
From a Calculus to an Execution
Environment for Stream Processing

Robert Soulé Martin Hirzel Buğra Gedik Robert Grimm
New York University IBM Research Bilkent University New York University
soule@cs.nyu.edu hirzel@us.ibm.com bgedik@cs.bilkent.edu.tr rgrimm@cs.nyu.edu

Abstract
At one level, this paper is about River, a virtual execution envi-
ronment for stream processing. Stream processing is a paradigm
well-suited for many modern data processing systems that ingest
high-volume data streams from the real world, such as audio/video
streaming, high-frequency trading, and security monitoring. One
attractive property of stream processing is that it lends itself to par-
allelization on multicores, and even to distribution on clusters when
extreme scale is required. Stream processing has been co-evolved
by several communities, leading to diverse languages with similar
core concepts. Providing a common execution environment reduces
language development effort and increases portability. We designed
River as a practical realization of Brooklet, a calculus for stream
processing. So at another level, this paper is about a journey from
theory (the calculus) to practice (the execution environment). The
challenge is that, by definition, a calculus abstracts away all but the
most central concepts. Hence, there are several research questions
in concretizing the missing parts, not to mention a significant engi-
neering effort in implementing them. But the effort is well worth it,
because using a calculus as a foundation yields clear semantics and
proven correctness results.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—parallel languages; D.3.4
[Programming Languages]: Processors—compilers

Keywords Stream Processing, Domain Specific Language, Inter-
mediate Language, CQL, Sawzall, StreamIt

1. Introduction
It is widely accepted that virtual execution environments help pro-
gramming languages by decoupling them from the target platform
and vice versa. At its core, a virtual execution environment pro-
vides a small interface with well-defined behavior, facilitating ro-
bust, portable, and economic language implementations. Similarly,
a calculus is a formal system that mathematically defines the behav-
ior of the essential features of a domain. This paper demonstrates
how to use a calculus as the foundation for an execution environ-
ment for stream processing. Stream processing makes it convenient
to exploit parallelism on multicores or even clusters. Streaming lan-
guages are diverse [2, 3, 10, 31, 34], because they address many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DEBS ’12, July 16–20, 2012, Berlin, Germany.
Copyright c© 2012 ACM 978-1-4503-1315-5. . . $10.00

real-world domains, including transportation, audio and video pro-
cessing, network monitoring, telecommunications, healthcare, and
finance.

The starting point for this paper is the Brooklet calculus [32].
A Brooklet application is a stream graph, where each edge is
a conceptually infinite stream of data items, and each vertex is
an operator. Each time a data item arrives on an input stream
of an operator, the operator fires, executing a pure function to
compute data items for its output streams. Optionally, an operator
may also maintain state, consisting of variables to remember across
operator firings. Prior work demonstrated that Brooklet is a natural
abstraction for different streaming languages.

The finishing point for this paper is the River execution envi-
ronment. Extending a calculus into an execution environment is
challenging. A calculus deliberately abstracts away features that are
not relevant in theory, whereas an execution environment must add
them back in to be practical. The question is how to do that while
(1) maintaining the desirable properties of the calculus, (2) making
the source language development effort economic, and (3) safely
supporting common optimizations and reaching reasonable target-
platform performance. The answers to these questions are the re-
search contributions of this paper.

On the implementation side, we wrote front-ends for dialects of
three very different streaming languages (CQL [2], Sawzall [31],
and StreamIt [34]) on River. We wrote a back-end for River on
System S [1], a high-performance distributed streaming runtime.
And we wrote three high-level optimizations (placement, fusion,
and fission) that work at the River level, decoupled from and thus
reusable across front-ends. This is a significant advance over prior
work, where source languages, optimizations, and target platforms
are tightly coupled. For instance, since River’s target platform,
System S, runs on a shared-nothing cluster, this paper reports the
first distributed CQL implementation, making CQL more scalable.

Overall, this paper shows how to get the best of both theory
and practice for stream processing. Starting from a calculus sup-
ports formal proofs showing that front-ends realize the semantics
of their source languages, and that optimizations are safe. And fin-
ishing in an execution environment lowers the barrier to entry for
new streaming language implementations, and thus grows the eco-
system of this crucial style of programming.

2. Maintaining Properties of the Calculus
Being a calculus, Brooklet makes abstractions. In other words,
it removes irrelevant details to reduce stream processing to the
features that are essential for formal reasoning. On the other hand,
River, being a practical execution environment, has to take a stand
on each of the abstracted-away details. This section describes these
decisions, and explains how the execution environment retains the
benefits of the calculus.

1

In order for this paper to be self-contained and suitable for a
systems audience, it first restates the formal semantics from the
Brooklet paper [32] in more informal terms. Here is an example
Brooklet program:

(appleTrades) <- SelectApple(trades);
($volume) <- Count(appleTrades, $volume);

The SelectApple operator filters data items from stream trades

into stream appleTrades, where the Count operator counts their
volume in variable $volume. Note that $volume appears both on the
left (written) and right (read) side of the Count operator. Brooklet
models streams as FIFO queues of data items. Queues are one-to-
one: they have at most one producer and one consumer. Queues
without producers, such as trades, are input queues, and queues
without consumers are output queues. At the beginning of the exe-
cution, only input queues are non-empty. Convergent or divergent
graphs can be constructed by using the same operator as the con-
sumer or producer of multiple queues, respectively. A queue is el-
igible to fire if and only if it is non-empty and has a consumer.
Execution proceeds as follows:

while there is at least one queue eligible to fire:
atomically perform the firing as a single step:
• Non-deterministically pick a queue that is eligible to fire.

By definition, the queue has a unique consumer operator.
• Pop one data item from the front of the firing queue.
• Read the values of the input variables of the operator.
• Call the function that implements the operator, passing the

data item from the firing queue and the values of the input
variables as parameters.
• The result of the function call contains, for each output

queue of the operator, zero or more data items, and for
each output variable of the operator, its new value.
• Push the data items to the operator’s output queues.
• Write the values to the operator’s output variables.

At the end, only the program’s output queues are non-empty. The
result of the execution consists of the contents of variables and
output queues.

2.1 Brooklet Abstractions and their Rationale
The following is a list of simplifications in the Brooklet semantics,
along with the insights behind them.

Atomic steps. Brooklet defines execution as a sequence of atomic
steps. Being a small-step operational semantics makes it amenable
to proofs. Each atomic step contains an entire operator firing. By
not sub-dividing firings further, it avoids interleavings that unduly
complicate the behavior. In particular, Brooklet does not require
complex memory models.

Pure functions. Functions in Brooklet are pure, without side ef-
fects and with repeatable results. This is possible because state is
explicit and separate from operators. Keeping state separate also
makes it possible to see right away which operators in an applica-
tion are stateless or stateful, use local or shared state, and read or
write state.

Opaque functions. Brooklet elides the definition of the functions
for operator firings, because semantics for local sequential compu-
tation are well-understood.

Non-determinism. Each step in a Brooklet execution non-deter-
ministically picks a queue to fire. This non-deterministic choice
abstracts away from concrete schedules. In fact, it even avoids
the need for any centralized scheduler, thus enabling a distributed
system without costly coordination. Note that determinism can be
implemented on top of Brooklet with the appropriate protocols, as
shown by translations from deterministic languages [32].

No physical platform. Brooklet programs are completely inde-
pendent from any actual machines they would run on.

Finite execution. Stream processing applications run conceptu-
ally forever, but a Brooklet execution is a finite sequence of steps.
One can reason about an infinite execution by induction over each
finite prefix [16].

2.2 River Concretizations and their Rationale
This section shows how the River execution environment fills in
the holes left by the Brooklet calculus. For each of the abstractions
from the previous section, it briefly explains how to concretize it
and why. The details and correctness arguments for these points
come in later sections.

Atomic steps. Whereas Brooklet executes firings one at a time,
albeit in non-deterministic order, River executes them concurrently
whenever it can guarantee that the end result is the same. This
concurrency is crucial for performance. To guarantee the same
end result, River uses a minimum of synchronization that keeps
firings conceptually atomic. River shields the user from concerns
of locking or memory models.

Pure functions. Both the calculus and the execution environ-
ment separate state from operators. However, whereas the calculus
passes variables in and out of functions by copies, the execution
environment uses pointers instead to avoid the copying cost. Us-
ing the fact that state is explicit, River automates the appropriate
locking discipline where necessary, thus relieving users from this
burden. Furthermore, instead of returning data items to be pushed
on output queues, functions in River directly invoke call-backs for
the run-time library, thus avoiding copies and simplifying the func-
tion implementations.

