Shape functions for a triangle with a side node:
A Formulation in the physical domain

Gautam Dasgupta
Civil Engineering and Engineering Mechanics
Columbia University, New York, NY 10027
gd18@columbia.edu

Abstract

During the seventies, in a monograph Wachspress established a consistent way to evaluate shape functions for polygonal finite elements and their three-dimensional counterparts. In the physical $x - y - z$ coordinates, using projective geometry concepts, he derived interpolants in the form of ratios of polynomials. Therein, he also demonstrated that square root expressions were needed to account for singularities like concavities. The author transformed shape functions for the popular four-node isoparametric formulation from $\eta - \xi$ computational square into the physical $x - y$ domain and demonstrated the presence of square root terms in $x - y$ variables when no two sides were parallel. In the Padé form, by following a direct algebraic formulation, the discontinuity in shape functions due to a side node is captured in this paper using square root expressions. Within the element, the constant and linear fields are exactly represented by solving for shape functions associated with the vertices of the triangular element. Consequently, arbitrary constant strain fields, which are necessary for the patch test, are guaranteed unconditionally. Finally, this paper furnishes the closed form shape functions that can be easily translated into C and C++ codes.
Contents

1 Introduction 4
 1.1 Difficulties with modeling slope discontinuity on an edge 5

2 Tessellation and basis functions
 in the physical \((x - y)\) domain 7
 2.1 Conventional isoparametric basis functions in the
 \((\eta - \xi)\) computational frame 9
 2.2 Computer Mathematics tools
 related to rational polynomials 9

3 Formulation for shape functions:
 ‘in a four node element only one shape function is independent’ 10
 3.1 Orientation of the element 11
 3.2 Construction of the shape function associated with
 the (intermediate) side node 12
 3.2.1 The slope discontinuity for the “hat” function 13
 3.2.2 The “hat” function 13
 3.2.3 From a “hat” function to an interpolant 15
 3.3 Evaluation of all shape functions 16

4 Analysis in the light of Wachspress’
 \textit{External Intersection Points} —EIPs 18

5 Comparison with the isoparametric formulation 19

6 Formulation in the light of concave finite elements 20

7 Conclusions 21
 7.1 Extension to a convex polygonal element with a side node 22
 7.2 Comments on symbolic formulation of triangle with a side node using the computer
 algebra software \textit{Mathematica} 23
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A bar element with end nodes 1 and 3, and intermediate node 2</td>
</tr>
<tr>
<td>2</td>
<td>Polynomial shape function for node-1 — negative region is shaded</td>
</tr>
<tr>
<td>3</td>
<td>Elasto-plastic deformation due to Compression along x</td>
</tr>
<tr>
<td>4</td>
<td>Original orientation</td>
</tr>
<tr>
<td>5</td>
<td>Canonical orientation: side node at the origin and three nodes on x-axis</td>
</tr>
<tr>
<td>6</td>
<td>The “hat” function on the x-axis</td>
</tr>
<tr>
<td>7</td>
<td>Building up the ”hat” function from $\sqrt{x^2}$ or $</td>
</tr>
<tr>
<td>8</td>
<td>Contour plots of shape functions</td>
</tr>
<tr>
<td>9</td>
<td>Limiting values of EIPs create singularity at base vertices</td>
</tr>
<tr>
<td>10</td>
<td>A Convex four node Element</td>
</tr>
<tr>
<td>11</td>
<td>Exaggerated depiction of slope discontinuities of shape functions</td>
</tr>
<tr>
<td>12</td>
<td>A (seven sided) polygon with a side node</td>
</tr>
<tr>
<td>13</td>
<td>Nodes in terms of algebraic variables</td>
</tr>
</tbody>
</table>
1. Introduction

Advanced applications of the finite element method in nano and bio technologies, *vide* Hornyak et al. (2008); Mow and Huiskes (2005), demand high accuracy formulations with the best approximations to expressing the basis functions. This need has rekindled interests on the Wachspress (1975) formulations in constructing finite element shape functions in the physical $x - y - z$ coordinate system. These basis functions (with local supports) are also termed as test functions and interpolants in the finite element literature.

