m, x_i \in F_k, j \in \mathcal{J}_i.$$

However, we notice that the operator $M_{\mu}[f,\mathcal{F}]$ could not interpolate all derivative data at some x_{κ} if $\sharp(K_{\kappa}) > 1$ and the sequence of indices in \mathcal{J}_{κ} is broken. For example, let us assume

$$\sharp (K_{\kappa}) = 2, \quad F_{\alpha} \cap F_{\beta} = \{x_{\kappa}\}, \quad \mathcal{J}_{\kappa} = \{0, 2, \dots, \ell - 1, \ell\}, \ell \ge 2$$

and

$$B_{\mu,\alpha}^{(\ell-1)}(x_{\kappa})P_{\alpha}'[f](x_{\kappa})+B_{\mu,\beta}^{(\ell-1)}(x_{\kappa})P_{\alpha}'[f](x_{\kappa})\neq 0.$$

We notice that

$$P'_{\alpha}[f](x_{\kappa}) \neq P'_{\beta}[f](x_{\kappa})$$

since property (8). From

$$P_{\alpha}^{(\ell)}[f](x_{\kappa}) = P_{\beta}^{(\ell)}[f](x_{\kappa}) = f^{(\ell)}(x_{\kappa})$$

by properties (4) and (5) easily follows

$$\sum_{k=1}^{m} B_{\mu,k}(x_{\kappa}) P_{k}^{(\ell)}[f](x_{\kappa}) = B_{\mu,\alpha}(x_{\kappa}) f^{(\ell)}(x_{\kappa}) + B_{\mu,\beta}(x_{\kappa}) f^{(\ell)}(x_{\kappa}) = f^{(\ell)}(x_{\kappa}).$$

On the other hand

$$\sum_{k=1}^{m} \sum_{\iota=0}^{\ell-1} \binom{\ell}{\iota} B_{\mu,k}^{(\ell-\iota)}(x_{\kappa}) P_{k}^{(\iota)}[f](x_{\kappa}) = \sum_{\iota=0}^{\ell-1} \binom{\ell}{\iota} \Big(B_{\mu,\alpha}^{(\ell-\iota)}(x_{\kappa}) P_{\alpha}^{(\iota)}[f](x_{\kappa}) + B_{\mu,\beta}^{(\ell-\iota)}(x_{\kappa}) P_{\alpha}^{(\iota)}[f](x_{\kappa}) \Big)$$

by property (7). Let us fix our attention to the right hand side of previous equality. For each $\iota \in \mathcal{J}_{\kappa}$ we get

$$B_{\mu,\alpha}^{(\ell-\iota)}(x_{\kappa})P_{\alpha}^{(\iota)}[f](x_{\kappa})+B_{\mu,\beta}^{(\ell-\iota)}(x_{\kappa})P_{\alpha}^{(\iota)}[f](x_{\kappa})=\left(B_{\mu,\alpha}^{(\ell-\iota)}(x_{\kappa})+B_{\mu,\beta}^{(\ell-\iota)}(x_{\kappa})\right)f^{(\iota)}\left(x_{\kappa}\right)=0$$

by property (8), but

$$B_{\mu,\alpha}^{(\ell-1)}(x_{\kappa})P_{\alpha}'[f](x_{\kappa}) + B_{\mu,\beta}^{(\ell-1)}(x_{\kappa})P_{\alpha}'[f](x_{\kappa}) \neq 0$$

and consequently

$$M_{\mu}^{(\ell)}[f,\mathcal{F}](x_{\kappa}) \neq f^{(\ell)}(x_{\kappa}).$$

In order to avoid this trouble, we proceed as follows. For each $\kappa=1,\ldots,n$ let be $\nu_{\kappa}=\sharp(K_{\kappa})$ and $F_{\alpha_1},\ldots,F_{\alpha_{\nu_{\kappa}}}$ the subset of X which contain x_{κ} . As above, let us denote by $P_{\alpha_1}[f],\ldots,P_{\alpha_{\nu_{\kappa}}}[f]$ the polynomial solutions of the Hermite-Birkhoff interpolation problems on $F_{\alpha_1},\ldots,F_{\alpha_{\nu_{\kappa}}}$ respectively. For all $j=0,1,\ldots,\max(\mathcal{J}_{\kappa})$ we set

$$\tilde{f}^{(j)}(x_{\kappa}) = \frac{1}{\nu_{\kappa}} \left(P_{\alpha_1}^{(j)}[f](x_{\kappa}) + \ldots + P_{\alpha_{\nu_{\kappa}}}^{(j)}[f](x_{\kappa}) \right) \tag{13}$$