Opaque functions. Functions for River are implemented in a
traditional non-streaming language. They are separated from the
River runtime library by a well-defined API. Since atomicity is
preserved at the granularity of operator firings, River does not
interfere with any local instruction-reordering optimizations the
low-level compiler or the hardware may want to perform.

Non-determinism. Being a virtual execution environment, River
ultimately leaves the concrete schedule to the underlying platform.
However, it reduces the flexibility for the scheduler by bounding
queue sizes, and by using back-pressure to prevent deadlocks when
queues fill up.

No physical platform. River programs are target-platform inde-
pendent. However, at deployment time, the optimizer takes target-
platform characteristics into consideration for placement.

Finite execution. River applications run indefinitely and produce
timely outputs along the way, fitting the purpose and intent of
practical stream processing applications.

2.3 Maximizing Concurrency while Upholding Atomicity
This section gives the details for how River upholds the sequential
semantics of Brooklet. In particular, River differs from Brooklet
in how it handles state variables and data items pushed on output
queues. These differences are motivated by performance goals:
they avoid unnecessary copies and increase concurrency.

River requires that each operator instance is single-threaded
and that all queue operations are atomic. Additionally, if variables
are shared between operator instances, each operator instance uses
locks to enforce mutual exclusion. River’s locking discipline fol-
lows established practice for deadlock prevention, i.e., an opera-
tor instance first acquires all necessary locks in a standard order,
then performs the actual work, and finally releases the locks in

2

reverse order. Otherwise, River does not impose further ordering
constraints. In particular, unless prevented by locks, operator in-
stances may execute in parallel. They may also enqueue data items
as they execute and update variables in place without differing in
any observable way from Brooklet’s call-by-value-result semantics.
To explain how River’s execution model achieves this, we first con-
sider execution without shared state.

Operator instance firings without shared state behave as if
atomic. In River, a downstream operator instance o2 can fire on
a data item while the firing of the upstream operator instance o1
that enqueued it is still in progress. The behavior is the same as if
o2 had waited for o1 to complete before firing, because queues are
one-to-one and queue operations are atomic. Furthermore, since
each operator is single-threaded, there cannot be two firings of the
same operator instance active simultaneously, so there are no race
conditions on operator-instance-local state variables.

1. AllClasses.add(AllSharedVars)
2. for all o ∈ OpInstances do
3. UsedByO = sharedVariablesUsedBy(o)
4. for all v ∈ UsedByO do
5. EquivV = v.equivalenceClass
6. if EquivV 6⊆ UsedByO then
7. AllClasses.remove(EquivV)
8. AllClasses.add(EquivV ∩UsedByO)
9. AllClasses.add(EquivV \UsedByO)

Figure 1. Algorithm for assigning shared variables to equivalence
classes, that is, locks.

In the presence of shared state, River uses the lock assignment
algorithm shown in Figure 1. The algorithm finds the minimal set of
locks that covers the shared variables appropriately. The idea is that
locks form equivalence classes over shared variables: every shared
variable is protected by exactly one lock, and shared variables in
the same equivalence class are protected by the same lock.

Two variables only have separate locks if there is an operator
instance that uses one but not the other. The algorithm starts
with a single equivalence class (lock) containing all variables in
line 1. The only way for variables to end up under different locks
is by the split in lines 7–9. Without loss of generality, let v be in
EquivV ∩UsedByO andw be in EquivV \UsedByO . That means
there is an operator instance o that uses UsedByO , which includes
v but excludes w.

An operator instance only acquires locks for variables it actually
uses. Let’s say operator instance o uses variable v but not w.
We need to show that v and w are under separate locks. If they
are under the same lock, then the algorithm will arrive at a point
where UsedByO contains v but not w and EquivV contains both
v andw. That means that EquivV is not a subset of UsedByO , and
lines 7–9 split it, with v and w in two separate parts of the split.

Shared state accesses behave as if atomic. An operator instance
locks the equivalence classes of all the shared variables it ac-
cesses.

2.4 Bounding Queue Sizes
In Brooklet, communication queues are infinite, but real-world sys-
tems have limited buffer space, raising the question of how River
should manage bounded queues. One option is to drop data items
when queues are full. But this results in an unreliable communi-
cation model, which significantly complicates application develop-
ment [15], wastes effort on data items that are dropped later on [26],

1. process(dataItem, submitCallback , variables)
2. lockSet = {v.equivalenceClass() for v ∈ variables}
3. for all lock ∈ lockSet .iterateInStandardOrder() do
4. lock .acquire()
5. tmpCallback = λd⇒ tmpBuffer .push(d)
6. opFire(dataItem, tmpCallback , variables)
7. for all lock ∈ lockSet .iterateInReverseOrder() do
8. lock .release()
9. while !tmpBuffer .isEmpty() do

10. submitCallback(tmpBuffer .pop())

Figure 2. Algorithm for implementing back-pressure.

and is inconsistent with Brooklet’s semantics. A more attractive op-
tion is to automatically apply back-pressure through the operator
graph.

A straightforward way to implement back-pressure is to let the
enqueue operation performed by an operator instance block when
the output queue is full. While easy to implement, this approach
could deadlock in the presence of shared variables. To see this,
consider an operator instance o1 feeding another operator instance
o2, and assume that both operator instances access a common
shared variable. Further assume that o1 is blocked on an enqueue
operation due to back-pressure. Since o1 holds the shared variable
lock during its firing, o2 cannot proceed while o1 is blocked on
the enqueue operation. On the other hand, o1 will not be able to
unblock until o2 makes progress to open up space in o1’s output
queue. They are deadlocked.

The pseudocode in Figure 2 presents River’s solution to imple-
menting back-pressure. It describes the process function, which is
called by the underlying streaming runtime when data arrives at
a River operator. The algorithm starts in line 2 with an operator’s
lock set. The lock set is the minimal set of locks needed to protect
an operator’s shared variables, as described in Section 2.3. Before
an operator fires, it first must acquire all locks in its lock set, as
shown in lines 3-4. Once all locks are held, the process function
invokes the operator’s opFire method, which contains the actual
operator logic. The opFire does not directly enqueue its resultant
data for transport by the runtime. Instead, it writes its results to a
dynamically-sized intermediate buffer, which is passed to opFire
as a callback. Lines 5-6 show the callback and invocation of the
operator logic. Next, lines 7-8 release all locks. Finally, lines 9-10
drain the temporary buffer, enqueuing each data item for transport
by calling the streaming runtime’s submit callback.

The key insight is that lines 9-10 might block if the downstream
queue is full, but there is no deadlock because at this point the
algorithm has already released its shared-variable locks. Further-
more, process will only return after it has drained the temporary
buffer, so it only requires enough space for a single firing. If pro-
cess is blocked on a downstream queue, it may in turn block its
own upstream queue. That is what is meant by back-pressure. The
algorithm in Figure 2 restricts the scheduling of operator firings.
In Brooklet, an operator instance can fire as long as there is at least
one data item in one of its input queues. In River, an additional con-
dition is that all intermediate buffers must be empty. This does not
impact the semantics of the applications or the programming inter-
face of the operators. It simply impacts the scheduling decisions of
the runtime.

3. Making Language Development Economic
River is intended as the target of a translation from a source lan-
guage, which may be an existing streaming language or a newly in-
vented one. In either case, the language implementer wants to make
use of the execution environment without spending too much effort
on the translation. In other words, language development should

3

select avg(speed), segNo, dir, hwy
from segSpeed[range 300];

congested: { speed: int; seg no: int;
dir: int; hwy: int } relation

= select avg(speed), seg no, dir, hwy
from seg speed[range 300];

(a) One of the Linear-Road queries in CQL. (b) One of the Linear-Road queries in River-CQL.

proto "querylog.proto"
queryOrigins: table sum[url: string] of count: int;
queryTargets: table sum[url: string] of count: int;
logRecord: QueryLogProto = input;
emit queryOrigins[logRecord.origin] <- 1;
emit queryTargets[logRecord.target] <- 1;

queryOrigins: table sum[url:string] of count: int;
queryTargets: table sum[url:string] of count: int;
logRecord: { origin: string; target: string } = input;
emit queryOrigins[logRecord.origin] <- 1;
emit queryTargets[logRecord.target] <- 1;

(c) Batch log query analyzer in Sawzall. (d) Batch log query analyzer in River-Sawzall.

pipeline {
pipeline {

splitjoin {
split duplicate;
filter { /* ... */ }
filter { /* ... */ }
join roundrobin; }

filter { /* subtractor */ } }
filter { /* ... */ } }

float->float filter {
work pop 2 push 1 {

push(peek(1) - peek(0)); pop(); pop(); } }

(f) One of the FM Radio filters in StreamIt.

filter {
work {

s,tc <- subtractor(s,peek(1)); push(tc); pop();} }

(e) FM Radio in both StreamIt versions (filter bodies elided). (g) One of the FM Radio filters in River-StreamIt.