Researchers demonstrated, *vide* Sukumar and Malsch (2006), considerable progress in improving shape functions compared to the isoparametric formulation of Taig (1961), which should be regarded to be one of the most ingenious steps in the finite element technology. Taig introduced a mapping from a unit square, in the $\eta - \xi$ computational domain for describing convex quadrilaterals where the physical coordinates x, y are also interpolated from the nodal values. The same bi-linear parameterization was employed in terms of $\eta - \xi$ variables for functions and coordinates, hence the name isoparametric. Due to the Cartesian product structure of the computational domain the three-dimensional (or in any analogous higher dimension where an elliptic boundary value problem problem of mathematical physics is to be solved within a convex region) isoparametric counterparts can be easily constructed. In the interest of this paper, the focus is on two-dimensional analysis with $x - y$ and $\eta - \xi$ idealization rather than the generalization in \mathbb{R}^n. The four node triangles and polygons with interior nodes, *vide* Shontz and Vavasis (2010); Malsch et al. (2005), have been employed in computer graphics applications quite substantially and in some specific cases for high accuracy stress analysis. These problems are close to the one that is addressed here, however, the use of the ‘bubble function,’ *vide* Ho and Yeh (2006), is quite different from the branch cut employed here via the square root operator.

Recent applications in computer graphics have been enriched by employing finite element shape functions as generalized splines, *vide* Sukumar (2007); Mousavi et al. (2010). These formulations have blurred the boundaries between geometric modeling and the branch of finite element that focuses on basis functions. Barycentric coordinates introduced by Möbius in 1827, which are indeed homogeneous coordinates, *vide* Yiu (2000), encompass such classes of interpolants. In CAD applications spline-based solids and surfaces, which are constructed according
to the formulation introduced by Hermite (1877), can be rendered very quickly when the
equations are available in the physical $x - y$ coordinates, vide Bernstein (1913). This is an advantage
compared to isoparametric-based interpolants since transformations to and form computational
domains are circumvented, vide Foley et al. (1996), de Boor (1978).

Triangular elements are important for a number of basic reasons starting with the Courant
(1943) paper that laid the foundation of the finite element method. This has widely been
recognized to be the framework for the finite element development with piecewise linear fields.
From the projective geometry point of view, vide Coxeter (2000), the triangular element contains
all characteristics of a convex polygon. Thus any embellishment to introduce a side node in a
triangle should also pave the way to compute the shape functions for a polygonal element with a
side node when the Wachspress formulation is employed (a short explanation of this is included
in the conclusion of this paper).

Procedural programming environments, e.g. Fortran and in some cases C, are predominantly
used in finite element formulations. Now the wide availability of symbolic computer mathematics
programs, especially those with the functional programming capabilities, permit easy formulations of many ‘almost intractable problems.’ In this paper Mathematica is extensively used to
developing the concepts and constructing algebraic expressions including their graphical displays.
These symbolic algebraic expressions can be readily converted into C and C++ codes using Math-
Modelica, Fritzson (2004), and can be integrated into an engineering modeling environment with
OpenModelica, Fritzson (2011).

1.1. Difficulties with modeling slope discontinuity on an edge

Based on the Ritz (1908) formulation, piecewise functions should have $n-$ order continuity
for $2n-$ order of ordinary and partial differential equations. Following Courant’s ideas local test
functions are then constructed for approximating solutions of elliptic partial differential equations
according to the weak energy-norm. Of course, global functions to improve accuracy of solutions
can also be employed following Mote (1971). Historically, the overwhelming number of the finite
element basis functions have been polynomial expressions in coordinate variables, even though
the Ritz formulation does not impose any such restrictions.

