
Computer Aided Verification 2015
The SPIN model checker

Grigory Fedyukovich
<grigory.fedyukovich@usi.ch>

Universita’ della Svizzera Italiana

March 11, 2015

Material borrowed from Roberto Bruttomesso

Outline

1 Introduction

2 PROcess MEta LAnguage
Data types
Control structures
Channels

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Outline

1 Introduction

2 PROcess MEta LAnguage
Data types
Control structures
Channels

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Spin
Introduction

Explicit-state model checker

works on-the-fly (no need to represent the entire structure of the
system upfront)

Targeted toward the verification of concurrent systems

real world situations involving multiple agents acting at the same
time on the same resources
hardware or software with interacting components

Input language: PROMELA (PRocess MEta LAnguage)

Designed for describing processes
Different from an imperative language

Properties: LTL (Linear Temporal Logic)

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Bugs in concurrent systems (1)
Circular blocking

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Bugs in concurrent systems (2)
Deadly embrace

We have two global resources p (a printer) and s (a scanner), and two
concurrent processes running in memory

process A
1 getPrinter(p)
2 getScanner(s)
3 . . .
4 releasePrinter()
5 releaseScanner()
end

process B
1 getScanner(s)
2 getPrinter(p)
3 . . .
4 releasePrinter()
5 releaseScanner()
end

The sequence A1, B1, A2, B2 generates a deadlock

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Spin
Execution semantic

In Spin we can specify processes, which are assumed to run
concurrently

Since we are dealing with multiple processes, at any point in time
a number of instructions can be executed (unless deadlock)

Spin chooses non-deterministically one instruction to be
executed among the ones available

C1 B2

B1 A2

A1

A3

B3C2

C3

A

B

C 3

2

1

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Spin
Two modes

Simulator (first half): runs a guided or a random simulation of the
model defined by the user. Can be used to quickly check the
behavior of a model

Verifier (second half): generates a C program, optimized for
perfomance, that exhaustively checks the validity of the property
(or the absence of deadlocks)

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Outline

1 Introduction

2 PROcess MEta LAnguage
Data types
Control structures
Channels

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Data types
Basic types

Type Range Example

bit [0,1] bit flag = 0;

bool false, true bool flag = false;

byte [0,255] byte b = 0;

chan [1,255] see later . . .
mtype [1,255] see later . . .
pid [0,255] pid p = 0;

short [-215,215 − 1] short s = 0;

int [-231,231 − 1] int i = 0;

unsigned [0,2n − 1] unsigned u : 8;

Default value for uninitialized variables is “0”

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Data types
Compound types

Arrays (one dimension):

byte vec[10];

Records:

typedef rec

{
bit a;

byte b;

}
mtype: used to declare user-defined constants (similar to C enum)

Example:

mtype = { ack, nack, error };

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures
Processes

In Promela we can only define processes

init is a process which is automatically started at the beginning

proctype can be used to define a process

a process can be started with run

active can be used to specify a proctype that is automatically
started at the beginning

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures
Basic Statements

Assignments: count = count + 1

Always executable: count is updated

Conditions: visitors == 10

Executable only if they hold. Nothing is changed.

Example: busy.pml

Statements are separated by ;

x = x + 2; y = x + z

or by a -> (usually when condition -> assignment)

x == 0 ; y = x + z

x == 0 -> y = x + z

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures
Case selection

if

:: cond 1 -> list of statements 1

:: cond 2 -> list of statements 2

:: ...

fi

Only one option from the list will be executed

It is chosen randomly among the satisfied conditions

If no condition holds, the process blocks until a condition becomes
true

Example if.pml

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures
Repetition

do

:: cond 1 -> list of statements 1

:: cond 2 -> list of statements 2

:: ...

od

Similar to if, but repeated over time

Only one option from the list will be executed

It is chosen randomly among the satisfied conditions

If no condition holds, the process blocks until a condition becomes
true

Example do.pml

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures
Other useful operators

else: in if-fi or do-od statements become true if any other
condition fails

goto . . . : can be used to jump to another process location

break: force exit from a do-od loop

timeout: becomes true if no other statement can be executed

atomic { . . . } : process a list of statements without interleaving

skip: does nothing

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Example

int iter;

proctype counter(byte count)

{
do

:: (count != 0) ->

if

:: count = count + 1

:: count = count - 1

fi

:: (count == 0) -> break

od;

printf("Iterations done: %d" iter);

}

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Exercise 1
Collatz Conjecture (3x+1 Problem)

Let n be a natural number. Consider the following loop:

1 while n 6= 1
2 if n is even then n := n/2
3 else n := 3 · n + 1

Example: n = 5 generates the sequence, 5, 16, 8, 4, 2, 1

Exercise:

Implement the loop in PROMELA and return as
output the number of iterations done

extra Write a routine that computes the number between 1
and 100 that takes the highest number of steps

(use “%” to compute the remainder)

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Exercise 1
Collatz Conjecture (3x+1 Problem)

Let n be a natural number. Consider the following loop:

1 while n 6= 1
2 if n is even then n := n/2
3 else n := 3 · n + 1

Example: n = 5 generates the sequence, 5, 16, 8, 4, 2, 1

Exercise:

Implement the loop in PROMELA and return as
output the number of iterations done

extra Write a routine that computes the number between 1
and 100 that takes the highest number of steps

(use “%” to compute the remainder)

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Communication
Channels (1)

Data can be exchanged via global variables (as seen so far) or
using channels

a channel is FIFO queue

Example declaration:

chan c = [2] of { byte }

Operations:

send an element e into the channel c

Syntax: c!e
Executable if the channel is not full

receive an element from the channel c, and store it into e

Syntax: c?e
Executable if the channel is not empty

Example prod cons.pml

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Communication
Channels (2)

Empty channels can be declared to define rendez-vous points

chan buf = [0] of { mtype };

mtype { ack, nack };

A1

B1 A2

B2

C3

A

B

C

2

3

1

buf!ack buf?ack

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Exercise 2

Modify prod cons.pml as follows:

producer() sends odd and even numbers into the buffer

write consumer odd() that prints only odd numbers

write consumer even() that prints only even numbers

producer() should send termination signal to both consumers

every number must be printed

grigory.fedyukovich@usi.ch CAV’15 - SPIN

	Introduction
	PROcess MEta LAnguage
	Data types
	Control structures
	Channels