Figure 3. Example source code in original languages and their River dialects.

be economic. We address this requirement by an intermediate lan-
guage that is easy to target, and in addition, by providing an eco-
system of tools and reusable artifacts for developing River compil-
ers. We demonstrate the economy by implementing three existing
languages. The foundation for the translation support is, again, the
Brooklet calculus. Hence, we review the calculus first, before ex-
ploring what it takes to go from theory to practice in River.

3.1 Brooklet Treatment of Source Languages
The Brooklet paper contained formalizations, but no implemen-
tations, for translating the cores of CQL [2], Sawzall [31], and
StreamIt [34] to the Brooklet calculus [32]. This exercise helped
prove that the calculus can faithfully model the semantics of two
languages that had already been formalized elsewhere, and helped
provide the first formal semantics of a third language that had not
previously been formalized.

Brooklet translation source. CQL, the continuous query lan-
guage, is a dialect of the widely used SQL database query language
for stream processing [2]. CQL comes with rigorously defined se-
mantics, grounded in relational algebra. The additions over SQL
are windows for turning streams into tables, as well as operators
for observing changes in a table to obtain a stream. Sawzall [31] is
a language for programming MapReduce [7], a scalable distributed
batch processing system. Finally, StreamIt [34] is a synchronous
data flow (SDF) [23] language with a denotational semantics [35].
StreamIt relies on fixed data rates to compute a static schedule,
thus reducing runtime overheads for synchronization and commu-
nication. These three languages have fundamentally different con-
structs, optimized for their respective application domains. They
were developed independently by different communities: CQL
originated from databases, Sawzall from distributed computing,
and StreamIt from digital signal processing. The Brooklet paper
abstracted away many details of the source languages that are not
relevant for the calculus, such as the type system and concrete
operator implementations.

Brooklet translation target. A Brooklet program consists of two
parts: the stream graph and the operator functions. For specifying

stream graphs, Brooklet provides a topology language, as seen in
the appleTrades example at the beginning of Section 2. For oper-
ator functions, on the other hand, Brooklet does not provide any
notation; instead, it just assumes they are pure opaque functions.
Where necessary, the Brooklet paper uses standard mathematical
notation, including functions defined via currying. Remember that
currying is a technique that transforms a multi-argument function
into a function that takes some arguments, and returns another
residual function for the remaining arguments. This is useful for
language translation in that the translator can supply certain argu-
ments statically, while leaving others open to firing time.

Brooklet translation specification. The Brooklet paper specifies
translations in sequent calculus notation. The translation is syntax-
directed, in the sense that each translation rule matches certain
syntactic constructs, and translations of larger program fragments
are composed from translations of their components. These trans-
lations are restricted to the core source language subsets, and are
only specified on paper, not implemented. The mathematical nota-
tion and restriction to the essentials make the translations amenable
to proofs. However, they omit many of the details necessary for a
practical implementation, which is what this paper is about.

3.2 River Implementation of Source Languages
As the previous section shows, Brooklet abstracts three aspects
of source language support: it simplifies the source languages,
it provides a core target language, and it specifies but does not
implement translations. The following sections describe how River
and its eco-system concretize these three areas, with the goal of
economy in language development. In other words, not only does
River make it possible to implement various streaming languages,
it makes it easier.

3.3 River Translation Source
We implemented the same three streaming languages (CQL, Sawzall,
and StreamIt) on River. The River dialects are more complete than
the Brooklet language subsets, but they are not identical to the orig-
inal published versions of the languages. They add some features

4

that were missing in the original versions in order to make them
more type-safe. They omit some infrequently used features from
the original versions to reduce implementation effort. And they
replace some features, notably expressions, with equivalent fea-
tures to enable code reuse. While we took the liberty to modify the
source languages, we retained their essential aspects. In practice,
it is not uncommon for source languages to change slightly when
they are ported to a virtual execution environment. For example,
the JVM supports Jython rather than C Python, and the CLR sup-
ports F# rather than OCaml. Those cases, like ours, are motivated
by economic language development.

River-CQL. River’s dialect of CQL is more complete than the
original language. Figures 3 (a) and (b) show an example. The
original version lacks types. River-CQL includes types to make
the language easier to use, for example, by reporting type errors
at compile time. Moreover, because the types are preserved during
translation, River-CQL avoids some overheads at runtime. The type
syntax of any functional or imperative language would do for this
purpose; we used the syntax for types in River’s implementation
language, described in Section 3.4. Since we already had compiler
components for the type sublanguage, we could just reuse those,
simplifying source language development.

River-Sawzall. River’s dialect of Sawzall replaces protocol buffers
by a different notation. Protocol buffers are a data definition lan-
guage that is part of Google’s eco-system. The River eco-system,
on the other hand, has its own type notation, which we reuse across
source languages. Figures 3 (c) and (d) illustrate this change. As
this feature was not central to Sawzall to begin with, changing it
was justified to ease language development.

River-StreamIt. River’s dialect of StreamIt elides the feature
called teleport messaging. Teleport messages are an escape hatch
to send out-of-band messages that side-step the core streaming
paradigm. Only very few StreamIt programs use teleport messag-
ing [33]. They require centralized support, and are thus only imple-
mented in the single-node back-end of StreamIt. Since River runs
on multi-node clusters, we skipped this feature altogether. Further-
more, another change in River’s dialect of StreamIt is that it uses
out-of-line work function implementations for filter operators, as
seen in Figures 3 (f) and (g). Since work functions in StreamIt con-
tain traditional imperative code, it is a matter of taste where and
in what syntax to write them. We chose not to spend time literally
emulating a notation that is inessential to the main language.

3.4 River Translation Target
A River program consists of two parts: the stream graph and the op-
erator implementations. For the stream graph, River simply reuses
the topology language of Brooklet. For operators, on the other
hand, River must go beyond Brooklet by supplying an implemen-
tation language. The primary requirements for this implementation
language are that (1) the creation and decomposition of data items
be convenient, to aid in operator implementation, and (2) muta-
ble state be easily identifiable, in keeping with the semantics. An
explicit non-goal is support for traditional compiler optimizations,
which we leave to an off-the-shelf traditional compiler.

Typed functional languages clearly meet both requirements and
a lower-level traditional intermediate language such as LLVM [22]
can also meet them, given library support for higher-level language
features such as pattern matching. In our current implementation,
we rely on OCaml as River’s implementation sublanguage. It fea-
tures a high-quality native code compiler and a simple foreign func-
tion interface, which facilitates integration with existing streaming
runtimes written in C/C++.

3.5 River Translation Specification
A language implementer who wants to create a new language trans-
lator needs to implement a parser, a type-checker, and a code gener-
ator. We facilitate this task by decomposing each language into sub-
languages, and then reusing common sublanguage translator mod-
ules across languages. Principally, we follow the same approach as
the Jeannie language [18], which composes C and Java. However,
our work both increases the granularity of the components (by com-
bining parts of languages) and the number of languages involved.

Modular parsers. The parsers use component grammars written
as modules for the Rats! parser generator [14]. Each component
grammar can either modify or import other grammar modules. For
example, the CQL grammar consists of several modules: SQL’s
select-from-where clauses, streaming constructs modifying SQL to
CQL, an imported expression sublanguage for operators like pro-
jection or selection, and an imported type sublanguage for schemas.
The grammar modules for expressions and types are the same as in
other River languages. The result of parsing is an abstract syntax
tree (AST), which contains tree nodes drawn from each of the sub-
languages.