In order to capture the discontinuity in the slope, vide Figure 1, associated with the inter-
polant pertaining to a node that lies on a boundary edge the use of square root expressions
within the numerator and denominator functions is elaborated in this paper.

The inadequacy of a polynomial basis function warrants a closer look within the context of yielding approximate solutions for problems of mathematical physics. Consider a bar element in Figure 1. To solve approximately a second order differential equation, linear interpolants should be adequate according to the pioneering work of Ritz (1908). Thus for the shape function associated with node-1, one encounters the ‘non-smooth’ test function that cannot be reproduced by any polynomial in the \(x \)-variable. This is due to the fact that the support of this test function is the line segment between nodes 1 and 2. Even an Lagrangian interpolant, shown in Figure 2, is unacceptable to model elliptic partial differential equations since such a test function fails
to comply with the ‘maximum/minimum’ theorem. To illustrate the consequences the thermo-
elastic deformation in a bar can be considered with the particular focus on a finite element model
for temperature distributions. Since the polynomial interpolant does not satisfy the Chebyshev
(positivity) condition, the negative values between nodes 2 and 3 could yield a negative absolute
temperature as the numerical result, which is by all means unacceptable from the point of view of
physics. The singularity introduced by the branch cut of the square root expression circumvents
this difficulty and faithfully captures the slope discontinuity shown in Figure 1.

2. Tessellation and basis functions
in the physical \((x - y)\) domain

Needless to state that integration of the energy density function in the physical \(x - y\) domain,
to a large extent, hindered the popularity of the Wachspress basis functions for the last fifty years
or so. This problem with integration has been solved in Das Gupta (2003a). The Wachspress
formulation becomes essential in developing shape functions for finite elements with side nodes.
In the interest of keeping the focus on augmenting the rational polynomial interpolants with
‘square-root’ expressions, the issue of exact integration to generate the stiffness matrices, \textit{vide}
Das Gupta (2008b), is not addressed here.

The following problem motivated the present formulation. In solving plane strain elastoplastic deformations, a convex quadrilateral element was continuously compressed. This demonstration problem is illustrated in Figure 3.
A pair of horizontal (equal and opposite) compressive forces were applied along the \(x\)− direction.
Zero force was prescribed at the other two nodes. The area of the element was kept constant complying with the isochoric deformation constraint. Till the deformed element became a triangle, convexity was maintained and the shape function calculation was straightforward, \textit{vide} Das Gupta (2003b). Figure 3 shows the successive deformed shapes as the node, where the compressive force is applied, translates on the x-axis towards the origin. The deformations are schematically represented with outlines. The limiting triangular shape is shown as the solid element with the shaded region.

It is desirable that the same high accuracy as in the Wachspress’ formulation be maintained
through out. But in such a rational polynomial form for a shape function $s(x, y)$:

$$s(x, y) = \frac{\mu(x, y)}{\nu(x, y)}$$ \hspace{1cm} (1)

the adjoint (denominator polynomial) $\nu(x, y)$ cannot be obtained for the triangular element with a side node according to the projective geometry formulation, because the strict convexity requirement is not met at the side node. The general case is shown in Figure 4.

In the formulation presented in this paper, first the shape function associated with the side node
is constructed as a ratio of two functions that contain square root terms. Subsequently, the three remaining shape functions are obtained as linear transformations on it. The key step of such transformations guarantees exact interpolation of arbitrary linear functions in $x - y$.

2.1. Conventional isoparametric basis functions in the $(\eta - \xi)$ computational frame

The isoparametric formulation for quadrilateral finite elements is applicable for triangular elements with a side node Dasgupta (2008a,b). In the isoparametric computational domain, where the $\eta - \xi$ coordinate system describe the canonical unit square, the shape functions are strictly bilinear. However, when those shape functions are transformed into the physical $x - y$ coordinate system the expressions contain square root terms. This observation provides a conceptual link to connect the intuitive isoparametric scheme with the Wachspress irrational shape functions, \textit{vide} Wachspress (1971); Dasgupta (2008a). Furthermore, these radical subexpressions indicate that there cannot be a clear designation about the algebraic degree of interpolants since a Taylor expansion will contain all higher power x and y terms. However, combinations of linear terms and square roots of quadratics indicate a consistency of having the same dimensionality that is amenable to first order representation.

