
Computer Aided Verification 2015
The SPIN model checker

Grigory Fedyukovich
<grigory.fedyukovich@usi.ch>

Universita’ della Svizzera Italiana

March 30, 2015

Material borrowed from Roberto Bruttomesso

Outline

1 Introduction

2 The verifier
Discovering a deadlock

3 LTL verification
LTL specification
Examples

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Outline

1 Introduction

2 The verifier
Discovering a deadlock

3 LTL verification
LTL specification
Examples

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Spin
Two modes

Simulator (done): it runs a guided or a random simulation of the
model defined by the user. Can be used to quickly check the
behavior of a model

Verifier (today): it generates an executable whose run
exhaustively checks the validity of the property (or the absence
of deadlocks)

Notice the difference between the two, one trace as opposed to all
traces

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Outline

1 Introduction

2 The verifier
Discovering a deadlock

3 LTL verification
LTL specification
Examples

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Verifier

Precisely, it is a C program derived from the promela model, that
can be compiled into an executable that explores the state space

It returns some information, such as

reachable and unreachable states
invalid end states (deadlock)

From the command line:

spin -a filename

a C program pan.c appears in the current directory
gcc -o pan pan.c generates and executable pan

./pan runs the verifier

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Example
simple.pml

spin -a simple.pml

gcc -o pan pan.c

./pan

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end statespace +

. . .
State-vector 44 byte, depth reached 3, errors: 0

unreached in proctype sender

line 11, state 6, "-end-"

(1 of 6 states)

. . .

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Discovering a deadlock
Two processes and two resources

File: deadlock.pml

A B

Printer

Scanner

Build and run the verifier

spin -a deadlock.pml: writes pan.c

gcc -o pan pan.c: compiles the verifier

./pan: runs the verifier (writes deadlock.pml.trail)

./pan -r: prints the trace that leads to the deadlock

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Outline

1 Introduction

2 The verifier
Discovering a deadlock

3 LTL verification
LTL specification
Examples

grigory.fedyukovich@usi.ch CAV’15 - SPIN

LTL properties specification

In PROMELA it is possible to specify properties in LTL (Linear
Temporal Logic)

Safety properties:

Something bad never happens
Property of states
Can be computed with reachability methods (if the bad states are
not reachable, the property holds)

Liveness properties:

Something desirable eventually happens
Property of paths
More complex methods (ex. find a lazo-shaped path whose states
violates the property)

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Modal Operators
And their PROMELA equivalent

Globally: property holds in every state
Denoted with “G p” or “[] p”

...

p p p p

Finally: property eventually holds
Denoted with “F p” or “<> p”

...

p¬p ¬p ¬p

Until: q never holds or p should hold until q holds
Denoted with “p U q”

...

q

p p
¬q ¬q

Other useful operators: negation !, and &&, or ||

grigory.fedyukovich@usi.ch CAV’15 - SPIN

LTL specification and checking
Leader election protocol

File: leader.pml

Receive value from left

neighbour neighbour

Propagate value to right

mynumber

Pn

P1

P2

P3P4

P5

grigory.fedyukovich@usi.ch CAV’15 - SPIN

LTL specification and checking
Leader Election Protocol

File: leader.pml
Exercise: try the following properties

<>[]oneLeader

![]noLeader

<>elected

[](noLeader U oneLeader)

generate the corresponding PROMELA code with

Syntax example: ltl p1 { <> (nr leaders == 0) }
Verify: iSpin -> Verification -> use claim -> Run

Print counter-example (from the *.trail file): iSpin ->

Simulate/Replay -> (Re)Run

grigory.fedyukovich@usi.ch CAV’15 - SPIN

LTL specification and checking
Semaphore

File: dijkstra.pml
Exercise: define the following properties, test them, and indicate if
safety/liveness

it is always the case that at most one user is in the critical section:

G (nr users in section ≤ 1)
it is a safety property

it is always the case that eventually user 1 enters the critical
region:

GF (flags[1])
it is a liveness property

grigory.fedyukovich@usi.ch CAV’15 - SPIN

LTL specification and checking
Semaphore

File: dijkstra.pml
Exercise: define the following properties, test them, and indicate if
safety/liveness

it is always the case that at most one user is in the critical section:

G (nr users in section ≤ 1)
it is a safety property

it is always the case that eventually user 1 enters the critical
region:

GF (flags[1])
it is a liveness property

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

G¬(C1 ∧ C2) ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

G¬(C1 ∧ C2) ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

G¬(C1 ∧ C2) ? YES

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

FC1 ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

FC1 ? NO

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

G(T1 → FC1) ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

G(T1 → FC1) ? YES

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

GFC1 ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

GFC1 ? NO

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

GFT1 → GFC1 ?

grigory.fedyukovich@usi.ch CAV’15 - SPIN

Mutual exclusion

turn == 1

turn == 1

turn == 1

turn == 1 turn == 2

turn == 2

turn == 2

turn == 2

turn == 0

T1, T2C1
T1, T2 C2

T2T1

T1, C2C1, T2

For i = 1, 2, turn:

turn == i: process i acquired access to
critical region

Ti, Ci are boolean variables:

Ti: process i wants to access the critical
region

Ci: process i is in the critical region

GFT1 → GFC1 ? YES

grigory.fedyukovich@usi.ch CAV’15 - SPIN

	Introduction
	The verifier
	Discovering a deadlock

	LTL verification
	LTL specification
	Examples