Modular type checkers. Type checkers are also implemented in
a compositional style. Type checkers for composite languages are
written as groups of visitors. Each visitor is responsible for all AST
nodes corresponding to a sublanguage. Each visitor can either dis-
patch to or inherit from other visitors, and all visitors share a com-
mon type representation and symbol table. For example, the CQL
analyzer inherits from an SQL analyzer, which in turn dispatches
to an analyzer for expressions and types. All three analyzers share
a symbol table.

SQL
Analyzer

CQL
Analyzer

SymbolTable

Type & Expr
Analyzer

has-a

has-a
is-a

has-a

If there are type errors, the type analyzer reports those and exits.
Otherwise, it populates the symbol table, and decorates the AST
with type annotations.

Modular code generators. The implementation language of the
River IL allows language developers to write language-specific
libraries of standard operators, such as select, project, split, join,
and aggregate. However, the operator implementations need to be
specialized for their concrete application. Consider, for example,
an implementation for a selection operator:

Bag.filter (fun x -> #expr) inputs

where #expr stands for a predicate indicating the filter condition.
How best to support this specialization was an important de-

sign decision. One approach would be to rely on language sup-
port, i.e., OCaml’s support for generic functions and modules
(i.e. functors) as reflected in the River IL. This approach is well-
understood and statically safe. But it also requires abstracting away
any application-specific operations in callbacks, which can lead to
unwieldy interfaces and performance overhead. Instead, we chose
to implement common operators as IL templates, which are instan-
tiated inline with appropriate types and expressions. Pattern vari-
ables (of form #expr) are replaced with concrete syntax at compile
time. This eliminates the overhead of abstraction at the cost of code
size.

5

The templates are actually parsed by grammars derived from
the original language grammars. As a result, templates benefit from
both the convenience of using concrete syntax, and the robustness
of static syntax checking. Code generation templates in River play
the same role as currying in Brooklet, i.e., they bind the function to
its arguments.

Thus, code generation is also simplified by the use of language
composition. The input to the code generator is the AST annotated
with type information, and the output is a stream graph and a set of
operator implementations. Our approach to producing this output
is to first create the AST for the stream graph and each operator
implementation, and then pretty-print those ASTs. In the first step,
we splice together subtrees obtained from the templates with sub-
trees obtained from the original source code. In the second step, we
reuse pretty-printers that are shared across source language imple-
mentations. Overall, we found that the use of language composition
led to a smaller, more consistent implementation with more reuse,
making the changes to the source languages well worth it.

4. Safe and Portable Optimizations
One of the benefits of a virtual execution environment is that it can
provide a single implementation of an optimization, which bene-
fits multiple source languages. In prior work on stream processing,
each source language had to re-implement similar optimizations.
The River execution environment, on the other hand, supports opti-
mization reuse across languages. Here, we are primarily interested
in optimizations from the streaming domain, which operate at the
level of a stream graph, as opposed to traditional optimizations at
the level of functional or imperative languages. By working at the
level of a stream graph, River can optimize an entire distributed
application. As with the other contributions of River, the Brooklet
calculus provides a solid foundation, but new ideas are needed to
build an execution environment upon it.

4.1 Brooklet Treatment of Optimizations
The Brooklet paper decouples optimizations from their source lan-
guages [32]. It specifies each optimization by a safety guard and
a rewrite rule. The safety guard checks whether a subgraph satis-
fies the preconditions for applying the optimization. It exploits the
one-to-one restriction on queues and the fact that state is explicit
to establish these conditions. If a subgraph passes the safety guard,
the rewrite rule replaces it by a transformed subgraph. The Brook-
let paper then proceeds to prove that the optimizations leave the
observable input/output behavior of the program unchanged.

The Brooklet paper discusses three specific optimizations:
(1) Fusion replaces two operators by a single operator, thus re-
ducing communication costs at the expense of pipeline parallelism.
(2) Fission replaces a single operator by a splitter, a number of
data-parallel replicas of the operator, and a merger. The Brook-
let paper only permits fission for stateless operators. (3) Selection
hoisting (i.e., selection pushdown) rewrites a subgraphA→ σ into
a subgraph σ → A, assuming that A is a stateless operator and
σ is a selection operator that only relies on data fields unchanged
by A. Selection hoisting can improve performance by reducing the
number of data items that A has to process.

4.2 River Optimization Support
We made the observation that River’s source languages are de-
signed to make certain optimizations safe by construction, without
requiring sophisticated analysis. For example, Sawzall provides a
set of built-in aggregations that are known to be commutative, and
partitioned by a user-supplied key, thus enabling fission. Rather
than loosing safety information in translation, only to have to dis-
cover it again before optimization, we wanted to add it to River’s

intermediate language (IL). However, at the same time, we did not
want to make the IL source-language specific, which would jeop-
ardize the reusability of optimizations and the generality of River.

We resolved this tension by adding extensible annotations to
River’s graph language. An annotation next to an operator speci-
fies policy information, which encompasses safety and profitabil-
ity. Safety policies are usually passed down by the translator from
source language to IL, such as, which operators to parallelize. Prof-
itability policies usually require some knowledge of the execution
platform, such as the number of machines to parallelize on. In this
paper, we use simple heuristics for profitability; prior work has also
explored more sophisticated analyses for this, which are beyond
the scope of this paper [13]. Policy is separated from mechanism,
which implements the actual code transformation that performs the
optimization. River’s annotation mechanism allows it to do more
powerful optimizations than Brooklet. For example, fission in River
works not just on stateless operators, but also on stateful operators,
as long as the state is keyed and the key fields are listed in anno-
tations. Both CQL and Sawzall are designed explicitly to make the
key evident from the source code, so all we needed to do is preserve
that information through their translators.

To keep annotations extensible, they share a common, simple
syntax, inspired by Java. Each use of an operator is preceded by
zero or more annotations. Each annotation is written as an at-sign
(@), an identifier naming the annotation, and a comma-separated list
of expressions serving as parameters. River currently makes use of
the following annotations:

Annotation Description
@Fuse(ID) Directive to fuse operators with the

same ID in the same process.
@Parallel() Directive to perform fission on an oper-

ator.
@Commutative() Declares that an operator’s function is

commutative.
@Keys(k1,. . .,kn) Declares that an operator’s state is parti-

tionable by the key fields k1,. . .,kn in
each data item.

@Group(ID) Directive to place operators with the
same ID on the same machine.

We anticipate adding more annotations as we implement more
source languages and/or more optimizations. The translator from
River IL to native code invokes the optimizers one by one, trans-
forming the IL at each step. A specification passed to the translator
determines the order in which the optimizations are applied.

4.3 Fusion Optimizer
Intuition. Fusion combines multiple stream operators into a sin-
gle stream operator, to avoid the overhead of data serialization and
transport [12, 20].

Policy. The policy annotation is @Fuse(ID). Operators with the
same ID are fused. Applying fusion is a tradeoff. It eliminates
a queue, reducing communication cost, but it prohibits operators
from executing in parallel. Hence, fusion is profitable if the savings
in communication cost exceed the lost benefit of parallelism. As
shown in the Brooklet calculus, a sufficient safety precondition for
fusion is if the fused operators form a straight-line pipeline without
side entries or exits.

Mechanism. The current implementation replaces internal queues
by direct function calls. A possible future enhancement would be
to allow fused operators to share the same process but run on dif-
ferent threads. This would reduce the cost for communication, but
still maintain the benefits of pipeline parallelism on multicores.

6

4.4 Fission Optimizer
Intuition. Fission replicates an operator or a stream subgraph to
introduce parallel computations on subsets of the data [7, 8, 12].

Policy. Fission uses three annotations. The @Parallel() annota-
tion is a directive to parallelize an operator. The @Commutative()

annotation declares that a given operator’s function commutes. Fi-
nally, the @Keys(k1,. . .,kn) annotation declares that an operator
is stateful, but that its state is keyed (i.e. partitioned) by the key in
fields k1,. . .,kn. Fission is profitable if the computation in the par-
allel segment is expensive enough to make up for the the overhead
of the inserted split and merge operators.