The isoparametric formulation by Taig is brilliant, extremely versatile and undoubtedly the most popular method to handle elements with arbitrary shapes. However, there is no geometrical foundation for this intuitive conjecture that justifies the adequacy to interpolating functions and coordinates with the same set of basis functions.

2.2. Computer Mathematics tools related to rational polynomials

Since the shape functions produced in this paper are meant to be employed in high accuracy finite element computations, it is important to recognize the richness of the rational form of approximations depicted in equation (1).

It was in Wachspress (1971) we found for the first time the projective geometry, Coxeter (2000), ideas in formulating finite element shape functions. The rational polynomial interpolants in the form of equation (1) resulted from the projective geometry construction of the adjoint (the denominator polynomial). Those interpolants, which have been widely applied in many branches of Physics, are known as Padé approximants, Baker and Graves-Morris (1981), named
after Henri Padé (1863 – 1953) who arranged the approximants, each of which was expressed in its lowest term, into a table. Symbolic computational tools, which express an arbitrary function \(f(x) \) in the form of equation (1):

\[
f(x) = \frac{\mu_m(x)}{\nu_n(x)}; \quad \mu_m \text{ and } \nu_n : \text{polynomials of degrees } m \text{ and } n, \text{ respectively}
\]

employ the Padé table. In general, a Padé rational polynomial representation corresponds to the best approximation of a function to capture the asymptotic behaviors simultaneously near zero and infinity. For this reason, the Padé form converges when the corresponding Taylor expansion may diverge.

For a given \(f(x) \) the Mathematica built-in function \texttt{PadeApproximant} can generate the numerator and denominator polynomials in the form of equation (2).

\[3.\textbf{ Formulation for shape functions:}
\]

‘\textit{in a four node element only one shape function is independent}’

In displacement based formulations, the finite element shape functions are assumed to be linear along the boundary sides. In addition, for linear elasticity problems, uniform stress and strain fields are required to be reproduced exactly. This notion is germane to the patch test, Irons and Razzaque (1972) that ensures convergence. Within the kinematic context, it is equivalent to demanding that any arbitrary linear field be exactly represented by the shape functions. This observation leads to a useful result: “in any four node plane finite element only one shape function is independent.” The remaining three shape functions can be subsequently solved, provided the corresponding nodes are not colinear, in terms of the independent shape function. We can utilize three equations, i.e., summation of all shape functions to be unity and the two that enforce the requirement of the exact reproduction of linear functions of \(x \) and \(y \), in the \(x - y \) frame.

Let the four nodal coordinates for the four node plane element, shown in Figure 4, be symbolically denoted by, \(\alpha \), which is given by:

\[
\alpha = \{ \{ x_1, y_1 \}, \{ x_2, y_2 \}, \{ x_3, y_3 \}, \{ x_4, y_4 \} \}
\]

In order to be consistent with the designation of lists and list operations, elements of a list will be encased within curly braces, \(\{ \ldots \} \). Let us collect the shape functions, \(\phi_i, i = 1, \ldots 4 \), as:
\[\Phi = \{\phi_1, \phi_2, \phi_3, \phi_4\} \]

Here, \(\Phi \) is the list and its elements \(\phi_i \) are encased within curly braces.