and we note that

$$\tilde{f}^{(j)}(x_{\kappa}) = f^{(j)}(x_{\kappa}) \tag{14}$$

as soon as $j \in \mathcal{J}_k$. For each $k = 1, \dots, m$ we call the Hermite interpolation problem

$$\tilde{P}_{k}^{(j)}[f](x_{i}) = \tilde{f}^{(j)}(x_{i}), \quad x_{i} \in F_{k}, \ j = 0, 1, \dots \max(\mathcal{J}_{i}), \tag{15}$$

hermitian completion of the Hermite-Birkhoff interpolation problem (10). It is well known that each interpolation problem (15) has a unique solution $\tilde{P}_k[f](x)$ in the polynomial space $\mathcal{P}_x^{d_k}$, $d_k = \sharp (F_k) + \sum_{x_i \in F_k} \max (\mathcal{J}_i) - 1$, for which

there are explicit formulas in Lagrange or Newton form [10]. Nevertheless, if $q_k < d_k$ and $p \in \mathcal{P}_x^{q_k}$, $\tilde{P}_k[p]$ may be different from p, since we have completed the lacunary data using solutions of several interpolation problems. We set

$$\tilde{M}_{\mu}\left[f,\mathcal{F}\right](x) = \sum_{k=1}^{m} B_{\mu,k}(x)\tilde{P}_{k}[f](x). \tag{16}$$

The operator $\tilde{M}_{\mu}[\cdot,\mathcal{F}]$ preserves the reproducing polynomial property of $M_{\mu}[\cdot,\mathcal{F}]$, that is reproduces polynomials up to the degree $q_{\min} = \min_{k} q_k$ and interpolates all data used in its definition, that is

$$\tilde{M}_{\mu}^{(j)}[f,\mathcal{F}](x_i) = f^{(j)}(x_i), \text{ for each } k = 1, ..., m, x_i \in F_k, j \in \mathcal{J}_i.$$

FIGURE 1. Log-log-plot of the approximation error e_{max} over the interval width for the 6 test functions. As reference, the dotted line indicates a perfect quadratic trend.

NUMERICAL RESULTS

In the following we numerically test the approximation order of the multinode rational interpolation operator. We carried out a series of experiments with different sets of equispaced nodes on [0, 1] and test functions f_i , $i = 1, \ldots, 6$ as in [11]. More precisely, we consider different coverings \mathcal{F} of the nodeset X with increasing number of subsets F_k . For each of the 6 test functions f_i we constructed the multinode rational interpolant $M_{\mu}[f_i,\mathcal{F}](x)$ and we determined the maximum approximation error e_{max} by evaluating $|f_i(x) - M_4[f_i, \mathcal{F}](x)|$ at 100, 000 random points $x \in [0, 1]$ and recording the maximum value. In the Figure 1 we display the log-log-plot of the approximation error e_{max} over the interval width for the 6 test functions. As reference, the dotted line indicates a perfect quadratic trend.

ACKNOWLEDGEMENTS

This research was supported by INDAM - GNCS project 2016 and by a research fellow of the Centro Universitario Cattolico.

REFERENCES

- [1] G. G. Lorentz, K. Jetter, and S. D. Riemenschneider, Birkhoff Interpolation, Vol. 19 (Cambridge University Press, 1984).
- F. Dell'Accio, F. Di Tommaso, and K. Hormann, IMA Journal of Numerical Analysis 36, 359-379 (2016).
- F. Costabile and F. Dell'Accio, Numerical Algorithms 28, 63–86 (2001).
- F. A. Costabile and F. Dell'Accio, Appl. Numer. Math. 52, 339–361 (2005).
- F. A. Costabile, F. Dell'Accio, and L. Guzzardi, Calcolo 45, 177–192 (2008). R. Caira, F. Dell'Accio, and F. Di Tommaso, Journal of Computational and Applied Mathematics 236, 1691-1707 (2012)
- [7] F. A. Costabile, F. Dell'Accio, and F. Di Tommaso, Computer and Mathematics with Applications 64, 3641– 3655 (2012)
- F. A. Costabile, F. Dell'Accio, and F. Di Tommaso, Numerical Algorithms 64, 157–180 (2013).
- F. Dell'Accio and F. Di Tommaso, Journal of Computational and Applied Mathematics 300, 192–206 (2016).
- [101 J. Stoer and R. Burlish, Introduction to Numerical Analysis (Springer-Verlag New York, Inc., 1993).
- R. Caira and F. Dell'Accio, Mathematics and Computation 76, 299–321 (2007). [11]
- [12] F. Costabile and F. Dell'Accio, Journal of Computational and Applied Mathematics 210, 116 – 135 (2007).