The safety conditions for fission depend on state and order. In
terms of state, there must be no memory dependencies between
replicas of the operator. This is trivially the case when the operator
is stateless. The other way to accomplish this is if the state of
the operator can be partitioned by key, such that each operator
replica is responsible for a separate portion of the key space. In
that case, the splitter routes data items by using a hash on their key
fields. When a parallel segment consists of multiple operators, they
must be either stateless or have the same key. To understand how
order affects correctness, consider the following example. Assume
that in the unoptimized program, the operator pushes data item
d1 before d2 on its output queue. In the optimized program, d1
and d2 may be computed by different replicas of the operator, and
depending on which replica is faster, d2 may be pushed first. That
would be unsafe if any down-stream operator depends on order.
That means that fission is safe with respect to order either if all
down-stream operators commute, or if the merger brings data items
from different replicas back in the right order. Depending on the
source language, the merger can use different ordering strategies:
CQL embeds a logical timestamp in every data item that induces
an ordering; Sawzall has commutative aggregations and can hence
ignore order; and StreamIt only parallelizes stateless operators and
can hence use round-robin order.

Mechanism. River’s fission optimization consists of multiple
steps. Consider the following example in which three operators
appear in a pipeline. The first two operators, range and aggr, are
stateful, and keyed by k1 and k2 respectively. The third, istream,
is stateless. The figures indicate stateful operators by a rectangle
with a folded corner. All three operators have the @Parallel()

annotation, indicating that fission should replicate them.

range aggr istream

@Parallel()
@Keys(k1)

@Parallel()
@Keys(k2) @Parallel()

Step 1 adds split and merge operators around parallelizable opera-
tors. This trivially parallelizes each individual operator. At the same
time, it introduces bottlenecks, as data streamed through adjacent
mergers and splitters must pass through a single machine. Note that
for source or sink operators, only merge or split, respectively, are
needed. This is because the partitioning of input data and the com-
bining of output data is assumed to occur outside of the system.

range merge split aggr merge split istream

Step 2 removes the bottlenecks. There are two in the example; each
calls for a different action. First, the merge and split between aggr

and istream can be safely removed, because istream is stateless.

range merge split aggr istream

Next, the merge and split between range and aggr cannot be re-
moved, because both operators partition state by different keys, k1
and k2. Instead, we apply a rotation. A rotation switches the order

of the merge and split to remove the bottleneck. This is the same
approach as the shuffle step in MapReduce [7].

range split merge aggr istream

Finally, Step 3 replicates the operators to the desired degree of
parallelism, and inserts @Group(ID) annotations for the placement
optimizer, to ensure that replicas actually reside on different ma-
chines.

range split merge aggr istream

range split merge aggr istream

range split merge aggr istream

In this example, all operators are parallelized. In other applications,
only parts may be parallelized, so performance improvements will
be subject to Amdahl’s law: for example, if the unoptimized pro-
gram spends 1/5th of its time in non-parallelizable operators, the
optimized program can be no more than 5× faster.

4.5 Placement Optimizer
While Brooklet explored selection hoisting, River explores place-
ment instead, because it is of larger practical importance, and illus-
trates the need for the optimizer to be aware of the platform.

Intuition. Placement assigns operators to machines and cores to
better utilize physical resources [36].

Policy. The policy annotation is @Group(ID). Operators with the
same ID are assigned to the same machine. Several operators can be
assigned the same ID to take advantage of machines with multiple
cores. Placement is profitable if it reduces network traffic (by plac-
ing operators that communicate a lot on the same machine) and/or
improves load balance (by placing computationally intensive oper-
ators on different machines). In our current implementation, anno-
tations are applied by hand. The annotations could be added auto-
matically by leveraging prior work on determining optimal place-
ment [30, 36].

Mechanism. The placement mechanism does not transform the
IL, but rather, directs the runtime to assign the same machine to
all operators that use the same identifier. Information such as the
number of machines is only available at the level of the virtual ex-
ecution environment, a trait that River shares with other language-
based virtual machines. Placement is complicated if operators share
state. In general, River could support sharing variables across ma-
chines, but relies on the underlying runtime to support that func-
tionality. Because our current backend does not provide distributed
shared state, the placement optimizer has an additional constraint.
It ensures that all operators that access the same shared variable are
placed on the same machine. Fortunately, none of the streaming
languages we encountered so far need cross-machine shared state.

4.6 When to Optimize
The Brooklet calculus abstracts away the timing of optimizations.
The River execution environment performs optimizations once the
available resources are known, just before running the program. In
other words, the translations from source languages to IL happen
ahead of time, but the translation from IL to native code for a
specific target platform is delayed until the program is launched.
That enables River to make more informed profitability decisions.

As just described, River implements static optimizations. In fu-
ture work, we plan to address dynamic optimizations that make de-
cisions at runtime. One promising approach to implementing dy-
namic optimizations is to statically create a more general graph, and
then adapt how data flows through it at runtime. A seminal exam-
ple for this is the Eddy operator, which performs dynamic operator

7

OS (processes, sockets, …)

Streaming runtime

Runtime
adaptation
layer

Operators Variables

Call-back mediation

River FFI

(De-)Marshalling

pr
oc

es
s(

…
)

su
bm

it(
…

)

Figure 4. Stack of layers for executing River.

reordering without physically changing the graph at runtime [4].
River could use annotations to decide where an optimization ap-
plies, and statically rewrite the graph to add in control operators
that dynamically route data items for optimization.

5. Runtime Support
The main goal for River’s runtime support is to insulate the IL and
the runtime from each other. Figure 4 shows the architecture. It
consists of a stack of layers, where each layer only knows about
the layers immediately below and above it. Above the operating
system is the streaming runtime, which provides the software in-
frastructure for process management, data transport, and distribu-
tion. Above that is the runtime adaptation layer, which provides
the interface between River operators and the distributed runtime.
At the highest level are the operator instances and their associated
variables. River’s clean separation of concerns ensures that it can
be ported to additional streaming runtimes. The rest of this section
describes each layer in detail.

5.1 Streaming Runtime
A distributed streaming runtime for River must satisfy the follow-
ing requirements. It must launch the right processes on the right
machines in the distributed system to host operators and variables.
It must provide reliable transport with ordered delivery to imple-
ment queues. It must arbitrate resources and monitor system health
for reliability and performance. Finally, our placement optimizer
relies on placement support in the runtime. There is no strict la-
tency requirement: the semantics tolerate an indefinite transit time.

The streaming runtime sits on top of an operating system layer,
which provides basic centralized services to the runtime layer, such
as processes, sockets, etc. However, building a high-performance
streaming runtime satisfying the above-listed requirements is a sig-
nificant engineering effort beyond the OS. Therefore, we reuse
an existing runtime instead of building our own. We chose Sys-
tem S [10], a distributed streaming runtime developed at IBM that
satisfies the requirements, and that is available to universities under
an academic license. While System S has its own streaming lan-
guage, we bypassed that in our implementation, instead interfacing
with the runtime’s C++ API.

5.2 Runtime Adaptation
The runtime adaptation layer provides the interface between River
operators and the distributed runtime. As shown in Figure 4, it
consists of three sub-layers.

Call-Back Mediation Layer. This layer mediates between the
runtime-specific APIs and call-backs, and the River-specific func-
tions. The code in this layer peels off runtime-specific headers from
a data item, and then passes the data item to the layer above. Sim-
ilarly, it adds the headers to data on its way down. If there are
shared variables, this layer performs locking, and implements out-
put buffers for avoiding back-pressure induced dead-lock as de-
scribed in Section 2.4. The call-back mediation layer is linked into
the streaming runtime.

River FFI Layer. A foreign function interface, or FFI for short,
enables calls across programming languages. In this case, it enables
C++ code from a lower layer to call a River function in an upper
layer, and it enables River code in an upper layer to call a C++
function in a lower layer. The River FFI is the same as the OCaml
FFI. Each OS process for River contains an instance of the OCaml
runtime, which it launches during start-up.

(De-)Marshalling Layer. This layer converts between byte ar-
rays and data structures in River’s implementation language. It
uses an off-the-shelf serialization module. The code in this layer is
auto-generated by the River compiler. It consists of process(...)
functions, which are called by the next layer down, demarshal the
data, and call the next layer up; and of submit(...) functions,
which are called by the next layer up, marshal the data, and call
the next layer down. Since this layer is crucial for performance,
we plan to optimize it further by specialized code generation.

Overall, implementing River on System S required 1,636 lines
of Java code for the River-to-C++ translator, and 780 lines of
boilerplate C++ code used by the translator. Since that is only a
moderate amount of code, we believe porting to a different platform
would not be too much work.