The requirement of \textit{exactly reproducing an arbitrary linear field} dictates:

\[\phi_1 + \phi_2 + \phi_3 + \phi_4 = 1 \] (5)

\[x_1 \phi_1 + x_2 \phi_2 + x_3 \phi_3 + x_4 \phi_4 = x \] (6)

\[y_1 \phi_1 + y_2 \phi_2 + y_3 \phi_3 + y_4 \phi_4 = y \] (7)

Without any loss in generality, let us assume that \(\phi_2 \) be given. Then we can obtain \(\phi_1, \phi_3, \) and \(\phi_4 \) by solving equation (5) through equation (7). For example, \(\phi_1 \) can be solved in the form:

\[\phi_i = \frac{\text{numerator}}{\text{denominator}}, \quad i = 1, 3, 4; \quad \text{denominator} = \det \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_3 & y_3 \\ 1 & x_4 & y_4 \end{bmatrix} \] (8)

The nonvanishing determinant mandates that nodes 1, 3 and 4 cannot be colinear for \(\phi_1, \phi_3, \) and \(\phi_4 \) to be solvable in terms of \(\phi_2 \). The selection of the side node to be the second one meets such a criterion. In the formulation, \(\phi_1, \phi_3 \) and \(\phi_4 \) will be obtained in terms of \(\phi_2 \).

As a clarification of the notations used here, it may be observed that a matrix is encased within square brackets \([\ldots]\), \textit{vide} equation (8).

\textit{3.1. Orientation of the element}

In order to keep the algebraic expressions compact, the formulation is demonstrated with a convenient orientation of the element as shown in Figure 5, the original orientation for the generalized case is represented in Figure 4.

The following geometrical transformations are performed to obtain Figure 5 from Figure 4:

(a) the element is so translated that the second node falls on the origin;

(b) the element is so rotated about the origin that the first and the third nodes fall on the \(x \)-axis;

(c) the element is so oriented that the vertex, i.e., the fourth node, falls on the positive \(y \)-region.
3.2. **Construction of the shape function associated with the (intermediate) side node**

In equation (8), in order to avoid the vanishing of the denominator determinant, ϕ_2, which is the shape function associated with the side node, is to be determined first. Subsequently, the other three shape functions are obtained using equations (5) through (7).

The first step is to construct a function, which will be linear between the nodes 1 and 2, and nodes 2 and 3, with a unit value at node 2 as shown in Figure 6.

![Figure 6: The “hat” function on the x-axis](image-url)
3.2.1. The slope discontinuity for the “hat” function

The discontinuity in the slope at node 2 can be realized in terms of the Heaviside’s step function:

\[H(x) = \begin{cases}
= 0, & x < 0, \\
= 1, & x > 0;
\end{cases} \tag{9} \]

or, equivalently, by selecting the positive branch of the square root function:

\[\sqrt{x^2} = \begin{cases}
= -x, & x < 0, \\
= x, & x > 0;
\end{cases} \tag{10} \]

which is identical to the absolute value function:

\[||x|| = \begin{cases}
= -x, & x < 0, \\
= x, & x > 0;
\end{cases} \tag{11} \]

Using equation (9):

\[\sqrt{x^2} = ||x|| = x \left(H(x) - H(-x) \right) \tag{12} \]

3.2.2. The “hat” function

Linear combination of \(x \) and \(\sqrt{x^2} \) are illustrated leading to the “hat” function shown in Figure 6. The procedure is illustrated step by step starting with the graph of the \(\sqrt{x^2} \) function. In order to clarify the discontinuities in slopes, an example, vide Figure 7(a), with \(a = 1, b = 2 \) is presented here.

Steps are included as the theoretical formulation is explained. The following numerical data will be used for the element shown in Figure 7(a):

\[a = 1; \quad b = 2; \quad c = \frac{3}{2}; \quad h = \frac{9}{5}; \tag{13} \]

Hence the “hat” function becomes:

\[h(x) = \frac{x - \sqrt{x^2}}{2a} - \frac{\sqrt{x^2} + x}{2b} + 1 \tag{14} \]

hence for the numerical example, the right hand side becomes:

\[\frac{x - \sqrt{x^2}}{2} - \frac{\sqrt{x^2} + x}{4} + 1 = -\frac{3\sqrt{x^2}}{4} + \frac{3x}{4} + 1 \tag{15} \]
Figure 7: Building up the "hat" function from $\sqrt{x^2}$ or $|x|$
3.2.3. From a “hat” function to an interpolant

