Computer Aided Verification 2015

The SPIN model checker

Grigory Fedyukovich
<grigory.fedyukovich@usi.ch>

Universita’ della Svizzera Italiana

March 11, 2015

Material borrowed from Roberto Bruttomesso

Introduction

PROcess MEta LAnguage
m Data types
m Control structures
m Channels

.fedyukovich@usi.ch CAV’15

Outline

Introduction

15 - SPIN

Spin

Introduction

Explicit-state model checker

m works on-the-fly (no need to represent the entire structure of the
system upfront)

m Targeted toward the verification of concurrent systems

m real world situations involving multiple agents acting at the same
time on the same resources
m hardware or software with interacting components

Input language: PROMELA (PRocess MEta LAnguage)

m Designed for describing processes
m Different from an imperative language

Properties: LTL (Linear Temporal Logic)

ory.fedyukovich@usi.ch CAV’15 - SPIN

Bugs in concurrent systems (1)

Circular blocking

dyukovich@usi.ch CAV’15 - SPIN

Bugs in concurrent systems (2)

Deadly embrace

We have two global resources p (a printer) and s (a scanner), and two
concurrent processes running in memory

process A process B

1 getPrinter(p) 1 getScanner(s)

2 getScanner(s) 2 getPrinter(p)

3 ... 3 ..

4 releasePrinter() 4 releasePrinter()
5 releaseScanner() 5 releaseScanner()
end end

The sequence Al, B1, A2, B2 generates a deadlock

fedyukovich@usi.ch CAV’15 - SPIN

Spin

Execution semantic

m In Spin we can specify processes, which are assumed to run
concurrently

m Since we are dealing with multiple processes, at any point in time
a number of instructions can be executed (unless deadlock)

m Spin chooses non-deterministically one instruction to be
executed among the ones available

lyukovick si.ch CAV’15 - SPIN

Spin

Two modes

m Simulator (first half): runs a guided or a random simulation of the
model defined by the user. Can be used to quickly check the
behavior of a model

m Verifier (second half): generates a C program, optimized for
perfomance, that exhaustively checks the validity of the property
(or the absence of deadlocks)

ry.fedyukovich@usi.ch CAV’15 - SPIN

PROcess MEta LAnguage
m Data types
m Control structures
m Channels

.fedyukovich@usi.ch CAV’15

Data types

Basic types

Type Range Example

bit [0,1] bit flag = O;
bool false, true bool flag = false;
byte [0,255] byte b = 0;

chan [1,255] see later ...

mtype [1,255] see later . ..

pid [0,255] pid p = 0;

short [-215215 — 1] short s = 0;

int 231231 —1] int i = 0;
unsigned [0,2" — 1] unsigned u : 8;

Default value for uninitialized variables is “0”

ry.fedyukovich@usi.ch

CAV’15 - SPIN

Data types

Compound types

m Arrays (one dimension):
byte vec[10];
m Records:

typedef rec

{
bit a;
byte b;

}

m mtype: used to declare user-defined constants (similar to C enum)
Example:

mtype = { ack, nack, error };

.fedyukovich@usi.ch CAV’15 - SPIN

Control structures

Processes

m In Promela we can only define processes

init is a process which is automatically started at the beginning

proctype can be used to define a process
m a process can be started with run

m active can be used to specify a proctype that is automatically
started at the beginning

.fedyukovich@usi.ch CAV’15 - SPIN

Control structures

Basic Statements

m Assignments: count = count + 1
m Always executable: count is updated

m Conditions: visitors == 10
m Executable only if they hold. Nothing is changed.
m Example: busy.pml

m Statements are separated by ;

BEX=X+2; y=X+2

m or by a -> (usually when condition -> assignment)
mx==0;y=x+2z
m X == > y=x+2z

ory.fedyukovich@usi.ch CAV’15 - SPIN

Control structures

Case selection

if
cond_1 -> list of statements 1
cond_2 -> list of statements 2

fi
m Only one option from the list will be executed

m [t is chosen randomly among the satisfied conditions

m If no condition holds, the process blocks until a condition becomes
true

m Example if.pml

.fedyukovich@usi.ch CAV’15 - SPIN

Control structures

Repetition

do
cond_1 -> list of statements 1
cond_2 -> list of statements 2

od

Similar to if, but repeated over time

Only one option from the list will be executed
m It is chosen randomly among the satisfied conditions

m If no condition holds, the process blocks until a condition becomes
true

ory.fedyukovich@usi.ch CAV’15 - SPIN

Example do.pml

Control structures

Other useful operators

m else: in if-fi or do-od statements become true if any other
condition fails

m goto ...: can be used to jump to another process location

m break: force exit from a do-od loop

m timeout: becomes true if no other statement can be executed

m atomic { ...} : process a list of statements without interleaving

m skip: does nothing

.fedyukovich@usi.ch CAV’15 - SPIN

int iter;

proctype counter(byte count)

{

do
(count !'= 0) ->
if
count = count + 1
count = count - 1
fi
:: (count == 0) -> break
od;

printf("Iterations dome: %d" iter);

CAV’15 - SPIN

Exercise 1

Collatz Conjecture (3x+1 Problem)

m Let n be a natural number. Consider the following loop:

1 whilen #1
2 if n is even then n :=n/2
3 elsen:=3-n+1

m Example: n = 5 generates the sequence, 5,16,8,4,2,1

m Exercise:

Implement the loop in PROMELA and return as
output the number of iterations done

(use “%” to compute the remainder)

ory.fedyukovich@usi.ch CAV’15 - SPIN

Exercise 1

Collatz Conjecture (3x+1 Problem)

m Let n be a natural number. Consider the following loop:

1 whilen #1
2 if n is even then n :=n/2
3 elsen:=3-n+1

m Example: n = 5 generates the sequence, 5,16,8,4,2,1

m Exercise:
Implement the loop in PROMELA and return as
output the number of iterations done

extra Write a routine that computes the number between 1
and 100 that takes the highest number of steps

(use “%” to compute the remainder)

fedyukovich@usi.ch CAV’15 - SPIN

Communication

Channels (1)

m Data can be exchanged via global variables (as seen so far) or
using channels

m a channel is FIFO queue

Example declaration:

chan ¢ = [2] of { byte }
Operations:

m send an element e into the channel c

m Syntax: cle
m Executable if the channel is not full

m receive an element from the channel c, and store it into e
m Syntax: c7e
m Executable if the channel is not empty

m Example prod_cons.pml

.fedyukovich@usi.ch CAV’15 - SPIN

Communication

Channels (2)

m Empty channels can be declared to define rendez-vous points

chan buf = [0] of { mtype };
mtype { ack, nack };

buflack buf?ack

-
S

©
®

CAV’15 - SPIN

Exercise 2

Modify prod_cons.pml as follows:

producer () sends odd and even numbers into the buffer
m write consumer_odd() that prints only odd numbers

m write consumer_even() that prints only even numbers

producer() should send termination signal to both consumers

every number must be printed

ory.fedyukovich@usi.ch CAV’15 - SPIN

	Introduction
	PROcess MEta LAnguage
	Data types
	Control structures
	Channels