5.3 Variables and Operators
As described in Section 3.5, operators are generated from templates
written by the language developer. Their implementation strikes a
balance between the functional purity of operators in Brooklet, and
performance demands of a practical IL that needs to update data
in place, and make callbacks instead of returning values. Variables
and operators are implemented in the implementation sublanguage
of River. An operator firing takes the form of a function call from
the next lower layer. If the operator accesses variables, then the call
passes those as references, so that the operator can perform in-place
updates if needed. Instead of returning data as part of the function’s
return value, the operator invokes a call-back for each data item it
produces on an output queue. Note that this simple API effectively
hides any lower-layer details from the variables and operators.

6. Evaluation
We have built a proof-of-concept prototype of River, including
front-ends for the three source languages, implementations of the
three optimizations, and a back-end on the System S distributed
streaming system. We have not yet tuned the absolute performance
of our prototype; the goal of this paper was to show its feasibility
and generality. Therefore, while this section presents some exper-
imental results demonstrating that the system works and performs
reasonably well, we leave further efforts on absolute performance
to future work.

All performance experiments were run on a cluster of 16 ma-
chines. Each machine has two 4-core 64-bit Intel Xeon (X5365)
processors running at 3GHz, where each core has 32K L1i and 32K
L1d caches of its own, and a 4MB unified L2 cache that is shared
with another core. The processors have a FSB speed of 1,333 MHz
and are connected to 16GB of uniform memory. Machines in the
cluster are connected via 1Gbit ethernet.

6.1 Support for Existing Languages
To verify that River is able to support a diversity of streaming lan-
guages, we implemented the language translators described in Sec-
tion 3, as well as illustrative benchmark applications. The bench-
marks exercise a significant portion of each language, demonstrat-
ing the expressivity of River. They are described below:

CQL Linear Road. Linear Road [2] is the running example in the
CQL paper. It is a hypothetical application that computes tolls for

8

now proj
ect

istre
am

dup
split

ran
ge

join

istre
am

aggre
gate

join

se
lect

join

ran
ge

parti
tion

proj
ect

dis
tinct

dup-
split

now

proj
ect

aggre
gate

pro
ject

pro
ject

rstre
am

low-
pass

de-
mod split

split

low-
pass

low-
pass

join subtr
act

join eq-
filter

split

low-
pass

low-
pass

join subtr
act

(a) CQL’s Linear Road in River. (b) StreamIt’s FM Radio in River.

Figure 5. Structural view for the CQL and StreamIt benchmarks. The dashed ovals group operators that are placed onto the same machine.

vehicles traveling on the Linear Road highway. Figure 5 (a) shows
the operator graph of the application. Each vehicle is assigned a
unique id, and its location is specified by three attributes: speed, di-
rection, and position. Each highway is also assigned an id. Vehicles
pay a toll when they drive on a congested highway. A highway is
congested if the average speed of all vehicles on the highway over
a 5 minute span is less than 40 mph.

StreamIt FM Radio. This benchmark implements a multi-band
equalizer [12]. As shown in Figure 5 (b), the input passes through a
demodulator to produce an audio signal, and then an equalizer. The
equalizer is implemented as a splitjoin with two band-pass filters;
each band-pass filter is the difference of a pair of low-pass filters.

Sawzall Batch Log Analyzer. Figure 3 (d) shows this query,
which is based on an exemplar Sawzall query in Pike et al. [31].
It is a batch job that analyzes a set of search query logs to count
queries per origin based on IP address. The resulting aggregation
could then be used to plot query origins on a world map.

CQL Continuous Log Analyzer. This is similar to the Sawzall
log query analyzer, but it is a continuous query rather than a batch
job. Its input comes from a server farm. Each server reports the
origin of the requests it has received, and the analyzer performs
an aggregation keyed by the origin over the most recent 5 minute
window. Note that the data is originally partitioned by the target
(server) address, so the application must shuffle the data.

The three source languages, CQL, StreamIt, and Sawzall, oc-
cupy three diverse points in the design space for streaming lan-
guages and the benchmark applications exercise significant por-
tions of each language. This demonstrates that River is expressive
enough to support a wide variety of streaming languages.

6.2 Suitability for Optimizations
To verify that River is extensible enough to support a diverse set
of streaming optimizations, we implemented each of the optimiza-
tions described in Section 4. We then applied the different opti-
mizations to the benchmark applications from Section 6.1.

Placement. Our placement optimizer distributes an application
across machines. Operators from each application were assigned
to groups, and each group was executed on a different machine. As
a first step, we used the simple heuristic of assigning operators to
groups according to the branches of the top-level split-merge oper-
ators, although there has been extensive prior work on determining
the optimal assignments [36]. In the non-fused version, each op-
erator had its own process, and it was up to the OS to schedule
processes to cores. Figure 6 (a) and (b) show the results of running

both Linear Road and the FM Radio applications on 1, 2, and 4 ma-
chines. Figure 5 shows the partitioning scheme for the 4-machine
case using dashed ovals. These results are particularly exciting be-
cause the original implementation of CQL was not distributed. De-
spite the fact that the Linear Road application shows only limited
amounts of task and pipeline parallelism, the first distributed CQL
implementation achieves a 3.70× speedup by distributing execu-
tion on 4 machines. The FM Radio application exhibits a 1.84×
speedup on 4 machines.

Fission. Our fission optimizer replicates operators, and then dis-
tributes those replicas evenly across available machines. We tested
two applications, the Sawzall batch log analyzer and the CQL con-
tinuous log analyzer, with increasing amounts of parallelism. In
these experiments, the degree of parallelism corresponded to the
number of available machines, from 1 to 16. We additionally ran
the Sawzall query on 16 machines with 16, 32, 48, and 64 degrees
of parallelism, distributing the computation across cores. The re-
sults are shown in Figures 6 (c) and (d).

Fission adds split and merge operators to the stream graph.
Therefore, in the non-fissioned case, there are fewer processing
steps. Despite of this, the Sawzall program’s throughput increased
when the degree of parallelism went from 1 to 2. As the degree of
parallelism and the number of machines increased from 2 to 16,
the increase in throughput was linear, with an 8.92× speedup on 16
machines. When further distributed across cores, the Sawzall pro-
gram also experiences a large performance increase. However, the
32 replicas case showed better performance than 64 replicas. This
makes sense, since the unfused Sawzall query has 5 operators, each
of which was replicated 64 times (64 ∗ 5 = 320), while the total
number of available cores across all machines was 16 ∗ 8 = 128.

The CQL continuous log analyzer saw a performance improve-
ment with fission, but only achieved at best a 2.19× speedup,
with no benefit past 6 machines. Unlike Sawzall, all data items in
CQL are timestamped. To maintain CQL’s deterministic semantics,
mergers must wait for messages from all input ports for a given
timestamp. The lesson we learned was that when implementing a
distributed, data-parallel CQL, we need to give more consideration
to how to enforce deterministic execution efficiently. Unlike our
River-CQL implementation, the original CQL did not do fission
and thus did not encounter this issue.

Fusion. The Linear Road results in Figure 6 (a) illustrate the
tradeoffs during fusion, which often comes at the expense of
pipeline parallelism. The fusion optimization only improves perfor-
mance in the 4-machine case, where it achieves a 4.02× speedup,
which is overall better than the 4-machine results without fusion.
Figure 6 (c) shows that fusion is particularly beneficial to the
Sawzall log query analyzer. In this case, fusion eliminates much

9

1.00

2.63
3.70

0.67

1.60

4.02

0.1

1.0

10.0

1 2 4

Speedup: Linear road

No fusion
Fusion

1.00

1.48
1.84

1

10

1 2 4

Speedup: FM radio

1.28

2.53

4.94
8.92

16.02 14.80

2.06

4.28

8.26

16.95

31.95
50.32

1

10

100

1 2 4 8 16 32 64

Speedup: Batch log analyzer

No fusion
Fusion

1.00

1.88
2.16 2.19 2.14

1

10

1 2 4 8 16

Speedup: Continuous log analyzer

1.00

1.32

0.93

0.67
0.80

1.01

0.0

1.0

2.0

1 2 4

Scaleup: Linear road

No fusion
Fusion

1.00

0.74

0.46

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4

Scaleup: FM radio

1.00

0.64 0.63 0.62 0.56 0.50

0.23

1.03  1.07  1.03  1.06 
1.00 

0.79 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16 32 64

Scaleup: batch log analyzer

No fusion
Fusion

1.00 0.94

0.54

0.27
0.13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

Scaleup: Continuous log analyzer

(a) Linear Road in CQL (b) FM Radio in StreamIt (c) Batch log analyzer in Sawzall (d) Cont. log analyzer in CQL

Figure 6. Speedup is the throughput relative to single machine. Scaleup is the speedup divided by number of machines in (a) and (b), and
the speedup divided by the degree of parallelism in (c) and (d).

of the per-data item processing overhead, and therefore allows the
fission optimization to yield much better results. Fusion combines
each mapper with its splitter and each reducer with its merger. With
both fusion and fission, the Sawzall log query analyzer speeds up
50.32× on 16 machines with 64 degrees of parallelism.