In order to extend the function \(h(x) \) into the triangular region, the equations of the sides \(s_{41}, s_{43} \), where \(s_{ij} \) is the side joining nodes \(i \) and \(j \), are written in the following form:

\[
\begin{align*}
 s_{41} : 1 - \frac{x}{a_1} - \frac{y}{b_1} &= 0 \\
 s_{43} : 1 - \frac{x}{a_3} - \frac{y}{b_3} &= 0
\end{align*}
\]

Now equation (16) guarantees that the left hand sides are positive within the triangular finite element and vanish along the sides \(s_{41}, s_{43} \). Let the boundary pieces not containing the side node be denoted by \(\Gamma \):

\[
\Gamma(x, y) = \left\{ 1 - \frac{x}{a_3} - \frac{y}{b_3} > 0, 1 - \frac{x}{a_1} - \frac{y}{b_1} > 0 \right\}, \quad (x, y) \in \text{element}
\]

Thus:

\[
\left(1 - \frac{x}{a_3} - \frac{y}{b_3} \right) \left(1 - \frac{x}{a_1} - \frac{y}{b_1} \right) > 0, \quad (x, y) \in \text{element}
\]

which vanishes along the sides not containing the intermediate node 2, and has the desired slope discontinuity. In the next step, the unit value of the shape function at node 2 is guaranteed.

Now invoking the Padé form by introducing the appropriate denominator polynomial:

\[
\phi_2(x, y) = \frac{q(x, y)}{\left(1 - \frac{x}{a_3}\right) \left(1 - \frac{x}{a_1}\right)} \quad \text{so that} \quad \phi_2(x, y) \big|_{y=0} = h(x) \quad \text{and} \quad \phi_2(0, 0) = 1
\]

In equation (16), in the interception form, the inclined sides of the element can be represented by:

\[
a_1 = -a; \quad a_3 = b;
\]

Hence from equation (20):

\[
\phi_2(x, y) = \frac{q(x, y)}{\left(1 - \frac{x}{b}\right) \left(1 + \frac{x}{a}\right)}
\]

Note that the shape function \(\phi_2 \) has discontinuities only at those vertices that describe the edge containing the intermediate node.

Using the data from equation (13), equation (22) becomes:

\[
\phi_2(x, y) = -\frac{(3 \sqrt{x^2} - x - 4)(18x - 25y + 18)(18x + 5y - 36)}{1296(x - 2)(x + 1)}
\]
3.3. Evaluation of all shape functions

Solutions of equations (5), (6) and (7), using ϕ_2 from equation (23) yield:

$$\phi_1 = \frac{(18x + 5y - 36) \left(3\sqrt{x^2}(18x - 25y + 18) - 54x^2 + x(25y - 54) + 100y \right)}{1944(x - 2)(x + 1)} \quad (24)$$

$$\phi_3 = \frac{(18x - 25y + 18) \left(3\sqrt{x^2}(18x + 5y - 36) + 54x^2 - x(5y + 108) - 20y \right)}{3888(x - 2)(x + 1)} \quad (25)$$

$$\phi_4 = \frac{5y}{9} \quad (26)$$

The square root expressions, $\sqrt{x^2}$, in equations 24 and 25 could be replaced with the absolute value of x i.e., $||x||$.

It should be noted that the denominators of equations 24 and 25 refer to the ‘same’ adjoint, those polynomials differ only by a multiplicative (scaling) constant. Their singularities are at the end nodes of the base of the triangle (and not at the intermediate node). Thus to obtain unit values of ϕ_1, and ϕ_3 the at nodes 1 and 3 respectively, limiting operation according to the L’Hospital rule must be used. The contour plots of the shape functions are showed in Figure 8.