Calibration to Native Implementation. The placement, fission,
and fusion optimizations demonstrate that River can support a di-
verse set of streaming optimizations, thus validating our design.
While we did not focus our implementation efforts on absolute per-
formance metrics, we were interested to see how River’s perfor-
mance compared to a native language implementation. The Sawzall
compiler translates Sawzall programs into MapReduce jobs. We
therefore implemented the Sawzall web log analyzer query as a
Hadoop job. We ran both Hadoop and River on a cluster of 16 ma-
chines, with an input set of 109 data items, around 24GB. Hadoop
was able to process this data in 96 seconds. We observed that the
Hadoop job started 92 mappers during its execution, so we ran
River with 92 mappers, and computed the results in 137 seconds.
However, we should point out that the execution model for both
systems differs. While Hadoop is a batch processing system and
stores its intermediate results to disk, River is a streaming system,
in which the mapper and the reducer are running in parallel, and
intermediate results are kept in memory. Given that there are 16
machines with 8 cores each, we ran River again with 64 mappers
and 64 reducers (16 ∗ 8 = 64 + 64 = 128). Under this scenario,
River completed the computation in 115 seconds.

Despite the fact that Hadoop is a well-established system that
has been heavily used and optimized, the River prototype ran about
83% as fast. There are two reasons for this performance difference.
First, our current fission optimizer always replicates the same num-
ber of mappers as reducers, which is not an optimal configuration.
Additional optimization work is needed to adjust the map-to-reduce
ratio. Second, our implementation has some unnecessary serializa-
tion overheads. A preliminary investigation suggests that eliminat-
ing those would give us performance on par with Hadoop.

6.3 Concurrency
This section explores the effectiveness of the locking algorithm
from Figure 1.

Coarse-Grained Locking. For the coarse-grained locking exper-
iment, we used the following setup, described in River’s topology
language:

(q2, $v1) <- f1(q1, $v1);
(q3, $v1, $v2) <- f2(q2, $v1, $v2);
(q4, $v2) <- f3(q3, $v2);

In this example, f1 and f3 are expensive (implemented by sleeping
for a set time), whereas f2 is cheap (implemented as the identity
function). Operator instances f1 and f2 share the variable $v1, and
f2 and f3 share the variable $v2. With naive locking, we would put
all three variables under a single lock. That means that all three
operator instances are mutually exclusive, and we would expect the
total execution time to be approximately:

cost(f1) + cost(f2) + cost(f3)

On the other hand, with our smarter locking scheme, f1 and f3 have
no locks in common and can therefore execute in parallel. Hence,
you would expect an approximate total execution time of:

max{cost(f1), cost(f3)}+ cost(f2)

We tested this by varying the cost (i.e., delay) of the operators
f1 and f3 over a range of 0.001 to 1 seconds. The results in
Figure 7 (a) behave as we expected, with our locking scheme
performing approximately twice as fast as with the naive version.

Fine-Grained Locking. As a second micro-benchmark for our
locking algorithm, we wanted to quantify the overhead of locking
on a fine-grained level. We used the following setup, described in
River’s topology language:

(q2, $v1, ..., $vn) <- f1(q1, $v1, ..., $vn);
(q3, $v1, ..., $vn) <- f2(q2, $v1, ..., $vn);

Operators f1 and f2 share variables $v1 . . . $vn, where we incre-
mented n from 1 to 1,250. With naive locking, each variable would
be protected by its own lock, as opposed to our locking scheme,
which protects all n variables under a single lock. Figure 7 (b)
shows that the overhead of the naive scheme grows linearly with
the number of locks, just as expected.

7. Related Work
River is an execution environment for streaming, which runs on
a distributed system and supports multiple source languages. SVM,
the stream virtual machine, is a C framework for streaming on
both CPU and GPU back-ends, but the paper does not describe any
source-language support [21]. MSL, the multicore streaming layer,
executes only the StreamIt language on the Cell architecture [38].
Erbium is a set of intrinsic functions for a C compiler for streaming

10

2.2

20.5

235.1

2,833.9

4.2

40.2

400.2

3,999.8

1

10

100

1,000

10,000

0.001 0.01 0.1 1

Ti
m

e
[s

]

Delay [s]

Coarse locking experiment

One lock
Two locks

0

100

200

300

400

0 250 500 750 1000 1250

Ti
m

e
[s

]

Number of locks

Fine locking experiment

(a) Coarse locking (b) Fine locking

Figure 7. Locking experiments

on an x86 SMP, but the paper describes no source-language sup-
port [25]. And Lime is a new streaming language with three back-
ends: Java, C, and FPGA bit-files [3]. None of SVM, MSL, Erbium,
or Lime are distributed on a cluster, none of them are founded on a
calculus, and they all have at most a single source language each.
While we are not aware of prior work on execution environments
for distributed streaming, there are various execution environments
for distributed batch dataflow. MapReduce [7] has emerged as a
de-facto execution environment for various batch-processing lan-
guages, including Sawzall [31], Pig Latin [29], and FlumeJava [6].
Dryad [19] is a batch execution environment that comes with its
own language Nebula, but is also targeted by DryadLINQ [37].
CIEL is a batch execution environment with its own language Sky-
Writing [27]. Like MapReduce, Dryad, and CIEL, River runs on a
shared-nothing cluster, but in contrast, River is designed for con-
tinuous streaming, and derived from a calculus.

Stream processing is closely related to complex event process-
ing (CEP), with the latter placing greater emphasis on the timing
intervals between the arrival of data items processed by an opera-
tor. Because CEP functionality can be encapsulated in a streaming
operator [17], River should also be able to serve as a substrate for
those languages.

River comes with an eco-system for economic source-language
development. The LINQ framework (language integrated query)
also facilitates front-end implementation, but using a different ap-
proach: LINQ embeds SQL-style query syntax in a host language
such as C#, and targets different back-ends such as databases or
Dryad [24]. Our approach follows more traditional compiler frame-
works such as Polyglot [28] or MetaBorg [5]. We use the Rats!
parser generator to modularize grammars [14]. Our approach to
modularizing type-checkers and code-generators has some resem-
blance to Jeannie [18], though Jeannie is not related to stream
processing, and River composes more language components at a
finer granularity.

Several communities have come up with similar streaming op-
timizations, but unlike River, they do not decouple the optimiza-
tions from the source-language translator and reuse them across
different source languages. In parallel databases [8], the IL is re-
lational algebra. Similarly to the fission optimization in this paper,
parallel databases use hash-splits for parallel execution. But to do
so, they rely on algebraic properties of a small set of built-in oper-
ators. In contrast, River supports an unbounded set of user-defined
operators. There has been surprisingly little work on generalizing
database optimizations to the more general case [9, 11], and that
work is still limited to the database domain. The StreamIt compiler
implements its own variant of fission [12]. It relies on fixed data
rates and stateless operators for safety, and indeed, the StreamIt lan-
guage is designed around making those easy to establish. Our fis-
sion is more general, since it can parallelize even in the presence of
state. MapReduce has data-parallelism hard-wired into its design.
Safety relies on keys and commutativity, but those are up to the user
or a higher-level language to establish. River supports language-

independent optimization by making such language-specific safety
properties explicit in the IL.

8. Conclusion
This paper presents River, an execution environment for distributed
stream processing. River is based on Brooklet, a stream-processing
calculus [32]. Stream processing is widely used, easy to distribute,
and has language diversity. By providing an execution environ-
ment for streaming, we are making a lot of common infrastructure
portable and reusable, and thus facilitating further innovation. And
by building our execution environment on a calculus, we are giving
a clear definition of how programs should behave, thus enabling
reasoning about correctness.

One contribution of this paper is to show how to maintain
the properties of the calculus in the execution environment. The
Brooklet calculus has a small-step operational semantics, which
models execution as a sequence of atomic operator firings using
pure functions. In River, operator firings still behave as if atomic,
but are concurrent and do not need to be pure.

A second contribution of this paper is to make source language
development economic. We show how to reuse common language
components across diverse languages, thus limiting the effort of
writing parsers, type checkers, and code generators to the unique
features of each language. The River execution environment in-
cludes an intermediate language for describing stream graphs and
operator implementations. We use code generation for operator im-
plementations based on a simple templating mechanism.

A third contribution of this paper is to provide safe streaming
optimizations that work across different source languages. Each
source language is designed to make the safety of certain optimiza-
tions evident. We provide an annotation syntax, so that on the one
hand, translators from the source languages can retain the safety
information, while on the other hand, optimizers can work at the IL
level without being source-language specific. Each optimizer uses
the annotations as policy and implements the program manipula-
tion as mechanism.

To conclude, River is an execution environment for running
multiple streaming languages on a distributed system, and comes
with an eco-system for making it easy to implement and optimize
multiple source-languages. River is based on a calculus, giving it a
clear semantics and strong correctness guarantees.

Acknowledgements
We thank the anonymous reviewers for their helpful comments.
We also thank Nagui Halim for his encouragement. This work is
supported by NSF CCF-1162444.

References
[1] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo,

Y. Park, and C. Venkatramani. SPC: A distributed, scalable platform
for data mining. In Proc. 4th International Workshop on Data Mining
Standards, Services, and Platforms, pp. 27–37, Aug. 2006.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query lan-
guage: Semantic foundations and query execution. The VLDB Journal,
15(2):121–142, June 2006.

[3] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: A Java-
compatible and synthesizable language for heterogeneous architec-
tures. In Proc. ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 89–108, Oct. 2010.

[4] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In ACM SIGMOD International Conference on Manage-
ment of Data, pp. 261–272, June 2000.

11

[5] M. Bravenboer and E. Visser. Concrete syntax for objects. In Proc.
ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 365–383, Oct. 2004.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumeJava: Easy, efficient data-parallel
pipelines. In Proc. ACM Conference on Programming Language De-
sign and Implementation, pp. 363–375, June 2010.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. 6th USENIX Symposium on Operating Systems
Design and Implementation, pp. 137–150, Dec. 2004.

[8] D. DeWitt and J. Gray. Parallel database systems: The future of
high performance database systems. Communications of the ACM,
35(6):85–98, June 1992.

[9] L. Fegaras. Optimizing queries with object updates. Journal of
Intelligent Information Systems, 12(2–3):219–242, Mar. 1999.

[10] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: The
System S declarative stream processing engine. In Proc. ACM SIG-
MOD International Conference on Management of Data, pp. 1123–
1134, June 2008.

[11] G. Ghelli, N. Onose, K. Rose, and J. Siméon. XML query optimization
in the presence of side effects. In Proc. ACM SIGMOD International
Conference on Management of Data, pp. 339–352, June 2008.

[12] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
Proc. 12th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 151–162,
Oct. 2006.

[13] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amaras-
inghe. A stream compiler for communication-exposed architectures.
In Proc. 10th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 291–
303, Dec. 2002.

[14] R. Grimm. Better extensibility through modular syntax. In Proc. ACM
Conference on Programming Language Design and Implementation,
pp. 38–51, June 2006.

[15] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson,
B. Bershad, G. Borriello, S. Gribble, and D. Wetherall. System support
for pervasive applications. ACM Transactions on Computer Systems,
22(4):421–486, Nov. 2004.

[16] Y. Gurevich, D. Leinders, and J. Van Den Bussche. A theory of
stream queries. In Proc. 11th International Conference on Database
Programming Languages, vol. 4797 of LNCS, pp. 153–168, Sept.
2007.

[17] M. Hirzel. Partition and compose: Parallel complex event processing.
In Proc. 6th International Conference on Distributed Event-Based
Systems, July 2012.

[18] M. Hirzel and R. Grimm. Jeannie: Granting Java native interface
developers their wishes. In Proc. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp. 19–38, Oct.
2007.

[19] M. Isard, M. B. Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel program from sequential building blocks. In Proc. 2nd
European Conference on Computer Systems, pp. 59–72, Mar. 2007.

[20] R. Khandekar, I. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu,
H. Andrade, and B. Gedik. COLA: Optimizing stream processing
applications via graph partitioning. In Proc. 10th ACM/IFIP/USENIX
International Conference on Middleware, vol. 5896 of LNCS, pp. 308–
327, Nov. 2009.

[21] F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis, and
M. Horowitz. The stream virtual machine. In Proc. 13th International
Conference on Parallel Architectures and Compilation Techniques, pp.
267–277, Sept./Oct. 2004.

[22] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis and transformation. In Proc. 2nd IEEE/ACM
International Symposium on Code Generation and Optimization, pp.
75–88, Mar. 2004.

[23] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-
ings of the IEEE, 75(9):1235–1245, Sept. 1987.

[24] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling object,
relations and XML in the .NET framework. In Proc. ACM SIGMOD
International Conference on Management of Data, p. 706, June 2006.

[25] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Er-
bium: A deterministic, concurrent intermediate representation to map
data-flow tasks to scalable, persistent streaming processes. In Proc.
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pp. 11–20, Oct. 2010.

[26] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. ACM Transactions on Computer Systems,
15(3):217–252, Aug. 1997.

[27] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. Ciel: A universal execution engine for dis-
tributed data-flow computing. In Proc. 8th ACM/USENIX Symposium
on Networked Systems Design and Implementation, pp. 113–126, Mar.
2011.

[28] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible
compiler framework for Java. In Proc. 12th International Conference
on Compiler Construction, vol. 2622 of LNCS, pp. 138–152, Apr.
2003.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A not-so-foreign language for data processing. In Proc. ACM
SIGMOD International Conference on Management of Data, pp.
1099–1110, June 2008.

[30] P. Pietzuch, J. Ledlie, J. Schneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer. Network-aware operator placement for stream-processing
systems. In Proc. 22nd International Conference on Data Engineer-
ing, pp. 49–61, Apr. 2006.

[31] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting
the data: Parallel analysis with Sawzall. Scientific Programming,
13(4):277–298, 2005.

[32] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and
K.-L. Wu. A universal calculus for stream processing languages. In
Proc. 19th European Symposium on Programming, vol. 6012 of LNCS,
pp. 507–528, Mar. 2010.

[33] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
Proc. 19th International Conference on Parallel Architectures and
Compilation Techniques, pp. 365–376, Sept. 2010.

[34] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In Proc. 11th International Conference on
Compiler Construction, vol. 2304 of LNCS, pp. 179–196, Apr. 2002.

[35] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoff-
mann, M. Brown, and S. Amarasinghe. StreamIt: A compiler for
streaming applications. Technical Report MIT-LCS-TM-622, Mas-
sachusetts Institute of Technology, Dec. 2001.

[36] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-L.
Wu, and L. Fleischer. SODA: An optimizing scheduler for large-scale
stream-based distributed computer systems. In Proc. 9th ACM/IFIP/-
USENIX International Conference on Middleware, vol. 5346 of LNCS,
pp. 306–325, Dec. 2008.

[37] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In Proc. 8th USENIX
Symposium on Operating Systems Design and Implementation, pp. 1–
14, Dec. 2008.

[38] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight
streaming layer for multicore execution. ACM SIGARCH Computer
Architecture News, 36(2):18–27, May 2008.

12

	Introduction
	Maintaining Properties of the Calculus
	Brooklet Abstractions and their Rationale
	River Concretizations and their Rationale
	Maximizing Concurrency while Upholding Atomicity
	Bounding Queue Sizes

	Making Language Development Economic
	Brooklet Treatment of Source Languages
	River Implementation of Source Languages
	River Translation Source
	River Translation Target
	River Translation Specification

	Safe and Portable Optimizations
	Brooklet Treatment of Optimizations
	River Optimization Support
	Fusion Optimizer
	Fission Optimizer
	Placement Optimizer
	When to Optimize

	Runtime Support
	Streaming Runtime
	Runtime Adaptation
	Variables and Operators

	Evaluation
	Support for Existing Languages
	Suitability for Optimizations
	Concurrency

	Related Work
	Conclusion