Of course, ϕ_4 in equation (26), which expresses the shape function for the apex (not connected to the side containing the intermediate node) yields the same answer had there been no side node. This is an important observation to construct shape functions for polygons with an intermediate side node, which is briefly described in this paper with Figure 12.

In equations 24 and 25, the denominator polynomials do not involve y because the orientation in Figure 5 aligns the intermediate node on the x–axis. For the original problem, in Figure 4, the appropriate linear transformation for x and y in equations (24) through (26) will yield the shape functions for an arbitrary orientation of the element.
(a) Discontinuities are pronounced

(b) Discontinuities die out away from the side node

Figure 8: Contour plots of shape functions
4. Analysis in the light of Wachspress’

External Intersection Points — EIPs

![Diagram showing external intersection points (EIPs).](image)

Figure 9: Limiting values of EIPs create singularity at base vertices

The external intersection points (EIPs) are those where the non-adjacent sides intersect outside the convex polygonal region. An important conceptual step in the projective geometric construction of the basis functions is to identify the EIPs, *vide* Wachspress (1971). All shape functions must tend to infinity at the EIPs. The adjoint, the denominator $\nu(x, y)$ in equation (1), is the algebraic curve through all EIPs.

Figure 9 shows the two EIPs necessarily lying on the two sides when the intermediate node on the base is slightly pushed outwards, by a small amount $\epsilon > 0$ to create a convexity. As $\lim \epsilon \to 0$, the EIPs approach the base vertices. Hence it is natural to expect singularities in shape functions associated with the base vertices. This can be verified from equations (24) and (25).
5. Comparison with the isoparametric formulation

Using the treatment presented in Dasgupta (2008a), the isoparametric shape functions are obtained as:

\[
\phi_1^{(i)} = \frac{1}{36} \sqrt{324x^2 - 180xy + y(25y + 1440)} - \frac{x}{2} - \frac{5y}{12} \\
\phi_2^{(i)} = -\frac{1}{24} \sqrt{324x^2 - 180xy + y(25y + 1440)} + \frac{x}{4} + \frac{35y}{72} + 1 \\
\phi_3^{(i)} = \frac{1}{72} \sqrt{324x^2 - 180xy + y(25y + 1440)} + \frac{x}{4} - \frac{5y}{8} \\
\phi_4^{(i)} = \frac{5y}{9}
\]

In the interest of avoiding confusion, a superscript \(^{(i)}\) is tagged with the isoparametric shape functions.

The shape function \(\phi_2^{(i)}\), which is associated with the side node exactly reproduces the “hat” function:

\[
\phi_2^{(i)} = -\frac{1}{24} \sqrt{324x^2 - 180xy + y(25y + 1440)} + \frac{x}{4} + \frac{35y}{72} + 1 \bigg|_{y=0} = 1 + \frac{x}{4} - \frac{3\sqrt{x^2}}{4}
\]

which is identical to equation (15).

A distinguishing feature for the isoparametric shape functions, equations (27) through (29), is that the branch cut of the square root function does not go through the element. This condition was explicitly imposed in the proposed formulation of this paper while solving for the shape functions in the physical \((x, y)\) coordinates.

These isoparametric shape functions, \(\text{vide}\) equations (27) through (29), fail to capture the singularities at nodes 1 and 3, which originate from the projective geometry concepts, shown in equations (27) and (29), compare these with the basis functions of the proposed formulation, \(\text{vide}\) equations (24) and (25).
6. **Square root expressions in the light of concave finite elements**

Wachspress established that a two-dimensional concave finite element can be formulated from a three-dimensional projection. Dasgupta and Wachspress (2008b) demonstrated the closed-form construction of shape functions in terms of the x, y, z variables, where, z was equated to $\sqrt{x^2 + y^2}$ when the concavity was set at the origin as shown in Figure 10.

It was not possible to take the limit of the shape functions when the nodes 1, 2 and 3 in Figure 10 become colinear because numerical values of the coordinates were needed to generate the shape functions in $x - y$ variables.
7. Conclusions

The square root singularity introduced at the side node causes slope discontinuity in the calculated shape functions. This is demonstrated in Figure 11. Due to the substitution for $y = 0$ in equation (20), the slope discontinuity runs through all along $x = 0$.

![Figure 11: Exaggerated depiction of slope discontinuities of shape functions](image)

Use of computer algebra, specially *Mathematica* in this paper, made it possible to implement the Wachspress method that is based on projective geometry. The ease of formulation for the high accuracy (not contaminated by isoparametric conjecture) finite element is demonstrated in this paper.
7.1. Extension to a convex polygonal element with a side node

In this paper, the singularity in the shape function associated with the side node is captured using the square root function. In particular, the shape functions for the triangular element with a side node are computed to examine the procedure to extend the one-dimensional “hat” function into the element region. The same general idea can be applied to convex polygons with a side node, vide Figure 12 where an arbitrary convex septagon is shown to contain a side node that lies on the arbitrarily selected side s_{34}, which joins nodes 3 and 4, the notation is the same as in equation (16). This extension should be possible because the formulation adheres to the protective geometry concepts, the number of sides is immaterial so long as the geometrical convexity of the element is maintained. This ‘generalization concept’ was first observed in the ground breaking monograph of Wachspress (1975).

![Polygon with node numbers](image)

Figure 12: A (seven sided) polygon with a side node

$\Gamma(x,y)$, as in equation (17), be the set of all sides not containing the intermediate node. For the shape functions, $\phi_i(x,y), i = 1\ldots8$, $\phi_8(x,y)$ is to be calculated using $\Gamma(x,y)$. The shape
functions: \(\phi_1(x, y), \phi_2(x, y), \phi_5(x, y), \phi_6(x, y) \) and \(\phi_7(x, y) \) will remain the same as those for the septagon without the side node. These five shape functions can be calculated according to Dasgupta (2003b). Using \(\phi_8(x, y) \), the two remaining \(\phi_3(x, y) \) and \(\phi_4(x, y) \) can be determined using linearity conditions described in equation (8).

7.2. Comments on symbolic formulation

Using the computer algebra software Mathematica

Excellent research materials and text books, e.g. Bhatti (2005, 2006), laid out foundation for finite element formulations in terms of closed-form algebraic expressions. These publications have encouraged researchers to carry out ‘experiments’ with formulations that posed challenges when Fortran was the only available tool.

![Figure 13: Nodes in terms of algebraic variables](image)

For the triangle with a side node the following closed form shape functions were obtained
from *Mathematica* TeX, where \((x * \text{sgn}(x))\) is identical to \(\sqrt{x^2}\) or \(|x|\):

\[
\text{nodes: } (-a, 0), (0, 0), (b, 0), (c, h)
\]

yielded:

\[
\phi_1(x, y) = \left(\frac{(b(h - y) + cy - hx)}{2ah^2(a + b)(a + x)(b - x)} \right) \cdot \\
\left(\left(x \text{sgn}(x) \right)(a + b)(h(a + x) - y(a + c)) + y(a + c)(2ab - ax + bx) + \\
hx(-(a + b))(a + x) \right)
\]

\[
\phi_2(x, y) = \frac{\left(x \text{sgn}(x) (a + b) + a(x - 2b) - bx \right)(h(a + x) - y(a + c))(b(y - h) - cy + hx)}{2abh^2(a + x)(b - x)}
\]

\[
\phi_3(x, y) = \left(\frac{h(a + x) - y(a + c)}{2bh^2(a + b)(a + x)(b - x)} \right) \cdot \\
\left(x \text{sgn}(x) (a + b)(b(h - y) + cy - hx) + \\
y(b - c)(2ab - ax + bx) + hx(a + b)(b - x) \right)
\]

\[
\phi_4(x, y) = \frac{y}{h}
\]

These expressions can be easily translated into *Fortran*, *C* and *C++* codes.
References

